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Abstract
Recent research has dramatically advanced our understanding of the genetic basis of multiple myeloma (MM). MM displays
enormous inter- and intratumoral heterogeneity, and underlies a clonal evolutionary process driven and shaped by diverse factors
such as clonal competition, tumor microenvironment, host immunity, and therapy. Two main cytogenetic groups are distin-
guished: MM with recurrent translocations involving the immunoglobulin heavy chain locus and MM with hyperdiploidy
involving the odd chromosomes. The disease virtually always starts with a preneoplastic prodromal phase—monoclonal
gammopathy of undetermined significance—that variably progresses to symptomatic MM within a few months or many years.
Tumor heterogeneity and its evolution in space and time have important consequences for the clinical management and outcome
ofMMpatients. At diagnosis, spatial intratumoral heterogeneity poses a challenge for classification and risk stratification. During
maintenance therapy, clonal evolution may complicate disease monitoring and promote drug resistance. Upon progression or
transformation, identifying the dominant disease-driving neoplastic clones and elucidating their properties are key to tailor
personalized therapy. In this review, we discuss tumor heterogeneity and clonal evolution in MM, integrating pathological,
radiological, molecular genetics, and clinical data. Current and prospective classification schemes and prognostic parameters,
incorporating new genetic and proteomic discoveries and advances in imaging, are highlighted. In addition, the roles of the tumor
microenvironment, host immunity, and resistance mutations, and their effects on therapy, are discussed. An improved under-
standing of high-risk disease, tumor heterogeneity, and clonal evolution will guide future therapies and may ultimately lead
towards a cure for MM.
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Introduction

Plasma cell neoplasms (PCNs) arise from terminally differentiat-
ed antibody-producing B cells and evolve through a chain of

genetic events from the indolent, pre-malignant disorder mono-
clonal gammopathy of undetermined significance (MGUS) to
multiple myeloma (MM) and its end-stage variants. MM is the
second most common hematological malignancy, affecting >
90,000 individuals in the USA and representing 1.6% of all
cancers [1]. The clinical behavior of MM and other advanced
PCNs is very heterogeneous, with survival rates ranging from
months to decades [2]. This heterogeneity can be attributed to
tumor genetics and epigenetics, as well as a range of extrinsic
factors including the tumormicroenvironment, disease stage, and
host immune response [3–9]. The diagnosis and classification of
PCNs is based on integration of clinical, serological, pathologi-
cal, radiological, and molecular genetic findings. PCNs are cate-
gorized as precursor lesions, i.e., MGUS and smoldering
MM (SMM); solitary plasmacytoma with osseous or
extraosseous localization, standard-risk MM, and high-risk
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disease including advanced and relapsed/refractory (R/R)
MM [10]. Furthermore, in the WHO classification, specific
subtypes of PCNs are recognized based on their predominant
clinical symptoms, such as AL amyloidosis; their association
with specific syndromes, such as POEMS syndrome
(Polyneuropathy, Organomegaly, Endocrinopathy,
Monoclonal gammopathy and Skin changes) or their anatom-
ic location, as for extramedullary plasmacytoma (EMP) and
plasma cell leukemia (PCL).

New treatment strategies including proteasome-targeting
drugs, monoclonal antibodies (mAbs), immunomodulators,
and autologous hematopoietic stem cell transplantation
(auto-transplant) have induced long-term remissions and im-
proved the outcomes of many MM patients. On average, fit
elderly patients have amedian overall survival (OS) of 5 years,
and OS in younger patients receiving auto-transplant ap-
proaches is 10 years [11]. However, for the 20–30% of MM
patients with high-risk disease, even the most intensive thera-
pies have not resulted in satisfactory outcomes [10, 12]. In
these patients, tumor heterogeneity and clonal evolution of
MM under therapy favor the emergence of resistant clones
that lose their dependence on the bone marrow (BM) micro-
environment, ultimately relapsing as end-stage EMP or PCL
[10]. Therefore, identifying high-risk patients and treating
them accordingly is key to improve global outcomes in MM.
This can be achieved by correct interpretation and integration
of diagnostic findings from multiple clinical disciplines, in-
cluding pathology, radiology, and clinical genomics.

Recent sequencing efforts have shed light on the mutation-
al landscape of PCNs and have unraveled a complex picture of
initiation, evolution, and progression of these diseases, lead-
ing to inter- and intratumoral heterogeneity (Fig. 1).
Combining advanced medical imaging modalities with
targeted biopsies and genetic investigation has provided in-
sights into spatial intratumoral heterogeneity and regional ge-
netic variation, uncovering the primary existence—or drug-
induced emergence—of high-risk, disease-driving subclones
that determine prognosis. These findings have raised new
challenges for PCNs with regard to initial diagnosis and clas-
sification, as well as for follow-up protocols under therapy
[10], and raise the following important questions: (1) What
is the practical impact of pathological and genetic heterogene-
ity, and clonal evolution, on the clinical management of pa-
tients with PCN? (2) What is the role of advanced imaging
modalities, i.e., diffusion-weighted magnetic resonance imag-
ing (DW-MRI) and 18fluoro-deoxyglucose positron emission
tomography/computed tomography (FDG-PET/CT) in rou-
tine PCN diagnosis and follow-up? (3) How does tumor het-
erogeneity as seen in these imaging modalities, such as large
focal lesions (FLs) or EMP, influence downstream diagnostic
procedures including guided lesion biopsies and extended se-
quencing? (4) What is the best way to integrate pathological,
radiological and genetic findings (e.g., from multiple

heterogeneous lesions), and what is their impact on prognosis
and prediction of therapy response?

