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Abstract 18 

Transmission paths in the distribution of Proliferative Kidney Disease (PKD) of salmonids are 19 

still largely unknown. In this study, the role of goosander (Mergus merganser) as possible 20 

transport host for Tetracapsuloides bryosalmonae through faeces was examined. Goosander 21 

fledglings were fed exclusively with diseased brown trout (Salmo trutta fario). In all trout used 22 

for feeding, intra-tubular sporogonic stage of the parasite were confirmed histologically. 23 

Between one to ten hours post-feeding, the goosander faeces were sampled and tested for 24 

T. bryosalmonae DNA. In qPCR, only DNA fragments were found, in conventional PCR no 25 

amplification was confirmed. Therefore, we hypothesize that the role of goosander as 26 

transport hosts for T.  bryosalmonae via their faeces can be neglected. 27 

 28 

Keywords 29 
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1. INTRODUCTION 31 

Pathogen transport and transmission is a driving force in the dynamics of infectious diseases 32 

(McCallum 2001) . In aquatic environments, pathogens are often transmitted indirectly after 33 

the pathogen has travelled some distance in the water before encountering their target host 34 

(Murray 2009). However, this transmission is often restricted by the limited connectivity of 35 

waterways. Water birds play an important role in transporting pathogens over long distances 36 

(Hubálek 2004; Jourdain et al., 2007) to new, possibly formerly pathogen free areas. 37 

Proliferative Kidney Disease (PKD) is emerging during the last decades and spreading over 38 

distant areas in Europe, as Estonia and Iceland (Dash and Vasemägi, 2014; Kristmundsson 39 

et al., 2010) and North America (Smith et al., 1984). PKD has contributed to the long-term 40 

decline of brown trout (Salmo trutta) populations in Switzerland (Okamura et al., 2011; Wahli 41 

et al., 2002), Austria (Waldner et al., 2019) and Germany (Arndt et al., 2019), led to massive 42 

economic losses in the rainbow trout (Oncorhynchus mykiss) production (Feist 2004), and was 43 

recently identified as one of the factors in a mass mortality event of whitefish in North America 44 

(Hutchins et al. 2018).  45 

PKD of salmonids is caused by the myxozoan parasite, Tetracapsuloides bryosalmonae 46 

(Myxozoa, Malacospora, Cnidaria) (Canning et al., 2000; Morris and Adams, 2006). Infected 47 

bryozoans release spores, that infect fish, mainly young-of-the-year (YOY), by penetrating the 48 

gill epithelium and most probably heading towards the vascular lumen (Grabner and El-49 

Matbouli 2010). Through haematogenic dispersion a generalized infection occurs, with the 50 

kidney as main target organ (Feist et al., 2001). There the parasite develops into a 51 

malacospore, which migrates into the tubular lumen and is eventually excreted via the urine 52 

(Hedrick et al., 2004; Strepparava et al., 2018). These malacospores infect susceptible 53 

bryozoans (Grabner and El-Matbouli, 2008; Morris and Adams, 2006; Tops et al., 2004). PKD 54 

is a temperature dependant disease (Bettge et al. 2009b; Strepparava et al. 2018), 55 

asymptomatic at lower temperature, but with an excessive cellular immune response, severe 56 

renal lesions and high numbers of malacospores in susceptible hosts triggered by increasing 57 

water temperature in late summer / early autumn (Bailey et al., 2017).  58 
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The main distribution of goosander (Mergus merganser) encompasses Scandinavia, Siberia 59 

and North America (https://avibase.bsc-eoc.org). This bird species is also widely distributed 60 

in the Swiss midlands, with many breeding populations in Swiss lakes and rivers 61 

(www.vogelwarte.ch), including the river Wutach where this study was performed (Fig. 1). 62 

During late summer / early autumn, YOY brown trout are the main food source for adult birds 63 

and fledglings.  64 

The role of water birds as PKD vectors through feeding on infected brown trout was not 65 

examined so far. Therefore, the aim of this study was to clarify whether M. merganser acts 66 

as a potential transmission vector of PKD by excretion of viable T. bryosalmonae 67 

malacospores after ingestion of PKD positive YOY brown trout.  68 

 69 

2. MATERIAL AND METHODS 70 

2.1 Sampling of brown trout 71 

The river Wutach, at the border between the north-eastern part of Switzerland and southern 72 

