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Abstract 
Domesticated animals are unique to investigate the contribution of genetic and non-genetic factors 

to specific phenotypes. Among non-genetic factors involved in phenotype formation are epigenetic 

mechanisms. Here we aimed to identify whether relative DNA methylation differences in the 

nidopallium between groups of individuals are among the non-genetic factors involved in the 

emergence of differential behavioral patterns in hens. The nidopallium was selected due to its 

important role in complex cognitive function (i.e., decision making) in birds. Behavioral patterns that 

spontaneously emerge in hens living in a highly controlled environment were identified with a unique 

tracking system that recorded their transitions between pen zones. Behavioral activity patterns were 

characterized through three classification schemes: (i) daily specific features of behavioral routines 

(Entropy), (ii) daily spatio-temporal activity patterns (Dynamic Time Warping), and (iii) social leading 

behavior (Leading Index). Unique differentially methylated regions (DMRs) were identified between 

behavioural patterns emerging within classification schemes, with entropy having the higher 

number. Functionally, DTW had double the proportion of affected promoters and half of the distal 

intergenic regions. Pathway enrichment analysis of DMR-associated genes revealed that Entropy 

relates mainly to cell cycle checkpoints, Leading Index to mitochondrial function, and DTW to gene 

expression regulation. Our study suggests that different biological functions within neurons 

(particularly in the nidopallium) could be responsible for the emergence of distinct behaviour 

patterns and that epigenetic variation within brain tissues would be an important factor to explain 

behavioral variation. 

 

Keywords: Chickens, Behavior, Epigenetics, Brain, DNA methylation 
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Introduction 
Measuring the quantitative contribution of genetic composition is usually the first step to understand 

the relative importance  genes play in  behavior [1]. Towards this goal, domesticated animals provide 

unique models to investigate the contribution of genetic and non-genetic factors to specific 

phenotypes. Commercial poultry offer a particularly relevant model to gain this understanding as 

there is normally no maternal role once the egg is laid, excluding a major confounding factor, as 

maternal care is shown to influence DNA methylation in the offspring in mammals [2-4]. Variation 

beyond that attributed to genetic factors can be in part explained by epigenetic mechanisms and the 

role they exert in the formation of phenotypes. Epigenetic mechanisms involve chemical 

modifications of the DNA that regulate gene expression and can be maintained after cell divisions [5]. 

Epigenetic mechanisms are, on one hand sensitive to environmental influences, and, on the other 

hand, fundamental players in shaping the adult phenotype of individuals [6]. 

From a neurobiological perspective, epigenetic mechanisms are reported to be involved in processes 

such as memory, cognition, synaptic plasticity [7] and regulation of stress response [8].  

Regarding efforts to understand origins and regulation of behavioral variation, the concept of 

individuality has become an important research topic across many species [9, 10], including poultry. 

Within commercial systems, chickens were recently shown to manifest highly consistent movement 

and location patterns [11]. Despite the growing interest in this theme, the causal biological 

mechanisms that lead to behavioral variation are poorly understood, particularly in large groups 

typical of commercial livestock such as laying hens. At a fundamental level, the emergence of 

individual behavior phenotypes within a population will involve both genetic and non-genetic 

mechanisms as with other phenotypes. In domesticated animals, behavioral traits are associated 

with low to moderate heritability [12-14]. In modern commercial laying hen hybrids, the component 

of the heritability attributed to social traits is estimated to be at the same level of direct effects, i.e., 

30% [15].  
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Epigenetic variation is one of the biological mechanisms that explain non-genetic heritability [16, 17] 

and is thought to account for a sizeable part of phenotypic variability [18]. The best studied 

epigenetic mechanism is DNA methylation, which involves the enzymatic addition of methyl groups (-

CH3) to 5’ to 3’ oriented CG dinucleotides, known as CpG sites [19]. In humans, differential 

methylation in neurons explain great part of the heritability of neurological disorders such as 

schizophrenia, addictive behavior, and neuroticism [20]. In the present study we aimed to identify 

whether DNA methylation changes in the brain (nidopallium) are among the non-genetic factors 

involved in the emergence of differential behavioral patterns in chickens. These behavioral patterns 

were identified with a unique tracking system that involves recording transitions between specific 

zones of a pen. The nidopallium was selected as the brain area for epigenetic analysis due to its 

important role in complex cognitive function in the avian brain [21]. This brain region was selected 

because it controls decision-making, which is a relevant neurological process that takes place when 

the animals weight the attributes of each zone in the pen (e.g., the relative amount of natural versus 

artificial lighting in outside or inside areas.). 

We characterized behavioral traits and activity levels using three types of classification schemes that 

our group has been employing in a variety of contexts [11, 22]. These schemes were: (i) daily specific 

features of behavioral routines and their associated stability (Entropy), (ii) daily spatio-temporal 

activity patterns (Dynamic Time Warping), and (iii) a study-wide assessment of social leading 

behavior (Leading Index). In the present study we investigated the relationship between DNA 

methylation in the brain of chickens (nidopallium) and behavioral patterns detected through these 

methods. We identified a number of Differentially Methylated Regions (DMRs) associated with 

distinct patterns of behavioral activity that spontaneously emerged in our chicken population. 

Furthermore, we explored how the identified DNA methylation changes could influence genomic 

expression in each case. 
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Materials and Methods 

Animals and housing 

Beginning at one day of age until 17 weeks of age, 2,840 commercial Brown Nick laying hens 

(https://www.hn-int.com/eng/commercial-layers/brownnick.php, accessed 12-9-2019) were housed 

at the Aviforum (Zollikofen, CH), a contract research facility focusing on commercial poultry. Animals 

were kept in eight pens (355 hens/pen) of a rearing barn equipped with one of two aviary systems 

(four pens with Inauen Natura, Inauen AG, Appenzell, Switzerland, and four pens with Landmeco 

Harmony, Globogal AG, Lenzburg, Switzerland). Each pen had floors that were covered with wood 

shavings. The aviary system contained round metal perches, automatic feeders, nipple drinkers, and 

manure belts. The chicks had access to a covered outdoor area (winter-garden) from six weeks of age 

onwards. 

At 17 weeks of age, birds were transferred to an on-site commercial laying hen house that was 

divided into two halves of which only one side was used for the current study. Each pen was 

equipped with a system that allowed tracking of individual animals, described in more detail below. 

