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Abstract 7 

Species of the bacterial genus Photorhabus live in a symbiotic relationship with Heterorhabditis 8 

entomopathogenic nematodes. Besides their use as biological control agents against agricultural pests, 9 

some Photorhabdus species are also a source of natural products and are of medical interest due to their 10 

ability to cause tissue infections and subcutaneous lesions in humans. Given the diversity of 11 

Photorhabdus species, rapid and reliable methods to resolve this genus to the species level are needed. 12 

In this study, we evaluated the potential of matrix-assisted laser desorption/ionization time-of-flight 13 

mass spectrometry (MALDI-TOF MS) for the identification of Photorhabdus species. To this end, we 14 

established a collection of 54 isolates consisting of type strains and multiple field strains that belong to 15 

each of the validly described species and subspecies of this genus. Reference spectra for the strains were 16 

generated and used to complement a currently available database. The extended reference database was 17 

then used for identification based on the direct transfer sample preparation method and protein 18 

fingerprint of single colonies. High discrimination of distantly related species was observed. However, 19 

lower discrimination was observed with some of the most closely related species and subspecies. Our 20 

results, therefore, suggest that MALDI-TOF MS can be used to correctly identify Photorhabdus strains 21 

at the genus and species level, but has limited resolution power for closely related species and 22 

subspecies. Our study demonstrates the suitability and limitations of MALDI-TOF-based identification 23 

methods for the assessment of the taxonomical position and identification of Photorhabdus isolates.  24 

Impact Statement 25 

Species of the bacterial genus Photorhabus live in close association with soil-born entomopathogenic 26 

nematodes. Under natural conditions, these bacteria are often observed infecting soil-associated 27 

arthropods, but under certain circumstances, can also infect humans. They produce a large variety of 28 

natural products including antibiotics, insecticides, and polyketide pigments that have substantial 29 

agricultural, biotechnological and medical potential. In this study, we implement MALDI-TOF MS-30 

based identification method to resolve the taxonomic identity of this bacterial genus, providing thereby 31 

a rapid identification tool to understanding its taxonomic diversity to boost scientific progress in 32 

medical, agricultural, and biotechnological settings.   33 
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Introduction 34 

Species of the genus Photorhabdus live in a close symbiotic association with Heterorhabditis 35 

entomopathogenic nematodes (1). Given their biosynthetic capacity and ability to produce a large array 36 

of specialized metabolites and proteins, and their ability to infect humans and arthropods, Photorhabdus 37 

species are of biotechnological, medical, and agricultural interest (2–5). Understanding their taxonomic 38 

diversity is an important step towards minimizing human health risks and maximizing the agricultural 39 

and biotechnological potential of Photorhabdus species. 40 

In natural ecosystems, Photorhabdus species are carried by entomopathogenic nematodes in their 41 

intestines. Entomopathogenic nematodes colonize soil-born arthropods, and release these bacteria in the 42 

hemocoel of their prey (6, 7). Bacteria reproduce, produce toxins, immune suppressors, and lytic 43 

enzymes, cause septicemia, toxemia, and in many cases kill the infected organism (8). Consequently, 44 

these organisms are broadly used as biological control agents to combat agricultural pests (9, 10, 4, 11, 45 

12). Under some particular cases, however, certain Photorhabdus species as Photorhabdus asymbiotica 46 

have been reported to infect humans and cause local tissue infections and subcutaneous nodules (13–16, 47 

3).  48 

Possibly due to their particular lifestyle, Photorhabdus species produce an arsenal of secondary 49 

metabolites (17–19, 2, 20–22). These metabolites act as virulence factors to kill their prey, symbiosis 50 

factors to support the growth of their nematode host, and/or antimicrobial compounds that limit the 51 

proliferation of microbial competitors (23–27, 5, 28, 20). Apart from their ecological importance, these 52 

metabolites are also valuable for biotechnology. For instance, 3,5-dihydroxy-4-isopropylstilbene, 53 

produced by Photorhabdus sp. C9, shows antifungal activities against important medical and 54 

agricultural fungi like Aspergillus flavus and Candida tropicalis (29). Another example is carbapenem, 55 

an important broad-spectrum β-lactam antibiotic produced by Photorhabdus luminescence strain TT01 56 

(30). 57 

Due to their importance as biocontrol agents, human pathogens, and bio-factories, substantial efforts 58 

have been made to understand the diversity of the Photorhabdus bacterial group. For this, several 59 

collection campaigns have been set around the world which have yield many different isolates (31–44). 60 