In this review, we will address these questions from a mul-
tidisciplinary point of view, integrating current knowledge on
the biology, pathology, genetics, imaging, and clinical features
of PCNs with a special focus on the impact of tumor
heterogeneity.

Heterogeneity at the pathological level

According to the Revised 2017 WHO Classification of Tumors
of Hematopoietic and Lymphoid Tissues, PCNs are subdivided
into five categories: (1) non-IgM MGUS; (2) plasma cell mye-
loma/MM, (3) solitary plasmacytoma; (4) monoclonal immuno-
globulin (Ig) deposition disease; and (5) PCNs with associated
paraneoplastic syndrome [13]. Trephine BM biopsies and aspi-
rates continue to be pivotal for a correct diagnosis of PCNs. BM
aspirates are often helpful to assess cytological abnormalities but
can sometimes be negative for plasma cells due to the heteroge-
neous distribution in the BM. Sheets of malignant plasma cells
displaying cellular and nuclear atypia including multinucleation
and prominent nucleoli, in combination with positivity for
CD138, light chain restriction, and aberrant expression of
CD56 in immunohistochemistry (IHC), render the diagnosis of
MM. However, early cases with low percentages of neoplastic
plasma cells are more challenging, and a diagnosis of MM re-
quires the integration of clinical features, especially the presence
or absence of CRAB criteria (hyperCalcemia,Renal insufficien-
cy, Anemia, and Bone lesions) (Table 1). In these early stages,
morphological findings such as the dissociation of groups of
plasma cells from their usual perivascular BM niche or signs of
active bone resorption can provide a hint at the diagnosis.
Prominent nucleoli, intracytoplasmic and intranuclear immuno-
globulin inclusions (Russell and Dutcher bodies, respectively)
and deposits in macrophages (Gaucher-like cells or crystalline
inclusions, respectively) may point to malignancy but may also
be found in reactive processes and are therefore not specific. In
addition to their diagnostic utility, morphology and IHC deliver
valuable information with regard to potential biological and mo-
lecular genetic mechanisms driving the PCN. For example, MM
with lymphoplasmacytoid morphology is frequently associated
with t(11;14)(q13;q32) translocation, exhibits staining for cyclin
D1 in IHC and is commonly CD20 positive, potentially even
resulting in a misdiagnosis of mantle cell lymphoma [15, 16]
(Fig. 2). Strong and homogeneous nuclear cyclin D1 positivity
can be taken as a surrogate for the presence of a t(11;14) trans-
location, whereas more heterogeneous and weaker reactivity is
observed mainly in cases with trisomy 11 [16]. InMGUS, cyclin
D1 expression in plasma cells can confirm the presence of a
clonal proliferation. Rare heavy chain isotypes are also associated
with specif ic features ; e .g . , 20% of PCNs with
lymphoplasmacytoid morphology are IgD-producing, whereas
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the rare IgM-producing MM shows conventional morphology
and is CD20 negative, despite containing the t(11;14) transloca-
tion in > 80% of cases [17–19]. Further cytomorphological fea-
tures include mature, intermediate, immature, and plasmablastic
morphology, the latter associated with significantly worse prog-
nosis and commonMYC translocations, which usually represent
a secondary genetic event in MM. Of note, plasmablasts and
plasmablastic myeloma have been defined by different criteria
cytologically (i.e., in the BM aspirate) and histologically (i.e., in
the BM trephine biopsy) [19–21]. Cytologically, Greipp et al.
defined plasmablasts as having a large central nucleus (>
10 μm diameter) or a large nucleolus and scant cytoplasm; for
a diagnosis of plasmablastic myeloma, plasmablasts needed to
constitute > 2% of nucleated marrow cells in the aspirate. In
contrast, Bartl et al. characterized plasmablastic myeloma as hav-
ing a majority of cells with immunoblast-like features with

prominent central nucleoli and rather scant cytoplasm in the
BM trephine. Irrespective of these different diagnostic criteria,
plasmablastic myeloma usually accounts for 5–15% of MM
cases and shows aggressive behavior.

The phenotype and phenotypic variability of malignant plas-
ma cells is also exploited in flow cytometry, which is a mainstay
in the diagnostic evaluation and especially minimal residual dis-
ease (MRD) detection of MM. In addition, the antigen profile of
clonal plasma cells has been used for prognostic purposes and for
risk assessment in MGUS and SMM [22–26].

