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Abstract 

Objectives; This study aimed at developing a convolutional neural network 

(CNN) able to automatically quantify and characterize the level of degeneration of 

rotator cuff (RC) muscles from shoulder CT images including muscle atrophy and 

fatty infiltration. 

Methods; 103 shoulder CT scans from 95 patients with primary glenohumeral 

osteoarthritis undergoing anatomical total shoulder arthroplasty were 

retrospectively retrieved. Three independent radiologists manually segmented the 

premorbid boundaries of all four RC muscles on standardized sagittal-oblique CT 

sections. This premorbid muscle segmentation was further automatically predicted 

using a CNN. Automatically predicted premorbid segmentations were then used to 

quantify the ratio of muscle atrophy, fatty infiltration, secondary bone formation, 

and overall muscle degeneration. These muscle parameters were compared with 

measures obtained manually by human raters. 

Results; Average Dice similarity coefficients for muscle segmentations 

obtained automatically with the CNN (88%±9%) and manually by human raters 

(89%±6%) were comparable. No significant differences were observed for the 

subscapularis, supraspinatus, and teres minor muscles (p>0.120), whereas Dice 

coefficients of the automatic segmentation were significantly higher for the 

infraspinatus (p<0.012). The automatic approach was able to provide good-very 

good estimates of muscle atrophy (R2=0.87), fatty infiltration (R2=0.91), and overall 

muscle degeneration (R2=0.91). However, CNN-derived segmentations showed a 

higher variability in quantifying secondary bone formation (R2=0.61) than human 

raters (R2=0.87). 



 3 

Conclusions; Deep learning provides a rapid and reliable automatic 

quantification of RC muscle atrophy, fatty infiltration, and overall muscle 

degeneration directly from preoperative shoulder CT scans of osteoarthritic patients, 

with an accuracy comparable to human raters. 

Keywords; Computed tomography; Deep learning; Muscle atrophy; Rotator 

cuff; Sarcopenia 

Key points; 

• Deep learning can not only segment RC muscles currently available in 

CT images, but also learn their pre-existing locations and shapes from 

invariant anatomical structures visible on CT sections. 

• Our automatic method is able to provide a rapid and reliable 

quantification of RC muscle atrophy and fatty infiltration from 

conventional shoulder CT scans. 

• Accuracy of our automatic quantitative technique is comparable to 

human raters. 
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Abbreviations; 

BMI   Body mass index 

CNN   Convolutional neural network 

CT   Computed tomography 

HU   Hounsfield unit 

IS   Infraspinatus 

MRI   Magnetic resonance imaging 

RC   Rotator cuff 

SC   Subscapularis 

SS   Supraspinatus 

STAPLE   Simultaneous truth and performance level estimation 

TM   Teres minor 
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INTRODUCTION 

Knowledge of the status of rotator cuff (RC) muscles is key in various 

shoulder disorders, not only RC tendon tears [1] but also glenohumeral osteoarthritis 

[2, 3]. In particular, muscle degeneration parameters such as fatty infiltration and 

atrophy influence surgical decision-making and overall patient management [4, 5]. 

Although magnetic resonance imaging (MRI) offers higher contrast resolution for the 

evaluation of soft tissues, computed tomography (CT) still allows for the detailed 

quantitative analysis of muscles, distinguishing between muscle, fat, and bone 

tissues using specific Hounsfield unit (HU) thresholds [6–8]. Furthermore, CT is 

widely available, fast and well accepted by patients, and this examination is 

increasingly being used in the imaging evaluation of glenohumeral osteoarthritis and 

preoperative planning of shoulder arthroplasty [9–11]. 