In addition, several methods for the identification of these isolates have been developed and 61 

implemented. In medical cases for instance, bacteria isolated from diseased human tissues were 62 

identified using classical microbiological methods such as characterization of colony morphology and 63 

VITEK 2 Gram-negative identification card-based biochemical tests (45, 15). Unfortunately, these 64 

methods misleadingly assigned the causing agent to other bacterial species (46). Routine automated 65 

mass spectrometry methods failed to identify the potential disease-causing agent, because Photorhabdus 66 

spectra were absent from databases. Finally, 16S rRNA gene sequencing had to be performed to properly 67 

identify the bacterium that caused the cutaneous lesions (47). Other methods such as restriction fragment 68 

length polymorphism-PCR (RFLP-PCR) were used, but also proved to be of very limited taxonomic 69 
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value (48, 49). Later, multi locus sequence analysis (MLSA) was found to be a useful tool for the 70 

taxonomic description of Photorhabdus species (50). However, with an increasing number of available 71 

strains and due to the high taxonomic complexity of this bacterial group, whole-genome based methods 72 

were shown to be particularly suitable to resolve the phylogenetic relationship of especially closely 73 

related Photorhabdus species and subspecies (34, 33). Nonetheless, these methods are laborious and do 74 

not allow for a rapid identification. The above mentioned limitations might be overcome by MALDI-75 

TOF-based identification techniques (51–55). 76 

In this study, we evaluate the possibility to use MALDI-TOF to rapidly resolve the taxonomic identity 77 

of Photorhabdus species. To this end, we established an experimental collection of Photorhabdus 78 

isolates including type and several field strains of all the validly described species of this genus. We 79 

then created main spectra libraries and constructed MALDI-TOF MS-based dendrograms. The results 80 

of our study highlight the possibilities and limitations of MALDI-TOF MS for the identification of 81 

Photorhabdus species. 82 

Materials and methods 83 

Bacterial strains 84 

The 54 bacterial strains included in this study were either part of our in-house collection, were kindly 85 

provided by different collaborators, or were acquired from biological resource centers (Czech Collection 86 

of Microorganisms, CCM, or the Leibniz Institute DSMZ-German Collection of Microorganisms and 87 

Cell Cultures, DSMZ). All the bacterial species have been previously isolated from their nematode host 88 

or from soft wounds of human patients as described (56, 33, 34, 50, 38–44, 1, 37).  89 

Generation of phylogenetic trees 90 

To identify the Photorhabdus bacterial strains as a baseline for the MALDI-TOF experiment, we 91 

followed the procedure described by Machado et. al. (33, 34). Briefly, bacterial genomic DNA was 92 

extracted using the GenElute Bacterial Genomic DNA Kit (Sigma-Aldrich) following the 93 

manufacturer’s instructions. The 16S rRNA gene was amplified by PCR using the following primers: 94 

8F AGAGTTTGATCCTGGCTCAG and 1492R CGGTTACCTTGTTACGACTT. PCR products were 95 

separated by electrophoresis in a 1 % TAE-agarose gel stained with GelRed nucleic acid gel stain 96 

(Biotium), gel-purified (QIAquick gel purification Kit, Qiagen) and sequenced by Sanger sequencing 97 

(Microsynth). Obtained sequences were manually curated, trimmed and used to reconstruct evolutionary 98 

histories using the Neighbor-Joining method (57). The optimal tree with the sum of branch length = 99 

0.20174092 is shown. The percentage of replicate trees in which the associated taxa clustered together 100 

in the bootstrap test (100 replicates) are shown next to the branches (58). The tree is drawn to scale, with 101 

branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic 102 

tree. The evolutionary distances were computed using the Kimura 2-parameter method (59) and are in 103 

the units of the number of base substitutions per site. There were a total of 1166 positions in the final 104 
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dataset.  Evolutionary analyses were conducted in MEGA7 (60). Graphical representation and edition 105 

of the phylogenetic tree were performed with Interactive Tree of Life (version 3.5.1) (61, 62). Whole-106 

genome-based phylogenetic tree was adapted from (34).  107 

Generation of main spectra  108 

Main spectra (MSP) were generated on a microflex™LT (Bruker Daltonik GmbH, Bremen, Germany) 109 

as described (63). For this, bacteria were grown from glycerol stocks on Luria Bertani (LB) plates at 110 