Another aspect of heterogeneity at the pathological lev-
el are solitary plasmacytomas, accounting for about 6–
10% of all PCNs, which manifest either as a solitary
osteolytic lesion or as a solitary tumoral proliferation in
an extramedullary location, mostly at mucosal sites in the
head and neck region, less commonly in lymph nodes.

Fig. 1 Tumor heterogeneity in
MM. At the highest genomic
level, interpatient/intertumoral
heterogeneity (top panel) can be
viewed as patients having tumors
with hyperdiploid genomes (~
50%) or primary Ig heavy chain
(IgH) translocations (~ 50%),
with rare exceptions showing a
combination of both. Moreover,
there is a vast variability at the
level of additional driver muta-
tions between patients, as well as
differences in the distribution of
lesions and their
histomorphological appearance,
further contributing to
intertumoral heterogeneity (not
depicted). Intrapatient/
intratumoral heterogeneity (bot-
tom panel) can be described as the
heterogeneous distribution of ge-
netically distinct MM clones and
subclones within a single patient.
Intratumoral heterogeneity may
complicate diagnostics and clas-
sification and represents a signif-
icant challenge for optimal per-
sonalized therapy
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Although solitary EMPs by definition do not show BM
involvement, sensitive techniques can detect clonal BM
plasma cells in the majority of patients with solitary
EMP [27]. Furthermore, solitary EMPs are very similar
to MM both phenotypically and genetically, with the ex-
ception that solitary EMPs are usually negative for the
t(11;14) translocation and markers of advanced disease,
such as MYC translocations or TP53 alterations [28, 29].
Despite this close relationship to MM, solitary EMPs
shows a good prognosis with local radiotherapy alone,
and only about 15% of patients progress to systemic dis-
ease. This underlines the importance of non-genetic fac-
tors for disease progression. From a practical point of
view, separation of generally indolent solitary EMPs from
aggressive extramedullary disease associated with ad-
vanced MM is of great importance and usually relies on
the clinical circumstances and certain pathological fea-
tures such as cellular maturity and the identification of
markers of aggressive disease (Fig. 2).

MM FLs are localized tumor cell accumulations that
are present in the majority of MM patients at diagnosis
and are detectable by advanced imaging modalities
(Fig. 3). FLs represent mutational hotspots consistent with
the regional outgrowth of advanced tumor clones [31].
Detailed histopathological analyses on the cellular com-
position and spatial organization of MM FLs are largely
lacking, mainly because of their frequently difficult local-
ization and accessibility for radiological guided biopsy.
Tissue from FLs can be obtained during surgery for path-
ological fractures, and preliminary studies on these FLs

compared with matched random BM biopsies did not
show significant differences in the proliferation rate of
malignant plasma cells (L.R. and N.W., unpublished ob-
servations). However, systematic studies addressing the
FLs’ tissue characteristics, including mapping their im-
mune tumor microenvironment, have not yet been per-
formed, and there are surprisingly limited data on
osteolytic lesions.

In summary, MM shows a significant heterogeneity at the
pathological level, and the pathologist can use morphological
cues and IHC to guide downstream analyses, such as genetic
testing. Future pathology studies in MM should focus on, and
describe in detail, the spatial cellular organization of FLs.

Heterogeneity at the molecular genetic level

MM is characterized by extensive interpatient genomic
heterogeneity [32]. Yet, it can be broadly categorized into
two groups: those with Ig heavy chain gene translocations
involving chromosome 14q32 (including, in descending
order of frequency, t(11;14), t(4;14), t(14;16), t(14;20),
and t(6;14)), and those with hyperdiploid genomes (i.e.,
trisomies of odd-numbered chromosomes with the excep-
tion of 1, 13, and 21). Additional gross chromosomal
aberrations, such as deletions and amplifications, are often
observed, leading to emergence of new subclones and
intratumoral heterogeneity. To better understand
intratumoral heterogeneity, we recently sequenced several
MM samples from the same patient, including iliac crest

Table 1 WHO definition of MM
Parameter Diagnostic criterion

1. Clonal plasma cell neoplasm (clonality proven by IHC, immunofluorescence, or flow cytometry)

Clonal BM plasma cells > 10%

OR

Plasmacytoma Biopsy proven

AND

2. Any 1 of the following myeloma-defining events

Any 1 of the following criteria of
end-organ damage (CRAB-criteria)

HyperCalcemia (> 0.25 mmol/L above normal or
> 2.75 mmol/L)

Renal insufficiency (creatinine clearance < 40 mL/min or serum
creatinine > 177 μmol/L

Anemia (hemoglobin > 20 g/L below normal or < 100 g/L)

Bone lesions (1 or more osteolytic lesions on skeletal
radiography, CT, or 18F-FDG-PET/CT

OR

Any 1 of the following biomarkers of
malignancy

•Clonal BM plasma cells ≥ 60%

•Involved-to-uninvolved serum-free light chain ratio ≥ 100 (in-
volved free light chain must be ≥ 100 mg/L)

