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ORIGINAL ARTICLE

Influence of sampling accuracy on augmented reality for laparoscopic
image-guided surgery

Andrea Teatinia,b , Javier P�erez de Frutosc,d, Benjamin Eigle, Egidijus Pelanisa,f, Davit L. Aghayana,f,g ,
Marco Laih, Rahul Prasanna Kumara , Rafael Palomara,d , Bjørn Edwina,f,i and Ole Jakob Ellea,c

aThe Intervention Centre, Oslo University Hospital Rikshospitalet, Oslo, Norway; bDepartment of Informatics, University of Oslo, Oslo,
Norway; cSINTEF Digital, SINTEF A.S, Trondheim, Norway; dDepartment of Computer Science, NTNU, Trondheim, Norway;
eCAScination, Bern, Switzerland; fInstitute of Clinical Medicine, University of Oslo, Oslo, Norway; gDepartment of Surgery N1, Yerevan
State Medical University, Yerevan, Armenia; hPhilips Research, High Tech, Eindhoven, The Netherlands; iHepato-Pancreatic-Biliary
Surgery, Oslo University Hospital, Oslo, Norway

ABSTRACT
Purpose: This study aims to evaluate the accuracy of point-based registration (PBR) when used
for augmented reality (AR) in laparoscopic liver resection surgery.
Material and methods: The study was conducted in three different scenarios in which the
accuracy of sampling targets for PBR decreases: using an assessment phantom with machined
divot holes, a patient-specific liver phantom with markers visible in computed tomography (CT)
scans and in vivo, relying on the surgeon’s anatomical understanding to perform annotations.
Target registration error (TRE) and fiducial registration error (FRE) were computed using five ran-
domly selected positions for image-to-patient registration.
Results: AR with intra-operative CT scanning showed a mean TRE of 6.9mm for the machined
phantom, 7.9mm for the patient-specific phantom and 13.4mm in the in vivo study.
Conclusions: AR showed an increase in both TRE and FRE throughout the experimental studies,
proving that AR is not robust to the sampling accuracy of the targets used to compute image-
to-patient registration. Moreover, an influence of the size of the volume to be register was
observed. Hence, it is advisable to reduce both errors due to annotations and the size of regis-
tration volumes, which can cause large errors in AR systems.
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Introduction

Image-guided surgery (IGS) systems aim to provide
navigation to surgeons in order to improve the accur-
acy and safety of the procedures. IGS utilizes com-
puter-based systems to provide virtual image overlays
and target the surgical sites [1]. In the past 30 years,
with the technological advances in computer science
and medical imaging, IGS has greatly expanded [1–3].
IGS combines medical images, such as magnetic res-
onance imaging (MRI) or computed tomography
(CT), with the intra-operative images shown during
the surgery to the surgeon through a laparoscope
camera, endoscope camera or ultrasound (US) image.
This information is displayed to surgeons either
through 3D models on separate monitors or overlaid
as augmented reality (AR). Instrument tracking tech-
nologies are used in IGS to provide reliable

information regarding position and orientation of sur-
gical instruments. Moreover, tracking technologies are
also used for registration tasks [4].

This study’s field of application of IGS is
Liver Laparoscopic Resection Surgery (LLRS).
Conventionally, before LLRS, the patient undergoes
volumetric scans, such as CT or MRI, to diagnose and
to plan optimal treatment. These scans, known as pre-
operative scans, are used by the surgeons to plan the
removal of tumours from the liver [5]. However, when
the patient is on the surgical table, his/her position and
orientation are different from the scanning position.
For this reason, surgeons use their understanding of
the anatomy of the liver and intra-operative imaging
modalities (such as laparoscopic video and US) to spa-
tially correlate the anatomy of the liver to the
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diagnostic CT or MRI scans. This approach may not
only introduce inaccuracies, but also makes the surgery
more dependent on the experience of the surgeon.
Moreover, in laparoscopic surgery, pneumoperitoneum
(inflation of the patient’s abdomen) is always per-
formed to have sufficient space to introduce laparo-
scopic instruments and the laparoscopic camera into
the abdomen. This is problematic because pneumoperi-
toneum also deforms the shape of the organs [6], mak-
ing the anatomical correlation with the CT scan even
more complicated for the surgeon.

