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Abstract 
 

BACKGROUND: Extracellular vesicles (EVs) are a diverse group of membrane-bound nanovesicles 

potentially released by every cell. With the liver’s unique ensemble of cells and its fundamental 

physiological tasks, elucidating the role of EV-mediated hepatic cellular crosstalk and their role in 

different pathologies has been gaining the attention of many scientists. 

SCOPE OF REVIEW: The present review shifts the perspective into practice: we aim to critically discuss 

the methods used to purify and to biochemically analyse EVs from specific liver resident cells, including 

hepatocytes, hepatic stellate cells, cholangiocytes, liver sinusoidal endothelial cells, Kupffer cells, liver 

stem cells. The review offers a reference guide to current approaches. 

MAJOR CONCLUSIONS: Strategies for EV isolation and characterization are as varied as the research 

groups performing them. We present main advantages and disadvantages for the methods, highlighting 

common causes for concern, such as FBS handling, reporting of cell viability, EV yield and storage, 

differences in differential centrifugations, suboptimal method descriptions, and method transferability. 

We both looked at how adaptable the research between human and rodent cells in vitro is, and also 

assessed how well either of them translates to ex vivo settings. 

GENERAL SIGNIFICANCE: We reviewed methodological practices for the isolation and analysis of 

liver-derived EVs, making a cell type specific user guide that shows where to start, what has worked so 

far and to what extent. We critically discussed room for improvement, placing a particular focus on 

working towards a potential standardization of methods. 
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1. Introduction 
 

Extracellular vesicles (EVs) is a collective term referring to a diverse group of small membrane vesicles 

virtually released by all cell types, and which are generally being categorized according to their 

biogenesis:[1,2] apoptotic bodies are blebs of the dying cell membrane and have the broadest size 

range; microvesicles, sometimes referred to as microparticles or ectosomes, stem from the outward 

budding of the cellular membrane. Exosomes, which tend to be the smallest subpopulation, are released 

into the extracellular space after multivesicular bodies (MVB) fuse with the cell membrane (Figure 1).   It 

is still not really possible to isolate one subpopulation from the others, and while it is believed that they 

may display biomolecules that are enriched to different extents, their overlapping composition, density 

and size, as well as the absence of subtype-specific markers still make for a considerable challenge.[3,4] 

The recent discovery of their role in intercellular communication captivated the attention of a growing 

number of scientists anticipating the enormous potential of EVs in the fields of diagnostics and drug 

delivery.[5,6] For some pathological dispositions EVs can be applied as liquid biopsies, and that has 

sparked a lot of interest from a diagnostic perspective. EVs are enriched in selected biomolecules, they 

are intrinsically equipped to protect their cargo from degradation, and while their complexity offers many 

characterization opportunities (see Figure 1), they are still simpler to analyse than total blood or serum 

samples. The interest in EVs as drug delivery systems stems from their potential advantages over 

synthetic carriers: they are bioavailable, biocompatible, resistant to RNAases and proteases (high 

physicochemical stability), capable of long-distance communication and they are intrinsically able to 

interact with cells even across species.[7–9] 

 

 
Figure 1: EV nomenclature according to biogenesis; zoomed insert shows a schematic representation of 

a single EV with characterization opportunities. 
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The increasing scientific interest in EVs[10] has led to the establishment of dedicated, open access 

databases such as Vesiclepedia,[11] EVpedia[12] and EV-TRACK,[13] which are being regularly 

updated. The majority of the information is concerning proteins, whereas EV-TRACK sets itself apart by 

focusing on method transparency. 

As reviewed elsewhere,[14,15] there are significant challenges (small yields, co-purification of 

contaminants, etc.) in finding the most efficient protocols for the isolation and sufficient characterization 

of EVs. We will discuss them in an effort to encourage sharing the current knowledge of the more 

practical scientific trends in those areas, starting with the present review on liver-derived EVs. 

 

The liver is a large and complex organ responsible for a variety of essential physiological tasks including 

protein synthesis, lipid storage regulation, xenobiotic detoxification, and offering support to both 

immunological activity and food digestion.[16] It is difficult to understate its importance. When organ 

function is compromised, hepatic diseases are directly responsible for as many as 2 million deaths per 

year: liver cirrhosis alone kills 1.16 million people every year, and hepatocellular carcinoma accounts 

for the death of 788’000 more, meaning that combined they cause 3.5% of all yearly deaths in the 

world.[17,18] The global health burden of liver associated conditions is not sufficiently addressed as of 

yet.[19] With its unique ensemble of diverse cells (see Figure 2), the liver offers the opportunity to study 

intra- and inter-cellular communication. Elucidating the role of EV-mediated hepatic cellular crosstalk 

has gained the attention of many researchers, who have been able to review its critical role in both 

health and disease, pointing to differences in the set of EVs that are released, especially in the case of 

tumors.[20–25]  
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Figure 2: Liver location, structure of hepatic lobules (adapted with permission[26]) and their anatomy at 
the cellular level: hepatocytes (the most abundant cells in the liver and responsible for the most tasks, 
see chapter 2), hepatic stellate cells  (vitamin A storing cells, chapter 3), cholangiocytes (modifying the 

bile along the bile ducts, chapter 4), liver sinusoidal endothelial cells (lining the fenestrated layer of blood 
vessels, chapter 5), Kupffer cells (liver resident macrophages, chapter 6), liver stem cells (potentially 

playing a role in liver regeneration, chapter 7). 

