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HIGHLIGHTS 

 We explored the use of phages to decolonize gut carriers of CTX-M-15 ST131 E. coli 

 An in vitro system (fermentor) was implemented with two pools of feces 

 For the first pool, bacteriophages decreased the numbers of ST131 dramatically 

 For the second pool, a phage-resistant mutant persisted in the continuous culture 

 The individual microbiota composition may have an impact on the development of 

phage resistance 

Highlights
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ABSTRACT 25 

Objectives. We investigated the use of bacteriophages as a strategy to decolonize intestinal carriers 26 

of multidrug-resistant Escherichia coli.  27 

Methods. A fermentor was used as a continuous culture system for 48 hrs. Two different pools of 28 

feces (study I and II) obtained from volunteers were spiked with a CTX-M-15-producing ST131 E. 29 

coli (strain 4901.28) susceptible to bacteriophages and challenged with 3 doses of INTESTI 30 

Bacteriophage cocktail administered at 2, 6 and 10 hrs after inoculum. Bacterial typing was 31 

performed by implementing microdilution panels, spot test, rep-PCR, and whole-genome sequencing 32 

(including cgMLST and SNV analysis) obtained using both Nanopore and Illumina platforms.  33 

Results. In study I, bacteriophages decreased the numbers of 4901.28 dramatically (≤101 CFU/mL 34 

after 6 hrs). In contrast, during study II a phage-resistant mutant of 4901.28 persisted in the continuous 35 

culture (104 CFU/mL at 48 hrs). WGS revealed the presence of two additional plasmids in the mutant 36 

as well as 11 SNVs, including one chromosomal in a glycosyltransferase family 2 protein that is 37 

responsible for the transfer of sugars to polysaccharides and lipids. In both studies, the commensal E. 38 

coli population remained unchanged by the phage treatment maintaining itself at 108 CFU/mL. 39 

Conclusions. Our data indicates that bacteriophage cocktails may be implemented to decolonize 40 

some intestinal carriers. However, the individual microbiota composition may have an impact on the 41 

development of phage resistance. Mechanisms underlying this phenomenon are likely to be various 42 

and complex. Further in vivo studies and protein expression experiments are needed to confirm our 43 

observations and hypotheses. 44 

 45 

KEY WORDS: bacteriophages, gut, multidrug-resistant, E. coli, ST131, CTX-M-15  46 
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1. INTRODUCTION 47 

Multidrug-resistant (MDR) Escherichia coli are spreading worldwide due to hyperepidemic high-risk 48 

clones; among them, those of sequence type (ST) 131 are of particular concern. This lineage is a 49 

major driver of antibiotic resistance and is recognized as a highly prevalent, uropathogenic and 50 

pandemic clone harboring numerous virulence factors. Clinical isolates of ST131 usually display an 51 

MDR phenotype where the extended-spectrum β-lactamases (ESBLs) are the main resistance 52 

mechanism (especially the CTX-M-15). The reasons behind the success of ESBL-producing ST131 53 

E. coli expansion and dissemination on large scale are still to be elucidated. Though, main reasons 54 

are likely to be colonization at intestinal level as well as prolonged persistence [1, 2]. 55 

Notably, intestinal colonization with MDR organisms (MDROs) has four main consequences: i) risk 56 

to spread these pathogens in the environment [1, 3]; ii) cross-transmission among people and/or 57 

animals [4, 5]; iii) risk to sporadically developing untreatable infections (e.g., bloodstream and 58 

urinary-tract infections) [6, 7]; and iv) risk of a life-long carriage of MDROs with consequent 59 

potential horizontal transfer of resistance genes (e.g., via plasmids) to indigenous bacterial species 60 

within the gut [8, 9].  61 

Several strategies aimed to decrease the density as well as relative abundance of MDR Gram-62 

negatives at intestinal level have been suggested [10, 11]. For instance, it has been proposed to use 63 

selective digestive decontamination using broad-spectrum antibiotic(s) administered for short 64 

periods. However, for Gram-negatives, only a few works have examined its efficacy, especially to 65 

decolonize healthy carriers from ESBL-producing Enterobacterales [12, 13]. This strategy seems to 66 

not completely eradicate the targeted strain, but rather decrease its number, which could lead to gut 67 

re-colonization [13]. Moreover, these antibiotic-based approaches present the major disadvantage of 68 

reducing species diversity within the intestinal microbiota. This can lead to disrupted colonization 69 

resistance, increasing the risk for developing infections, as well as resistance against last-line 70 

antibiotics [14, 15].  71 
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More recently, the fecal microbiota transplantation, other than for preventing recurrent Clostridium 72 

difficile infections, has been implemented to lower the density of MDROs (alone or preceded by short 73 

courses of antibiotics). Although promising preliminary results have been recorded, a major drawback 74 

is patient compliance due to the difficult-to-accept nature of treatment [16]. Therefore, standardized, 75 

easy to use, and effective strategies to decolonize intestinal carriers of MDROs are still not available. 76 