IGS can help the surgeon avoid an intra-operative
unfavourable incidence by providing surgical navigation.
This is becoming more important especially because par-
enchyma-sparing (PS) liver resection has become a
standard surgical treatment for colorectal liver metastases
(CRLM) [7] because it facilitates repeated liver resec-
tions, which can increase survival [8]. During these pro-
cedures, lesions need to be located intra-operatively,
resection performed with planned margin, and vessels
cut at optimal locations. IGS can provide surgeons with
an overview of the vascular structures, position of the
lesion, etc. directly in the operating field. For example,
for resection in posterosuperior liver segments, which in
some cases are more complicated than formal resections
due to accessibility and visibility [9], IGS could be used
to focus attention in the correct direction and on the
structure where the lesion is located.

Within IGS, AR is a computer vision technique in
which computer-generated images are superimposed
onto video frames to enhance the visualization and

improve the spatial understanding of the scene. In IGS,
AR is achieved via superposition of 3D reconstructions
of segmented medical volumes, such as the CT scan, of
structures of interest (e.g. tumours or blood vessels as
shown in Figure 1), on the laparoscope camera [10].

This study aims to understand the influence of
human-induced error for AR on the laparoscope cam-
era during LLRS. This experimental work studies AR
accuracy in three experiments: an accuracy verifica-
tion phantom, a patient-specific liver phantom and an
in vivo porcine model with intra-operative CT scan.

Material and methods

Background methodology

In LLRS, the surgeon conventionally performs surgery
visualizing the organs through the video of a laparo-
scopic camera, together with assistance of medical
images and, when available, 3D reconstructed surface
models through segmentation. All this information can
be displayed on a separate screen within the OR (as
shown in Figure 1) or can be combined to the laparo-
scope perspective into AR (as shown in Figure 2). As
aforementioned, this study focuses on AR. The following
chapter describes the main algorithms used to achieve
AR in this study: hand-eye camera calibration, point-
based registration (PBR) and AR re-projection.

Hand-eye camera calibration
‘Hand-eye’ camera calibration was coined in the
robotics field [11]. In IGS for LLRS, hand-eye camera

Figure 1. Use of segmentation models and CT scans as a navigation map for laparoscopic liver resection surgery.
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calibration aims to compute the transformation
between a stereo laparoscope camera (the ‘eye’),
ENDOEYE flex3D (Olympus, Tokyo, Japan), and the
instrument markers rigidly attached to the camera
(the ‘hand’), as shown in Figure 3. Instrument track-
ing was achieved in this study using the optical track-
ing system Polaris Spectra (NDI, Waterloo, Canada).
Optical markers were rigidly attached to the laparo-
scope camera using an NDI Polaris Rigid Body (Part
Number 8700449). The six degrees of freedom of the
laparoscope camera were then tracked at a sampling
rate of 60Hz. To perform camera calibration and
hand-eye camera calibration, a calibration plate with a
96-dot pattern, with four optical markers at accurately
machined locations, was manufactured by Cascination
(Cascination, Bern, Switzerland). In this study, the left
channel of the stereo laparoscope camera was cali-
brated and used for AR evaluation. The calibration
plate is white with laser-printed black circles,

OpenCV algorithms were used for detection of the
ellipsoidal centroids and for camera calibration [12].
To compute hand-eye calibration, Equation (1) could
have been used in order to compute the hand-eye
calibration transform from a single pose (i.e. TM

C ,
according to Figure 3)

TM
C ¼ TM

O � TO
S � TS

SC � TSC
C (1)

where O is the coordinate system for the optical
tracking system, M for the optical markers attached
to the laparoscope camera, S for the optical markers
on the calibration plate, SC for the calibration plate
and C is the coordinate system origin for the camera
pose. The notation used in this paper indicates as
superscript the coordinate system with respect to
which the transformation is applied, and subscripted
is the towards which coordinate system. Moreover, all
transformations described in this study are 4� 4
matrices in homogeneous coordinates. TM

O and TS
O are

Figure 2. Frames of AR showing re-projected blood vessel structures in the phantom (left) and the in vivo study (right).

