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ABSTRACT We analyzed 312 drug-resistant genomes of Mycobacterium tuberculosis
isolates collected from HIV-coinfected and HIV-negative TB patients from nine coun-
tries with a high tuberculosis burden. We found that rifampicin-resistant M. tubercu-
losis strains isolated from HIV-coinfected patients carried disproportionally more
resistance-conferring mutations in rpoB that are associated with a low fitness in the
absence of the drug, suggesting these low-fitness rpoB variants can thrive in the
context of reduced host immunity.

KEYWORDS HIV-TB coinfection, Mycobacterium tuberculosis, drug resistance, fitness
cost, rifampicin

Tuberculosis (TB), caused by members of the Mycobacterium tuberculosis complex, is
a leading cause of death worldwide, killing more people than any other infectious

disease. Among the many factors driving the global TB epidemics, two factors stand out
as particularly important: antibiotic resistance and HIV coinfection (1). Although the
impact of both of these factors individually is well recognized, the interaction between
them is less clear and likely depends on the particular epidemiologic setting (2). HIV
coinfection and drug-resistant TB often coexist in severe epidemics, which indicates
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spread of drug-resistant M. tuberculosis strains from immunocompromised patients
(3–5). The propensity of drug-resistant M. tuberculosis strains to spread is influenced by
the fitness cost associated with drug resistance determinants (6). Specifically, bacterial
strains that have acquired drug resistance-conferring mutations may be less transmis-
sible than their susceptible counterparts, although this fitness cost can be ameliorated
by compensatory mutations (7–10). Moreover, the effect of different resistance-
conferring mutations on fitness can be heterogeneous (11). In the clinical setting, there
is a selection for high-fitness and/or compensated drug-resistant M. tuberculosis strains
in TB patients (12). However, in immunocompromised hosts, such as HIV-coinfected
patients, even strains with low-fitness resistance mutations might propagate efficiently
(13–15), which could partially explain why drug-resistant TB has been associated with
HIV coinfection (16, 17). However, to date, no evidence directly supports the notion that
the immunological environment created by HIV coinfection modifies the fitness of
drug-resistant M. tuberculosis (5, 18, 19).

In this study, we tested the hypothesis that resistance-conferring mutations with low
fitness in M. tuberculosis are overrepresented among HIV-coinfected TB patients. We
focused our analysis on isoniazid and rifampicin, the two most important first-line
anti-TB drugs, for which resistance-conferring mutations have been shown to differ in
their fitness effects when measured in the laboratory (11). In addition, the frequency of
the resistance alleles found in a clinical setting correlates well with the in vitro fitness
of strains (12, 20). To explore the association between HIV coinfection and the fitness
effect of different drug resistance-conferring mutations in M. tuberculosis, we compiled
a collection of drug-resistant strains using the global International Epidemiology Da-
tabases to Evaluate AIDS (IeDEA, http://www.iedea.org) consortium (21, 22) as a plat-
form. For this study, 312 strains were collected from HIV-coinfected and HIV uninfected
TB patients originating from nine countries on three continents: Peru, Thailand, South
Africa, Kenya, Côte d’Ivoire, Botswana, Democratic Republic of the Congo, Nigeria, and
Tanzania (Fig. 1; see also Table S1 in the supplemental material). The association
between the fitness of isoniazid resistance-conferring mutations and HIV coinfection
was tested in a univariate analysis (Fig. S1). Isoniazid resistance-conferring mutations
were divided into three groups, as previously described (23): katG S315T mutation, katG
mutations other than S315T, and inhA promoter mutations only. The S315T substitution
in katG causes high-level isoniazid resistance while retaining some catalase/peroxidase
functions (24). Conversely, the inhA promoter mutation does not affect KatG activity.
Other substitutions/deletions in katG have been associated with a lower fitness in the
laboratory and are observed only rarely among clinical isolates (23, 25, 26). In the case
of rifampicin, the association between the fitness of rpoB variants and HIV coinfection
was tested in both a univariate and multivariate analysis (Table 1). Resistance-
conferring variants in rpoB were classified into two groups based on their fitness effects
documented previously (11, 20, 27). The mutation rpoB S450L was considered high
fitness, since this mutation was previously shown to confer a low fitness cost in the
laboratory (11) and is generally the most common in clinical strains (28). Any other
resistance-conferring variant affecting rpoB was considered low fitness (11). The mul-
tivariable logistic regression model with outcome of low-fitness rpoB variants was
adjusted for host-related factors (history of TB, country of isolation, sex, and age) (29)
and bacterial factors (M. tuberculosis lineage, presence of an rpoA-C compensatory
mutation, clustering of the genome inferred by genetic relatedness). Seventy-six pa-
tients from Tanzania and Botswana were excluded from the model due to missing or
unknown clinical data (see the supplemental methods file).