In this overall context, bacteriophages could represent a new and alternative approach. In fact, 77 

some of these bacterial viruses are highly species-specific, namely with the potential to selectively 78 

spare commensal populations unlike an antimicrobial treatment. Moreover, thanks to their self-79 

propagating nature, in presence of the targeted bacterial species they display a self-limiting action. 80 

However, though they have been part of the standard therapy regimens in Russia, Georgia and Poland 81 

for one hundred years, yet they have received very little attention in western countries [17, 18]. As a 82 

consequence, we are facing a lack of rigorous scientific studies analyzing their efficacy for treating 83 

and preventing human infections [19].  84 

To the best of our knowledge, bacteriophages have never been studied in the context of human 85 

intestinal decolonization of MDR E. coli. Therefore, we investigated the use of a commercial 86 

preparation of bacteriophages as a gut decolonization strategy against an ESBL-producing E. coli 87 

belonging to the pandemic ST131 lineage in a simplified in vitro model of intestinal colonization.  88 
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2. MATERIALS AND METHODS 89 

2.1. Bacterial typing. E. coli strain 4901.28 was used as the wild type (WT) targeted strain. It was 90 

isolated from a urine sample of a 69 years-old woman [7]. The isolate was previously characterized 91 

by phenotypic (MICs determined using the Sensititre GNX2F and ESB1F plates; Thermo Fisher 92 

Diagnostics) and genotypic methods (characterization of bla genes, multilocus sequence typing, and 93 

plasmid replicon typing) [7]. In the present work, E. coli 4901.28 underwent whole-genome 94 

sequencing (WGS) analysis along with one representative bacteriophage-resistant mutant (see 95 

below).  96 

2.2. Continuous culture system. A 2-liter glass fermentation vessel, operated under the control of a 97 

New BrunswickTM BioFlo®/CelliGen® 115 Unit (Eppendorf) was chosen as the in vitro system 98 

(chemostat). The starting volume of the vessel was one liter and the growth medium implemented 99 

was Brain Hearth Infusion (BHI) broth (Becton Dickinson). Fresh sterilized medium was added via 100 

a peristaltic pump at a constant rate of 18 mL/h and waste culture liquid was removed at the same 101 

rate. The system was operated in aerobic conditions and the temperature maintained at 37°C using 102 

circulating water in the double wall. Moderate agitation at 70 rpm was applied. 103 

2.3. Characterization of donor stools and preparation of fecal inoculum. Fresh feces from healthy 104 

volunteers negative for extended-spectrum cephalosporin-resistant Enterobacterales (ESC-R-Ent) 105 

were chosen for the experiments. Screening to confirm negativity was performed to detect ESC-R- 106 

and carbapenem-resistant Enterobacterales as previously done [5, 8, 9, 20]. Briefly, ~20 µg of fresh 107 

stools was enriched overnight in 10 mL Luria-Bertani (LB) broth containing a 10-µg disk of 108 

cefuroxime. Then, 100 µl were plated on BLSE, ChromID ESBL (bioMérieux) and home-made 109 

SuperCarba selective plates. After overnight incubation, selected colonies were identified using the 110 

MALDI-TOF MS (Bruker).  111 

Two different pools of feces were tested (pool A for study I and pool B for study II), each coming 112 

from three non-colonized volunteers and corresponding to a combined total of 1 g. Stools were 113 

uniformly suspended in 10 mL BHI and vigorously vortexed for 2-3 min. Homogenized feces were 114 
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equilibrated in a 37°C incubator for approximately 15 min before starting the experiment. The 115 

chemostat vessel was then inoculated through a port in the top with the fecal suspension (1 g in 10 116 

mL); after 15 min, the first time-point sample (T0) was taken.  117 

2.4. Bacteriophages. INTESTI Bacteriophage (lot # M2-801; Eliava BioPreparation) was used as 118 

antimicrobial agent to selectively target E. coli 4901.28. This preparation represents a sterile-filtrate 119 

phage lysate (total of 1 x 105-6 PFU/mL) of several pathogenic E. coli, Shigella spp., Salmonella spp., 120 

Proteus vulgaris/mirabilis, Pseudomonas aeruginosa, Staphylococcus spp., and Enterococcus spp. 121 

This biopreparation has been fully characterized with a metagenomic approach [21]. 122 

Susceptibility to the INTESTI Bacteriophage cocktail was determined by implementing the spot test 123 

with the double agar method (where “opaque lysis/++” is part of the sensible phenotype scale, and 124 