Figure 3. Hand-eye camera calibration transformation diagram, from the laparoscope camera (C) to the optical markers attached
to it (M).
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provided by the optical tracking system, whereas TS
SC

is obtained though pose estimation of the calibration
plate according to Zhang [12]. The calibration plate
was manufactured so that the axes and origins of S
and SC coincide, therefore, for this study, TS

SC is a
4� 4 identity matrix.

In order to improve both accuracy and reliability
of the hand-eye camera calibration, instead of using
Equation (1), the authors of this study implemented a
multiple posed (N-posed) hand-eye camera calibra-
tion, based on Lee et al. [13]. In order to extend the
set of equation for multiple (N) poses, we can rewrite
Equation (1) as follows:

I � RM
O

� ��1
Z9, 3

Z3, 9 RM
O

� ��1

2
4

3
5
1

..

.

I � RM
O

� ��1
Z9, 3

Z3, 9 RM
O

� ��1

2
4

3
5
N

2
66666666664

3
77777777775
� vec RM

C

� �
tMC

" #

¼

vec RO
C

� �
tOC þ RM

O

� ��1 � tMO

" #
1

..

.

vec RO
C

� �
tOC þ RM

O

� ��1 � tMO

" #
N

2
6666666664

3
7777777775

(2)

Minimization of this linear system of matrices
through least squares estimation results in matrix TM

C :

More information regarding the accuracy and theory
of the algorithms is available from studies by Lee
et al. [13] and Lai and Shan [14].

Point-based registration
In the medical field, image registration aims to estab-
lish spatial correspondences between volumetric data-
sets [15]. The alignment between volumetric CT/MRI
images (and segmented models) to the liver configur-
ation when the patient is on the operating table is a
field of image registration known as image-to-patient
or image-to-physical registration. Two solutions are
most commonly in use in the literature to perform
image-to-patient registration: PBR [16] and the single
landmark registration method [17]. Both algorithms
work by sampling and matching a set of correspondent
positions between coordinate systems. Within this
study, PBR was implemented and tested to connect the
image space I (the CT/MRI coordinates) and the
patient’s position on the surgical table P. Consequently,
image-to-patient registration is represented by trans-
form TP

I : To achieve AR on the camera perspective,
we use image-to-patient registration to transform the
image coordinates I into camera coordinates C, as
shown in Figure 4 following the equation:

TC
I ¼ TM

C

� ��1 � TM
O � TO

P � TP
I (3)

However, if the points used for registration are
already with respect to the optical tracking system,
transformation TO

P will be an identity matrix. This
can happen if we are registering to coordinate system
O by sampling positions using an optically
tracked instrument.

Re-projection of volumes in augmented reality
To complete the AR after Equation (3), re-projection
of 3D volumes to 2D images was performed using an
additional transformation, commonly referred to as

Figure 4. AR transformation diagram which combines hand-eye calibration and image-to-patient registration.
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the perspective projection matrix or camera intrinsic
matrix [12]. Re-projection of models in the I (Image)
coordinate system as AR on the camera view can be
performed through Equation (4):

s
u
v
1

2
4

3
5 ¼ fx c u0

0 fy v0
0 0 1

� �
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

K

� TM
C

� ��1 � TM
O � TO

P � TP
I �

x
y
z
1

2
664

3
775

(4)

where u and v are the 2D positions on the image
plane in pixels, x, y, z are the 3D positions in the P
coordinate system and matrix K is the intrinsic
parameters matrix, computed through camera calibra-
tion. t is a nonhomogeneous transformed vector 3D
positions in C coordinates (3� 1 vector of the result-
ing 4� 1 transformed points). Rectification parame-
ters are also used during projection of the volumes.

Experimental protocol

The experiment protocol of this study aims to exam-
ine the influence of human errors (registration-related
errors) on AR re-projection errors. The algorithms to
generate the AR were kept consistent throughout each
experiment. Three experiments were conducted with
decreasing accuracy of sampling positions during

image-to-patient registration. The first experiment
makes use of a precisely machined, custom built
optical validation phantom which follows ASTM
standard F2554-10 for optical tracking accuracy meas-
urement, described by Teatini et al. [4]. The second
experiment evaluates AR accuracy on a patient-spe-
cific liver phantom with markers visible in the CT.
Finally, in order to test the AR in a fully clinical scen-
ario, the algorithms described above were tested
through a porcine experiment (in vivo model).