•> 1 focal lesion on MRI (each ≥ 5 mm in size)

Adapted from [13, 14]
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and radiology-guided FL biopsies. Spatial genomic het-
erogeneity at the chromosomal and mutational level,
where somatic aberrations were present at one site but
absent at another (private mutations), was observed in
the majority of patients. On average, three unshared copy
number aberrations (CNAs) between paired samples were
found in these patients. These included spatial differences
in commonly used prognostic markers such as del(17p),
MYC translocations, and aberrations of chromosome 1. In
contrast, initiating events such as t(11;14) and t(4;14)
were uniformly shared among investigated regions, con-
sistent with their role as early disease drivers. In addition,
mutational analysis revealed that private mutations were
found in 76% of newly diagnosed MM (NDMM) patients
[31]. The non-homogeneous distribution of high-risk
clones and potentially targetable driver mutations pose a
significant challenge for correct risk classification and ef-
fective therapy [31, 33, 34]. The prime, clinically relevant

example of spatial heterogeneity discovered in this study
was in a patient who had an ultra-high-risk clone in a
biopsy from the lumbar spine that had a high-risk score
according to gene expression profiling (GEP) data, a bi-
allelic TP53 deletion, and an aberration of chromosome
1p, all of which were absent in the iliac crest biopsy. In
contrast, the iliac crest biopsy was GEP low risk and had
a hyperdiploid karyotype and a BRAFV600E mutation.

A recent investigation of 1273 NDMM patients yielded
profound insight into the interplay of commonly mutated
genes. Walker et al. found significant associations be-
tween certain translocations, oncogene or tumor suppres-
sor gene mutations, chromosomal copy number changes,
and hyperdiploidy. Examples of such events included
t(11;14) in combination with mutations in CCND1 and
IRF4; t(4;14) in combination with mutations in FGFR,
DIS3, and PRKD2; and hyperdiploidy in combination
with gain 11q, mutat ions in FAM46C and MYC

Fig. 2 Heterogeneity at the pathological level. a–e Extramedullary
solitary plasmacytoma of the upper airways shows an infiltration by
mature plasma cells with absence of significant atypia. a, b Giemsa
staining, × 100 and × 400 magnifications, respectively. c–e IHC for c
MUM-1/IRF-4, d kappa (highlighting the malignant clone), and e
lambda light chains (highlighting rare reactive plasma cells).
Magnification, × 400. f–i Osteolytic lesion of anaplastic MM with large,
immunoblast-like cells with narrow rims of basophilic cytoplasm and
large central nucleoli, numerous atypical mitoses, and apoptotic bodies.
f Hematoxylin and eosin (H&E) staining, g Giemsa staining.

Magnification, × 400. h, i IHC for h MYC (only rare positive cells),
and i Ki-67/MIB-1 (> 80% positive cells). Magnification, × 100. j–k
Medullary anaplastic MM with a predominant population of small to
medium sized cells and scattered cells with anaplastic morphology. j
H&E staining, k IHC for p53 (homogenous and strong positive staining,
indicative of p53-mutation). Magnification, × 200. l–n MM of the BM
with lymphoplasmacytoid morphology. l H&E staining and m Giemsa
staining. Magnification, × 200. n IHC for cyclin D1 (marked overexpres-
sion, indicative of a chromosome 11 translocation). Magnification, × 400
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rearrangements, among others [35]. Some of these muta-
tions, such as those in CCND1 and FGFR, are probably
the effect of aberrant somatic hypermutation targeting
translocated genes. Furthermore, the authors observed a
significant inverse correlation between the number of on-
cogenic driver mutations per sample and progression free
survival as well as OS. In addition, this study found novel

potentially targetable mutations in the epigenetic regula-
tors IDH1 and IDH2, and identified associations between
certain BRAF mutations and chromosomal translocations,
i.e., t(14;16) and BRAFD594N and t(4;14) and BRAFV600E

[35]. The latter finding is clinically relevant since BRAF
inhibitors are selective for BRAFV600E and should not be
used in patients with BRAFD594N or RAS mutations [33,
36, 37].

Heterogeneity at the radiological level

MM intra- and intertumoral heterogeneity are clearly
reflected at the radiological level. While some patients
present with a diffuse plasma cell BM infiltration only,
up to 75% of patients show FLs, localized accumulations
of tumor cells in the skeletal system (Fig. 3). Number,
size, location in the skeleton (axial vs. appendicular), type
(intra-, para-, or extramedullary), and metabolism of FLs
differ between patients, dramatically increasing the extent
of interpatient heterogeneity in MM. The two main imag-
ing techniques used for disease detection are 18F-
fluorodeoxyglucose positron emission tomography/
computed tomography (FDG-PET/CT) and diffusion
weighted magnetic resonance imaging (DW-MRI). While
FDG-PET/CT is based on the quantification of increased
glucose uptake by tumor cells, in DW-MRI cellularity is
measured by quantifying the diffusion of water molecules
and the microcirculation of blood in the capillary network
[30, 38]. FDG-PET/CT and DW-MRI have comparable
diagnostic accuracy, and DW-MRI has the advantage of
not exposing the patient to ionizing radiation [39–41].