“R” stands for phage-resistant) after two passages on BHI plates  [22]. Notably, E. coli 4901.28 was 125 

fully susceptible to the INTESTI cocktail [23].   126 

2.5. Study design. In a first blank experiment (with pool A of feces), 4901.28 was added (see below) 127 

in the chemostat system 30 min after the fecal inoculum (i.e., T0 plus 15 min) in order to evaluate the 128 

growth trend of the pathogen compared to the total E. coli microbial population in the chemostat 129 

system (Figure 1).  130 

A second experiment consisted of investigating whether 4901.28 was able to maintain itself despite 131 

the introduction of INTESTI Bacteriophage cocktail aliquots. Specifically, three doses of 1 mL 132 

undiluted cocktail were added to the chemostat at T2, T6, and T10. This experiment was performed in 133 

duplicate (experiment “a” and “b”) and also with two different pools of feces (study I with pool A 134 

and in Study II with pool B). All experiments were conducted for 48 hrs, during which 20 time points 135 

were taken (15 time points for the first day and 5 during the second one). Graphs were generated with 136 

GraphPad Prism 7.0 (GraphPad Software). 137 

2.6. Bacterial inoculum and population dynamics. E. coli 4901.28 was grown overnight on a 138 

MacConkey agar plate (Becton Dickinson). Colonies were suspended in sterile NaCl 0.9% to reach a 139 

concentration of 1.2 x 108 CFU/mL (corresponding to 0.4 McFarland scale), then 80µl of this 140 



Page 8 of 26

Jo
ur

na
l P

re
-p

ro
of

7 
 

suspension was added in 10 mL BHI to reach a final concentration of 107 CFU in total. The 10 mL 141 

were finally poured into the 1-liter BHI contained in the chemostat vessel 15 min after T0.  After an 142 

additional 15 min (T0.5), the second sample was taken to measure the starting number (CFU/mL) of 143 

the targeted strain.  144 

At each time point (from T0 to T48) the cultivable microbiota was monitored by removing 5 mL of 145 

sample from the vessel; one mL was serially diluted in PBS and plated on CHROMagarTM Orientation 146 

plus vancomycin (8 µg/mL) (for the total E. coli count) and on CHROMagarTM Orientation plus 147 

vancomycin (8 µg/mL) and cefotaxime (2 µg/mL) (for selective ESBL-E. coli ST131 count). Plates 148 

were incubated overnight at 37°C and the next day only violet colonies (corresponding to E. coli 149 

species) were counted. Lastly, sample aliquots were prepared: one mL per each sample was stored at 150 

-80°C in 20% glycerol, while the remaining three mL were used for the viral titration (see below). 151 

2.7. Viral population dynamics. The bacteriophage population was monitored by titration using the 152 

double-agar method on the host strain (E. coli 4901.28). At day one, titration was performed at T3, 153 

T5, T7, T9, T11 and T13 (for ExIa T10 was taken instead of T9), while at day two it was performed at 154 

each time point (T24, T28, T32, T35 and T48). Briefly, 1 mL of the undiluted chemostat sample was 155 

filtrated through a 0.22 µm syringe filter (Carl Roth GmbH) and further serially diluted up to 10-7 156 

times. Then, 100 µl of 4901.28 (concentration of 1.5 x 108 CFU/mL) were supplemented with 1 mL 157 

of the dilutions 10-1, 10-3, 10-5, 10-7 and with 5 mL of BHI soft agar (0.7%). The solutions were then 158 

poured on BHI agar plates and incubated for 24 hrs at 37°C. Plaques were counted the next day in 159 

order to calculate the viral titer. 160 

2.8. Repetitive Extragenic Palindromic PCR (rep-PCR). The clonal relatedness of E. coli strains 161 

recovered from samples was studied using rep-PCR. Briefly, violet colonies were picked from 162 

CHROMagarTM Orientation plates supplemented with cefotaxime, followed by DNA extraction with 163 

Chelex® 100 sodium form (Merck KGaA). Extracts were subjected to rep-PCR and resulting PCR 164 

products were run on a DNA chip (Agilent Technologies) using the Agilent 2100 Bioanalyzer 165 

(Agilent Technologies) [7, 24, 25].  166 



Page 9 of 26

Jo
ur

na
l P

re
-p

ro
of

8 
 

2.9. Genotyping. WGS was obtained using both MinION (Oxford Nanopore) and HiSeq (Illumina) 167 

as previously done [25-28]. In brief, total DNA was extracted with the QIAamp Mini Kit (Qiagen). 168 

For MinION, the SQK-LSK108 2D ligation sequencing kit, a R9.5 SpotON flow cell and the MinION 169 

Mk1B device (Oxford Nanopore) were used for the 24 hrs run. Data acquisition, as well as base-170 

calling, was carried out with the MinKNOW software (Oxford Nanopore). Raw reads were converted 171 

to fastq  with Poretools and de novo assembled with the Canu pipeline. For Illumina sequencing, 172 

reads were first trimmed with Trimmomatic software and then aligned to MinION contigs using 173 

Burrows-Wheeler Alignment (BAM) and Sequence Alignment/Map (SAM) for file conversion. 174 

FASTA sequences of each corrected contig were extracted from Geneious software and interpreted 175 

with Res-, Plasmid, Virulence-Finder (https://cge.cbs.dtu.dk/services/), CRISPRCasFinder 176 