In clinical practice, the status of RC muscles is currently assessed using 

qualitative and/or semi-quantitative methods, most notably Thomazeau’s 

occupation ratio [12] or Zanetti’s tangent sign [13] for supraspinatus muscle atrophy, 

and Goutallier classification for fatty infiltration [1], which are all fast and easy to use 

but also only moderately accurate and/or reliable [14, 15]. More robust and accurate 

quantitative CT techniques have been developed but have not yet established 

themselves in increasingly busy clinical workflows, mainly because of time 

constraints [6, 7]. Automation of such techniques would make them clinically viable 

and could further promote the use of CT as the one-stop-shop imaging prior to 

shoulder replacement surgery. In recent years, deep learning has emerged as a very 

effective classification technique, which has been applied with great success to 

medical image segmentation, including muscle segmentation in CT datasets [16–19], 
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and detection of large rotator cuff tears from conventional shoulder radiographs 

[20]. However, to the best of our knowledge, this technique has yet to be evaluated 

for the prediction of the premorbid muscle boundaries, which are not distinctly and 

readily identifiable in the images. 

Therefore, this study aimed at developing and evaluating the performance of 

a CNN able to automatically assess RC muscles from shoulder CT images. RC muscles 

were assessed by quantifying their various degeneration parameters, most notably 

muscle atrophy and fatty infiltration. Unlike traditional segmentation tasks, the 

neural network must in this particular case not only segment the structures currently 

available in the images, but also learn the pre-existing locations, shapes, and 

boundaries of RC muscles from invariant anatomical structures visible on CT 

sections. 
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MATERIALS & METHODS 

Dataset 

Our dataset consisted of all consecutive preoperative shoulder CT scans of 

patients treated with anatomical total shoulder arthroplasty for primary 

glenohumeral osteoarthritis between January 2002 and December 2014 (n=172). 

Patients with CT arthrography and/or metal artifacts (n=43) were excluded, as well 

as patients with non-overlapping CT sections and/or reconstructed axial CT images 

thicker than 1.25 mm and/or using sharp kernels only (n=26). The resulting study 

population consisted of 103 shoulder CT scans from 95 different patients (62 females 

and 33 males; mean age, 70.5 years; age range, 36‒89 years; mean body mass index 

(BMI), 27.1; BMI range, 17.7‒39.4; 62 right and 41 left shoulders). The most relevant 

raw shoulder anatomical characteristics from this dataset are provided in Table 1. 

Furthermore, 12 (12%) shoulders had secondary bone formations (glenoid 

osteophytes, secondary osteochondromas, and/or heterotopic ossifications), while 

37 (36%) cases showed glenohumeral joint effusion with or without synovitis, and 5 

(5%) cases exhibited subacromial bursitis. No patient had soft tissue masses in the 

shoulder such as lipomas. This study was approved by the institutional ethics 

committee (CER-VD protocol 505/15). 

Shoulder CT scans were part of the routine preoperative planning for these 

patients and performed on several multi-detector row (from 4 to 64, all from GE 

Healthcare) CT scanners using standardized data acquisition settings. Relevant image 

reconstruction parameters were as follows: display field of view, 15×15 cm ‒ 25×25 

cm (pixel size, 0.29×0.29 ‒ 0.49×0.49 mm); section thickness, 0.63‒1.25 mm; section 

interval, 0.3‒1 mm; and smooth convolution kernel. 
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The identification of the premorbid shape of all four RC muscles was 

performed on a standardized sagittal-oblique CT image (  
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Figure 1)[7]. This reconstructed CT section was defined as the plane 

perpendicular to the scapular axis and passing through the spinoglenoid notch. The 

best-fitting line along the supraspinatus groove was used to determine the scapular 

axis [21, 22]. All four RC muscles (supraspinatus (SS), subscapularis (SC), infraspinatus 

(IS), and teres minor (TM)) from each case were manually segmented by three 

independent musculoskeletal radiologists with varying levels of training (from 2 to 

13 years of experience). 

Deep Learning 

The variability in the training dataset was augmented by introducing on all 

images varying degrees of scaling and rotation. This was also deemed useful to make 

the method applicable to differently formatted images. Images were scaled by a 

random factor comprised between +20% and -20%, combined with a rotation by a 

random angle between +90° and -90°. This data augmentation resulted in a 10-fold 

increase in sample size for a total of 3090 segmented CT images per RC muscle (103 
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cases × 10-fold augmentation × 3 raters). All images were resampled to a resolution 

of 512 × 512 pixels prior to deep learning. 

A CNN following a traditional U-Net architecture was used in this study [23]. 