For each experiment, image-to-patient registration
was performed multiple times, always using five regis-
tration landmarks and the rest of the landmarks to
compute the inaccuracy of the AR. Re-projection
error in AR was computed as distance between manu-
ally annotated positions (ground truth positions) and
their correspondent re-projected positions on the AR
frames, as done also by Teatini et al. [18]. An
example of the re-projected points, for all three
experiments, is visible in Figure 5. Two parameters
were evaluated in this study: fiducial registration error
(FRE) and target registration error (TRE). FRE repre-
sents the accuracy of re-projected markers used to
compute image-to-patient registration, and TRE the
accuracy for all other points across the rest of the vol-
ume [16]. Both errors are computed as re-projection
errors. These TRE and FRE fully represent, in our

Figure 5. AR frames for each experiment procedure, validation phantom (left top), liver phantom (right top) and in vivo study
(bottom). The registration targets were manually annotated from the frames, TRE and FRE were computed as the distances to the
re-projected corresponding dots.

MINIMALLY INVASIVE THERAPY & ALLIED TECHNOLOGIES 5



opinion, the accuracy of AR in terms of how well re-
projected volumes are in comparison to ground truth
positions. Moreover, to provide the reader with FRE
and TRE of the AR in millimetres, and not only in
pixels, the authors make use of the inverse of matrix
K in Equation (4), as described by Thompson
et al. [19].

Validation phantom
The optical validation phantom was custom produced
with 28 titanium target divot pins designed for TRE
calculation on various planes and orientations, more
details are available in [4]. Based on the algorithms pre-
viously described, the divot pins were registered and
then re-projected onto the laparoscope frame as AR
(shown in Figure 5). In this scenario, the accuracy of
sampling registration targets is very good because they
are precisely machined targets at measured locations.

Liver phantom
The patient-specific liver phantom is a phantom
designed based on the CT scans of a patient. The liver
phantom used throughout the experiments was pro-
duced by the ARTORG research centre (ARTORG,
Bern, Switzerland) according to Pacioni et al. [20].
Fourteen stainless steel metallic M6 washers were glued
around the whole surface of the liver phantom and
served as landmarks. An intra-operative SOMATON
Definition Edge CT scan (SIEMENS, Munich,
Germany) was used to obtain a CT scan in the OR
with the liver phantom positioned on the surgical table.
The washers were segmented from the CT scan
through intensity-based thresholding and clustered into
positions through fuzzy means classification.

In comparison to the previous experiment on the
validation phantom, the liver phantom introduces
more inaccuracy in determining the correct positions
to sample. This is due to the deformability of the
phantom as well as the fact that the surgeon has to
aim to the centre of the washers with a tracked
pointer, instead of using precisely machined divot
holes. Moreover, the 3D spatial locations of the
markers are not precisely measured (clustered from
the CT scan, as aforementioned), which further
increases the sampling error.

In vivo model
The pre-clinical trial was necessary to calculate the AR
accuracy in a more realistic clinical scenario: the posi-
tions for PBR are points sampled directly on the liver
surface. For this reason, they are neither visible in the
CT scan (like the metallic washers in the liver

phantom), nor precisely machined divot positions (as
in the validation phantom). Hence, the correspondence
between the positions in the CT scan and the laparo-
scopic camera perspective is based on the surgeon’s
anatomical understanding of the liver when required to
annotate the locations sampled laparoscopically on the
CT scan. An in vivo model of 59.5 kg was positioned
on the surgical table in an OR equipped with the
intra-operative CT scanner. After establishing the
pneumoperitoneum to 13mmHg through a Veress
needle, an intra-operative CT scan was performed.
Intra-operative imaging was performed rather than
pre-operative imaging to minimize the inaccuracy due
to soft-tissue deformation due to pneumoperitoneum.
Successively, through an optically tracked monopolar
cauterizer (Aesculap, Tuttlingen, Germany) 15 cauter-
ization marks (ablation marks) were performed by the
surgeon on the liver surface across the whole visible
surface (similarly to [15]).