Clinically, the focus has been on the number and type
of FLs. Both, EMP and more than three FLs in FDG-PET/
CT negatively impact outcome [42–47]. Another variable
that seems to impact prognosis is the location of FLs: Abe
et al. recently showed that MM patients with multiple FLs
in the appendicular skeleton suffered from poor outcome
[48]. Combining whole-body functional imaging and data
from multi-region sequencing, we recently identified the
size of FLs as an important variable [31, 47]. We demon-
strated that spatial differences were mainly seen in pa-
tients with large (> 2.5 cm) FLs, suggesting that clinical
imaging can be used to identify patients with extensive
intratumoral heterogeneity. Indeed, using the size of FLs
as a surrogate marker for the level of intratumoral hetero-
geneity, we showed that the presence of multiple large
FLs was an independent adverse prognostic factor in
MM [47]. Accounting for the size of FLs, more than three
FLs in FDG-PET/CT were not prognostically relevant
anymore.

We have shown that highly advanced clones can be
restricted to an FL [31]. Since response to treatment could

Fig. 3 Heterogeneity at the radiological level. Up to 75% of myeloma
patients present with FLs, and a high number and large size of FLs both
are associated with an adverse prognosis. FDG-PET (left image) andDW-
MRI (right image) of the same patient show heterogeneous disease in-
volvement with multiple FLs. Some FLs are well visible in both imaging
modalities (blue circles), whereas other FLs are much more pronounced
in the DW-MRI (red circles). A possible explanation for these differences
is metabolic heterogeneity, in that some FLs may express lower levels of
hexokinase-2, impairing their uptake of glucose [30]
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be different at that location compared with other sites in
the BM, the question becomes whether iliac crest sam-
pling is sufficient for disease monitoring during treatment.
We and others have recently tested the value of imaging
as an alternative method for detection of MRD [26, 49].
Using the two functional methods, DW-MRI and FDG-
PET/CT, we showed that one quarter of NDMM patients
still had residual FLs when they achieved complete remis-
sion (CR). Combining flow cytometry for MRD detection
and the two imaging methods, we demonstrated that less
than 10% of MRD-negative NDMM patients in CR still
presented with residual FLs. In contrast, ~ 50% of heavily
pretreated patients who achieved MRD-negative CR dur-
ing salvage therapy presented with FLs, illustrating the
value of functional imaging in these patients [50]. Last
but not least, the spleen signal on DW-MRI also provides
prognostic information, in that patients lacking spleen sig-
nal usually show high tumor burden and poor prognosis,
especially when suffering from high-risk disease [51].

Role of the BM microenvironment and host
immunity in MM heterogeneity

Recentevidenceindicatesthatintratumoralheterogeneitycan
beinfluencedbyclonalcompetition,clonalcooperativity,pH,
oxygenation, and the BMmicroenvironment (BMME) [4–6,
9, 52, 53]. The role of the BMME in MM pathogenesis has
been extensively reviewed [54–58]. The BM is a complex
organconsistingofnumeroushighlyspecializedcell lineages
that orchestrate blood production, immunity, and skeletal in-
tegrity over a lifetime of an organism. Becausemature, long-
lived plasma cells primarily reside in the BM, the BMME is
key in the development and progression ofMM (Fig. 4) [55].
As an immunological organ by itself, the BM hosts a wide
range of immature and mature innate and adaptive immune
cell types [59].Toaccommodate its highmetabolic needs, the
BM is also richly vascularized with different types of arteri-
oles, transitionalcapillaries,andsinusoids[60].Besidesthese
cellular compartments, which also include mesenchymal

Fig. 4 Role of BM microenvironment and host immunity in MM
pathogenesis. MM cells produce immunosuppressive cytokines
including IL-10 and TGF-β (center), directly inhibiting T cell responses.
In addition, MM cells secrete angiogenic factors VEGF, FGF, and
ANGPT1 that contribute to BM angiogenesis (bottom left). Multiple cell
types of the BMME produce IL-18, which supports the generation of
MDSCs that inhibit CD8+ T cell responses (top left). The CXCL12-
CXCR4 interaction is important for MM cell retention in the BMME.
Furthermore, adhesion of MM cells to BMSCs, mediated in part by
CD38, activates BMSCs to produce IL-6, which in turn stimulates OCs