The neural network consisted of a repetition of alternating convolution layers 

followed by maximum pooling layers. After four repetitions of the combined 

convolution and downsampling layers, the 512 × 512 pixels input image resulted in a 

32 × 32 data representation with 512 channels (  
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Figure 2). We modified the original U-Net architecture by including a single 

convolution layer after each up-/downsampling layer. In addition, our network 

included a batch normalization for each convolution layer [24] (  
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Figure 2). 

A fivefold cross-validation was used to iteratively train and test the neural 

network. The training dataset was divided into five subsamples of equal sizes, each 

containing 618 segmentations per muscle. One subsample was iteratively selected 

for testing, while the remaining four subsamples were used to train the CNN. This 

approach resulted in training 20 different networks (4 muscles × 5-fold cross-

validations) to provide a fully automatic segmentation of the entire CT dataset. The 

random separation of data performed for the cross-validation step ensured that the 

network was agnostic to the validation set. During the training phase, a validation 

split of 1% of samples was used to determine the best-performing network 

configuration. 

After segmentation of premorbid RC muscles by the CNN, all CT images were 

upscaled from 512 × 512 pixels to their original resolution of 1024 × 1024 pixels. 

Segmented images were then further processed by identifying each current muscle 
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as the largest connected component in the CNN-segmented image output, and by 

filling any holes in the segmentation. 

Analysis 

Automatic segmentations were evaluated against a reference segmentation 

that was generated for each RC muscle by aggregating the three manual 

segmentations using the simultaneous truth and performance level estimation 

(STAPLE) expectation-maximization algorithm [25]. STAPLE computes a probabilistic 

estimate of the true segmentation from a collection of delineations executed by 

trained human raters. Automatic segmentations were compared with the 

corresponding STAPLE reference segmentations using two metrics: Dice coefficients 

and Hausdorff distances. Dice similarity coefficient quantifies the similarity of two 

samples using an index ranging between 0 (no segmentation overlap) and 1 (perfect 

segmentation overlap). The Hausdorff distance is the greatest distance between a 

point on the surface of a segmentation and the closest point on the corresponding 

one. Similarly, interrater reliability was assessed by calculating Dice coefficients and 

Hausdorff distances between each of the three different pairs of human raters. 

Paired Student t-tests were used to compare automatic segmentation with interrater 

variability. Results were considered statistically significant at p < .05. 

Furthermore, manually and automatically predicted premorbid RC muscle 

segmentations were both used to determine the ratio of muscle atrophy, fatty 

infiltration, secondary bone formation (including osteophytes, secondary 

osteochondromas, and heterotopic ossifications), and overall muscle degeneration, 

according to the method proposed by Terrier et al.[7]. Briefly, CT numbers in each 

pixel were used to determine the type of tissue (muscle, fat, or bone). First, a lower 
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threshold of -29 HU was applied within the premorbid segmentation (S) of each 

muscle. Holes of the resulting segmentation were filled and islands removed to 

determine the outer boundary of the residual/atrophied muscle (Sa). Within this 

surface Sa, fatty infiltration (Si) was quantified as the surface below -29 HU and 

secondary bone formation (So) as the surface above 166 HU. Based on these 

measurements, we determined atrophy (Ra = Sa/S), fatty infiltration (Ri = Si/S), 

secondary bone formation (Ro = So/S), and overall muscle degeneration (Rd = 

(Sa+Si+So)/S). The overall muscle degeneration ratio has a value of 0 when the 

muscle is fully healthy, and 1 when completely degenerated. 

Linear regressions were used to quantify the relationship between the 

muscle degeneration parameters obtained using manual and automatic 

segmentations. Regression analysis was further used to evaluate the variability of 

muscle degeneration quantification between human raters, and impact of patient 

BMI on quality of the automatic segmentation (together with Pearson correlation 

coefficients). The R-squared values and the slope of the regressions were used as a 

measure of performance. 
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RESULTS 

Manual premorbid RC muscle segmentations showed a high interrater 

reliability with an average Dice coefficient of 89% ± 6% when considering all muscles 

together (Table 2 and   
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Figure 3). The TM muscle had the lowest Dice coefficient between human 

raters (85% ± 8%), while the SS and SC muscles showed the highest interrater 

reliability with a Dice coefficient of 92% ± 3% (  
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Figure 3). 