Out of 312 patients, 113 (36.2%) were HIV coinfected, 120 (38.5%) were women, 115
(36.9%) were newly diagnosed TB cases (therefore, treatment naive), 276 (88.5%)
harbored isoniazid resistance-conferring mutations, with or without additional resis-
tance, and 282 (90.4%) harbored rifampicin resistance-conferring mutations, with or
without additional resistance. In total, 78.8% (n � 246) of the strains were classified as
being at least multidrug resistant, defined as resistance to isoniazid and rifampicin with
or without additional resistance to second-line drugs. Among the 113 HIV-coinfected

Loiseau et al. Antimicrobial Agents and Chemotherapy

October 2020 Volume 64 Issue 10 e00782-20 aac.asm.org 2

 on January 8, 2021 at U
niversitaetsbibliothek B

ern
http://aac.asm

.org/
D

ow
nloaded from

 

http://www.iedea.org
https://aac.asm.org
http://aac.asm.org/


individuals, 34 (30%) were on antiretroviral therapy (ART), 26 (23%) were not, and 53
(47%) had an unknown ART start date. Four of the eight known M. tuberculosis lineages
were represented in the following proportions: 11 L1 (3.5%), 57 L2 (18.3%), 38 L3
(12.2%), and 206 L4 (66.0%). After dividing a total of 276 isoniazid-resistant strains into
the three groups of isoniazid resistance-conferring mutations defined above, we found
similar proportions in HIV-coinfected and HIV-uninfected patients (chi-square test,
P � 0.54; Fig. S1), and, as expected, the katG S315T mutation was the most frequent
mutation in both categories (overall, found in 80% of isoniazid-resistant strains). In the
case of rifampicin resistance, a univariate and multivariate analysis of 203 strains with
complete clinical records indicated that HIV-coinfected TB patients carried a higher
proportion of low-fitness rpoB resistance variants than HIV-negative patients (72.3%

FIG 1 (A) Frequency of M. tuberculosis lineages by HIV status for countries sampled. Countries colored in
gray were sampled. The bar plots indicate the proportion of each lineage represented in this study.
Magenta corresponds to M. tuberculosis lineage 1, blue corresponds to M. tuberculosis lineage 2, purple
corresponds to M. tuberculosis lineage 3, and red corresponds to M. tuberculosis lineage 4. Solid color
corresponds to HIV-negative patients, and hatches correspond to HIV-coinfected TB patients. The
number of genomes sampled in each country is indicated on top of the bar plots. (B) Phylogenetic tree
of the data set used in the study. Maximum likelihood phylogeny of 312 whole-genome sequences based
on 18,531 variable positions. The scale bar indicates the number of substitutions per polymorphic site.
The phylogeny was rooted on Mycobacterium canettii. M. tuberculosis strains isolated from HIV-coinfected
patients are indicated by black dots. The peripheral ring depicts the country of isolation of the strains
sequenced.
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versus 51.4%). The univariate analysis showed higher odds of having a low-fitness rpoB
variant in HIV-coinfected patients (odds ratio, 2.46 [95% confidence interval, 1.30 to
4.66], P � 0.006) (Table 1). Our multivariable regression analysis confirmed these results
and showed an association between low-fitness rpoB variants and HIV coinfection while
controlling for other factors (odds ratio, 4.58 [95% confidence interval, 1.69, 12.44],
P � 0.003) (Table 1). This association can be explained in at least two ways. First,
HIV-coinfected patients are thought to have fewer lung cavities on average and lower
sputum bacillary load (30, 31). The resulting smaller M. tuberculosis population size
would lead to fewer replication events, possibly reducing the number of mutations
available for selection to act upon. In other words, low-fitness variants and high-fitness
variants would co-occur less often in an HIV-coinfected patient, such that competition
between them would be less likely. This scenario would be relevant for de novo
acquisition of low-fitness drug-resistant variants within an HIV-coinfected patient.
Second, following the transmission of a drug-resistant strain with low fitness to a host
with reduced immunity, weaker immune pressure acting on this strain might lead to
better bacterial survival. The association between low-fitness rpoB variants and HIV
coinfection remained significant even after adjusting for the different epidemiologic
settings (i.e., countries) and the strain genetic background (i.e., M. tuberculosis lineages).
We also observed that strains carrying the rpoB S450L resistance-conferring mutation

TABLE 1 Results of the univariate and multivariate analysis showing host and bacterial factors associated with low fitness rpoB variants in
203 TB patientsa

Parameter for fitness of rpoB variants

No. (%) of patients by
fitness level Univariable Multivariable

Low High OR (95% CI) P value OR (95% CI) P value

HIV status
HIV� 71 (51.4) 67 (48.6) Reference Reference
HIV� 47 (72.3) 18 (27.7) 2.46 (1.30–4.66) 0.006 4.58 (1.69–12.44) 0.003