The four pens (12.9 m2) contained a Rihs Bolegg II commercial aviary system (Krieger AG, Ruswil, 

Switzerland) with a stocking density of 9.33 hens/m2. Birds from each rearing pen were distributed 

across each laying pen in a stratified manner. The barn interior included an aviary structure and 

group nests along one wall, with the floor covered with 10 cm of wood shavings. The aviary was 

2.40 m high and consisted of three tiers with the following equipment integrated into the structure: 

manure belt, feeding chain, and nipple drinkers within the lowest tier; a manure belt within the 

middle tier; a feeding chain and nipple drinkers within the highest tier. Plastic mushroom-shaped 

perches were provided on the lowest and highest tiers. Plastic platforms to move between tiers were 

provided along both aviary sides (30 cm in width and at 70 cm height from the floor) and nest entries 

were square plastic grids (size 2.5 × 5 cm). External to the internal barn area, birds had access to a 

winter-garden (average size: 17.55 m2; equipped with litter, nipple drinkers, perches), a fenced area 
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containing small stones (stone yard, average size per pen: 88 m2), and a pasture (“free-range area”, 

average size per pen: 288 m2). The winter-garden consisted of an area entirely covered by a solid roof 

and surrounded by wire mesh on the sides and in between pens, thereby preventing birds from 

exiting the area with the exception of a pophole that could manually be opened. Each pen – including 

both external and internal areas - was separated by fencing to maintain divided populations. Within a 

pen, each area was further divided with fencing (or the barn wall) so access could be limited to the 

interior or outdoor areas as required by management protocol. Movement between areas (i.e. 

inside, winter-garden, stone yard, free-range) was via a single location between areas (pop hole or 

gate) that provided unobstructed access when opened. Transitions between areas could only occur 

between two juxtaposed areas, e.g., transitioning directly from the barn to the free-range areas 

without passing through the winter-garden and stone yard was not possible. Artificial light was 

provided in the barn from 0200 to 1700 h with a transitional phase of five min beginning at 0200 h 

and 15 min at 1645 h. Natural daylight was provided from 0800 to 1630 h through windows 

controlled by curtains or on pasture. Birds were encouraged into the barn interior around 16:30. 

Movement and location acquisition 

To record hen movement, a system similar to that described by Gebhardt-Henrich et al. [23] was 

used with some minor modifications. Within each pen 120 out of 355 hens (33.8%) were randomly 

selected to be fitted with Radio Frequency Identification tags (RFID, Hitag S 2048 bits, low frequency 

of 125 kHz, diameter: 4.0 mm, length: 34.0 mm) attached to leg bands. This random assignment of 

RFID tags to 120 hens for tracking was done on the day the barn was populated. Two sets of 

antennas (Gantner Pigeon System (http://www.benzing.cc/, accessed 10.06.19) were positioned 

immediately on either side of the transition points connecting two areas (e.g., barn/winter-garden) in 

a manner that hens transitioning had to pass over each set. In order to protect the antennas from 

weather and staff working in the area, they were entirely encased within a small wooden box that 

ran the length and both sides of each transition area. 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

7 
 

The RFID system operated by registering and recording the date and time and date that individual 

RFID tags (worn by the hens) came within a vertical distance of 15 cm to an antenna. The inclusion of 

antennas on either side of the transition areas represents an added level of assurance as movement 

between two areas required registration of two events – both entrance into the area (e.g. 

registration inside the house followed by a transition into a second area, e.g. , the winter-garden). 

Collected data, including: unique tag identification number, timestamp (with a precision of 0.1 s), and 

antenna number, were written to a connected computer. The system allowed for multiple tags (and 

the associated hen) to be registered by the same antenna at the same time. The direction of 

movement was deduced from the order in which the antennas detected the tags. More details of the 

RFID system and its reliability are provided by Gebhardt-Henrich et al. [24]. 

  Data was not analyzed for all days of the study period because access to the stone yard or free-

range areas was restricted during poor weather or pasture maintenance. Tracking data were 

recorded only on 72 days (within the contiguous 166-day study period) when all pens were given 

access to all areas 

Based on time-sampled transition data we calculated the following measures for each hen: time 

inside, time outside, number of transitions, entropy, order leaving, order returning, number of days 

outside, a leading index, as well as a classification of movement type based on Dynamic Time 

Warping (DTW). For these measures, the stone yard and free-range areas are considered outside. 

Time inside the barn is the proportion of time that the birds spend inside the barn between the 

opening and closing of the popholes/gates during all days. Time outside is the proportion of time that 

birds spend either in the stone yard or in the free-range area between the opening and closing of the 

popholes/gates during all days. Number of transitions is the total number of recorded transitions for 

a specific hen between opening and closing of the pophole/gates summed over all days. The entropy 

for each hen was calculated as the sample entropy, which is the negative natural logarithm of the 

conditional probability that two sequences similar for a number of points remain similar at the next 
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point, excluding self-matches [25] (Supplementary Figure S1). The order for leaving is based on the 

order in which hens of a pen entered the stone yard for the first time on a given day. Ordinal 

numbers for each hen are averaged over all observational days. The order for returning is based on 

the order in which hens of a pen returned from the stone yard and re-entered the winter garden for 

the last time on a given day. The numbers of days outside is the number of days where a bird was at 

least once recorded entering the stone yard or the free-range area. The leading index gives for each 

hen the proportion of all its transition where it was a leader, defined as being followed more closely 

in time by another bird than following another bird. For the differential methylation analysis both 

entropy and leading index were converted into binary measures by splitting the subsample of tissue 

sampled animals into two evenly sized groups with the median entropy and leading index values of 

the subset as the threshold values. DTW is a shape-based time series analysis, comparing the 

dissimilarity of two time series independent of their individual length [26, 27]. DTW creates a 

dissimilarity distance matrix including each pairwise comparison of time series and was calculated 

using the R-package dtwclust [28]. High DTW score exist when two time series are very dissimilar 

from each other. If pairwise comparisons of time series from a single bird have high DTW values, this 

indicates that the bird was not very consistent in its movement patterns. If DTW distance scores 

between birds are high, this indicates that the birds had rather different movement patterns. 

Hierarchical clustering analyses of these dissimilarity matrices was performed with the DIANA 

method (divise analysis, [19]). Beyond these behavioral classifications, no other categories were used 

to group or select animals. 