for increased bone resorption (bottom center). OCs also directly inhibit
the proliferation of CD4+ and CD8+ T cells (top right). Blue arrows
indicate stimulation, red arrows indicate inhibition. Abbreviations:
ANGPT1, angiopoietin-1; BMME, bone marrow microenvironment;
BMSCs, bone marrow stromal cells; CXCL12, C-X-C chemokine ligand
type 12; CXCR4, C-X-C chemokine receptor type 4; FGF, fibroblast
growth factor; IL, interleukin; MDSCs, myeloid-derived suppressor cells;
MM cell, multiple myeloma cell; OBs, osteoblasts; OCs, osteoclasts;
TGF-β, transforming growth factor-β; VEGF, vascular endothelial
growth factor. Parts of this figure were created with BioRender.com
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cells such as BM stromal cells, adipocytes, and osteolineage
cells, the BMME consists of solid extracellular matrix com-
ponents (such as collagenous bone) and a liquid milieu con-
taining growth factors, cytokines, and chemokines. Immune,
stromal, osseous, and endothelial cells all contribute to this
milieu, which promotes survival, proliferation, and drug re-
sistance ofMMcells [57]. By secreting regulatory cytokines
such as transforming growth factor (TGF)-β and interleukin
(IL)-10, MM cells induce a local and systemic immunosup-
pressionthatpreventshostantitumoral immunityandcontrib-
utes to an increased susceptibility to infections [61]. In addi-
tion, MM cells produce angiogenic factors such as vascular
endothelial growth factor (VEGF), angiopoietin-1 and fibro-
blast growth factor (FGF), which contribute to the enhanced
BM angiogenesis observed in MM patients [56, 62].
Interestingly, MM cells also produce exosomes that carry
multiple angiogenic factors and directly promote endothelial
cell growth [63]. Of note, Nakamura et al. recently demon-
strated that IL-18, produced by multiple cell types in the
BMME, drove the generation of MM-supporting myeloid-
derived suppressor cells (MDSCs) that negatively impacted
antitumoral CD8+ Tcell responses, and showed that high IL-
18 levels inBMplasmawereassociatedwithpooroutcome in
MMpatients [64]. Indeed,BMMDSCswerealreadyreported
earlier to play a pivotal role inMM pathogenesis [65]. In ad-
dition to cytokines and growth factors,MM cells express ad-
hesion factors such as CD38 that allow them to adhere to BM
endothelial and stromal cells. BM stromal cells in turn up-
regulate the expression of IL-6 and other cytokines that acti-
vate osteoclasts (OCs) and drive MM cell proliferation [54].
Interestingly, a studybyFrenquelli et al. showed thatROR2,a
receptor for the non-canonicalWNTpathway, is essential for
MMcell interactionswith theBMME, and thatROR2 inhibi-
tion led to MM cell detachment resulting in apoptosis [66].
OCs,bone-resorbingcells thatare formedasgiantsyncytiaby
the fusion ofmonocytes, aremainly responsible for theMM-
specific bone lesions and the increased risk of fractures. OC
numbers and activity are strongly enhanced inMM, andOCs
directly protect MM cells from immune action by CD4+ and
CD8+ T cells [67]. Numerous additional BMME cell types
including osteoblasts, macrophages, and plasmacytoid den-
dritic cells were shown to contribute to MM pathogenesis
[68–70]. Many currently available MM therapies, including
immunomodulators and bisphosphonates, exert their func-
tions at least in part by affecting non-tumor cells in the
BMME [57]. However, insights into the mechanisms by
which the BMME supports or even promotes MM heteroge-
neity are almost completely lacking. An important factor for
the establishment of intratumoral heterogeneity is the ability
ofMMcells tomobilize into the bloodstreamand re-enter the
BMat different sites. The chemokine receptorCXCR4, a key
mediator of hematopoietic stem cell retention in theBM, also
plays a role in the interactions of MM cells with the BMME.

Inhibiting CXCR4 with the drug plerixafor (AMD3100)
disrupted these interactions,mobilizedMMcells into the pe-
riphery and increased their sensitivity tomultiple therapeutic
agents [71].

In summary, the BMME and host immunity both are crucial
factors in MM pathogenesis. Future studies should address how
they contribute to MM genetic heterogeneity and why end-stage
diseases such as EMP and PCL lose their dependence on micro-
environmental survival signals. Answering these important ques-
tions will improve our understanding ofMM in general and pave
the way for future therapies.

Current therapy and the impact of tumor
heterogeneity

Although molecular segmentation strategies have shown
the extent of tumor heterogeneity in MM, the standard
clinical approach is still more akin to “one size fits all.”
Younger individuals and medically fit patients aged up to
75 years undergo induction therapy utilizing at least one
of the so-called novel agents lenalidomide or bortezomib,
followed by peripheral stem cell apheresis, high-dose mel-
phalan therapy, auto-transplant, and lenalidomide mainte-
nance therapy. In some centers, a second high-dose ther-
apy with auto-transplant 2–6 months after the first trans-
plant (“tandem”) is preferred over a single transplant. The
standard dose of melphalan is 200 mg/m2; in elderly or
frail patients, the dose is frequently reduced to 140 mg/
m2. Consolidation therapy after auto-transplant is another
strategy to improve depth of response, and probably out-
comes. The efficacy of these additional elements is still a
matter of debate [72]. However, Total Therapies, which
include multi-agent induction therapy, two auto-trans-
plants, consolidation, and intensified maintenance have
produced the best reported outcomes so far with some
patients even considered to be cured [73]. Treatment for
transplant-ineligible patients typically consists of doublet
or triplet drug regimens, which are frequently combined
with daratumumab, an anti-CD38 monoclonal antibody
[74, 75].