 

The present review shifts the perspective into practice: we aim to critically consider the methods used 

to purify and to biochemically analyse EVs from specific cells, offering a user/reference guide to current 

practices (see Table 1). The most common and (when applicable) the most original/promising protocols 

will be examined in order to provide a discussion frame. Diving into the different methodological 

approaches, we will also highlight limitations and possible inconsistencies. Finally, the (interspecies) 

method transferability and the translational applicability of these practices will be examined. We will look 

within the individual cell specific chapters if the same or similar methods could be transferred to different 

in vitro systems (rodent cells, co-cultures), but we will also explore the practical strategies for EV-

isolation and characterization that were applied ex vivo and in the clinic from patients with liver-related 

conditions (chapter 8). It is worth noting, that we are only covering method employment and it is not our 

role to comment on the quality of the results gained from them. As to the nomenclature, we strived to 

keep it as it was applied in the referenced manuscripts, only changing it to “EVs” if we needed to 

paraphrase, since it is the preferred generic term.[1,2]
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2. EVs from Hepatocytes  
 

Hepatocytes are the most abundant cells in the liver, comprising about 70-80% of its mass, they are 

dedicated to protein synthesis (serum albumin, transferrin and other glycoproteins), while also being the 

main site for glycolysis and only site for bile salts production in the body.[222–224]  Another essential 

task relying on hepatocytes is detoxification: they metabolize both exogenous (e.g., drugs, toxins) and 

endogenous (e.g., steroids) compounds.[225,226] More notable still is their ability to regenerate the 

injured liver.[227] Given their prominent presence, their multifaceted roles, and their direct association 

to many liver diseases (fatty liver, chronic hepatitis, non-alcoholic fatty liver disease, non-alcoholic 

steatohepatitis, liver fibrosis, hepatocellular carcinoma),[228] it is not surprising that they have been the 

most frequent focus of research involving liver-derived EVs so far. 

 

2.1 Isolation strategies 

 

EVs have been isolated from both cryopreserved primary hepatocytes[54,60,179,212] as well as from 

cell lines (see Table 1).  

Berardocco et al. 2017[27] isolated EVs from Hep3B, HepG2, Huh7 and HuH6 human hepatocarcinoma 

(HCC) cell lines by differential centrifugation: first cells were removed (300 x g, 10 min), then apoptotic 

bodies (2’000 x g, 30 min), and finally cell organelles (16’000 x g, 20 min). EVs were then pelleted by 

ultracentrifugation (UC; 120’000 x g for 70 min) and the EV-enriched pellet was resuspended in PBS 

and purified by repeating the UC step. Everything was performed at 4 °C, and the final EV-pellet was 

drained, rapidly frozen in liquid nitrogen and stored at -80 °C before analysis. Cells were grown in cell 

culture medium supplied with 10% FBS, but EVs were isolated after having it exchanged with medium 

containing 1% FBS and 0.25% human serum albumin (hBSA), both of which had been previously 

depleted of EVs by UC (120’000 x g for 5 h). We appreciated the care that was taken to depleting FBS 

and hBSA of EVs prior to use; experimental corroboration on the chosen protocol was missing, yet it 

has been previously reported that even 18 h long UC is not necessarily effective to remove all FBS-

EVs.[229]  

As to the isolation of the hepatocyte derived EVs themselves, other groups worked similarly, but 

preferred different centrifugation times and forces (e.g. Cannito et al. 2017:[48] 3’000 x g for 15 min, 

then UC at 100’000 x g for 90 minutes at 10 °C). Why some numbers were chosen over others is rarely 

explicitly justified: sometimes it is disclosed that previously reported methods have been adopted (e.g. 

Fang T. et al. 2018[38] citing Lässer et al. 2012[230]), and oftentimes published practices were adapted 

without explaining what prompted the tweak. A direct experimental validation could not always be found, 

which is a major weakness of these protocols. 

He et al. 2015[56] added a filtration step (0.22 μm) that followed their differential centrifugation (500 x g 

for 10 min, then 16’500 x g for 30 min) and preceded the UC (110’000 x g, 70 min). After this, the EV-

pellet was washed and purified in PBS by performing a UC step on a 40% (w/v) sucrose cushion, which 
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was followed by yet another UC wash in PBS. The protocol seemed to address the concern that UC can 

lead to co-isolation of other impurities (protein aggregates, lipoproteins) more carefully. 

Others avoided UC by favoring commercially available precipitation kits such as ExoQuick™[50,54,216] 

and Total Exosome Isolation™ (TEI).[43,58] These kits have been suggested to be more easily 

translated into clinical settings because not every hospital has an ultracentrifuge, the required 

accessories, and the specifically trained personnel, and they occasionally yield more and even more 

pure EVs,[231] although there are still conflicting reports about it.[232,233]However, they come with 

their own set of perplexities: different precipitation kits are commercially available, but their composition 

being proprietary information makes it hard to evaluate their efficacy in excluding contaminants and in 

their ability to work with EVs from any cell type.   

Yet another approach was to opt for membrane affinity spin columns such as ExoEasy Maxi™, opted 

by Cao et al. 2019.[167]   

It is worth pointing out that the storage strategy is not always disclosed, let alone the validation thereof. 

Similar to Berardocco et al. 2017, EV pellets were stored at -80 °C by other groups 

too,[28,29,31,37,40,50,51,53,63,69,206,213] mostly after re-suspending them in PBS (when the final 

volume is shared, it tends to be between 50 and 500 μL), or at -70 °C.[39] We particularly appreciated 

the caution of Xiao et al. 2010,[30] who stored EVs at 4 °C for no longer than 48 h before use.  