28°C for 28 hours. Proteins were then extracted following the standard formic acid-based method 111 

recommended by the manufacturer (Bruker Daltonik GmbH). Briefly, a few single bacterial colonies 112 

were dissolved in 300 µl of pyrogen free water by vortexing and 900 µl of absolute ethanol were added 113 

to the solution. After centrifugation (2 min, 15’000 rpm), the supernatant was discarded. After a second 114 

centrifugation step and removing the remaining ethanol, the pellet was air dried for 2-3 min. Pellets were 115 

then resuspended in 30 µl of 70% formic acid (Sigma Aldrich, Germany). Subsequently, 30 µl of 116 

acetonitrile (Fluka analytical, Germany) were added and mixed by pipetting followed by centrifugation 117 

for 2 min. at 15’000 rpm. One µl of the resulting supernatant was transferred to the MALDI target plate 118 

in eight replicates and let dry at room temperature. Then, 1 µl of matrix (α-Cyano-4-hydroxycinnamic-119 

acid, HCCA, CAS Number 28166-41-8, Sigma-Aldrich, Switzerland) was added. Each spot was then 120 

measured in triplicate to obtain 24 spectra per strain using the MBT_AutoX method of flexControl 121 

software. The generated spectra were visually inspected and edited in the flexAnalysis software 122 

according to Bruker recommendations. Individual spectra diverging from the cohort core, i.e. differing 123 

by more than 500 ppm, were deleted. A minimum of 20 spectra per strain were then used for the 124 

generation of MSP in the MBT Compass Explorer 4.1 (Bruker) using standard settings. The MSP of 125 

each strain was added to the project library used for identification. Newly generated MSP were entered 126 

to the project database and were used for identification and to generate a dendrogram using the 127 

correlation distance measure with the average linkage algorithm and a threshold value for a single 128 

organism of 300 in MBT Compass Explorer 4.1. The MBT Compass Library 4.1 currently contains 3000 129 

bacterial species of 540 genera. 130 

Diagnostic identification 131 

To validate the suitability of our newly established main spectra database for the identification of 132 

Photorhabdus species, several Photorhabdus strains with known taxonomic identities were tested. To 133 

this end, the bacterial strains were grown for 28 hours at 28°C on LB media. Single colonies were picked 134 

with toothpicks, transferred onto the MALDI-TOF target plate, dried at room temperature and mounted 135 

with 1 µl of HCCA matrix. Identification of Photorhabdus strains was performed by comparing the 136 

resulting spectra against the extended Bruker database, including the newly generated Photorhabdus 137 

MSP.  138 
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Results and discussion 139 

A collection of 54 Photorhabdus strains belonging to all the 22 validly described species and subspecies 140 

was used to evaluate the suitability of MALDI-TOF to identify Photorhabdus species. Based on the 141 

main spectra produced from the strains, a dendrogram was generated (Figure 1). Two main clusters were 142 

observed. All strains of a species clustered together. In some cases, however, clusters composed of 143 

strains that belong to two or more species were observed. In particular, all the strains of P. khanii subsp. 144 

khanii, P. khanii subsp. guanajuatensis, P. stackebrandtii, P. tasmaniensis, P. thracensis, and P. 145 

thracensis form a cluster; all strains of P. cinerea and P. heterorhabditis form a cluster; all strains of P. 146 

luminescens subsp. mexicana and P. luminescens subsp. luminescens form a cluster; and all the strains 147 

of P. kayaii, P. kleinii and P. bodei formed a cluster. The MSP-based dendrogram topology barely 148 

resembled the topology of the 16S rRNA gene based phylogenetic tree (Figure 2), but closely mirrored 149 

the whole genome-based tree (Figure 3).  150 

Using identification scores, all strains could unequivocally be identified up to the genus level, with some 151 

limitations for closely related species. Twenty-five (45%) and fifteen (27%) of the analyzed strains 152 

appear either first or second, respectively, in the list of strains with best matching scores. For 96% of 153 

the strains, greater matching scores were observed with strains of their own species than with members 154 

of other species (Table 1). Only two strains P. laumondii subsp. laumondii S14-60 and P. namnaonensis 155 

PB45.5T show similar matching scores with members of other species. We also observed that the 156 

identification scores of species that are more closely related, according to whole-genome based 157 

phylogenies, tended to be more similar than the scores of strains that are only distantly related. These 158 

effects were also observed in the MSP-based dendrogram (Table 1, Figure 1). In particular, we observed 159 

that strains of P. laumondii subsp. laumondii, P. laumondii subsp. clarkei, P. kayaii, P. kleinii and P. 160 

bodei were normally listed within the 10 best scores when analyzing any strain belonging to these 161 

species. Similarly occurred for strains that belong to P. luminescens subsp. luminescens, P. luminescens 162 

subsp. mexicana, P. noeniputensis, P. caribbeanensis, P. namnaonensis, P. hainanensis and P. akhurstii. 163 