Tissue collection and DNA extraction 
The 24 animals using in this study were haphazardly selected from a larger population devoted for 

multiple parallel investigations in hens. Animals were sacrificed via intravenous injection with 

pentobarbital (Esconarkon, 0.3 ml/hen). Immediately thereafter, brains were removed from the 

skulls and transferred to petri dishes containing 0.1M PBS. The hemispheres were divided along the 

longitudinal fissure with a scalpel. The brain section used for the genomic and epigenomic analyses 
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was removed using scissors from the exposed area underneath the lateral ventricle and adjacent to 

the midline. As this region came from the caudal half of the forebrain it consisted primarily of caudal 

medial nidopallium [29]. The samples were then stored at -80°C until shipped on dry ice to Linköping 

University for further processing. After arriving, DNA was extracted from the brain sections using the 

DNeasy Blood and Tissue Kit from Qiagen, following the manufacturer’s instructions. 

Preparation of sequencing libraries 
To prepare the sequencing library we used an approach that combines Genotyping by Sequencing 

(GBS) [30] and the Methylated DNA immunoprecipitation (MeDIP) [31] techniques. We recently 

employed this methodological combination in previous studies [32]. The method consists in first 

digesting the genome with the PstI restriction enzyme (Thermo Scientific) in a suitable range for 

Illumina sequencing [30]. Illumina sequencing barcodes are then ligated at each end of the digested 

DNA fragments, allowing the pool of DNA samples to be immunoprecipitated together. Each pooled 

DNA sample contained different barcodes identifying each individual. The methylated fraction of the 

DNA is captured by an anti-methyl-cytosine antibody (Diagenode) [31]. After this step, the 

methylated DNA is amplified using PCR, which is followed by clean-up of primer dimers and unbound 

adapters [33, 34] before the samples are sent for paired-end sequencing on the Illumina HiSeq2500 

platform with a read length of 125 bp at the SNP&SEQ facilities of the SciLifeLab (Stockholm, 

Sweden). 

 

Bioinformatic analyses  
The CASAVA (Illumina) program was used for the initial processing of the samples by converting the 

".bcl" (base call files) to ".fastq" extensions, which is compatible with programs used for reads 

alignment. The quality of the reads was checked using FastQC v.0.11.3 [35]. Quality trimming was 

performed in short read sequences during the data processing. For both SNP calling and 

methylation analyses, quality-trimmed reads were aligned against the chicken reference genome 

(Gallus_gallus 5.0, NCBI) with the Bowtie2 tool v.2-2.3.4.2 [36] using default parameters. The 
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coverage depth of each sequenced file was determined using SAMtools v.0.1.19 [37] with the 

“depth” option. For the identification of differential methylation regions (DMR), uncalled and low 

quality score bases were eliminated using the process_radtags function in the Stacks v.1.39 program 

[38]. Following the alignment, sequencing data for each individual were then assigned to one of the 

experimental groups. For the identification of significant DMRs, the animals were divided into three 

classification schemes: Entropy (0 and 1), Leading Index (0 and 1) and DTW clustering (1, 2 and 3). 

DMRs were calculated by performing pairwise comparisons between DNA methylation levels 

(observed in the reduced genomes of RBCs) from animals belonging to two of the categories defined 

within each classification scheme. The MEDIPS package from R [39] was used for basic data 

processing, quality controls, normalization, and identification of differential coverage regions using 

default parameters. The BSgenome.Ggallus.UCSC.galGal5 package from Bioconductor was used as 

the chicken reference genome within R environment. Quality control was carried out to confirm 

enrichment of the methylated fraction of the genome. This was performed by calculating the average 

enrichment score. Enrichment scores should be> 1, with values around 2 signalling very good 

enrichment for methylated DNA. The main idea of this approach is to verify the extent of CpG 

enrichment in the regions obtained compared to the reference genome. For this, the function counts 

the number of Cs, the number of Gs, the number of CpGs and the total number of bases within the 

reference genome. Subsequently, the function calculates the relative frequency of CpGs (relH) and 

the observed / expected ratio of CpGs in the reference genome (GoGe). In addition, the function 

performs the same calculation for DNA sequences underlying regions of interest. The final 

enrichment values result from dividing the relative frequency of CpGs (or the observed / expected 

value) in the regions of interest by the relative frequency of CpGs (or the observed / expected value) 

of the reference genome. 

We used the same specific parameters for the MEDIP package as we previously reported [32]. 

However, the parameter of P=0.01 was used as the threshold for the detection of stacked reads to 

call DMRs. To define the ROI (regions of interest) to be analysed, we used a bed.file obtained from 
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the Model-based Analysis of ChIP-Seq data (MACS) peak calling program 

(https://github.com/taoliu/MACS/) [40], using default parameters. Macs2 allows that large 

methylated regions are not arbitrarily divided into smaller windows. Therefore, the analysis is "peak 

specific”. MACS2 improves the spatial resolution of the predicted sites, uses a dynamic parameter to 

capture local biases in the genome and improves the robustness and specificity of the prediction, 

being strongly indicated for fold-enrichment experiments [41]. Three thresholds defined the genomic 

windows obtained by the DMR analyses: P < 0.0005 for describing genes related to significant DMRs, 

P < 0.005 for exploratory analysis of DRM-gene related, and p<0.05 for enrichment pathways. To 

identify DMRs (P < 0.05) overlapping across the classification schemes, we used the GenomicRanges 

package in R environment.  

The significant DMRs obtained were annotated against the chicken reference genome 

(BSgenome.Ggallus.UCSC.galGal5) using annotatePeak function from the ChIPseeker package [42] in 

R environment. In this function, we used the gg_txdb (as the transcript metadata) from 

GenomicFeatures package and org.Gg.eg.db package as the annotation database for the chicken 

genome. For the identification of affected molecular function, cellular components and biological 

processes, we used the DMR-associated genes for a Gene Ontology (http://geneontology.org) 

analysis performed through the enrichGO function within the ChIPseeker package [42]. For the 

identification of enriched molecular interaction and reaction networks we used the Kyoto 

Encyclopaedia of Genes and Genomes (KEGG; https://www.genome.jp/kegg), which was run with the 

enrichKegg function also within the ChIPseeker package [42]. Also, selected DMR-associated genes 

(described in the results) were used as input in the web-based Genemania tool 

(https://genemania.org, using default parameters) to obtain extended gene networks [43].  
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Results 

Basic movement 
The tracking system successfully registered 1,219,658 transitions of 421 tracked hens (range:0-6339) 

across the included days of the study period. Due to missed data we could not determine the birds’ 

positions at all times, though on average (mean), the location of a bird was known to us in 84.3% of 

the time. Utilization of the four available areas differed substantially. While ten birds (2.4%) never 

left the indoor area, other birds spent up to 87% of available time outside of the barn during which 

access was available (Supplementary Figure S2) and 33 birds (7.8%) never entered the free-range 

area. 