 

2.2 Characterization 

 

When evaluating the quality of the isolation methods, we would like to point to the approach of Thacker 

et al. 2018,[45] who tested different protocols, directly comparing them to UC: ExoQuick™ was shown 

to lead to the highest co-purification of extravesicular contaminants, while OptiPrep™ yields were 

deemed too low. They describe culturing HepG2 in T75 flasks, 2.1 million cells/mL in 10 mL at seeding, 

and harvesting EVs after 2-3 days, starting from 4 mL of cell culture medium and calculating back the 

number of particles/mL for yield comparisons (1011 p/mL by ExoQuick™, 1010 p/mL by UC). It would 

have been beneficial to report the number of cells and their viability at the time of medium collection to 

use the method performances for future comparisons of protocol efficiency, not only efficacy. This would 

allow to   find whether EVs can be isolated by a certain approach, but also to evaluate how many EVs 

can be retrieved from a specific number of cells, and how viable the cells were at the time of EV collection 

to minimize concerns about isolation of apoptotic bodies. Tentative quantification by other groups, when 

reported, was sometimes shown as relative release after measuring concentration by nanoparticle 

tracking analysis (NTA),[46,63,234] better still by normalizing it to cell number.[56,210] Others favoured 

protein quantification[31,37,43] (even normalizing it to a number of cells[60]), or counting EVs as seen 

by EM.[52] Little attention was given to explicitly stating the cell viability; exceptions include Eguchi et 

al. 2017,[36] reporting on 90.5 - 94.5% cell viability, and Xiao et al. 2010[30] documenting 95%. 

The intrinsic uncertainty associated with isolation and purification techniques makes the characterization 

steps all the more important. We found Berardocco et al. 2017,[27] again to be  thorough in their 

approach using gel electrophoresis for protein profiling, atomic force microscopy (AFM) for morphology 

and size, and a previously developed colorimetric nanoplasmonic assays (see Maiolo et al. 2015[235]) 

to evaluate EV-purity and concentration. Protein content determination was performed by bicinchoninic 
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acid (BCA) assay and western blot analysis was done for EV and non-EV markers (GM130, calnexin, 

Hsp70, CD63, CD9, TGM2, EpCAM, E-cadherin, LGR5 and β-actin). Total RNA from EVs was purified 

using the Fatty Tissue RNA Purification kit, SOLiD Library preparation, sequencing and bioinformatic 

analysis was done by GENOMNIA. 

Other groups have favoured dynamic light scattering (DLS) for EV-size determination,[36,48,57] 

tuneable resistive pulse sensing (TRPS, i.e. qNano™),[56] nanoparticle tracking analysis (NTA; for size 

and concentration),[37,38,49] transmission electron microscopy (TEM)[28,29,33,35,37–40,47–

50,53,60,69,188,208] (sometimes combined to immunogold staining of EV 

markers),[30,31,41,46,52,56,58,180,214] or cryo-TEM (for size and morphology)[187,193,194,236] and 

even scanning EM (SEM).[43] Quantification and marker expression analysis of EVs by flow cytometry 

was also done[28,40,41,47–49,54,213,215] (e.g. Cobb et al. 2018,[54] using a kit for exosome 

immunocapture and colorimetric quantification). Proteomic analysis on hepatocyte-derived EVs was 

performed to various degrees by several groups, we will only mention a few;[35,61,174] the same 

applies to total and specific RNA evaluations.[36,51,52,216] Lipidomics characterization was found in 

the study by Kakazu et al. 2016,[69] who looked at ceramides and non-esterified Fas (cell surface death 

receptor) by mass spectrometry (MS). Finally, Wu et al. 2018[60] reported an EV zeta potential between 

-20 and -30 mV. 

 

2.3 Interspecies method transferability 

 

Different groups have retrieved hepatocyte-EVs originating from mice and rats and we would like to 

highlight those providing comparison to human cells. 

Povero et al. 2013[41] compared HepG2 to rat-derived hepatocyte-EV, isolating them by differential 

centrifugation (including UC) and, for selected experiment, further purified them by 10 to 70% sucrose 

gradient UC (150’000 x g, 18 h, 10 °C). Eguchi et al. 2017[36] had isolated by UC EVs from HepG2 and 

from primary mice hepatocytes, as well as blood-EVs from mice plasma. A few researchers used the 

Huh7 cell line, again looking at EVs released from mice hepatocytes after isolating them by 

UC.[63,69,180] When looking at increasing the complexity of the analyzed system without going in vivo 

still, we would like to single out Dioufa et al. 2017,[237] for using their own ex vivo human liver 

microphysiological system (MPS), developed with primary hepatocytes and non-parenchymal cells 

(NPCs) from the liver. EVs from the liver MPS were isolated by polymeric precipitation with the TEI kit, 

and they were then analyzed by TEM and for total RNA, as well as for cDNA and miRNA; exosomes 

markers were evaluated by western blot using the Exo-CheckTM exosome antibody array). More 

interesting still, some managed to compare human hepatocytes cell lines to primary rodents cells as 

well as samples obtained from human donors within the same study (see chapter 8).[32,62,63]  

 

3. EVs from Hepatic Stellate Cells 
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Hepatic stellate cells reside in the space of Disse (Figure 2), between hepatocytes and endothelial cells, 

and are mainly responsible for storing vitamin A in cytoplasmic lipid droplets.[238] Upon liver injury, 

however, they undergo transdifferentiation into a myofibroblast-like state, i.e., they become activated, 

progressively lose their lipid droplets and start promoting fibrogenesis, most notably by deposition of 

excessive and collagen rich extracellular matrix.[239,240] When the injuries are repeated during chronic 

diseases and the fibrosis is not resolved, the excessive deposition of scar tissue eventually leads to 

cirrhosis and the loss of organ function. The pivotal role of HSCs in liver fibrosis makes these cells 

crucial therapeutic and diagnostic targets.[241] 

 

3.1 Isolation strategies 

 

For the in vitro isolation of HSC-derived EVs, a common cell line seems to be the LX-2, which has the 

advantage of being able to grow under serum free conditions.[242] 

Brandon-Warner et al. 2016[70] isolated EVs from cell culture medium using the ExoQuick™ 

precipitation kit, after culturing the cells with 10% of commercially available Exo-free FBS. Information 

about cell number and viability at the time of EV-collection and the total yield are missing, making it hard 

to judge the efficiency of their method. Purification steps after this were not performed and it is not 

specified how EVs were stored between isolation and analysis.  