For the identification of some strains that belong to the abovementioned species, additional tests might 164 

therefore be required. In this context, citrate utilization, indole and acetoin production, and tryptophan 165 

deaminase, gelatinase and glucose oxidase activity have been shown to be particularly useful for the 166 

discrimination of Photorhabdus species (34).  167 

Conclusion 168 

MALDI-TOF MS was shown to be a powerful method to identify Photorhabdus species at the genus 169 

level and in many cases up to the species level. Some limitations were observed for closely related 170 

species and subspecies, for which additional tests might be necessary. No special sample preparation is 171 

required as the direct transfer sample preparation method is sufficient for generating good quality spectra 172 

for comparison against available spectral databases.  173 
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Figure legends 190 

Figure 1 Main spectra (MSP)-based dendrogram of Photorhabdus strains. Type strains are indicated in 191 

bold. The distance level is normalized to a maximum value of 1000. 192 

Figure 2 Neighbor-Joining based phylogenetic tree of Photorhabdus bacterial strains reconstructed 193 

from 1166 nucleotide positions of 16S ribosomal RNA gene sequences. Numbers at nodes represent 194 

bootstrap values based on 100 replications. Bar, 0.01 nucleotide substitutions per sequence position. 195 

Sequences used were deposited into the National Center for Biotechnology Information (NCBI) 196 

databank. Accession numbers are listed in Table S1. 197 

Figure 3 Phylogenetic reconstruction based on core genome sequences of Photorhabdus bacterial 198 

strains. 1662 open reading frames were analyzed. Numbers at the nodes represent SH-like branch 199 

supports. Bar, 0.01 nucleotide substitutions per sequence position.  200 

Table legends 201 

Table 1 MALDI BioTyper identification score values for different Photorhabdus strains. Score values 202 

higher than 1.99: secure to highly probable species identification; between 1.7 and 1.99: probable genus 203 

identification; and between 0.0 and 1.69: not reliable identification. T indicates type strain. 204 

 205 
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Supplementary table legends 206 

Table S1. National Center for Biotechnology Information (NCBI) accession numbers of 16S ribosomal 207 

RNA gene sequences of all Photorhabdus bacterial strains used in this study.  208 
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Figure 1 Main spectra (MSP)-based dendrogram of Photorhabdus strains. Type strains are indicated in bold.

The distance level is normalized to a maximum value of 1000.
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Figure 2 Neighbor-Joining based phylogenetic tree of Photorhabdus bacterial strains reconstructed from 1166 nucleotide

positions of 16S ribosomal RNA gene sequences. Numbers at nodes represent bootstrap values based on 100 replications.

Bar, 0.01 nucleotide substitutions per sequence position. Sequences used were deposited into the National Center for

Biotechnology Information (NCBI) databank. Accession numbers are listed in Table S1.
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Figure 3 Phylogenetic reconstruction based on core genome sequences of Photorhabdus bacterial strains. 1662

open reading frames were analyzed. Numbers at the nodes represent SH-like branch supports. Bar, 0.01

nucleotide substitutions per sequence position.



Species Strain Best match with
Same species Different species

P. akhurstii DSM 15138T 2.26 2.05 (P. caribbeanensis)
R002 2.47 2.18 (P. hainanensis)

P. asymbiotica 3265-86T 2.38 1.87 (P. australis)
ATCC 43949 2.51 2.06 (P. australis)

P. australis 9802892T 2.44 1.94 (P. cinerea)

P. bodei
LJ63-24T 2.54 2.36 (P. kleinii)
KR04 2.38 2.29 (P. kleinii)
C8406 2.46 2.32 (P. kleinii)

P. caribbeanensis HG29T 2.62 2.29 (P. hainanensis)
HG26 2.69 2.25 (P. hainanensis)

P. cinerea

DSM 19724T 2.50 1.80 (P. asymbiotica)
3240 2.63 2.00 (P. asymbiotica)
PT-Hb-B 2.50 1.86 (P. heterorhabditis)
PT-Hm-B 2.55 1.98 (P. heterorhabditis)

P. hainanensis DSM 22397T 2.49 2.30 (P. noenieputensis)

P. heterorhabditis SF41T 2.37 2.14 (P. cinerea)
Q614 2.46 2.17 (P. cinerea)

P. kayaii

DSM 15194T 2.26 2.19 (P. kleinii)
HUG-39 2.55 2.39 (P. bodei)
3167 2.51 2.26 (P. kleinii)
3209 2.47 2.37 (P. kleinii)