(https://crisprcas.i2bc.paris-saclay.fr/CrisprCasFinder/Index) and CRISPRone 177 

(http://omics.informatics.indiana.edu/CRISPRone/).  178 

In addition, assemblies of the raw Illumina reads with SPAdes Software were used for core genome 179 

MLST (cgMLST) analysis by implementing cgMLSTFinder (https://cge.cbs.dtu.dk/services/). Single 180 

nucleotide variants (SNVs) analysis was implemented to compare the chromosomes of 4901.28 and 181 

phage-resistant mutant (ExIIa_T32_C2). Briefly, the core-genome alignment was performed with 182 

Parsnp v1.2 (https://github.com/marbl/parsnp). All strains were treated as curated genomes (-c 183 

parameter), and the chromosomal hybrid assembly of the mutant was used as a reference genome to 184 

fine-tune the core-genome alignment including only chromosomal sequences and excluding the 185 

plasmid ones. To maximize genome coverage across all genomes, the –c parameter was optimized to 186 

6. Other parameters were let as default. Variant Call Format (VCF) data from Parsnp core-genome 187 

alignment were extracted from the Gingr formatted binary archive output with Harvest-Tools v1.2 188 

(https://github.com/marbl/harvest-tools). Core-genome alignment coverage was determined with 189 

Gingr v1.2 (https://github.com/marbl/gingr). Variants with no flags (PASS) were determined as 190 

reliable [29], and used for downstream SNV analysis with a custom R v3.6.2 script (https://www.r-191 

project.org/). The translate tool ExPASy (http://www.web.expasy.org/translate/) followed by Protein 192 

https://cge.cbs.dtu.dk/services/
https://crisprcas.i2bc.paris-saclay.fr/CrisprCasFinder/Index
http://omics.informatics.indiana.edu/CRISPRone/
https://cge.cbs.dtu.dk/services/
https://github.com/marbl/parsnp
https://github.com/marbl/harvest-tools
https://github.com/marbl/gingr
https://www.r-project.org/
https://www.r-project.org/
http://www.web.expasy.org/translate/
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BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi) were finally used to identify and compare amino 193 

acid (AA) substitutions. Annotations of both hybrid and Illumina assemblies were conducted by the 194 

NCBI Prokaryotic Genome Annotation Pipeline.  195 

2.10. GenBank accession numbers. Hybrid assembly (BioProject: PRJNA551948) for 4901.28: 196 

VMRI00000000 (chromosome, VMRI01000001 - plasmid A, VMRI01000002); for ExIIa_T32_C2: 197 

VMRH00000000 (chromosome, VMRH01000003-VMRH01000006 - plasmid A, VMRH01000001 198 

- plasmid B, VMRH01000007 - plasmid C, VMRH01000002). Sole Illumina (BioProject: 199 

PRJNA605932) for 4901.28: JAAHTE000000000; for ExIIa_T32_C2: JAAHTF000000000. 200 

 201 

3. RESULTS 202 

3.1. E. coli dynamics without bacteriophage treatment. In the blank experiment, both monitored 203 

populations (E. coli 4901.28 and the total E. coli) exponentially increased for the first 5 hrs, and then 204 

reached a plateau from T5 to T48. In particular, E. coli 4901.28 reached a stationary phase at a 205 

population size of 106 CFU/mL, whereas the total E. coli microbial population stabilized itself at 108 206 

CFU/mL (Figure 1). 207 

3.2. E. coli dynamics with 3 doses of bacteriophages and pool A of feces (study I). For the first pool 208 

of feces, phage treatment resulted in an immediate decrease of the population size of 4901.28 (from 209 

105 to 101 CFU/mL) 2 hrs after the inoculation of the first dose of phages; moreover, after stopping 210 

phage treatment, the population of the target MDR pathogen never restored itself. On the other hand, 211 

the total E. coli microbial community was maintained constant despite the phage treatment (i.e., 212 

increasing for the first 7 hrs and then maintaining itself at 108 CFU/mL). Similarly, the bacteriophage 213 

population increased during the first 3-6 hrs to 107 PFU/mL and then, after 12 hrs, stabilized itself at 214 

106 PFU/mL (Figure 2; Table S1).  215 

3.3. E. coli dynamics with 3 doses of bacteriophages and pool B of feces (study II). For the second 216 

pool of feces, similarly as in study I, 4901.28 increased for the first 4 hrs and dropped below the LOD 217 

2 hrs after the inoculation of the first treatment dose (T5) (Figure 3; Table S1). However, in contrast 218 

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://www.ncbi.nlm.nih.gov/nuccore/VMRI00000000
https://www.ncbi.nlm.nih.gov/nuccore/VMRH00000000
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to study I, a phage-resistant population started to emerge after T5. It then continued to grow with some 219 

oscillations during the second (T6) and third (T10) dose of cocktail treatment, eventually stabilizing 220 

itself at 103-4 CFU/mL. We also noted that the total E. coli population showed similar dynamics to 221 

study I and blank experiments (i.e., increasing for the first 8 hrs and reaching a plateau of 108 222 