Only few studies have investigated specific treatments
for GEP-defined high- and low-risk disease [76, 77].
Unfortunately, these studies were not successful and could
neither support intensification in high-risk nor de-
escalation in low-risk patients. In a study by Cavo et al.,
patients with high-risk disease, defined there as
International Staging System (ISS, Table 2) stage II +
III, high-risk cytogenetics and failure to achieve CR,
benefited from tandem transplant as compared with single
transplant (median progression-free survival, 35 vs.
14 months). However, OS in the high-risk group was still
clearly inferior when compared with the standard-risk
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patients. These results suggest that tandem transplant de-
lays disease progression in high-risk patients but does not
overcome high-risk disease per se [79]. In summary, cur-
rent clinical practice usually does not take into account
tumor heterogeneity, with a few exceptions, which are
discussed below, and recapitulated in Table 3.

Treatment with venetoclax, an oral BH3-mimetic, in
patients harboring translocation t(11;14) is a good first
example for individualized MM therapy utilizing the dis-
tinct susceptibility of this molecular subtype to BCL-2
inhibition. Tumor cells with t(11;14) show a more B
cell-like phenotype and more likely express high levels
of BCL-2 relative to BCL-XL and MCL-1. Evaluating
single-agent venetoclax in R/R MM, the overall response
rate was 21%, and most responses (86%) were seen in
patients with t(11;14) translocation, with 27% of these
patients achieving a very good partial response (VGPR)
or better [93]. Combining venetoclax with bortezomib and
dexamethasone the overall response rate was 67% in pa-
tients with R/R MM, and 42% of patients achieved a
VGPR or better [83]. Response was not limited to cases
with t(11;14), but best overall response rate was observed
in patients with high BCL-2 expression (94%). Notably,
patients with bortezomib-sensitive disease were more
likely to respond than those whose disease was refractory
to prior bortezomib, suggesting that venetoclax cannot
fully overcome bortezomib resistance [84]. In summary,
treatment with venetoclax in patients with t(11;14) repre-
sents the prime example for personalized MM therapy.

However, venetoclax is not yet officially approved for
the treatment of MM by the US Food and Drug
Administration (FDA), and it is not mentioned in the
National Comprehensive Cancer Network (NCCN) guide-
lines for MM [80].

Another good example is the impact of proteasome inhib-
itors on t(4;14)-positive MM, a subgroup with dismal out-
comes before the introduction of this class of drugs. At the
University of Arkansas for Medical Sciences in Little Rock,
Dr. Barlogie and team treated patients with several generations
of Total Therapy encompassingmulti-agent induction therapy,
tandem auto-transplants, and intensified maintenance.
Bortezomib was introduced in Total Therapy 3a in the induc-
tion, consolidation and maintenance phase of therapy. A sur-
vival benefit was mainly seen for patients with t(4;14),
highlighting a favorable effect of proteasome inhibition par-
ticularly in this subgroup [12]. Avet-Loiseau et al. reported on
507 NDMM patients treated with bortezomib/dexamethasone
induction followed by transplant and also observed signifi-
cantly improved OS for t(4;14)-positive cases [94]. In sum-
mary, proteasome inhibitors improve outcomes in patients
with t(4;14). Bortezomib maintenance is one option recom-
mended in the NCCN guidelines for MM [80].

The third example for personalized therapy is the use of
vemurafenib and other BRAF and MEK inhibitors in
BRAFV600E-mutated MM [88–90]. Mutations at this loca-
tion occur in > 5% of NDMM and the frequency increases
from baseline to relapse [88, 91]. Raab et al. and others have
reported on patients achieving CR after BRAF-targeted
therapy in R/R MM, and a phase 2 trial (BIRMA trial,
NCT02834364) is currently evaluating this concept in a
larger number of patients [88]. However, although being
the proof of concept for targeting actionable mutations, du-
ration of response is often short and patients relapse with
BRAFV600E-negative clones [33]. Moreover, mutations in
genes involved in the MAP kinase pathway are subclonal
in the majority of patients [33, 95], and spatial genomic
heterogeneity has been reported for these potential targets
[31]. Together, targeting mutations in MM may be an

Table 2 International Staging
System (ISS) and Revised ISS (R-
ISS) for MM

Parameter ISS stage I R-ISS stage I

All of the following All of the following

Serum albumin ≥ 35 g/L ≥ 35 g/L

Serum β2-microglobulin < 3.5 mg/L < 3.5 mg/L

Serum lactate dehydrogenase Not considered Normal

Cytogenetics Not considered Non-high risk: absence of t(4;14), t(14;16), del(17p)

ISS stage II R-ISS stage II

ISS/R-ISS stage Not ISS stage I or III Not R-ISS stage I or III

ISS stage III R-ISS stage III

Serum β2-microglobulin ≥ 5.5 mg/L ≥ 5.5 mg/L

AND

Serum lactate dehydrogenase Not considered Elevated

OR

Cytogenetics Not considered High risk: presence of t(4;14), t(14;16), or del(17p)

Adapted from [2, 78]
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approach for R/R patients with limited therapeutic options.
However, we recommend genomically characterizing these
patients and discussing the results in the framework of a
molecular tumor board.