P. khanii subsp. guanajuatensis MEX20-17T 2.49 2.17 (P. thracensis)

P. khanii subsp. khanii

DSM 3369T 2.22 1.85 (P. stackebrandtii)
WX6 2.44 2.08 (P. tasmaniensis)
MEG 2.53 2.11 (P. temperata)
Habana 2.53 2.07 (P. temperata)
Hm 2.36 1.88 (P. thracensis)

P. kleinii

DSM 23513T 2.50 2.44 (P. bodei)
S8-52 2.47 2.32 (P. bodei)
S9-53 2.43 2.33 (P. bodei)
S10-54 2.40 2.37 (P. bodei)

P. laumondii subsp. clarkei BOJ-47T 2.40 1.88 (P. luminescens subsp. mexicana)

P. laumondii subsp. laumondii

DSM 15139T 2.42 2.00 (P. kayaii)
S12-55 2.20 1.77 (P. kleinii)
S5P8-50 2.22 1.70 (P. kayaii)
S15-56 2.50 1.84 (P. kayaii)
S14-60 2.50 2.51 (P. kleinii)
S7-51 2.37 1.86 (P. kayaii)

P. luminescens subsp. luminescens ATCC 29999T 2.39 2.18 (P. noenieputensis)
Hm 2.44 2.22 (P. hainaniensis)

P. luminescens subsp. mexicana MEX47-22T 2.56 2.33 (P. noenieputensis)
P. namnaonensis PB45.5T 2.33 2.33 (P. luminescens subsp. mexicana)
P. noenieputensis DSM 25462T 2.53 2.27 (P. hainanensis)
P. stackebrandtii DSM 23271T 2.44 2.01 (P. asymbiotica)

P. tasmaniensis
DSM 22387T 2.53 2.15 (P. temperata)
USCA01 2.37 2.17 (P. temperata)
NZH3 2.44 2.22 (P. temperata)

P. temperata

DSM 14550T 2.47 2.18 (P. thracensis)
Meg1 2.42 2.11 (P. tasmaniensis)
K122 2.48 2.14 (P. thracensis)
BE09 2.63 2.19 (P. tasmaniensis)

P. thracensis
DSM 15199T 2.33 2.11 (P. temperata)
3210 2.53 2.28 (P. temperata)
3213 2.49 2.16 (P. temperata)

Table 1 MALDI BioTyper identification score values for different Photorhabdus strains. Score values higher

than 1.99: secure to highly probable species identification; between 1.7 and 1.99: probable genus identification;

and between 0.0 and 1.69: not reliable identification. T indicates type strain.



Species Strain NCBI accession number

P. akhurstii DSM 15138T MN714266
R002 MN714235

P. asymbiotica 3265-86T MN714241
ATCC 43949 MN714278

P. australis 9802892T MN714240

P. bodei
LJ63-24T MN714238
KR04 MN714253
C8406 MN714254

P. caribbeanensis HG29T MN714263
HG26 MN714279

P. cinerea

DSM 19724T MN714242
3240 MN714273
PT-Hb-B MN714231
PT-Hm-B MN714232

P. hainanensis DSM 22397T MN714265

P. heterorhabditis SF41T MN714243
Q614 MN714272

P. kayaii

DSM 15194T MN714255
HUG-39 MN714239
3167 MN714233
3209 MN714234

P. khanii subsp. guanajuatensis MEX20-17T MN714283

P. khanii subsp. khanii

DSM 3369T MN714246
WX6 MN714271
MEG MN714269
Habana MN714282
Hm MN714236

P. kleinii

DSM 23513T MN714249
S8-52 MN714250
S9-53 MN714251
S10-54 MN714252

P. laumondii subsp. clarkei BOJ-47T MN714237

P. laumondii subsp. laumondii

DSM 15139T MN714256
S12-55 MN714259
S5P8-50 MN714257
S15-56 MN714261
S14-60 MN714260
S7-51 MN714258

P. luminescens subsp. luminescens ATCC 29999T MN714262
Hm MN714276

P. luminescens subsp. mexicana MEX47-22T MN714284
P. namnaonensis PB45.5T MN714267
P. noenieputensis DSM 25462T MN714264
P. stackebrandtii DSM 23271T MN714245

P. tasmaniensis
DSM 22387T MN714244
USCA01 MN714281
NZH3 MN714280

P. temperata

DSM 14550T MN714247
Meg1 MN714277
K122 MN714275
BE09 MN714274

P. thracensis
DSM 15199T MN714248
3210 MN714268
3213 MN714270

Table S1. National Center for Biotechnology Information (NCBI) accession numbers of 16S ribosomal RNA

gene sequences of all Photorhabdus bacterial strains used in this study.
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