Reproducing the previous experiments, five of the
targets were used to perform image-to-patient regis-
tration, whereas the other 10 were used to compute
the accuracy. The cauterization marks performed on
the liver surface were matched with the annotations
made by the surgeon on a segmentation model of the
liver parenchyma from the intra-operative CT scan.

This experiment relied on the surgeon’s anatomical
understanding to calculate the positions of the land-
marks on the CT scan. These annotation errors are
computed through fiducial localization error (FLE)
[21]. FLE was evaluated by laparoscopic insertion of
needles at the centre location of the ablation marks,
as to provide approximate ground truth positions for
the annotations (approximate because insertion of the
fiducials can cause some deformation to the liver tis-
sue; moreover, segmentation and reconstruction
errors may also present).

Results

For each experiment, a total of 100AR frames were
manually annotated to evaluate TRE and FRE. Five
markers were used for registration and the rest for
accuracy evaluations. Table 1 summarizes the average
TRE for all three experiments for each registration
procedures in millimetres.

Validation phantom

A total of 748 re-projected divot positions were
used to evaluate TRE and 164 for FRE. The
average TRE across registrations was found to be

6 A. TEATINI ET AL.



m¼ 6.87mm, with standard deviation of r¼ 1.95mm.
FRE resulted in m¼ 6.93mm, with standard deviation
of r¼ 1.29mm.

Liver phantom

A total of 1403 re-projected metallic marker centroid
positions were used to evaluate TRE and 450 for FRE.
The average TRE across registrations was found to be
m¼ 7.85mm, with standard deviation of r¼ 6.19mm.
FRE resulted in m¼7.13mm, with standard deviation
of r¼ 5.68mm.

In vivo model

A total of 3074 re-projected cauterization points were
used in order to compute TRE and 1137 for FRE.
The average TRE across registrations was found to
be m¼ 13.37mm, with standard deviation of
r¼ 6.25mm. FRE resulted in m¼ 11.84mm, with
standard deviation of r¼ 6.44mm. FLE, computed as
the rms between the inserted fiducials and the cauter-
ization points annotated was, on average, 16.40mm.

Because of non-normality of parts of the data, six
Kruskal-Wallis tests were conducted in SPSS (IBM,
Armonk, NY) to compare the TRE and FRE across
registration procedures for each experiment.
Significant differences (p< .05) between registration
procedure accuracies were found for the validation
phantom, for both TRE and FRE, v2(9)¼ 290.06,
p¼ 3.34E�57 and v2(9)¼ 78.69, p¼ 2.93E�13, respect-
ively. No significant differences were found for the
liver phantom TRE but for the FRE v2(9)¼ 21.28,
p¼ .011. Significant differences between registration
procedures were found for TRE and FRE the in vivo
experiment, v2(9)¼ 152.04, p¼ 3.33E�28 and v2(9)¼
29.96, p¼ .00045, respectively.

Successively, an additional Kruskal-Wallis test
(because of non-normality of the data) showed that

there was a statistically significant difference between
the different experiments in terms of TRE,
v2(2)¼ 1223.61, p¼ 1.976E�266, with a mean rank
score of 1666.21 for the validation phantom, 1781.41
for the liver phantom and 3222.93 for the in vivo
study. FRE also revealed significant differences,
v2(2)¼ 254.72, p¼ 4.88E�56, with a mean rank score
of 668.46 for the validation phantom, 595.34 for the
liver phantom and 1017.01 for the in vivo study.

Discussion

Based on the results obtained from the three experi-
ments, the accuracy with which a position is anno-
tated on a CT scan volume affects both the TRE and
FRE in AR. This is inferred from the comparison
between the results in the validation phantom and
liver phantom, where points are measured or auto-
matically clustered, and the results on the in vivo
model, which depends on human interaction
through annotation.