Presence of a compensatory mutation in rpoA-C
No 117 (71.3) 47 (28.7) Reference Reference
Yes 1 (2.6) 38 (97.4) 0.01 (0.00–0.08) � 0.0001 0.01 (0.00–0.06) � 0.0001

M. tuberculosis lineage
2 16 (44.4) 20 (55.6) Reference Reference
4 99 (61.5) 62 (38.5) 2.00 (0.96–4.14) 0.06 3.10 (0.94–10.21) 0.06
Other (L1 or L3) 3 (50.0) 3 (50.0) 1.25 (0.22–7.05) 0.80 0.97 (0.11–8.31) 0.98

Clustering of the genome
No 109 (59.6) 74 (40.4) Reference Reference
Yes 9 (45.0) 11 (55.0) 0.56 (0.22–1.41) 0.21 1.05 (0.28–3.90) 0.94

Country of isolation
South Africa 29 (55.8) 23 (44.2) Reference Reference
Democratic Republic of Congo 11 (37.9) 18 (62.1) 0.48 (0.19–1.23) 0.13 0.39 (0.12–1.34) 0.14
Côte d’Ivoire 35 (79.5) 9 (20.5) 3.08 (1.24–7.70) 0.02 2.04 (0.58–7.23) 0.27
Kenya 4 (66.7) 2 (33.3) 1.59 (0.27–9.44) 0.61 0.94 (0.10–8.42) 0.96
Nigeria 20 (58.8) 14 (41.2) 1.13 (0.47–2.72) 0.78 1.00 (0.29–3.40) 0.99
Peru 16 (53.3) 14 (46.7) 0.91 (0.37–2.23) 0.83 1.49 (0.33–6.70) 0.60
Thailand 3 (37.5) 5 (62.5) 0.48 (0.10–2.20) 0.34 0.42 (0.07–2.65) 0.36

Age
Mean (SD) 32.5 (10.4) 34.3 (12.3) 0.99 (0.96–1.01) 0.25 0.97 (0.94–1.01) 0.10

Sex
Female 47 (59.5) 32 (40.5) Reference
Male 71 (57.3) 53 (42.7) 0.91 (0.51–1.62) 0.75 0.77 (0.34–1.71) 0.52

History of TB disease
No 35 (52.2) 32 (47.8) Reference
Yes 83 (61.0) 53 (39.0) 1.43 (0.79–2.58) 0.23 0.96 (0.34–2.73) 0.94

aNumber of observations in model, 203; CI, confidence interval. The odds ratios and P values were obtained from the regression model.
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were more likely to also carry a compensatory mutation in rpoA-C (97.4% versus 2.6%)
(Table 1). Even though this phenomenon seems counterintuitive, it has been described
multiple times (7, 9, 32–34) and, thus, might point to different mechanisms of com-
pensation in strains carrying resistance mutations other than rpoB S450L. In addition, in
our study, L4 strains were associated with low-fitness rpoB variants compared to L2
(odds ratio, 3.10 [95% confidence interval, 0.94, 10.21], P � 0.06) (Table 1), indicating
that the strain genetic background plays a role in shaping the cost of resistance, as was
previously shown for other bacterial species (35) and for other drugs (36). In the
regression analysis, we had several categorical variables with only a few observations.
Therefore, statistical power, especially for country of isolation, was low, and the results
should be interpreted with care.

HIV-coinfected TB patients are generally thought to have a reduced potential for TB
transmission (30, 37), because these patients have reduced formation of lung cavities,
more extrapulmonary disease, and a shorter period of infectiousness due to earlier
diagnosis or higher mortality, especially in the absence of antiretroviral treatment and
if antibiotic resistance is already present (4). Based on the overrepresentation of
low-fitness rpoB mutations in the context of HIV coinfection, one would expect a further
reduction of the transmission potential of drug-resistant TB in this context. However,
outbreaks of drug-resistant TB in HIV-coinfected patients have been reported (3). Such
outbreaks might be explained by (i) a higher risk of M. tuberculosis infection and
reinfection due to diminished host immunity, (ii) on-going transmission of drug-
resistant M. tuberculosis from a larger pool of immunocompetent TB patients to
immunocompromised patients, (iii) transmission occurring in conducive environments,
such as health care settings, where both HIV-coinfected individuals and drug-resistant
TB patients are more likely to coexist, and (iv) M. tuberculosis strains carrying high-
fitness drug resistance mutations.

In summary, using a global sample of drug-resistant M. tuberculosis clinical strains
from HIV-coinfected and HIV-negative TB patients, we showed that low-fitness rpoB
variants were overrepresented in HIV-coinfected patients, and that this association was
independent from other potential confounding factors. Taken together, our results
provide new insights into how HIV coinfection can impact the fitness of drug-resistant
M. tuberculosis.

Data availability. The M. tuberculosis whole-genome sequences from the patients
are available on NCBI under several project identifiers. The accession number for each
genome is indicated in Supplemental Table S1.
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