Similar results were obtained with the automatic segmentation approach; 

overall, the average Dice coefficient was 88% ± 9% when comparing the outcome of 

the CNN with the corresponding STAPLE reference segmentations (  
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Figure 4). No significant differences were found between Dice coefficients for 

segmentations obtained with the CNN and human raters for the following three 

muscles: SC (p=0.120), SS (p=0.341), and TM (p=0.398). However, the neural network 

yielded a significantly higher Dice coefficient for the IS muscle (p=0.012). 

Nevertheless, even for this muscle, the difference in Dice coefficient between the 

automatic and manual segmentations remained less than 2% (Table 2 and   
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Figure 3). 

The Hausdorff distance between the CNN (automatic) and STAPLE (manual) 

reference segmentations was smaller than the distance between human raters 

(Table 2 and   
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Figure 3). CNN segmentations yielded significantly lower Hausdorff distances 

for the SS (p=0.004) and IS (p<0.001) muscles. No significant differences were found 

for the other two muscles (SC, p=0.96; TM, p=0.06). 

The automatic approach was able to provide good-very good estimates of 

muscle atrophy (R2=0.87), fatty infiltration (R2=0.91), and overall muscle 

degeneration (R2=0.91), with an average regression slope of 0.95 ± 0.05 (range, 

0.86–1.02) (  
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Figure 5). These relationships were comparable with the results achieved by 

human raters. However, segmentations by the CNN showed a higher variability in 

the quantification of secondary bone formation (R2=0.61) than human raters 

(R2=0.87). In fact, some of the automatic segmentations incorrectly included small 

parts of the scapular bone adjacent to RC muscles, or failed to delineate the 
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boundaries of RC muscles when large secondary bone formations were located in 

close proximity to the scapula (  
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Figure 6). Again, the TM muscle was more difficult to predict both for the 

CNN and human raters, with coefficients of determination R2 as low as 0.7 for muscle 

atrophy (Table 2). 

Patient BMI, and related CT image quality, had no impact on the quality of 

the automatic segmentation. The regression slopes between BMI and Dice 

coefficient, and BMI and Hausdorff distance were both not significantly different 

from 0 (  
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Figure 7). In addition, for each of the four RC muscles, Pearson correlation 

coefficients were very weak for both Dice coefficient (|r| ≤ 0.15) and Hausdorff 

distance (|r| ≤ 0.11). 

On average, human raters delineated a single case consisting of four RC 

muscles in about 2-3 minutes. While the training of the CNN took approximately 100 

hours of calculation, the delineation of the four muscles took less than one second 

per case. 
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DISCUSSION 

This study aimed to assess whether deep learning could rapidly and 

automatically predict RC muscle degeneration from shoulder CT scans with 

acceptable accuracy and reliability, particularly for the diagnosis and planning prior 

to total shoulder arthroplasty. We developed and validated a new method to 

quantify the degeneration of RC muscles from shoulder CT images, and compared its 

performance against three human raters with varying levels of experience. 

Convolutional neural networks were used to delineate the premorbid boundaries of 

each of the four RC muscles on a standardized sagittal-oblique CT section, and 

muscle degeneration was subsequently quantified and characterized in terms of 

muscle atrophy, fatty infiltration, and secondary bone formation. 

Our automatic method was able to determine the premorbid locations, 

shapes, and boundaries of all four RC muscles with an accuracy comparable with 

manual segmentations. In addition, the quantitative parameters describing muscle 

degeneration derived from this automatic premorbid delineation were highly 

correlated with the results obtained by three different human raters for muscle 

atrophy, fatty infiltration, and overall muscle degeneration. These results indicate 

that this automatic quantitative technique reached a level of accuracy equivalent to 

human raters and provides accurate and reliable predictions, almost instantly and 

without fatigue. 