CFU/mL). In contrast, the bacteriophage population showed a more rapid and higher titer than 223 

observed in study I (i.e., at 5 hrs 109 PFU/mL that then stabilized at 108 PFU/mL after about 12 hrs).   224 

3.4. Characterization of phage-resistant mutants. For study II, 6 re-growing cefotaxime-resistant E. 225 

coli colonies taken from the time points T28 and T32 of experiment IIa (ExIIa) and two from T35 and 226 

T48 from experiment IIb (ExIIb) were isolated and analyzed. In particular, their rep-PCR profiles were 227 

identical to each other, but slightly different compared to 4901.28 (i.e., with three less intense or 228 

absent bands; Figure S1). One of these cefotaxime-resistant isolates (strain ExIIa_T32_C2), 229 

recovered during study IIa at T32 and phenotypically resistant to the phage cocktail using the spot test, 230 

was randomly chosen as a representative strain for further analyses. 231 

As shown in Table 1, the phenotype, ST, plasmid replicons, and resistance genes of ExIIa_T32_C2 232 

were identical to those of the WT strain E. coli 4901.28. WGS data of ExIIa_T32_C2 revealed the 233 

presence of two additional plasmids of 4kb and 7kb (plasmids B and C, respectively), as compared 234 

to E. coli 4901.28 which originally only carried a 170kb blaCTX-M-15-positive plasmid (plasmid A). 235 

Plasmid A carried several resistance genes, the virulence factor for increased serum survival, and the 236 

three replicon types FII, FIB, FIA as well as the colicinogenic marker Col156. Plasmid B carried 5 237 

genes encoding two replication proteins and 3 that were functionally uncharacterized. Plasmid C 238 

carried 8 genes encoding proteins for mobilization, replication, conjugal transfer, and unknown 239 

function (n=2 each). Resistance genes or virulence factors were not found in both plasmids B and C 240 

(Table 1).  241 

Large chromosomal deletions or insertions were not detected in the mutant. However, core-genome 242 

analysis revealed that ExIIa_T32_C2 possessed 11 chromosomal SNVs compared to the WT strain 243 

(Table 2). Three were located in the IS3 family transposase gene, and the remaining in AAA family 244 
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transposase, glycosyltransferase family 2 protein (transfer of nucleotide-diphosphate sugars to 245 

polysaccharides and lipids), IS66 family transposase, hypothetical protein, DUF945 domain-246 

containing protein (domain of unknown function), RadC family protein (DNA repair and 247 

recombination protein), and polB (DNA polymerase β) genes, and one in a non-coding region (Table 248 

2). Finally, CRISPR-cas analysis showed only the presence of questionable CRISPR spacers and the 249 

complete absence of cas genes (data not shown). 250 

 251 

4. DISCUSSION 252 

E. coli belonging to ST131 are responsible for the increasing prevalence and spread of cephalosporin 253 

resistance worldwide. Particularly worrisome is their silent carriage at intestinal level, which may 254 

translate into future difficult to treat infections [1]. Efforts to try decolonizing the gut using antibiotic 255 

treatment can cause disturbance of the normal bacterial flora leading to overgrowth of pathogenic 256 

strains (exogenous or already present in the gut) [30]. As an alternative, bacteriophages could enable 257 

to maintain colonization resistance (i.e., protection by the endogenous flora against pathogenic 258 

bacteria) at physiological level.  259 

4.1. The in vitro model. Operated with 1-liter volume and spiked stool, our system can host both the 260 

pathogenic strain and commensal E. coli populations. Moreover, compared to more simplistic in vitro 261 

systems, this continuous culture approach allows to come a step closer in mimicking the in vivo 262 

conditions of the gut (e.g., through introduction of fresh nutrients and elimination of left overs in the 263 

chemostat). However, the aerobic conditions used are not able to comprehensively reflect the complex 264 

diversity of bacterial populations present in the bowel (i.e., for a total of 1011 CFU/g of feces) [31]. 265 

Indeed, anaerobic species could play a role in colonization resistance and could modulate the 266 

population size of the targeted ST131 E. coli strain, with consequent influence on success or failure 267 

of phage-treatment. Nevertheless, among the enriched facultative-anaerobe Enterobacterales we 268 

could observed a total count of E. coli of about 108 CFU/mL, in line with concentrations recovered 269 

in vivo (i.e., reaching in the gut 108-9 CFU/g of feces) [32]. Concerning the dosage protocol, we chose 270 
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to administer multiple doses in order to simulate a continuous treatment since the effectiveness of 271 

phage therapy is known to be correlated to the dosage and treatment time-point. Precisely, several 272 

studies have shown that early administration of multiple doses are more effective than a single dose 273 

in eradicating the targeted bacterial strain [33].   274 

4.2. Occurrence of resistant mutants. An interesting finding in our study was the identification of 275 

phage-resistant mutants isolated only from one of the two tested fecal pools. Bacteriophage resistance 276 