The individual-level variables (time inside the barn, time outside the barn, number of transitions, 

entropy, order leaving, order returning, number of days outside and leading index) were partly 

correlated (Supplementary Table S1). A principal component analysis of the normalized z-scores 

(Supplementary Figure S3; Supplementary Table S2) gives a rotation where the first principal 

component explains 55% and the second component explains 13% of the overall variation. The first 

component has high loadings for time inside and order going outside, and low loadings for the 

number of transitions, entropy and the number of days seen outside. The second component has by 

far the strongest loading for the leading index. Entropy was highly correlated with the number of 

transitions per day (r = 0.95, CI95 = 0.94—0.96). The time animals spent in the barn was correlated 

with: the order first entering the stone yard (as part of the outdoor area) (r = 0.59, CI95 = 0.52—0.65; 

a high order number means that the bird left later than most other birds  in the day) and negatively 

correlated with: entropy (r 0 -0.69, CI95 = -0.74— -0.64), number of transitions (r = -0.60, CI95 = -

0.66— -0.53), order of going back inside in the afternoon (r = -0.53, CI95 = -0.60— -0.45), and 

number of days the birds were recorded outside (r= -0.64, CI95 = -0.69— -0.58). Thus, birds that 

spent less time in the barn were generally more active in terms of movements between areas. The 

Leading index was not strongly correlated with any of the variables describing the movement 
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patterns (e.g, number of transitions: r = 0.205, CI95 = 0.11—0.30; time inside the barn: r = -0.24, CI95 

= -0.33— -0.15; order going outside the barn r = -0.26, CI95 = -0.35— -0.17. The median leading index 

was 0.496 (interquartile range: 0.463 - 0.530) and the median entropy was 0.018 (interquartile range: 

0.012 - 0.024). DTW analysis allowed the creation of dissimilarity matrices by computing summed 

dissimilarity distances for all pairs of the 24 hens (across both pen 1 and pen 2). Hierarchical 

clustering analyses of these dissimilarity matrices, performed with the DIANA method (divise analysis 

[28]), suggests the existence of clusters of distinct movement patterns. Based on this clustering 

analysis, we were able to identify three clusters representing markedly differing movement patterns 

(henceforth DTW clusters; Figure 1). The categorization of each hen within each behavioral 

classification scheme is shown in Supplementary Table S3  

 

Basic Sequencing Features 
We sequenced a reduced and methylation enriched genomic fraction of 24 individuals across 

experimental groups. The average sequencing yield across individuals was 233.7±4.1 million of bps.  

The average sequencing depth was 56.3X±9.0X covering ~4.06 million unique bps, which corresponds 

to 0.4% of the whole chicken genome. Details about individual sequencing coverage per DNA sample 

can be found in the Supplementary Table S4. 

In order to verify the enrichment for CpGs in our sequenced reads, we calculated a CpG ‘enrichment 

score’, which compares CpGs in the genomic regions covered by the sequenced reads against CpGs in 

the whole reference genome. An ‘enrichment score’ of 2.80 ± 0.22 was obtained based on 94,331 

CpGs identified across individuals on average. This corresponds to approximately 1% of all CpGs 

within the whole Gallus gallus genome.  

Differential Methylation Analysis Between Experimental Groups 
DMRs (P≤0.05) were identified between i) animals with low and high entropy, ii) animals 

characterized as leaders or followers (according to the calculated ‘Leading Index’), and iii) animals 

differentially classified into three DTW clusters. Between animals with high and low entropy 110 
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DMRs were identified (Figure 2A). Additionally, 25 DMRs were found between animals characterized 

as followers or leaders (Figure 2B). In relation to the DTW clusters, 15 DMRs were identified between 

DTW clusters 1 and 2 (Figure 2C), 6 DMRs were identified between DTW clusters 2 and 3 (Figure 2D), 

and 7 DMRs were identified between DTW clusters 1 and 3 (Figure 2E). A selection of the DMRs with 

the lowest P values (P≤0.005) is shown in Table 1 with their respective annotations. The number of 

DMRs unique to, or overlapping between, classification schemes is shown in Figure 3A. The unique 

and overlapping DMRs observed between DTW clusters is shown in Figure 3B. 

 

Table 1- Genomic features and annotation of the DMRs with the highest p values.  

 

An annotated list of all the DMRs identified (P<0.05) in the current study is available in 

Supplementary Table S5. Within each classification scheme, functional annotation of all DMRs was 

performed to identify the genomic functional regions where the DMRs found locate. DMRs in each 

classification scheme were associated with different patterns of functional genomic features (Figure 

4). In total, there were 81 genes associated to the DMRs. Interestingly, the patterns of functional 

annotation differ substantially across the classification schemes. 

Next, KEGG (enrichKegg) and Gene Ontology (enrichGO; biological processes) pathway analyses were 

performed using the 81 genes associated to the DMRs as input. However, we selected the subset of 

these genes associated with each classification scheme for the pathway analyses related to them. 