An exception to the successful quantification of RC muscle degeneration is 

the assessment of the level of secondary bone formation, where the automatic 

quantification method failed to reproduce the results of human raters. This 

moderate accuracy mainly results from the difficulty in segmenting the interface 
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between the scapula and the various RC muscles. In case of localized bone 

outgrowth “inside” the muscle, the deep learning algorithm tended to follow the 

bone contours, while human raters realized that this “heterotopic” bone protrusion 

was caused by the degeneration process and should thus be included in the 

premorbid boundaries of the involved RC muscle. However, these few localized mis-

segmentations had only a marginal impact on the overall quality of the 

segmentations, and no effect on the other markers of muscle degeneration, but 

strongly affected the quantification of secondary bone formation (also considering 

that it is the smallest muscle parameter in terms of cross-sectional area). Overall, our 

dataset included only a few (12/103, 12%) cases with secondary bone formation, 

which was mainly encountered in patients with advanced glenohumeral 

osteoarthritis. Increasing the number of cases with substantial secondary bone 

formation would certainly enable the CNN to improve its segmentation performance 

in this setting. 

Automatic segmentation of the IS and SS muscles presented lower Dice 

coefficients and/or Hausdorff distances than human segmentations. Although this 

result might look counter-intuitive, two aspects can explain this behavior. First, the 

segmentation performance of machine learning was evaluated against STAPLE, 

which calculates a probabilistic estimate of the true segmentation. Therefore, if one 

of the human raters provides a segmentation that is very different from the other 

raters, his segmentation will have a lower contribution to the STAPLE estimate of the 

true segmentation. On the contrary, the human rater with a “poor” segmentation 

will have a more important effect on the interrater evaluation. The second 

explanation concerns the anatomical location and boundaries of these muscles; both 
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of them being contained in a bony/muscular fossa (the SC muscle has a relatively 

wide fatty boundary anteriorly). The strong signal intensity of bone in the image can 

easily be detected by the neuron network, providing highly repeatable 

segmentations. Nevertheless, it is important to note that the differences (although 

statistically significant) remained numerically small. 

Other methods have been proposed to evaluate RC muscle degeneration. In 

particular, quantifying muscle atrophy from shoulder MR images was initially 

proposed by Thomazeau et al. [12]. This measurement technique determines the 

muscle occupation ratio, which is defined by the ratio between the muscle and its 

fossa cross-sectional areas on a sagittal-oblique section. However, this method is 

limited to the SS muscle and does not take into account other markers of muscle 

degeneration such as fatty infiltration. Goutallier et al. [1] first developed a semi-

quantitative grading system to assess fatty infiltration from axial CT images. This 

method became an accepted standard and was later transposed to the sagittal-

oblique plane and adapted to MRI [8]. However, this classification remains of limited 

precision (when transposed numerically, stage 2 comprises fatty infiltration ranging 

from around 10% to 45%) and reliability, as shown by substantial intra- and 

interrater variability [14, 15, 26]. To address these issues, more robust semi-

automated quantitative CT methods have been proposed [6, 7]. While such 

algorithms have effectively improved the reliability of image-based muscle 

assessment, they still require human raters to manually delineate the assumed 

premorbid shapes and boundaries of each RC muscle on CT or MR images, which is 

time consuming and thus greatly limits the clinical applicability and spread of these 

approaches. 
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More recently, deep learning and CNN techniques have been used to provide 

an automatic quantification of muscle fatty infiltration in neck muscles from MR 

images [17] or abdominal muscles from CT datasets [27, 28]. Both studies reported 

good agreement between the automatic approach and human raters. However, 

these studies were limited to the segmentation of the current morbid muscle shape 

visible in the images but did not account for any degeneration processes by 

predicting the premorbid muscle anatomy. Therefore, such studies were unable to 

quantify and characterize muscle atrophy or overall degeneration. 

The major limitation of our study concerns the selection of the oblique CT 

section used to determine the premorbid boundaries of RC muscles. This image was 

obtained semi-automatedly by selecting a series of well-identifiable landmarks on 

the surface of the scapula [21, 22]. As such, the overall assessment of RC muscle 

degeneration is not yet fully automatic. However, several studies have shown that 

automatic identification of bone landmarks is feasible, either relying on registration 

algorithms [29–31] or deep learning [32–34]. Moreover, the 2D automatic evaluation 

developed in our study could be further extended in 3D to quantify muscle 

degeneration in the entire CT dataset. However, the automatic identification of the 

oblique CT section was beyond the scope of this study, where we aimed at 

determining if deep neural networks were able to determine the premorbid 

locations, shapes, and boundaries of all four RC muscles. 