Serial centrifugation was the preferred method for Chen L. et al. 2014, Charrier et al. 2014 and Wang 

et al. 2018.[71,72,243] Cell culture medium for EV-isolation had been prepared without FBS, and the 

LX-2 cells were serum-starved for 48-72 h but a measure of cell number, density and viability is 

unfortunately missing. The specific isolation protocols were found inconsistent, because Charrier et al. 

2014 refer their readers to Chen L. et al. 2014, which in turn cite Thery et al. 2006,[244] an overview of 

different protocols for the isolation of EVs. While the projects described in these articles were not 

focusing on the EVs isolated from HSCs, more descriptive protocols would better facilitate 

reproducibility. Wang et al. 2018[243] adapted an “exosome” isolation procedure based on 

cholangiocytes and previously reported in Li L. 2016,[245]. Unfortunately, Li et al. refer to yet another 

isolation protocol  (Li L. et al. 2014,[155] see chapter 8) which makes it challenging to compare them.  

 

3.2 Characterization 

 

Brandon-Warner et al. 2016[70] investigated total RNA, which was isolated using the SeraMiR™ 

exosome RNA purification kit, then quantified and analysed it to compare differences in the expression 

levels of individual miRNAs in cells and exosomes. 

Charrier et al. 2014[71] characterized their isolated EVs by electron microscopy, expression of key 

markers and size, based on protocols from  Thery et al. 2011[246] and Chen et al. 2014.[72]  The latter 

explains their characterization steps for HSC-EVs isolated from mice, adding that “similar procedures” 

were used for EVs originating from LX-2 cells. They performed western blots (CD9), TEM, DLS analysis, 

zeta potential measurements, and analysed exosomal and cellular RNAs for the presence of miR-21, 

which was determined by real time polymerase chain reaction (RT-PCR). 
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While not as frequently explored as hepatocyte-derived EVs (see chapter 2), HSC-EVs have been 

analysed by a diverse array of means. Reporting of the protocols frequently relied on additional 

references to be looked up across different papers, which can complicate the ease with which reported 

methods could be reproduced.  

 

3.3 Interspecies method transferability 

 

There are even more examples for research involving murine and rat HSC-derived EVs than their human 

counterpart. In Chen L. et al. 2015,[78] Chen L. and Brigstock 2016[76] and Chen L. et al. 2016[75] EVs 

were purified as described in Chen L. et al. 2014[72] (differential centrifugation and UC, referring the 

reader to Thery et al. 2006[244]) from primary mice cells. EVs were analysed by NTA, and imaged by 

cryo-TEM.  Exosomal mRNA was determined by quantitative RT-PCR, while cellular EV-uptake was 

observed by confocal microscopy (EVs were stained with PKH26). Exosomal proteins were evaluated 

by western blot. Within this study (Chen et al. 2014), they also looked at circulating EVs but changed 

their isolation method. EVs were harvested from murine sera using PureExo Exosome Isolation Kits. 

Total exosomal RNA from sera was prepared using miRNeasy mini kits. 

Povero et al. 2014[20] and Witek et al. 2009[74] used primary rat HSCs: the former opted for differential 

centrifugation (including UC, as applied to HepG2, see chapter 2), while the latter preferred polymeric 

precipitation (TEI). Lambrecht et al. 2017[77] evaluated EVs from mice HSCs and those found in human 

plasma (see chapter 8).  

A rigorous parallelization of isolation and characterization practices is missing, but research with HSC-

derived EVs has been steadily gaining attraction, and their biochemical properties as analysed from 

rodent models are being increasingly explored in more complex settings. 

 

4. EVs from Cholangiocytes 
 

Cholangiocytes are epithelial cells lining the bile ducts (Figure 2), which can differ in size and 

morphology just as the bile duct tree itself does. Their main physiological role is the modification of the 

bile coming from the liver while it is being transported along the biliary ducts into the intestine.[247–250] 

Pathologies directly associated with cholangiocytes include primary biliary cholangitis, and primary 

sclerosing cholangitis, for  which liver transplantation is the only available cure.  Primary sclerosing 

cholangitis also leads to different cancers collectively known as cholangiocarcinoma.[250–252] 

 

4.1 Isolation strategies 

 

Cholangiocyte-EVs were preferentially isolated by serial centrifugation followed by UC. Sato et al. 

2017[80] used the H69 cell line, cultured with FBS that had been depleted of EVs by UC (120‘000 x g, 

18 h). For EV isolation, they first removed cell debris (300 x g for 10 min, then 3’000 x g for 30 min), 

after which they filtered the supernatants (0.22 μm) before UC (120’000 x g, 3 h). EV-pellets were then 
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washed with 30 mL PBS, pelleted again by UC (120’000 x g, 2 h) and re-suspended in 0.5 mL PBS. The 

adopted strategy of performing a filtration followed by PBS washes indicates a concern EV-purification. 

The description of the methods shows an attention to details that enable reproducibility, such as sharing 

the volume of PBS used to re-suspend the final pellet, which also helps put the yield as shown in the 

NTA distribution profiles into perspective.  

A slightly different approach was found in Arbelaiz et al. 2017,[79] which used the H69, EGI1 and TFK-

1 cell lines as well as patient blood (see chapter 8). Cell culture medium was centrifuged (1’500 x g, 15 

min, 4 °C), the supernatant filtered (0.22 μm), and centrifuged again (10’000 x g, 30 min, 4 °C) before 

two UC steps (100’000 x g, 75 min, 4 °C). Samples were store at -80 °C. It was not possible to 

extrapolate an absolute yield making comparison of EV-retrieval difficult. 