Overall, for the Kegg analysis 26 genes mapped to at least one pathway in the Kegg database, and for 

the GO analysis 9 genes mapped to at least one pathway in the OrgDb database. With both analyses 

we identified genes significantly enriched in pathways.  The enrichKegg analysis revealed genes 

enriched in pathways in relation to each of the comparisons performed within classification schemes 

P value
Classification 

scheme
Genomic location Width (bp) CpGs Annotation Gene Id Entrez ID

Gene 

Symbol
Gene Name

Treatment with 

hypermethylation
Possible Expression effect

1 0.00012 DTW cluster 2 vs 1 chr26:870542-871014 472 1 Intron ENSGALG00000031122.1 424336 NTNG1 Netrin G1 DTW cluster 2 Increased in DTW cluster 2

2 0.00036 Entropy chr4:10886922-10887074 152 1 Promoter ENSGALG00000007211.5 419305 CDH22 Cadherin 22 Low entropy Decreased in low Entropy

3
0.00075 Entropy chr20:10877159-10877501 342 14 Intron ENSGALG00000002374.5 424772 SLC9A9 Solute carrier family 9 member A9 Low entropy Increase in low Entropy 

4 0.00091 Entropy chr2:82081027-82081519 492 11 Distal Intergenic ENSGALG00000040186.2 NA NA NA Low entropy Decreased in low Entropy

5
0.00133 Entropy chr19:7725868-7726161 293 21 Distal Intergenic ENSGALG00000002892.5 423653 SLC22A15L

Solute carrier family 22 member 

15-like
Low entropy Decreased in low Entropy

6 0.00210 Entropy chr15:7902061-7902648 587 27 Distal Intergenic ENSGALG00000005415.5 403089 TEAD1 TEA domain transcription factor 1 Low entropy Decreased in low Entropy

7 0.00210 Entropy chr20:10489420-10489893 473 17 Exon ENSGALG00000002663.5 424777 ATR ATR serine/threonine kinase Low entropy Increased  in low Entropy

8
0.00219 DTW cluster 3 vs 2 chr12:2458270-2458563 293 17 Promoter ENSGALG00000002722.5 396135 MST1

Macrophage stimulating 1 

(hepatocyte growth factor-like)
DTW cluster 3 Decreased in DTW cluster 3

9 0.00317 Entropy chrZ:73604888-73605174 286 10 Intron ENSGALG00000029598.2 NA NA NA Low entropy Increased in low Entropy

10 0.00338 Entropy chr12:7918429-7918698 269 23 Distal Intergenic ENSGALG00000041167.2 NA NA NA Low entropy Decreased in low Entropy

11 0.00353 DTW cluster 3 vs 2 chr24:2807083-2807962 879 12 Promoter ENSGALG00000043955.1 NA NA NA DTW cluster 3 Decreased in DTW cluster 3 

12 0.00383 DTW cluster 3 vs 2 chr10:20047539-20048245 706 39 Promoter ENSGALG00000036163.1 100858113 ZNF710 Zinc finger protein 710 DTW cluster 3 Decreased in DTW cluster 3 
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(Padj≤0.1). Some of these are well studied genes, relevant for a variety of biological pathways, such 

as RAF1 (associated to DMRs found between DTW clusters 2 and 1), GSL (associated to DMRs found 

between DTW clusters 3 and 1) and TGFβ2 (associated to DMRs found between followers and 

leaders).  Also of interest is the fact that three genes associated to DMRs found between low and 

high entropy (RFWD2, ATR and SHISA5) belonged to the p53 signaling pathway (Table 2). The 

complete output of the enrichKegg analysis is shown in Supplementary Table S6. The enrichGO 

analysis revealed DMR-associate genes (Padj≤0.1) emerging within the Leading index classification 

scheme (RAF1), and when comparing DTW 2 vs 1 (TGF β2). These genes were also found in the 

enrichKegg analysis and are important for a number of biological process, as previously mentioned 

and as shown in the Supplementary Table S7.  

 

 

Table 2- Gene enrichment obtained by KEGG pathways based on genes associated to significant DMR (P<0.05) found among 

behavioral patterns identified within each classification scheme. 

 

Comparisson
DMR-Associated Gene enriched in 

Pathways
Pathways involved

ABCB6 ABC transporters

FANCE Fanconi anemia

RAF1

VEGF signaling; VEGF signalling; ErbB signalling;  Progesterone-

mediated oocyte maturation; Gap junction; GnRH signaling; C-

type lectin receptor signaling; Melanogenesis; Vascular smooth 

muscle contraction; Apelin signaling; FoxO signaling; 

Autophagy - animal; Apoptosis; Influenza A; mTOR signaling; 

Cellular senescence; Focal adhesion; Regulation of actin 

cytoskeleton

NTNG1 Cell adhesion molecules (CAMs)

ATP2B4 Adrenergic signaling in cardiomyocytes; Calcium signaling

DTW cluster 3 vs 1 GSL

Arginine biosynthesis; Nitrogen metabolism; Glyoxylate and 

dicarboxylate metabolism; Alanine, aspartate and glutamate 

metabolism; Biosynthesis of amino acids; Necroptosis

RFWD2

ATR

SHISA5

TGFB2
TGF-beta signaling; AGE-RAGE signaling pathway in diabetic 

complications; Cell cycle; FoxO signaling; Cellular senescence

AIFM1 Apoptosis; Necrosis

ATP6V1AL Phagosome; mTOR signaling

DTW cluster 2 vs 1

Entropy: Low vs High

DTW cluster 3 vs 2

p53 signaling

Leading index: 

Follower vs Leader
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After this analysis, for each classification scheme we selected i) all the genes associated to the most 

highly significant DMRs (Table 1), and ii) those genes that were enriched in the Kegg pathway 

analysis. This subset of highly relevant genes was used to build extended gene networks and identify 

their biological impact using the web based GeneMania (https://genemania.org) tool [43]. The 

extended gene networks related to each classification scheme are shown in Figure 5A. The functional 

biological pathways significantly impacted by these extended gene network modules are shown in 

Supplementary Table S6. In order to better visualize the different biological functions affected by the 

extended gene networks associated to DMRs within each classification scheme we built word clouds 

using the terms of the abovementioned functional pathways (Figure 5B). 

Discussion 

Overview 

In the current work we used a relatively large and uniform population of laying hens with the aim of 

identifying the relationship between behavioral patterns (detected by applying metrics in novel 

ways) and epigenetic variation (DNA methylation) in a brain region involved in the processing of 

higher cognitive abilities (nidopallium) in birds. Behavioral patterns that spontaneously emerged 

were able to be documented in our population of hens and were linked to specific DMRs. Genes 

associated to these DMRs are relevant from a neurobiological perspective but are also involved in 

other biological functions, notably cell cycle checkpoints and exit to repair. 

This study is unique in several ways that contrast with previous efforts investigating interactions 

between behavior and the epigenome. Firstly, the study population of commercial laying hens is 

highly homogeneous in terms of both environmental exposures and genetic composition. All hens 

were hatched, reared, and housed together where they would be exposed to the same nutrition, 

lighting, climate, and other environmental factors, and without any possibility for maternal 

interactions. In terms of genetic variation, these farm animals are considered fairly homogenous due 

to intensive commercial breeding efforts to yield highly productive and feed efficient animals.  