Secondly, the dataset used in our study was limited to patients scheduled for 

anatomical total shoulder arthroplasty and did not include patients requiring 

reversed prostheses. The latter cases would exhibit higher muscle atrophy and fatty 

infiltration. Although the methodology developed here to predict the premorbid 
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shape of the RC muscles is applicable to more severe cases of muscle degeneration, 

the model required proper training and validation for the latter patients. In addition, 

although some patients had glenohumeral joint effusion with/without synovitis 

(37/103, 36%) and/or subacromial bursitis (5/103, 5%), our initial dataset did not 

include any soft tissue mass such as lipomas. While joint or bursal effusion did not 

affect the performance of automatic segmentation, the presence of soft tissue 

masses would certainly have led to CNN segmentation failure, as in the case of 

secondary bone formations. 

Thirdly, the assessment of the method was limited to CT datasets 

reconstructed using smooth convolution kernels dedicated to the analysis of soft 

tissues. Preliminary analyses showed that quantification accuracy decreased when 

using sharp kernels dedicated to evaluating bone structures, mainly because of 

higher image noise. This limitation could certainly be overridden by training the CNN 

with a larger number of noisier sharp reconstructions. However, the vast majority of 

clinical shoulder CT scans are reconstructed using both sharp and smooth kernels. 

Nevertheless, our study showed that it is now possible to provide an accurate 

and reliable characterization of RC muscle degeneration with a robust quantitative 

technique that might replace the standard-of-care qualitative or semi-quantitative 

methods currently being used in daily clinical practice [1, 12, 13]. In addition, the 

segmentation and quantification processes are automatic and can be performed 

almost instantly by a computer, which is significantly less than the 2-3 minutes 

required for a human observer to perform the same task manually on a dedicated 

workstation in an increasingly busy clinical workflow. 



 30 

The novel method presented here for shoulder CT scans has the potential to 

be incorporated into routine diagnostic algorithms and preoperative planning to 

further personalize the therapeutic approach, and help select the optimal surgical 

technique and implant design in shoulder arthroplasty. However, further clinical 

validation, with a more heterogeneous and complete dataset including many 

comorbidities, is required to determine the clinical accuracy of this technique, and its 

potential impact on clinical management and outcome. With such a tool, we expect 

to improve the imaging assessment and classification of the patient’s shoulder 

morphology prior to surgery, which would impact surgical decision-making and 

overall patient management. This method can further be used for the rapid analysis 

of large patient cohorts/series in order to investigate potential associations between 

RC muscle degeneration and the occurrence of specific shoulder disorders, or the 

clinical outcome of related treatments. 
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Supraspinatus muscle with substantial atrophy 
Supraspinatus muscle 
with substantial fatty 

infiltration 

Glenoids with 
substantial 

retroversion 

Occupation 
ratio < 50% 

Negative 
tangent 

sign 

Both occupation 
ratio < 50% & 

negative tangent 
sign 

Goutallier 
3 & 4 

Walch  
B2 & B3 Walch C 

n=8 / 8% n=5 / 5% n=8 / 8% n=0 / 0% n=27 / 
26% 

n=5 / 
5% 

 
Table 1 ‒ Relevant raw shoulder anatomical characteristics of the CT dataset used in 

this study. 

  