It is noteworthy to mention that, although the
average TREs and FREs of the validation and the liver
phantoms are very similar, TRE varies significantly
between registration procedure in the validation
phantom but not for the liver phantom. This can be
explained by the differences in sizes between the
volumes to be registered. The validation phantom
presents a volume of 4320 cm3, whereas the patient-
specific phantom is 1882 cm3 (the in vivo liver was
2393 cm3). Moreover, the validation phantom targets
are partially symmetrical, and some positions are
almost collinear (as can be seen in Figure 5).
Sampling of five positions across the volume was per-
formed randomly in each of the experiments.
Therefore, depending on the positions of the targets,
a larger volume will be more affected than a smaller
volume. Based on these results, for registration of
large volumes, it is preferable to use a larger number

Table 1. Results of TRE and FRE in (mm) for each experiment, separated into registration procedure, with standard deviation.

Registration

Validation phantom
TRE
(mm)

Validation phantom
FRE
(mm)

Liver phantom
TRE
(mm)

Liver phantom
FRE
(mm)

In vivo study
TRE
(mm)

In vivo study
FRE
(mm)

1 8.57 ± 2.83 9.02 ± 1.2 7.32 ± 5.53 7.72 ± 8.03 13.07 ± 5.44 12 ± 5.37
2 8.44 ± 1.84 7.39 ± 0.96 7.51 ± 6.06 6.69 ± 6.05 11.72 ± 6.3 10.6 ± 6.24
3 4.95 ± 1.26 5.46 ± 0.93 8.02 ± 6.85 6.68 ± 5.66 11.21 ± 5.53 10.63 ± 5.86
4 6.08 ± 1.41 6.94 ± 0.77 9.15 ± 7.17 7.25 ± 5.49 12.85 ± 4.89 11.89 ± 6.62
5 8.72 ± 6.08 7.92 ± 4.73 7.57 ± 5.92 6.45 ± 5.77 14.08 ± 6.86 12.71 ± 6.1
6 5.7 ± 1.15 7.37 ± 1.87 8.25 ± 6.14 8.56 ± 5.01 12.16 ± 6.17 12.21 ± 5.87
7 5.9 ± 1.57 4.93 ± 0.54 7.12 ± 5.76 7.88 ± 6.47 14.25 ± 6.97 12.67 ± 8.07
8 8.41 ± 1.52 7.53 ± 0.86 8.09 ± 6.4 5.18 ± 3.94 14.99 ± 5.52 12.58 ± 6.11
9 4.82 ± 0.48 5.5 ± 0.24 6.99 ± 5.69 9.16 ± 7.06 13.89 ± 6.69 12.99 ± 6.83
10 7.08 ± 1.35 7.3 ± 0.85 8.44 ± 6.42 5.7 ± 3.3 15.48 ± 8.07 10.09 ± 7.33
Mean 6.87 ± 1.95 6.93 ± 1.29 7.85 ± 6.19 7.13 ± 5.68 13.37 ± 6.25 11.84 ± 6.44

Note that the registration targets are not related between experiments.

MINIMALLY INVASIVE THERAPY & ALLIED TECHNOLOGIES 7



of targets to compute the image-to-patient registration
and possibly better spatial disposition of these targets
with respect to the volume (such as ensuring non-col-
linearity between registration targets or closeness to
areas of interest such as tumours).

The statistical differences between TRE and FRE in
the in vivo study may depend on the FLE for the cau-
terization markers used to compute image-to-patient
registration. If, e.g. the accuracy of annotating a pos-
ition were to be inexact, this could greatly affect the
image-to-patient registration matrix, causing an
increase in both TRE and FRE (meaning, a decrease
in AR accuracy). In order to mitigate the effect of
sampling error in PBR, the authors propose using
intra-operative fiducials on the liver surface, which
could be removed post-surgery (or made of biocom-
patible/biodegradable material). These fiducials could
be detected in the intra-operative CT/MRI scan and
used to perform PBR. This would probably reduce
the sampling error to the accuracy evaluated in the
liver phantom testing (it would greatly reduce FLE)
and may greatly improve the accuracy of the AR re-
projection. However, this may prolong and complicate
the surgical procedure.

Within this study, targets located on the centre of
the liver surface were the most complicated to be
annotated correctly and should therefore be avoided.
Alternatively, using targets on the edges of the liver
could also reduce FLE (if the parenchyma were rigid
enough during sampling). Positions that are also sta-
ble in the liver include intersections of the paren-
chyma with major blood vessels (such as the portal
vein) or bifurcations of blood vessel structures. These
structures can serve as solid registration targets; how-
ever, they can only be sampled from within the liver
after resection.