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

17 
 

A second unique aspect of the current work is that behavioral data was collected longitudinally over 

an extended period of time within the animals' home pen which minimized disturbances to the 

animal. We believe the methods to track and analyze behavior used in the current study ensure the 

identified relationships are more indicative of actual commercial populations relative to efforts that 

utilize experimentally induced behaviors within specific testing paradigms conducted outside the 

home area. Although such approaches can serve as useful proxies for underlying behavioral traits 

[44], they present limitations when investigating longitudinal changes [45]. 

 Another unique aspect is that data was collected in a relatively large group of animals where the 

utilization of traditional behavioral techniques do not allow for observations focusing on individuals 

[46]. Group size is important as smaller groups of laying hens (estimated at less than 70 individuals) 

are believed to adopt different social structures than those in larger groups (reviewed by [47]). In 

that sense, relationships identified in small groups may not be applicable to larger groups, and, by 

extension, the world's commercial laying hens that are typically housed in flocks containing 5,000 to 

50,000 animals (when not housed in cages). In summary, the current experimental set up has unique 

features to allow the identification of relationships between behavioral patterns and brain DNA 

methylation. 

The relationship between behavioural and epigenetic profiles 

The results of the current study support the position that epigenetic variation within brain tissues is 

an essential factor to explain the natural emergence of behavioural variation. In our case, we focused 

on the nidopallium, which is a region of the avian brain involved in complex cognitive abilities, such 

as executive function, and considered to be analogous to the mammalian pre-frontal cortex [21]. 

By applying established classification schemes in a novel way to characterize animal movement and 

location patterns over the study period, we identified different and unique patterns across 

individuals. In comparison to the simple individual-level variables (e.g., time inside), we believe 
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complex metrics (i.e., DTW clustering, Entropy, and the Leading Index) offer a more comprehensive 

representation of an individual animal's behaviour. 

Importantly, the different behavioural patterns that spontaneously emerged and were able to be 

documented in our population of hens were linked to related DNA methylation patterns in the 

nidopallium. Although a random sample of hens with the larger population would be expected to 

show some degree of epigenetic variation, the combination of novel movement classification analysis 

and epigenetic methods has revealed the emergence of linkages between the two that would have 

not been apparent otherwise. Unique DMRs were identified between behavioural patterns that 

emerged within all classification schemes, among which, entropy was associated with the greatest 

number (i.e., 107) (Figure 3A).  

The biological mechanisms behind unique DMRs emerging between behavioral patterns is only 

conjecture at this point. However, it is important to consider that each classification scheme 

measures different properties of the time series. For instance, the type of entropy assessed in the 

current study may reflect activity levels. Entropy, which addressed the complexity of a given time 

series, was highly correlated with the number of transitions. This probably means that the kind of 

entropy measured here could somehow relate to increased exploratory behavior, which would be 

reflected in increased number of transitions between areas. In contrast, DTW clustering provides a 

more comprehensive representation of the time series as it incorporates both location as well as the 

timestamp into the resulting metric. This additional information could make DTW sensitive to 

biological processes that would influence the decision of animals of reaching particular areas, as well 

as the duration and time of day of their presence at these areas. For instance, increased time in areas 

external to the barn interior would result in proportionally greater exposure to sunlight, better air 

quality (particularly the free range and stone yard area), or risks associated with particular areas 

(e.g., use of the free range and stone yard area would have a greater chance of predation). The 

leading index was the only metric that represented an aspect of social behavior. Thus, it is interesting 
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to consider leading index in light of decision-making processes, reactivity, or behavioral tendencies 

towards conspecifics (e.g, aggression or boldness). Our results show that these properties described 

may have a functional relationship to the associated DMR. 

Among the DMRs found, 12 were selected with a relatively stringent P value cut-off (P ≤0.005, Table 

1). Of these DMRs, eight are gene related. Moreover, two of these DMRs have P values ≤ 0.0005 and 

relate to the genes Netrin G1 (DTW scheme) and Cadherin-22 (entropy scheme). We considered all 

these eight genes to be of special interest, and thus, their function is discussed here. Three of these 

genes exhibit an important role in brain function or development. Netrin G1 is part of a conserved 

family of proteins involved in axon guidance during developmental phases of the vertebrate nervous 

system [48]. Cadherin-22 is suggested to regulate cell-cell adhesion in morphogenesis and tissue 

formation in neural and non-neural cells in brain and neuroendocrine organs during developmental 

stages, as well as in the maintenance of these organs [49]. The SLC9A9 gene, in turn, is a sodium 

hydrogen exchanger present in the recycling endosome, which is highly expressed in the brain and 

implicated in neuropsychiatric disorders such as autism spectrum disorders [50]. Other two genes in 

the list have important roles in the cell cycle checkpoints and exit. For example, the ATR gene 

encodes a serine/threonine kinase involved in damage-induced G2 checkpoint control and apoptosis 

in proliferating cells [51]. The MST1 gene, in turn, is part of the Hippo signaling pathway, which in the 

optic neuroepithelia of Drosophila is shown to participate in cell cycle exit [52]. 

 

Association between classification schemes and genomic regulatory regions 

A deeper exploration of the linkages between behavioural classification schemes and differential 

DMRs revealed that the schemes differentially associated with specific genomic regulatory regions. 

For instance, while similar proportion of DMRs associated with intronic, downstream, and exonic 

regions across the three schemes, DTW had double the proportion of affected promoter regions and 

half of the distal intergenic regions. DMRs exhibiting hypermethylation of promoter regions are 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

20 
 

expected to inhibit the transcriptional machinery and thus prevent gene expression, according to 

standard assumptions [53]. Alternatively, promoter hypomethylation generally activates genes as a 

result of increased accessibility of DNA by polymerase [53]. In this sense, the DMRs linked with the 

differential behavioral clusters identified by DTW could have a direct role on the abundance 

associated with the expression of specific gene products. The effect of distal intergenic regions on 

gene expression is less clear and dependent on the region's association with other factors such as 

enhancers. Enhancers regulated by DNA methylation are linked to the coordinated transcriptional 

and epigenomic regulation of developmental genes in vertebrates [54]. 