 

4.2 Characterization  

 

To determine the size and concentration of the isolated EVs, NTA and TEM were performed both by 

Sato et al. 2017 and by Arbelaiz et al. 2017; however, the latter additionally analyzed the EVs’ protein 

profile by mass spectrometry, and evaluated the expression of different EV-markers (CD9, CD63, CD81) 

by western blot. Research articles about cholangiocyte-derived EVs are more limited in numbers rather 

than in quality, already providing fruitful isolation protocols and an ample baseline of analytical 

characterizations to build upon. 

 

4.3 Interspecies method transferability 

 

Centrifugation and UC proved to be a viable strategy for the isolation of EVs from mice cholangiocytes 

too. Witek et al. 2009[74] performed it when working with the 603B cells, after 16 h of serum starvation 

by first  removing cells and debris (2’000 x g, 15 min, twice) and then pelleting of EVs by UC (50’000 x 

g, 45 min, twice). For selected experiments they would add a purification step by sucrose gradient 

centrifugation (100’000 x g, 15 h). Fresh samples were analyzed for proteomics or they were stored at 

4 °C for no longer than 72 h before performing TEM and RNA analysis. 

Li X et al. 2018[81] worked with murine large and small cholangiocytes (MLEs, MSEs) and they cleared 

conditioned cell culture medium from cell debris by centrifugation (2’000 x g for 15 minutes followed by 

16’000 x g for 20 min, both at 4 °C), and pelleted EVs by UC (100’000 x g, 70 min, at 4 °C). EVs were 

resuspended in sterile PBS and stored at -80 °C for further analysis. EV-size was determined by DLS 

and confirmed by TEM, and levels of mRNA H19 were assessed. Interestingly, they also isolated EVs 

from mice (and human) sera too, as further described in chapter 8. 

 

5. EVs from Liver Sinusoidal Endothelial Cells 
 

Liver sinusoidal endothelial cells (LSECs) form the fenestrated endothelial layer at the interface between 

cells in the blood and the HSCs in the space of Disse. LSECs act as efficient pinocytotic scavengers for 
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particles that are smaller than 0.2 μm, making them the central players in clearing the body of blood-

borne viruses.[253,254] When working with EVs from LSECs, researchers were interested infections 

caused by hepatitis B and C viruses (HBV and HCV). 

 

5.1 Isolation strategies 

 

EVs were isolated from primary LSECs and from the immortalized TMNK-1 cell line by Giugliano et al. 

2015,[82] using the ExoQuick™ precipitation kit.  

Li J et al. 2013[83] preferred serial centrifugations: 300 x g for 10 min, 2’000 x g for 10 min, 10’ 000 x g 

for 30 min; EVs were then pelleted by UC (100’000 x g for 70 min), washed in PBS and pelleted by UC 

again (100’000 x g, 70 min). For selected experiments sucrose density-gradient centrifugation was 

performed. 

 

5.2 Characterization 

 

The characterization of LSEC-EVs in Giugliano 2015 was limited to the determination of total protein 

content by BCA and to detection using CD63-labeled Dynabeads. Beadbound EVs were labeled with 

anti-CD63-PE and anti-CD81-PerCP-eFluor 710 and finally quantified by flow cytometry. 

Li J et al. 2013 quantified the protein content by Bradford assay, and characterized the EVs by electron 

microscopy, by immunoblot for exosomal (CD63, TSG101, Alix, LAMP2, β-actin, Hsp90) and non-

exosomal markers (GRP94, EEA1, Cytochrome C), and by microarray analysis of exosomal mRNA and 

miRNA.  

While restricted to a few research articles, EVs from LSECs have been successfully purified and 

characterized. Follow up research could expand the field by providing more insights into optimized 

storage strategies or yield determination practices that would allow for comparisons across studies. 

 

5.3 Interspecies method transferability 

 

When looking at the protocols applied to studying LSEC-derived EVs from rodents, Wang et al. 

2015[255] compared EVs isolated from a mice immortalized LSEC cell line (TSEC[256]) to murine 

serum-derived exosomes. The description of isolation and purification methods referred the reader to 

Huebert et al. 2010,[256] Thery et al. 2006,[244] Tu et al. 2015,[257] whose protocols were not related 

to EVs from LSECs. 

LSECs were cultured in medium with 10% FBS, which was prepared with 20% FBS first and then 

depleted of FBS-EVs by UC and sterile filtration. EVs were characterized by NTA, immunogold-EM 

(CD81, TfR, CD63) and western blot. They also mention using 50 μg of exosomes per experiment, as 

determined by Bradford assay, although an exact number of cells required to achieve such a yield was 

missing, making it challenging to analytically compare method efficiency across studies. 
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6. EVs from Kupffer Cells 
 

The resident macrophages in the liver, found in the hepatic sinusoid, are known as Kupffer cells.[258] 

Since the liver is frequently in contact with exogenous material, suppressing “unwanted” immune 

responses is essential. Kupffer cells have been shown to provide anti-inflammatory signals that allow 

homeostatic immunological tolerance under healthy conditions. As part of the innate immune system, 

these macrophages phagocyte invading pathogens and play a critical role for the initiation of 

immunological responses when inflammation and recruitment of other cells becomes required by the 

triggered defence mechanism.[259–261] Dysregulation of these processes is directly connected to 

pathologies discussed in previous chapters, because Kupffer cells communicate through EVs  with 

hepatocytes, HSCs, Cholangiocytes and LSECs. 