is a known phenomenon in natural environments where phages outnumber bacteria 10:1, and thus 277 

exert a strong predatory pressure on them. It therefore represents a predictable evolutionary response 278 

to viral attack [34]. Already in 1943-1945, Demerec and Fano together with Luria and Delbrück 279 

described multiple resistance mechanisms that simultaneously occur in E. coli against different 280 

bacteriophages [35, 36].  281 

Nowadays, various phage resistance mechanisms have been well characterized and include 282 

preventing phage adsorption (e.g., by blocking phage receptors or producing extracellular matrix), 283 

preventing phage DNA entry [e.g., superinfection exclusion (Sie) system], cutting phage nucleic acid 284 

[e.g., restriction-modification (R-M) system, CRISPR-Cas system], and abortive infection (Abi) 285 

systems. Other resistance strategies have been observed, yet their mechanisms are still to be unveiled; 286 

moreover, many other completely unknown phage resistance mechanisms are likely to exist [37]. In 287 

particular, the CRISPR-Cas system is composed by CRISPR-motifs scattered in the genome, each 288 

one containing sets of conserved inverted direct repeats intercalated by a spacer sequence originating 289 

by exogenous DNA and accompanied by cas genes. It represents an anti-phage and anti-plasmid 290 

adaptive immunity harbored by 40% of all bacteria [38, 39].  291 

In the present work, we could not find any cas gene indicative of a functional CRISPR system [40]. 292 

Only questionable CRISPR were detected, likely corresponding to repeated regions in the genome 293 

(data not shown). This is not surprising as some groups of E. coli, comprehending the phylogenetic 294 

group B2 to which our strains belong to, have been previously shown to completely lack this system 295 

[41]. 296 
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We hypothesize that more than one resistance mechanism coexists in our phage-resistant mutant, 297 

when being in presence of a complex cocktail containing multiple lytic phages against the ST131 E. 298 

coli strain. On this regard, the chromosomal amino acid substitution that we detected in the glycosyl 299 

transferase family 2 protein domain could potentially block one or more phage receptors by over-300 

transferring sugars to its outer-membrane substrates. However, a functional study of the mutated 301 

enzyme should be done to confirm this hypothesis. Additionally, to better understand a possible link 302 

with the resistant phenotype, a protein-expression-level approach should be implemented by 303 

comparing the mRNA profiles of mutant and WT strain. This analysis would also be essential to 304 

explore both Abi and R-M systems, which exploit several heterogeneous proteins to provide 305 

resistance [37]. Finally, several genes present in the newly acquired plasmids could not be assigned 306 

to a known function. Their implication in the acquisition of resistance could not be further confirmed 307 

with conjugation experiments. In fact, due to their living and evolving nature, it is technically 308 

unfeasible to prepare stable plates selective for any phage or phage cocktail, enabling the further 309 

selection of transconjugants.  310 

4.3. The host microbiota may affect activity of bacteriophages. Regarding the divergence of results 311 

between study I and II, we hypothesize that the emergence of phage resistance in only one pool of 312 

feces (pool B) could be dependent on the different profiles of their bacterial populations. Particularly, 313 

some fecal bacteria may help each other by mean of quorum sensing (QS) signaling to fight against 314 

viral predators. Notably, QS are chemical signals exploited by some bacteria as well as by eukaryotic 315 

cells to communicate within or between different bacterial populations (e.g., leading to expression of 316 

biofilm or of virulence factors). They have also been recognized playing a role in the relationship 317 

between bacteria and phages, namely to communicate the presence of viruses in the environment and 318 

to further control and coordinate the expression of anti-phage defenses [34]. 319 

The ST131 E. coli strain 4901.28 may thus be able to sense the presence of phages thanks to signals 320 

produced by other species present in feces of specific individuals, and consequently be prepared 321 

against a possible attack [34]. This could enable bacterial populations to increase their defenses only 322 
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in presence of high viral titer, thereby sparing the energy required to maintain a constant high-level 323 

defense in case of lower danger of infection. Notably, Hoyland-Kroghsbo et al. found a particular 324 

pathway of QS signaling in E. coli that cause a temporary diminished number of phage receptors. It 325 

is activated only during high phage density and despite the consequent diminished fitness (e.g. lower 326 

absorption of specific nutrients) [34].   327 

In our case, producers of QS signals could be individual fecal bacterial populations or alternatively 328 

eukaryotic cells (also known to exert QS towards bacterial cells in natural environments), specifically 329 

colonic epithelial cells that are part of the normal stool composition. The consequent reversible 330 

decreased expression of particular receptors may have spared E. coli 4901.28 from being infected by 331 

bacteriophages in the second pool of feces (study II), yet not in the first one (study I). This hypothesis 332 

is supported by the observation that in study II the viral titer resulted much higher than in study I 333 