It is interesting to consider the usefulness of DTW for obtaining clusters of individuals that are more 

likely to be exposed to particular environments or engage in particular activities. For example, Cluster 

3 formed by DTW, with its limited exposure to natural sunlight, could relate to a specialized suite of 

gene products (e.g., vitamin D conversion) that would be categorically different from the gene 

products that could relate to activities of animals in the other clusters which routinely exit the barn 

interior. Alternatively, the association of the Leading Index classification scheme with nearly 70% of 

the distal intergenic regions would allow for a relatively greater flexibility in gene expression 

regulation, rather than simply regulating expression levels. This flexibility refers to the ability of one 

genomic region or element to regulate the expression of different genes, such as in epigenetic 

clusters of regulation. In this sense, the social behavior of the animals as characterized by the Leading 

Index will be highly dependent not only on their own behavior but also on the behavior of their 

conspecifics, which would, in turn, be related to a flexible ability of the genome to regulate gene 

expression. For instance, an animal classified as a follower in the Leading Index will enter into an area 

only if initiated by a specific conspecific in contrast to animals classified in the DTW Cluster 2 which 

reliably go to all areas of the pen moved by their own initiative. 
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DMR-associated Genes Enriched in Biological Pathways 

Subsequent enrichment analysis of the genes associated to the DMRs revealed that some DMR-

associated genes such as RAF1, GSL and TGFβ2 are influential on several important biological 

pathways. RAF1 is associated to a DMR that emerged in the comparison between DTW 2 and 1. RAF1 

is an oncogene with suggested involvement in the pathogenesis of glioblastoma, the most aggressive 

type of brain cancer [55]. (RAF1 is member of the RAS/extracellular signal-regulated kinase 1/2 

signalling pathway. Mutations in these genes are known to associate with so-called RASopathies, the 

most common of these being the Noonan Syndrome [56]. The effects of the Noonan Syndrome 

include structural malformations, developmental delays, but also behavioural issues such as 

irritability and communication difficulties [57]. Interestingly, research shows that mice expressing the 

Raf1L613V gain-of-function mutation, associated with the Noonan Syndrome, perform better than 

controls in some aspects of common behavioural tests such as the water radial-arm maze, Morris 

water maze, and cued fear conditioning tasks [56]. GSL, in turn, is a glutamine synthetase-like gene. 

In the brain, excesses of ammonia and the neurotransmitter glutamate are regulated by their 

conversion to glutamine. This happens mainly in astrocytes and by the action of the glutamine 

synthetase enzyme [58]. Higher glutamine levels in the prefrontal cortex of mammals are associated 

with better performance in a reversal learning task [59] and attenuation of depressive behaviour 

[60]. TGF Betas, in general, are molecular components of the signaling cascades defining the 

development and survival of many neuronal groups, and TGFβ2, in particular, is relatively more 

important during development [61].  Interestingly, TGFβ2 mutant mice exhibit less caudal 5-HT 

neurons and impaired development of raphe neurons during embryogenesis, as well as lower 

serotonin levels in the hindbrain and cortex in adulthood [61]. Another interesting result was the 

presence of three DMR-associated genes from the low vs high entropy comparison in the p53 

signaling pathway. Described nearly 40 years ago and known as ‘The Guardian of the Genome’, p53 is 

one of the most important and well-studied tumor suppressor factors [62]. The DMR-associated 

genes that participate in the p53 pathway are SHISA5, RFWD2 and ATR. SHISA5, also known as 
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SCOTIN in humans, is a pro-apoptotic gene induced after DNA damage or cellular stress in a p53-

dependent manner [63]. No role has been reported for SHISA5 in relation to behavior. ATR (which is 

among our genes with the lowest p values, Table 1) is shown to maintain chromosomal integrity 

during postnatal cerebellar neurogenesis [64]. Interestingly, RFWD2, which is hypermethylated in the 

promoter regions of low entropy chickens (Suppl Table S5), is also hypermethylated in the prefrontal 

cortex (the mammalian equivalent to the bird nidopallium) of schizophrenia human patients [65]. 

Overall, our results suggest that behavior patterns share molecular mechanisms and are interrelated 

with other biological functions, such as tumorigenesis (related to the RAF1 oncogene) and cell cycle 

checkpoints and exit to repair (the main described functions of the p53 pathway). These genes and 

pathways they participate provide hints to explain the molecular basis of behavioral patterns.  

Word clouds obtained from the pathways enriched by the gene associated DMRs give an idea of the 

different biological functions that could be related to each behavioural pattern identified in each 

classification scheme. Our data shows that while Entropy relates to cell cycle checkpoints, Leading 

Index relates to mitochondrial function, and DTW relates to regulation of gene expression. These 

results suggest that different behaviour patterns could be linked to different biological mechanisms 

within neurons. For example, according to our data acting as a leader or a follower (e.g. a 

classification involving variable decision making abilities) would be mostly associated with 

mitochondrial function and regulation of energy expenditure, while behavioural consistency (e.g., 

habits or repeated behaviours such as those observed within DTW clusters) would be related to fine-

tuned regulation of gene expression at the level of transduction and activation/inactivation of 

proteins (e.g., by phosphorylation). These results open the possibilities for exciting experiments to 

investigate the biological basis of different behaviours. The methodologies described here could be 

employed for future investigations of causal relationships between epigenetic changes, cellular 

function and behavioral patterns. 
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While we cannot causally link the specific classification schemes and differentiated DMRs, the 

present paper shows a clear relationship between DNA methylation and specific behavioral patterns. 

The linkage between behavioural and epigenetic patterns is not in itself novel. For instance, post-

traumatic stress disorder in humans is well documented to be correlated with epigenetic changes in 

the brain [8]. Behaviours linked to epigenetic patterns are also well documented in experimental 

paradigms where conditions or behaviours are experimentally induced in animal models, e.g. 

maternal separation in macaques [2] or maternal grooming in mice [4]. One of the novelties of our 

experiment lies in that the observed patterns (i.e., both behavioural and epigenetic) arose 

spontaneously within a group of individuals living in a relatively controlled and homogenous 

environment. The emergence of these patterns in animals that are able to ‘freely’ explore and 

engage in a full repertoire of behaviours [66] represents a unique experimental condition to 

understand factors influencing phenotypic variation in addition to genetic conformation. Although 

we are limited in our ability to draw conclusions about the nature of these relationships in terms of 

associated causal mechanisms, our work establishes an important foundation for future directed 

hypothesis-based evaluation of the link between neural epigenetics and behavioural variability in 

vertebrates. Our study suggests that different biological functions within neurons could be 

responsible for the emergence of different behaviours. 
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Figure Legends 

Figure 1- Representative movement patterns of three clusters obtained through DTW. Each 

timeseries shown reflects the typical movement pattern of each cluster throughout one day in 

relation to the four distinct areas. Each line shows the position of the hen representing the median 

point obtained from the analysis of all the behavioral patterns recorded within a specific cluster. The 

four areas are:  inside the barn (IN), winter garden (WG), stone yard (SY) and free range (FR). 