  

6.1 Isolation strategies 

 

Aucher et al. 2013[85] chose the THP-1 cells as their model for liver macrophages, collecting their 

apoptotic bodies and exosomes. The isolation methods was adapted from Hristov et al. 2004[262]  with 

800 x g for 10 minutes to remove (endothelial) cells and then pelleting of apoptotic bodies at 16’500 x g 

for 20 min. For the isolation of the exosomes it cites the work of Mittelbrunn et al. 2011.[263] The latter 

stated that donor cells (T cells) were cultured with 10% FBS (depleted of bovine EVs by UC at 100’000 

x g overnight). Still Mittelbrunn et al. 2011 explain how the conditioned cell culture medium was cleared 

by centrifugation (320 x g, 5 min); the resulting supernatant was filtered through 0.22 μm membranes, 

and EVs were finally pelleted by UC (100’000 x g, 60 min, 4 °C). While the methods could be 

extrapolated, the reliance on references for method description sometimes risks to undercut all the work 

that was done. Ideally, the methods for EV isolation should also be experimentally validated for every 

new cell type regardless.   

Li J et al. 2013[83] and Saha et al. 2016[86] also used THP-1 cells to model Kupffer cells, as well as 

primary human monocytes. Saha et al. 2016 (who cultured cells using commercially available ExoFree-

FBS™) opted for EV-precipitation with ExoQuick™, which was performed after two centrifugations 

(1’500 x g for 10 min, then 10’000 x g for 20 min) followed by one filtration (0.8 μm) step. 

Polymer precipitation was the strategy for Zhou et al. 2016,[87] although TEI kit was preferred. The cells 

that were used were purified human monocytes were obtained grown in 10% exosome-free FBS.  

 

6.2 Characterization 

 

Saha et al. 2016 analyzed THP-1-derived EVs by NTA for size and concentration, and determined the 

protein content by Bradford assay. Li J et al. 2013[83] analyzed protein content by Bradford as well, but 

they additionally performed EM, immunoblot analysis of exosomal markers, and microarray analysis of 

exosomal mRNA and miRNA. 
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Zhou et al. 2016 characterized their isolated EVs by EM, western blot for both EV and non-EV markers 

(Alix, LAMP2, cytochrome c, HSP70, CD63, GAPDH) and immunofluorescence; macrophage-EVs were 

labelled with the PKH67 dye, then given to Huh-7 cells and observed by fluorescence microscopy.  

Future reports about EVs from Kupffer cells can expand the existing literature by providing additional 

insights into storage and yield optimization practices. 

 

6.3 Interspecies method transferability 

 

While Eguchi et al. 2017[36] had been very thorough in their analysis of hepatocyte-EVs (FACS, DLS, 

TEM, miRNA, see chapter 2), they also took a look at the EVs shed by hepatic macrophages they 

isolated from mice, and compared the two in terms of morphology (TEM) and concentration (FACS). 

Nojima et al. 2016[65,66] reported working with EVs originating from mice Kupffer cells. The EVs were 

isolated by differential centrifugation (300 x g for 10 min, then 16’000 x g for 30 min), after which the 

supernatant was filtred through a 0.22 μm membrane. EVs were subsequently collected after two UC 

steps (120’000 x g for 70 min). The EV-pellet was re-suspended in PBS and purified on a 

Tris/sucrose/D2O density cushion UC (100’000 x g for 90 min). EVs were then transferred into a new 

tube, and collected after one final UC step (120’000 x g for 70 min). EV yields under different conditions 

were precisely reported, as well as the activity of neutral ceramidase and sphingosine kinase. 

 

7. EVs from liver stem cells 
 

Several studies have suggested the presence of liver-resident stem cells, which along with hepatocytes 

contribute to liver regeneration, but it remains a controversial topic, as reviewed elsewhere.[264] The 

identification of oval cells and their role in liver regeneration contributes to our current understanding of 

the process,[265] more confidently so after establishing their precursor role to hepatocytes,[266] and 

their localization in the canals of Hering[267] between bile capillaries and interlobular bile ducts (Figure 

2). A population of more committed hepatic stem/progenitor cells known as small hepatocytes had been 

first observed in rat cells in 1992,[268] and subsequently isolated from both adult rats[269] and 

humans.[270] 

Herrera et al. 2006[271], were able to isolate a human liver stem-like cell (HLSC) population expressing 

markers of mesenchymal (but not hematopoietic) stem cells from the tissues of adult human livers and 

from cryopreserved primary human hepatocytes. HLSCs showed the ability to self-renew and to 

differentiate into osteogenic, endothelial and insulin-producing cells, while starting with a partial 

commitment to the hepatocyte lineage. Since 2006, it has been regularly reported on HSLC and HLSC-

derived EVs.[88–97] 

 

7.1 Isolation strategies 
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For the isolation of EVs described in the following paragraph, HLSCs were cultured in the absence of 

FBS prior to cell culture medium collection, and their documented viability was between 97 and 99%, 

obviating concerns about co-isolation of FBS-EVs and limiting the presence of apoptotic bodies. 

The article by Herrera et al. from 2014[88–97] exemplifies the group’s general preference of differential 

centrifugation (including UC)[88–97] for EV isolation: after performing two centrifugations at 3’000 x g 

for 20 min to remove cells and debris, EVs were isolated by 2 h UC (100’000 x g, 4°C). EVs were then 

either used fresh or after storing them at -80 °C (resuspended in RPMI with 5% (v/v) dimethyl sulfoxide). 

They provided precise storing conditions and reported no differences in the biochemical activity between 

freshly used and stored EVs.  

Variations of this protocol can be found in other articles published by this group. For example, Herrera 

had opted for a single centrifugation at 2’000 x g for 20 min followed by two UC steps (100’000 x g) of 1 

h each in 2010,[90] and then modified the protocol again to one centrifugation at 3’000 x g for 20 min, a 

second one at 10’000 x g for 1 h, and a final UC (100’000 x g) for 1 h.[92] Gualerzi et al. 2019[97] added 

a size exclusion chromatography (SEC) purification step. 