(Figure 2 vs. Figure 3, respectively). It can be speculated that in pool B of feces some of the 334 

bacteriophages included in the INTESTI cocktail found specific bacterial host(s) were to replicate 335 

better and faster than in pool A. Then, the higher viral concentration induced QS signals able to 336 

protect bacteria under the risk of infection.       337 

Our work suggests that a deeper and detailed knowledge on the nature of bacterial populations 338 

favoring or hampering the emergence of phage resistance is necessary for the future application of 339 

phage therapy as decolonization strategy. 340 

 341 

5. CONCLUSION  342 

We hypothesized that bacteriophages could represent a possible alternative strategy to decolonize 343 

intestinal carriers of MDR E. coli. Certainly, phage cocktails are lacking the major drawbacks 344 

presented by antibiotic regimens, as well as by other strategies aimed to decolonize intestinal carriers 345 

from MDROs. Nevertheless, phage decolonization should be performed with caution since phage 346 

resistance may emerge in certain circumstances. In fact, our data indicates that bacteriophages 347 

efficacy may be influenced by the individual microbiota composition. Moreover, the phenomenon of 348 
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resistance against bacteriophages may imply different and simultaneous mechanisms, especially in 349 

presence of complex phage cocktails. Evidently, an in vivo model of intestinal colonization should be 350 

developed alongside with protein expression level experiments in order to further confirm these 351 

findings.  352 
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LEGEND TO THE FIGURES 361 

Figure 1. Blank experiment: E. coli dynamics without bacteriophage treatment. Dynamics of fecal 362 

E. coli community and of E. coli 4901.28 alone in the chemostat system in the absence of 363 

bacteriophages (pool A of feces, as for Study I). Feces were inoculated into the chemostat 15 min 364 

before T0 (that was the first sampling point). Blue line: total E. coli population; red line: CTX-M-15-365 

producing E. coli ST131 4901.28. LOD: limit of detection (101 CFU/mL). Graph generated with 366 

GraphPad Prism 7 on data from one experiment. 367 

 368 

Figure 2. Study I: E. coli dynamics with 3 doses of INTESTI Bacteriophage cocktail and pool A of 369 

feces. Influence of bacteriophage treatment on the fecal E. coli community and on E. coli 4901.28 370 

performed in the chemostat system with the first pool (A) of feces. Blue line: total E. coli population; 371 

red line: CTX-M-15-producing E. coli ST131 4901.28.; black stars, administered bacteriophage 372 

doses. LOD: limit of detection (101 CFU/mL). Graph generated with GraphPad Prism 7 on data from 373 

two experiments. Appearance: median and error. Plot: range. Error bars not drowned by the software 374 

when shorter than the height of the symbol. 375 

 376 

Figure 3. Study II: E. coli dynamics with 3 doses of INTESTI Bacteriophage cocktail and pool B of 377 

feces. Influence of bacteriophage treatment on the fecal E. coli community and on E. coli 4901.28 378 

performed in the chemostat system with the second pool (B) of feces. Feces were inoculated into the 379 

chemostat 15 min before T0 (that was the first sampling point). Blue line: total E. coli population; red 380 

line: CTX-M-15-producing E. coli ST131 4901.28.; black stars, administered bacteriophage doses. 381 

LOD: limit of detection (101 CFU/mL). Graph generated with GraphPad Prism 7 on data from one 382 

duplicate experiment. Appearance: median and error. Plot: range. Error bars not drowned by the 383 

software when shorter than the height of the symbol.   384 
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Table 1. Molecular and phenotypic features of phage-sensitive WT strain 4901.28 and of phage-resistant mutant 499 
ExIIa_T32_C2 500 

501 
Characteristics E. coli 4901.28 E. coli ExIIa_T32_C2 (mutant) 

ASTs (MICs, µg/mL) a P/T4 (≤8/4), FOT (>32), TAZ (16), FEP (16), 

AZT (>16), ETP (≤0.25), GEN (8), AMI 

(16), CIP (>2), SXT (>4/76), DOX (16), TGC 

(1), COL (≤0.25), FOX (≤4), AMP (>16), 

T/C (≤0.12/4), F/C (≤0.12/4) 

P/T4 (≤4/4), FOT (>32), TAZ (16), FEP (8), 

AZT (>16), ETP (≤0.25), GEN (≤4), AMI 

(>32), CIP (>2), SXT (>4/76), DOX (16), 

TGC (0.5), COL (≤0.25), FOX (≤4),, AMP 

(>16),  T/C (≤0.12/4), F/C (≤0.12/4) 

Spot test results b ++ R 

ST 131 131 

PlasmidFinder (replicon)   

- Plasmid A (170kb) FII, FIB, FIA, Col156 FII, FIB, FIA, Col156 

- Plasmid B (4kb) na Col (BS512) 

- Plasmid C (7kb) na - 

ResFinder (resistance genes) c   

- Chromosome mdf(A) mdf(A) 