Some limitations to this study include the fact that
the scan used to perform AR was intra-operative,
which is currently not within the surgical workflow
for most hospitals. Pre-operative imaging does not
account for intra-operative deformations, such as
pneumoperitoneum (static deformations); hence, inac-
curacies due to the non-rigidity of the liver would be
present in the current surgical workflow, as men-
tioned by Thompson et al. [19,22]. However, intra-
operative CT and MRI scanners are under production
for Hybrid OR suites, and show very large increases
in AR accuracy and alternative methods of acquiring
intra-operative data (such as stereo surface recon-
struction [23] or laparoscopic US [24]) could be used.
Alternatives to intra-operative imaging, such as the
use of biomechanical modelling are a valid solution,

as described in [25–28], but may be affected by the
need of estimating of viscoelastic properties of soft
tissue and boundary conditions. If elastography were
to be used to characterize the viscoelasticity of the tis-
sue, and the boundary conditions were known for
each patient, biomechanical modelling could be used
to account for deformations.

It would be interesting to study the effect of spatial
disposition of registration targets across volumes of
variable size, to validate the assumption that the vol-
ume changes caused the differences in accuracy
between the validation phantom and the other experi-
ments. Moreover, another limitation to the study is
that the cauterization marks were performed on the
liver surface and might not represent fully the error in
the depth axis. However, the marks were performed
across the liver as deep as possible towards the dia-
phragm, which allowed us to calculate TRE and FRE
for positions at various depths, though not as much as
a blood vessel or a tumour deep within the tissue.
Another limitation is the fact that both camera calibra-
tions and hand-eye calibrations are performed as they
would be in a surgical environment, without thorough
refinement of the calibration procedures. Furthermore,
the annotations for PBR could have been performed
by multiple surgeons to further validate the hypothesis
that annotations (FLE) could cause significant differen-
ces in terms of registration accuracy for AR.

The investigated inaccuracy in terms of TRE and
FRE is larger than that accepted by surgeons.
However, the use of AR, complemented with intra-
operative US, could still be useful for visualization of
the structures in the resection field. Thus, it might
help surgeons better understand spatial distribution of
anatomical structures and lead to safer surgery. Even
with current quality, where resection lines cannot be
followed blindly due to the system’s inaccuracy, there
is still clinical value in the use of this AR system,
especially for spatial understanding.

Conclusions

This study aims to show that accuracy in sampling
registration targets can contribute to decreases/
increases in the accuracy of the AR through PBR. The
laparoscope camera, CT scanner, optical markers and
algorithms used were consistent throughout all
experiments, the only difference was the volumes to
be registered. Results show that the accuracy through
PBR can change based on the accuracy in sampling
the positions to compute image-to-patient registra-
tion, possibly also the size of the volume to be
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registered and spatial disposition of registration tar-
gets used to perform image-to-patient registration.

The overall accuracy for the AR in terms of TRE for
the in vivo model was around 13mm, and 11mm in
terms of FRE. However, the results also say that the
TRE AR accuracy can worsen greatly based on the
registration procedure, if the targets are based on
the surgeon’s annotations (TRE can result to be larger
than a centimeter, as shown in Table 1 and validated in
other studies [22,18]).

The main indication for liver resection is CRLM in
the western world. If the proposed solution were to
be used for clinical use in CRLM, the error for the
AR should not exceed 6mm of inaccuracy according
to the authors. The reason is that 6mm are acceptable
for surgeons because the safety margin for CRLM
(resection margin) is 1–3mm [29], and normally, sur-
gery is planned with a 1 cm margin. Therefore, a
planned resection line with 1 cm of margin using an
AR with 6mm of error, will allow 3mm of space in
addition to the 1mm safety margin.

Based on the results of this study, it is necessary to
improve the image-to-patient registration, possibly
with the use of user-independent fiducials for regis-
tration and a smaller volume to be registered. Overall,
improvements of this AR system are necessary; how-
ever, we have proven that better sampling accuracy
can lead to much better accuracies, which will allow
AR to be of use for surgery.
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