Germany, was chosen for sampling, based on former investigations showing high infection 73 

prevalence in brown trout ranging from 90 to 100% (Schmidt-Posthaus et al. 2015; own 74 

investigations). End of August 2019, 46 wild YOY brown trout were sampled at two stretches 75 

of 100 m in the river by means of electrofishing (2’677’061.2/1’289’694.7, 76 

2’677’814.2/1’291’059.7). Fish were killed by decapitation, length and weight were measured. 77 

An ad hoc complete necropsy was performed and macroscopic changes in the inner organs, 78 

especially in the kidney, were evaluated. In ten out of the 46 sampled brown trout showing the 79 

most obvious signs of PKD (moderate to severe swelling of the kidney, greyish discoloration, 80 

nodular appearance), a small piece of the posterior kidney was immediately fixed in 10 % 81 

buffered formalin for histopathological and immunohistochemical examination. The whole fish 82 

including all inner organs (except the removed small piece of the posterior kidney) were frozen 83 

https://avibase.bsc-eoc.org/
http://www.vogelwarte.ch/
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at -20°C, transported to the Swiss Ornithological Institute, Sempach and fed to the goosanders 84 

in the following morning.   85 

2.2 Preparation of the goosanders 86 

Two juvenile goosanders, approx. 800 g each, kept at the Swiss Ornithological Institute were 87 

separated from the group for 24 hours in a 20 m2 cage with a large wet area. Overnight they 88 

were deprived of food for 12 hours and then fed exclusively with the 10 infected whole brown 89 

trout, starting at 8 am in the morning. Every hour for the following 10 hours, faeces excreted 90 

by both birds were collected as nine separate samples and immediately fixed in RNAlater® 91 

(DNA stabilisation solution) for qPCR analysis. The faeces samples were sent to the Centre 92 

for Fish and Wildlife Health, University of Bern for further analysis.  93 

2.3 Histopathology and immunohistochemistry 94 

Formalin-fixed kidney samples were paraffin-embedded and processed for histological 95 

examination using routine protocols. Two consecutive sections were prepared. One section 96 

of 3 µm thickness was prepared for histopathology (haematoxylin-eosin stain, H&E). H&E 97 

stained slides were examined by light microscopy (Nikon Eclipse E400Nikon). 98 

Histopathological changes of the whole kidney section were classified from 0 (no alterations) 99 

to 6 (severe proliferation of the hematopoietic tissue, multiple areas of haemorrhage, 100 

widespread necrosis, multiple thrombi, severe multifocal infiltration) (Bettge et al. 2009b). 101 

Additionally, the infection intensity was classified histologically by visual evaluation of the 102 

whole slide, ranging from 0 (no parasites) to 6 (high numbers of parasites in renal 103 

hematopoietic tissue, vessels and / or tubules). The second slide was used for 104 

immunohistochemistry (IHC). For IHC staining of the specific antigen, a monoclonal anti-105 

Tetracapsuloides bryosalmonae (PKX) antibody (AquaMAb-P01, Aquatic Diagnostics Ltd., 106 

Stirling, UK) was used according to a protocol published by (Adams et al., 1992).  107 

2.4 DNA extraction and qPCR for detection of T. bryosalmoae DNA in goosander faeces 108 
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Each faeces sample was homogenized in a 2 ml tube containing 0.4 ml ATL-Buffer (Qiagen, 109 

Switzerland) with a 2 mm diameter steel bead (QIAGEN, Switzerland) using a tissue lyser 110 

(QIAGEN, Switzerland) with a shaking frequency set at 30 shakes per second for 3 min. 111 

Genomic DNA was extracted as previously described (Harun, Wang, & Secombes, 2011). 112 

DNA was finally eluted in 30 µl of EB buffer (QIAGEN, Switzerland) and stored at -20°C until 113 

qPCR was performed. qPCR was performed targeting T. bryosalmonae 18 rDNA (Acc. N.: 114 