 32 

    Atrophy Fatty 
infiltration 

2nd bone 
formation 

Overall 
degeneration 

  Dice Hausdorff Slope R2 Slope R2 Slope R2 Slope R2 

SS DL-STAPLE 0.91±0.03 10.7±7.2** 0.96 0.95 0.93 0.97 0.89 0.77 0.96 0.96 

 Inter-rater 0.92±0.03 13.0±5.3** 0.97 0.90 0.95 0.92 0.95 0.78 0.97 0.93 

SC DL-STAPLE 0.91±0.09 28.5±34.4 0.73 0.82 0.96 0.86 0.26 0.18 0.87 0.92 

Inter-rater 0.92±0.04 28.3±22.6 0.91 0.82 0.98 0.89 1.07 0.83 0.96 0.91 

IS DL-STAPLE 0.89±0.06* 19.4±17.4*** 0.94 0.93 0.96 0.93 0.47 0.45 0.96 0.97 

Inter-rater 0.87±0.05* 26.5±13.3*** 0.93 0.93 1.00 0.93 0.88 0.64 0.97 0.97 

TM DL-STAPLE 0.86±0.10 18.6±15.6 0.86 0.71 0.91 0.84 0.35 0.10 0.89 0.77 

Inter-rater 0.85±0.08 21.9±14.1 0.94 0.73 0.94 0.84 0.32 0.11 0.95 0.78 

 

Table 2 ‒ Overview of the results obtained automatically with the deep learning 

algorithm and manually by human raters for the segmentation of the premorbid 

boundaries of all four RC muscles, and for the subsequent quantification of the 

degeneration of each individual muscle. “DL-STAPLE” stands for the correlation 

between results obtained by deep learning (DL) and the simultaneous truth and 

performance level estimation (STAPLE) true segmentation, while “Inter-rater” 

reports results obtained by human segmentations. Means and standard deviations 

are reported for Dice coefficients and Hausdorff distances. Slopes and R2 of linear 

correlations between DL predictions and the STAPLE reference model, as well as 

between different human raters, are also reported for muscle atrophy, fatty 

infiltration, secondary bone formation, and overall muscle degeneration for each RC 

muscle. For Dice coefficients and Hausdorff distances, statistical differences are 

indicated by one star (*) if p < 0.05, two stars (**) if p < 0.01, and three stars (***) 

for p < 0.001. 
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Figure 1 – The segmentation of RC muscles was performed on a standardized 

sagittal-oblique CT section (left). First, the premorbid boundaries of all four RC 

muscles were identified on this section, manually by human raters and automatically 

by the deep learning algorithm (right, green delineation). Then, automatic threshold-

based image processing was used to quantify and characterize the cross-sectional 

area of each remaining/atrophied RC muscle (right, red), with its amount of fatty 

infiltration (right, yellow) and secondary bone formation (right, white). 
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Figure 2 – Architecture of the convolutional neural network used in this study. The 

main difference compared to the original U-Net proposed by Ronneberger et al. [23] 

is that only one convolution layer is used after each max pooling. In addition, batch 

normalization was applied after each convolution layer. 
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Figure 3 ‒ Dice similarity coefficients (left) and Hausdorff distances (right) between 

the automatic deep learning and STAPLE reference manual segmentations, and 

compared to Dice coefficients between manual segmentations from different human 

raters. Note that interrater evaluations contain three times more data points (309 

evaluations) than the evaluation of the deep learning segmentation (103 

evaluations). This difference results from the multiple evaluations necessary to 

evaluate the different possible combinations of human raters. Statistical differences 

are indicated by one star (*) if p < 0.05, two stars (**) if p < 0.01, and three stars 

(***) for p < 0.001. 
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Figure 4 – Representative sagittal-oblique CT images showing the steps of muscle 

segmentation (top) and quantification and characterization of RC muscle 

degeneration (bottom) in a selected osteoarthritic patient. Results obtained 

manually by human raters (STAPLE reference) for each individual RC muscle are 

shown on the left, compared with deep learning quantification on the right. 
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Figure 5 ‒ Linear correlations for muscle atrophy, fatty infiltration, secondary bone 

formation, and overall muscle degeneration between automatic deep learning 

predictions and manual STAPLE reference model (left), as well as between different 

human raters (right). Except for secondary bone formation, the R2 values are equal 

or higher for the deep learning approach.  
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Figure 6 – Representative sagittal-oblique CT image showing a rare case of severe 

secondary bone formation in a patient with secondary osteochondromatosis of the 

glenohumeral joint. In this setting, the deep learning algorithm failed to capture the 

premorbid boundaries of the SC muscle. 
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Figure 7 – Scatter plot of Dice coefficients and Hausdorff distances as a function of 

patient BMI showing that the quality of the automatic segmentation was not 

significantly affected by patient BMI and its related CT image quality. 
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