Interestingly, Deregibus et al. in 2016[98] proposed an alternative approach by developing a custom 

charge-based strategy for EV isolation, in which they use protamine and PEG 35 kDa.[98] A comparison 

with commercially available precipitation kits was not performed, but their method yielded results that 

were  comparable to the UC approach in terms of EV-quality, and higher in terms of isolated EV-quantity  

(not only in cell cultures but also in serum and saliva samples, see chapter 8). 

 

7.2 Characterization 

 

Herrera et. al 2014 offers many of the characterization steps of HLSC-EV. Size distribution was 

determined by NTA. To trace EVs by fluorescent microscopy, EVs were labeled with 1 μM Dil dye. 

Cytofluorimetric analysis was done using fluorescein isothiocyanate, phycoerythrin or allophycocyanin 

conjugated antibodies (CD73, CD44, CD105, CD90, CD107, CD63, CD29, CD81, CD146, HLA-class I). 

They also performed FACS after absorption on beads by incubating 10 μg EVs with latex beads then 

with the aforementioned antibodies. EV protein content was quantified by Bradford assay; 

immunoblotting was also performed (CD63, CD81, Alix and Hsp9).  

Additional characterization for HLSC-EVs include zeta potential, TEM and analysis of RNA (Deregibus 

et al. 2016), as well as a novel method based on Raman spectroscopy for purity determination 

established by Gualerzi et al. 2019.[97] The method used Raman spectra to measure the protein-to-

lipid and nucleic acid-to-lipid ratios. 

 

7.3 Interspecies method transferability 

 

Liver stem cell EVs originating from rats have been described by Ichinohe et al. in 2017.[99] The liver 

resident stem/progenitor cells used were isolated by their research group before[272] (Thy1-positive 

cells[273]), but it is difficult to directly compare them to the HLSCs because there are no studies 

comparing their EVs. EVs from Thy+ cells were isolated using the commercially available precipitation 

kit ExoQuick™, and the described characterization was limited to EV quantification by NanoDrop 1000 
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spectrometer, since they administered 1.6 μg of EVs to different liver cells and look at their effect on cell 

morphology, proliferation and IL17rb receptor expression. 

 

8. EVs from clinical settings 
 

There has been extensive research delving into the diagnostic potential of EVs in the context of liver-

associated conditions, albeit mostly looking into circulating vesicles, both in human patients[100–159] 

and in rodents.[215–251] The increased complexity of the system makes it difficult to trace their origin 

back to a specific cell type, but first efforts have been made to make that connection. We will highlight 

here research that endeavored to connect previously discussed in vitro settings to ex vivo findings. 

 

8.1 Isolation strategies 

 

Liver-derived EVs have been recovered in and ex vivo from liver blood directly,[160] bile[161] and even 

from cancer cells that were extracted intraoperatively.[162] The isolation of EVs from human patients 

mirrored protocols developed for cell culture systems, with differential centrifugation (including 

UC)[32,36–38,62,63,83,220] and polymer precipitation (ExoQuick™ and TEI)[70,77,86,209,221] being 

the most prevalent approaches. Samples collected from blood circulation are consistently stored at -80 

°C, mostly after depleting them of cells and platelets. 

 

8.2 Characterization 

 

Typically, the analysis of circulating EVs is focused on the biomarkers of interest. For example, Sohn et 

al. 2015[136] analysed the expression levels of serum exosomal microRNAs (miR-18a, -21, -93, -106b, 

-221, -222 and -224, -101, -122 and -195) of patients suffering from different liver conditions including 

chronic hepatitis B, liver cirrhosis and hepatocellular carcinoma. This also tends to happen when looking 

at specific cells. For example, Brandon-Warner et al. 2016,[70] who collected EVs from HSCs in vitro 

as well as from human plasma, performed RNA isolation using exoEasy™ serum and plasma kit, 

followed by QiaZol total RNA purification; for exomes they only show miR data. 

 

8.3 Interspecies method transferability 

 

Nojima et al. 2016[66],[65] isolated EVs from primary mice hepatocytes and Kupffer cells in vitro by 

differential UC and sucrose gradient, while in the same studies describe also mice serum-derived EVs 

(even from cardiac puncture[65]) being isolated by ExoQuick™. The isolation strategies were not 

transferred from in vitro to ex vivo in these cases, but the characterization practices (DLS for size, CD81-

antigen-ELISA for quantification) were.  

Lambrecht et al. 2017[77] evaluated the levels of miRNA-122, -150, -192, -21, -200b, and -92a by qRT-

PCR from human plasma samples as well as from primary mice HSCs. In both instances, EV isolation 
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was performed by TEI. Duan et al. 2019[62] compared compared findings from primary rat hepatocytes 

and human plasma. A wider comparison was performed by Hirsova et al. 2016:[63] Huh7 cells and 

primary mice hepatocytes both served as in vitro models in addition to their research with ex vivo human 

samples. In their research with cholangiocytes, Li X. et al. 2018[81] looked at EVs isolated from primary 

mice cells in vitro, but took it a step further ex vivo, evaluating both murine and human sera-derived 

EVs. Their methods included differential centrifugation (with a UC step) for EV-isolation, DLS and TEM 

for size analysis and assessment of mRNA H19 levels. Cho et al. 2017[32] isolated EVs from a variety 

of samples as well: human cell lines (HepG2, He3B), rat primary hepatocytes, human sera, rat sera. 

While differential centrifugation worked in vitro, they noted how extra steps were required ex vivo to 

reduce contamination with plasma proteins (e.g., albumin). EV isolation from plasma samples was thus 

optimized by comparing three alternative methods: density gradient UC (30% Optiprep), ExoQuick™, 

and an optimized ExoQuick™ protocol, which included 3 washing steps. Deregibus et al. 2016[98] were 

perhaps more interesting from a methodological transferability perspective, since they compared the 

performance of a custom charge-based precipitation method to differential UC, using samples derived 

from HLSCs (see chapter 7), human serum and human saliva.  