AF190669) according to (Bettge et al., 2009a). The primer pair PKDtaqf1 (5′–115 

GCGAGATTTGTTGCATTTAAAAAG–3′) and PKDtaqr1 (5′–GCACATGCAGTGTCCAA TCG–116 

3′) and probe PKD (5′–CAAAATTGTGGAACCGTCCGACTACGA–3′) were used. Beside the 117 

second sample, where 123 ng DNA was added because of limited DNA amount of the sample, 118 

all other reactions were performed with 150 ng DNA. All reactions were carried out in triplicate. 119 

Non-target controls (DNAse free water) within the qPCR never showed amplification, while the 120 

internal controls (Exo IPC) were always amplified, showing no qPCR inhibition.  121 

2.5 Conventional PCR for confirmation of T. bryosalmoae DNA in goosander faeces 122 

PCR was performed according to the protocol by (Morris et al., 2002). Primer pair PKX3F (5’-123 

CTAAGTACATACTTCGGTAGA-3’) and PKX4R (5’-CCGTTACAACCTTGTTAGGAA-3’) 124 

described by (Kent et al., 1998) was used. DNA concentrations used varied between 151 and 125 

860 ng/µl. A positive control sample obtained from kidney of clinically infected brown trout and 126 

a negative control of uninfected kidney from fish of a farm with no T. bryosalmonae infection 127 

were included in the PCR procedure. The products were checked on a 1.5% agarose gel for 128 

amplification and molecular weight.  129 

 130 

3. RESULTS 131 

3.1 Brown trout PKD infection rate, macroscopy and histology 132 

Ten of the 46 sampled brown trout (22%) showed PKD signs by visual examination, like kidney 133 

enlargement, greyish discoloration and multiple nodules of different sizes (Fig. 2a).  134 
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Histologically, all 10 animals showed moderate infection rates and renal pathology typical for 135 

an acute infection. The pathology was characterized by expansion of the renal interstitium by 136 

proliferation of the hematopoietic tissue, infiltration with macrophages, multiple necrosis and 137 

hemorrhage. Multiple vessels showed thrombi consisting of erythrocytes, fibrin, inflammatory 138 

cells and parasites. In the tubular lumen of all 10 brown trout large numbers of intra-luminal 139 

malacospores were visible (Fig. 2b). The presence of T. bryosalmonae in all kidney 140 

compartments (interstitium, vessels, tubuli) could be confirmed by immunohistochemistry (Fig. 141 

2c). The evidence of intra-luminal stages in the kidney of the YOY brown trout fed to the 142 

goosanders is an important precondition for the relevance of the whole experiment. 143 

Data for the remaining 36 sampled brown trout not used in this experiment are shown in 144 

supplementary table 1. 145 

3.2 Detection of T. bryosalmonae DNA in goosander faeces. 146 

Eight of the nine faeces samples revealed a positive result in qPCR (table 1). Ct values 147 

ranged from 33 to 41. The sample Nr.1 (one hour after feeding) showed no result in qPCR, 148 

whereas the following ones were all considered positive. However, in conventional PCR no 149 

signal was detected.  150 

 151 

4. DISCUSSION 152 

The rapid and extensive spreading of PKD during the last decades is due to a complex 153 

interaction of multiple factors (Bailey et al., 2018; Bettge et al., 2009b; Dash and Vasemägi, 154 

2014; Gorgoglione et al., 2016; Strepparava et al., 2018; Wahli et al., 2002). The global 155 

warming with increasing water temperatures enhancing the growth of bryozoans as well as 156 

the development of T. bryosalmonae within the non-vertebrate host plays an important role. 157 

Eutrophication has a synergistic effect (Okamura et al., 2011). The level of bryozoan 158 

environmental DNA (eDNA) can be taken as indicator for the bryozoan biomass and 159 

therefore for PKD distribution in a river section (Carraro et al., 2017). Other putative factors, 160 
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that can play a role, at least partly, are stocking with infected fish in prior naïve rivers and fish 161 

migration. Herbivore fish, like common carp, can excrete hatchable infected bryozoan 162 

propagules with the faeces after ingestion (Abd-Elfattah et al., 2017). The role of waterfowl 163 

as vector of the disease may also be essential. The transmission of T. bryosalmonae from 164 