Figure 2- Heat maps depicting DMRs (P>0.05) in the nidopallium of laying hens who were identified 

as belonging to different behavioral classification schemes: (A) Entropy, (B) Leading Index and DTW 

clusters (C-E). Animals with leading indices above the median were classified as "Leaders" while the 

others as "Followers". Entropy values above the median value are considered high, and those below 

the median, low. DTW clusters based on dissimilarity of time patterns in movement between areas 

were identified using hierarchical clustering analysis. 
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Figure 3- Venn diagrams showing the number of: (A) unique DMRs found within the different 

behavioral classification schemes, as well as overlapping  DMRs among these schemes, and (B)  DMRs 

found among different DTW clusters, as well as overlapping  DMRs obtained after each pairwise 

comparison.. 

Figure 4- Pie charts representing genomic functional features mapped to DMRs (P<0.05) in relation 

to nearby chicken genes (based on the chicken reference genome) for each classification scheme 

(entropy, leading index and dynamic time warping). 

Figure 5- (A) Extended gene networks obtained with genemania.org based on the genes related to 

DMRs found among the different behavioral classification schemes. (B) Word clouds were created 

from the Genemania functional analysis performed on each extended network obtained in (A). The 

word size is relative to how often the term was repeated in the output of the Genemania functional 

analysis. 
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Genomic location Width 
(bp) 

CpGs Annotation Gene Id Entrez ID Gene 
Symbol 

Gene Name Treatment with 
hypermethylation 

Possible 
Expression 
effect 

chr26:870542-871014 472 1 Intron  ENSGALG00000031122.1 424336 NTNG1 Netrin G1 DTW cluster 2 Increased in 
DTW cluster 
2 

chr4:10886922-
10887074 

152 1 Promoter  ENSGALG00000007211.5 419305 CDH22 Cadherin 22 Low entropy Decreased in 
low Entropy 

chr20:10877159-
10877501 

342 14 Intron  ENSGALG00000002374.5 424772 SLC9A9 Solute carrier family 
9 member A9 

Low entropy Increase in 
low Entropy  

chr2:82081027-
82081519 

492 11 Distal 
Intergenic 

ENSGALG00000040186.2 NA NA NA Low entropy Decreased in 
low Entropy 

chr19:7725868-7726161 293 21 Distal 
Intergenic 

ENSGALG00000002892.5 423653 SLC22A15L Solute carrier family 
22 member 15-like 

Low entropy Decreased in 
low Entropy 

chr15:7902061-7902648 587 27 Distal 
Intergenic 

ENSGALG00000005415.5 403089 TEAD1 TEA domain 
transcription factor 
1 

Low entropy Decreased in 
low Entropy 

chr20:10489420-
10489893 

473 17 Exon  ENSGALG00000002663.5 424777 ATR ATR 
serine/threonine 
kinase 

Low entropy Increased in 
low Entropy 

chr12:2458270-2458563 293 17 Promoter  ENSGALG00000002722.5 396135 MST1 Macrophage 
stimulating 1 
(hepatocyte growth 
factor-like) 

DTW cluster 3 Decreased in 
DTW cluster 
3 

chrZ:73604888-
73605174 

286 10 Intron  ENSGALG00000029598.2 NA NA NA Low entropy Increased in 
low Entropy 

chr12:7918429-7918698 269 23 Distal 
Intergenic 

ENSGALG00000041167.2 NA NA NA Low entropy Decreased in 
low Entropy 

chr24:2807083-2807962 879 12 Promoter  ENSGALG00000043955.1 NA NA NA DTW cluster 3 Decreased in 
DTW cluster 
3  

chr10:20047539-
20048245 

706 39 Promoter  ENSGALG00000036163.1 100858113 ZNF710 Zinc finger protein 
710 

DTW cluster 3 Decreased in 
DTW cluster 
3  
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Comparisson DMR-Associated Gene 
enriched in Pathways 

Pathways involved 

DTW cluster 2 vs 1 ABCB6 ABC transporters 

FANCE Fanconi anemia 

RAF1 VEGF signaling; VEGF signalling; ErbB signalling;  
Progesterone-mediated oocyte maturation; Gap junction; 
GnRH signaling; C-type lectin receptor signaling; 
Melanogenesis; Vascular smooth muscle contraction; 
Apelin signaling; FoxO signaling; Autophagy - animal; 
Apoptosis; Influenza A; mTOR signaling; Cellular 
senescence; Focal adhesion; Regulation of actin 
cytoskeleton 

DTW cluster 3 vs 2 NTNG1 Cell adhesion molecules (CAMs) 

ATP2B4 Adrenergic signaling in cardiomyocytes; Calcium signaling 

DTW cluster 3 vs 1 GSL Arginine biosynthesis; Nitrogen metabolism; Glyoxylate 
and dicarboxylate metabolism; Alanine, aspartate and 
glutamate metabolism; Biosynthesis of amino acids; 
Necroptosis 

Entropy: Low vs High RFWD2 p53 signaling 

ATR 

SHISA5 

Leading index: 
Follower vs Leader 

TGFB2 TGF-beta signaling; AGE-RAGE signaling pathway in 
diabetic complications; Cell cycle; FoxO signaling; Cellular 
senescence 

AIFM1 Apoptosis; Necrosis 

ATP6V1AL Phagosome; mTOR signaling 
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Highlights of the paper: 

‘DNA methylation variation in the brain of laying hens in relation to differential behavioral 

patterns’ 

 

 Behavioral patterns that spontaneously emerge in hens living in a highly controlled environment were 

identified with a unique tracking system. 

 Behavioral activity patterns were characterized through three classification schemes. 

 Differentially methylated regions (DMRs) were identified in the nidopallium between behavioural 

patterns emerging within classification schemes. 

 DMRs from the classification schemes associated with different genomic features. 

 DMR-associated genes within each classification schemes had distinctive biological functions. 
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