Conclusions

Recent research has uncovered a striking amount of inter-
and intratumoral heterogeneity in PCNs at all levels of

Table 3 Molecular abnormalities, their effects, prognostic impact, and candidate drugs/therapeutic implications

Molecular abnormality Effect/function Prognostic impact Candidate drugs/
therapeutic impli-
cations

References

t(4;14) (10–15% of patients) Overexpression of MMSET and FGFR3;
increased histone H3K methylation,
up-regulation of CCND2

Adverse prognosis Bortezomib
(improves
survival)

[1, 12, 32, 80]

t(6;14) (~ 1% of patients) Overexpression of CCND3 leading to
malignant transformation

Neutral Palbociclib
(CDK4/6
inhibitor)

[1, 12, 32];
NCT03297606;
NCT02465060;
NCT02693535;
NCT00555906;
NCT02030483

t(14;16) (3–5% of patients) Overexpression of MAF leading to
up-regulation of CCND2, “APOBEC
signature” (increased mutation rate)

Adverse prognosis (neutral in a
large study with 1004
patients [81])

– [1, 12, 32, 81, 82]

t(11;14) (15–20% of patients) Overexpression of CCND1 under IgH
promoter leading to malignant
transformation; proliferation;
dependence on anti-apoptotic proteins

Neutral (co-occurrence with
activating CCND1 mutations
in 10% associated with
adverse prognosis)

BH3-mimetics
(e.g., venetoclax)

[83, 84]

MCL1-inhibitors
(e.g., MIK665,
AMG397)

[85];
NCT02992483;
NCT03465540

Palbociclib
(CDK4/6
inhibitor)

NCT03297606;
NCT02465060;
NCT02693535;
NCT00555906;
NCT02030483

t(14;20) (~ 1% of patients) Overexpression of MAFB leading to
up-regulation of CCND2, “APOBEC
signature” (increased mutation rate)

Adverse prognosis – [1, 12, 32, 82]

ADAR1 overexpression (due
to 1q21 amplification
present in up to 45% of
patients)

Transcriptome hyperediting Disease progression and
aggressiveness

8-Azaadenosine
(could be a
candidate drug to
inhibit ADAR1)

[86]

Resistance to PD-1
immune
check-point
blockade

[87]

Mutations in BRAF (6–12%
of patients), KRAS (~ 20%
of patients), NRAS (~ 20%
of patients)

MAPK pathway activation Associated with disease
progression (mutations often
subclonal)

Encorafenib
Binimetinib
Trametinib
Selumetinib
Vemurafenib

[33, 88–91];
NCT02834364
NCT02834364
NCT01989598
NCT01085214
NCT01524978

MAF overexpression (30% of
patients)

Alteration of integrin beta 7, up-regulation
of CCR1

Increased BM homing and
survival in the BMME

– [32]

MYC overexpression
(secondary translocations,
in 15–20% of patients)

Kataegis (localized hypermutation pattern
linked to APOBEC deregulation)

Adverse prognosis CPI-0610 (BET
inhibitor)

NCT02157636

SK2 overexpression (not
correlated with cytogenetic
abnormalities)

Production of S1P Mitogenic and anti-apoptotic
functions of S1P

ABC294640 [92];
NCT02757326

Adapted in part from [1]

Abbreviations: ADAR1, adenosine deaminase acting on RNA 1; APOBEC, apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like; BET,
bromodomain and extra-terminal motif protein; BH3, BCL-2 homology domain 3;BM, bonemarrow; BMME, BMmicroenvironment;CCND, cyclin D;
CDK, cyclin-dependent kinase;CCR1, C–C chemokine receptor 1;FGFR3, fibroblast growth factor receptor 3;MAF, V-Maf AvianMusculoaponeurotic
Fibrosarcoma Oncogene Homolog;MAP, mitogen-activated protein kinase;MCL-1, myeloid cell leukemia-1;MMSET, multiple myeloma SET domain;
MYC, V-Myc Avian Myelocytomatosis Viral Oncogene Homolog; PD-1, programmed cell death protein-1; S1P, sphingosine-1-phosphate; SK2,
sphingosine kinase 2
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investigation. Despite our increased understanding of
PCNs and better therapies, which have resulted in an im-
proved outlook for the majority of patients, spatially dis-
tributed genetic and biological heterogeneity with out-
growth of aggressive and therapy-resistant subclones still
preclude long-term cure in most patients. The combina-
tion of advanced imaging modalities with targeted genetic
investigation of FLs may lead to better risk estimation and
early identification and targeting of aggressive subclones.
Yet, how the evermore complex personalized MM medi-
cine can be harmonized with increasing economic pres-
sures and patient dignity is a challenge for the future.
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