North America to South-West Europe is attributed hypothetically to aberrant water bird 165 

migration (Henderson and Okamura 2004). Herbivore birds, like ducks, can also transport 166 

passively viable bryozoan propagules via their faeces (Charalambidou et al., 2003; Reynolds 167 

and Cumming, 2015). Birds might also carry infected fragments of bryozoans or statoblasts 168 

inside their plumage over certain distances within or between water systems, acting as 169 

transmission vectors of infected invertebrate hosts (Reynolds and Cumming, 2015). 170 

With the present study we investigated the role of fish eating birds as possible vectors for 171 

T. bryosalmonae in an experimental model using Mergus merganser fledglings. Specifically, 172 

we examined their capability to excrete infective T. bryosalmonae malacospores via faeces 173 

after feeding on PKD positive fish. By qPCR, we found shedding of T. bryosalmonae DNA 174 

fragments, appearing in the bird excrements two hours after feeding on the infected brown 175 

trout and lasting at least until 10 hours post feeding. No amplification products were present 176 

in conventional PCR, which could have been further processed for sequencing.  We 177 

hypothesize that during the intestinal transit, the malacospores were degraded, and no viable 178 

spores were excreted. However, even if intact DNA would have been detected in the faeces 179 

of the goosanders, infection of naïve bryozoa would be necessary to prove the infectivity of 180 

transmitted spores. 181 

T. bryosalmonae belong to Malacosporeae (Canning et al., 2000). Malacosporeae produce 182 

soft-shelled spores (Okamura and Canning, 2003) with limited resistance to external 183 

environmental influences. This limited resistance could explain the degradation by proteolytic 184 

digestive enzymes during intestinal transit.  185 
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Based on the above findings we conclude, that Mergus merganser do not contribute to the 186 

spreading of PKD by their faeces after feeding on brown trout infected with T. bryosalmonae, 187 

due to the complete digestion of the parasites infective spores.  188 
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List of figures 319 

Figure 1: Pair of goosander (Mergus merganser) from the river Wutach, Switzerland. 320 

Figure 2: Brown trout (Salmo trutta) infected with T. bryosalmonae; a. macroscopic signs of 321 

PKD, kidney enlargement (white arrow), with greyish discoloration, splenomegaly (white star); 322 

b. histological picture of the kidney, intratubular malacospores, (closed arrowheads), c. 323 

immunohistological picture confirming intratubular malacospores (open arrowheads) and 324 

extrasporogonic stages in the interstitial tissue (arrows with closed arrowheads). HE stain. Bar 325 

(b,c) = 25 µm. 326 
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Table 1: Results of qPCR investigations of nine faeces samples targeting T. bryosalmonae 18 rDNA (Acc. N.: AF190669), Ct values of three runs 

(triplicates), mean values and standard deviation, numbering of faeces samples are according to the timely excretion 

 

Sample 1 2 3 4 5 6 7 8 9 

Ct value 

run 1 

no detectable 

DNA 

33.921 36.421 34.761 35.998 40.096 41.282 40.867 39.836 

Ct value 

run 2 

no detectable 

DNA 

33.396 35.456 34.052 35.402 39.78 40.582 41.825 40.051 

Ct value 

run 3 

no detectable 

DNA 

33.443 35.286 33.865 35.342 39.41 40.157 41.43 39.121 

Mean no detectable 

DNA 

33.59 35.72 34.23 35.58 39.76 40.67 41.37 39.67 

Standard 

deviation 

 0.291 0.612 0.031 0.363 0.343 0.568 0.482 0.487 
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	PCR was performed according to the protocol by (Morris et al., 2002). Primer pair PKX3F (5’-CTAAGTACATACTTCGGTAGA-3’) and PKX4R (5’-CCGTTACAACCTTGTTAGGAA-3’) described by (Kent et al., 1998) was used. DNA concentrations used varied between 151 and 860...
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