 

9. Final general remarks   
 

Strategies for liver-derived EV isolation and characterization are as varied as the research groups 

tackling the challenge. While the main advantages and disadvantages for each approach have been 

presented, we would like to highlight some of the key aspects that emerged.  

FBS handling. Cell culture approaches have become indispensable to simplify EV research before diving 

into significantly more complex ex vivo samples, but most cell lines require FBS for optimal growth. 

Depriving them of it might easily result in additional stress that will affect results to an unpredictable 

extent. Alternatives to FBS have already been proposed, such as  chemically defined media or human 

platelet lysate[274] and these may replace FBS-supplemented cell culture models.[275] Cells can be 

successively deprived of FBS to limit the impact of outright elimination of it, but more frequently than 

that, research groups opt to depleting their FBS of EVs by ultracentrifugation prior to use or they directly 

use commercially available ExoFreeFBS. The experimental validation for either of these steps is rarely 

reported, but it would be an important addition given the questionable efficacy of some the most common 

methods.[229] Even under serum-replacement conditions, miRNA contaminants have reportedly been 

found.[276] Whenever serums starvation (i.e., culturing without serum) is  feasible, it would be the 

preferred option.  

Cell viability. Looking at the EVs collected in vitro, the cell number and viability at EV-harvest are seldom 

mentioned. Depending on the study, 90-99% vital cells is what was deemed appropriate when 

documented at all.  As even a few dead cells can contribute to the presence of apoptotic bodies that 

can influence the EV-population it is important to report the number of viable cells in each study.[1]  

Yield. EV yield directly impacts the characterization possibilities because it determines whether there is 

enough material to perform analyses such as cryo-TEM imaging. It also speaks to the efficiency of the 
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isolation methods., revealing how well does a specific technique perform, especially when compared to 

alternatives. An absolute yield would also allow to evaluate upstream applicability, i.e., whether mass 

production would be a feasible option or not (e.g. for the use of liver-derived EVs as drug delivery 

systems). Because of all of these considerations, the importance of disclosing and being able to 

compare this data is easy to see, yet when looking at the quantification of EV-recovery, we found the 

information either omitted/lacking or hard to extrapolate and ultimately to compare between studies. The 

particle number per million cells measure would be a convenient option to express the yield and to 

compare its efficiency across studies. Quantification by mass of EV-associated proteins would also be 

viable alternative, if other co-isolated proteins can be excluded, preferably by number of cells as well. 

Storage. EV storage is a particularly relevant subject when EV isolation and characterization are not 

performed on the same day, which is often the case given how much time most of the described 

protocols require. Storage insights were not always provided, and their validation even less frequently. 

It has already been reported that storage modality can affect the EVs[277–279] which is why we think it 

is important to share this information. Trehalose, mannitol and polyethylene glycol had been evaluated 

as possible cryoprotectants in the aforementioned studies, although not in the context of liver-derived 

EVs as of yet. With the exception of dimethyl sulfoxide,[88–97] the use of cryoprotectants for storage 

below -20 °C is rarely considered.  

Differences in differential (ultra-)centrifugation. This isolation technique has become the gold standard 

in EV research for the very good reason that it works. It is cited in well over half the articles referenced 

in this review, but the protocols are not standardized. Even when analyzing EVs originating from the 

same cell types, different groups tend to have different approaches with sometimes unexplained 

differences arise within the same group which makes comparison challenging. The number of 

centrifugation steps vary and, the relative centrifugal forces and centrifugal times applied at each step 

are rarely consistent. When there is sufficient purity validation and subsequent sample characterization, 

this methodological diversity might not be an insurmountable issue, but it is worth keeping it in mind 

when comparing results, and also when choosing which protocol to follow. 

Suboptimal method description. There is a general lack of rigorous standardization of methods in EV 

research, that was addressed with a position paper first published in 2014,[280] then expended upon in 

2018.[1] EV-TRACK is a platform aiming at method transparency. Methods descriptions could be shared 

on EV-TRACK when the information would otherwise be left out of a publication. Implementing this 

would improve reproducibility and, more nuancedly, it would allow to compare method efficiencies 

across studies. Experimental validation of some practices is not always shared, which may be a problem 

when the methods used have been reported to have weaknesses, such as depletion of FBS-EVs. The 

growing community working on EVs is becoming more aware of the need for standardization in this 

young field of research,[281] and the MISEV guidelines[1] remain undoubtedly the reference text in 

these regards. 

 

10. Conclusions and perspectives 
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We reviewed the current methodological practices for the isolation and analysis of those liver derived 

EVs, making a cell type specific user guide. Liver-derived EVs are gaining attention as a research topic, 

and there are already a few research papers addressing EVs from every liver resident cell type. Much 

work has already been published, but a rigorous standardization is needed. We moreover highlighted 

common causes for concern and critically reviewed room for improvement: the bigger issue that 

emerged was suboptimal method description and transparency.  

We found hepatocyte-derived EVs to be analyzed the most, perspective studies might tackle EVs 

originating from other cell types more frequently. EVs from human induced pluripotent stem cells (iPSC)-

derived hepatocyte like cells have not been analysed in detail yet, even though these cells are being 

taken under consideration as cell culture models for the liver.[282–284] EVs from iPSCs have been 

studied in the context of liver fibrosis, but they were still not differentiated into hepatocyte like cells.[285]  

The method transferability and translational applicability have also been a prominent topic of our 

discussion because working with EVs is inherently complicated even in single cell cultures, but many 

researchers have endeavored to escalate the challenge to co-cultures systems, to animal models 

(rodents), and to human patients. The comparisons have not always been complete, but the efforts put 

into positively tracing EVs and their associated biomolecules back to a specific cell type in increasingly 

more complex settings are a first important step to better understand liver diseases and we hope to see 

more of that in the future. 
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