- Plasmid A (170kb) 
blaCTX-M-15, blaOXA-1, aadA5, aacA4, aac(6')-

Ib-cr, mph(A), catB3, sul1, dfrA17, tet(A) 

blaCTX-M-15, blaOXA-1, aadA5, aacA4, aac(6')-

Ib-cr, mph(A), catB3, sul1, dfrA17, tet(A) 

- Plasmid B (4kb) na - 

- Plasmid C (7kb) na - 

VirulenceFinder (virulence genes) d   

- Chromosome gad, iha, sat, nfaE, iss gad, iha, sat, nfaE, iss 

- Plasmid A (170kb) senB senB 

- Plasmid B (4kb) na - 

- Plasmid C (7kb) na - 

Note. ST, sequence type; na, not applicable; -, no output (genes not previously annotated). 

a ASTs, antimicrobial susceptibility tests (MICs interpreted according to EUCAST 2019, version 9.0, except for doxycycline for which CLSI 2019, M100-
S29, was used); P/T4, piperacillin/tazobactam; FOT, cefotaxime; TAZ, ceftazidime; FEP, cefepime; AZT, aztreonam; ETP, ertapenem; GEN, gentamicin; 

AMI, amikacin; CIP, ciprofloxacin; SXT, trimethoprim/sulfamethoxazole; DOX, doxycycline, TGC, tigecycline; COL, colistin; FOX, cefoxitin; AMP, 

ampicillin; T/C, ceftazidime/clavulanic acid; F/C, cefotaxime/clavulanic acid. 
b Spot test performed with the double agar method where “opaque lysis/++” is part of the sensible phenotype scale, and “R” stands for phage-resistant. 

c mdf(A), macrolide-associated resistance; aadA5, aminoglycoside resistance; aadA4, aminoglycoside resistance; blaCTX-M-15, β-lactam resistance; blaOXA-1, β-

lactam resistance; aac(6’)Ib-cr, fluoroquinolone and aminoglycoside resistance; mph(A), macrolide resistance; catB4, phenicols resistance; sul1, 
sulphonamides resistance; dfrA7, trimethoprim resistance.   

d gad, glutamate decarboxylase; Iha, adherence protein; sat, secreted autotransporter toxin; nfaE, diffuse adherence fibrillary adhesion gene; gad, glutamate 
decarboxylase; iss, increased serum survival; senB, plasmid-encoded enterotoxin 
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 502 

Table 2. Results of SNVs analysis comparing the chromosomes of WT strain 4901.28 and its phage-resistant mutant ExIIa_T32_C2  503 

SNVs environment a 
ExIIa_T32_C2  

hybrid assembly b 

ExIIa_T32_C2  

sole Illumina b 

4901.28  

sole Illumina b 
Target CDS AA change c AAs identity 

GGCTTTCCAG   CCCTTATTT C C A IS3-like element IS1397 family transposase 

Q33L 

E37A 

 

99% (198/200) ACAGGGAGCT   CCGCTTTGA G G T IS3 family transposase 

CGCTTTGAAC   GTCGCTGAA A A T IS3 family transposase 

AAATGTATAA   TCATACTTT T T G Non-coding region na na 

TAACCCCGGC   TTTCGTTTC T T C AAA family ATPase - 100% (170/170) 

TACATCGGGG   TAACAAAGA G G T Glycosyltransferase family 2 protein N49T 99% (223/224) 

CGATGGGCCG   GAAGGCGCG T C T IS66 family transposase - 100% (512/512) 

ACGTGCGCGC   CCCGTGCCA T T G Hypothetical protein A123S 99% (130/131) 

CCCGGCGTCG   GGCGTCAGA C T C DUF945 domain-containing protein - 100% (158/158) 

TGTATCTGAA   AACCAGAAT C C T RadC family protein - 100% (158/158) 

AGATCTGCGT  ACCAGCTCG C C T PolB - 100% (649/649) 

Note. SNVs, single nucleotide variants; AA, amino acid. na, not applicable. 504 
a Space between bases in each sequence represents the nucleotide position of the mutation. 505 
b Letters represent the bases contained in the sequence spaces reported in the first column. C, cytosine; G, guanine; T, thymine; A, adenine.  506 
c The first AAs abbreviation belongs to 4901.28 (wild-type), while the second to the phage-resistant mutant ExIIa_T32_C2. Q, Glutamine; L, Leucine; E, Glutamic acid; A, 507 
  alanine; N, asparagine; T, threonine; A, alanine; S, serine. 508 
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Figure 1. Blank experiment: E. coli dynamics without bacteriophage treatment. Dynamics of fecal E. coli community and of E. coli 4901.28 alone in

the chemostat system in the absence of bacteriophages (pool A of feces, as for Study I). Feces were inoculated into the chemostat 15 min before

T0 (that was the first sampling point). Blue line: total E. coli population; red line: CTX-M-15-producing E. coli ST131 4901.28. LOD: limit of detection

(101 CFU/mL). Graph generated with GraphPad Prism 7 on data from one experiment.
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