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Abstract

While empirical studies which analyze large cross section country data find that cor-

ruption lowers investment and thereby economic growth, this result cannot be established

for certain subsamples of countries. We argue that one reason for these mixed findings

may be that a country’s corruption and growth rates are tightly linked as variables of a

dynamic process which can have several equilibria or have different sets of equilibria. In

order to understand the circumstances in which a country converges towards a certain

equilibrium, we model the individual decisions to invest and corrupt as an evolutionary

game. In this model the quality of government institutions is an endogenous variable,

depending on the corruption rate, the population income, and the type of institutions;

the quality of institutions itself then determines the future incentives to corrupt. The

comprehension of these feedback effects allows us to study the role of the type of insti-

tutions for the dynamics of corruption. We present the equilibria for different types of

institutions and discuss the resulting dynamics. The results suggest that cross country

studies may significantly underestimate the impact of corruption on growth for certain

countries. Depending on how the quality of institutions depends on corruption and in-

come, corruption can either lower growth, suppress it entirely, or be positively correlated

with growth in some special situations.

Keywords: Corruption, Institutions, Feedback Effects, Evolutionary Game.
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1 Introduction

Due to the lack of time series data with sufficiently many year points that measure the

prevalence of corruption in a society,1 cross section data analysis has been the main

method in economic research for studying the causes and consequences of corruption.

Among the most important findings of this literature is the observation that corrup-

tion lowers economic growth (Mauro, 1995).2 The reasons are reduced investment

incentives3 and lowered institutional quality, which both influence economic growth

negatively.4

However, these results are not robust for certain groups of countries: Rock and

Bonnett (2004) find that ”corruption tends to increase growth in the large East Asian

newly industrialized economies”. Similarly, for a selection of Southeast Asian nations,

Lim and Stern (2002) point out that ”relatively high levels of corruption have been

associated with decades of very rapid GDP growth” (p. 46). These controversial

findings do not come as a surprise: First, the impact of corruption on growth has not

been very pronounced in many studies (see e.g. Li et al., 2000), and second, there is

abundant anecdotic evidence that nations going through a successful developing process

experience a surge in corruption during their economic take-off (Wedeman, 2004).5

How can we reconcile these mixed results? One possible explanation is that a

country’s corruption and growth rates are endogenous variables of a dynamic process

1The indicator for the prevalence of corruption most widely used in empirical research is the Corrup-

tion Perception Index (CPI) by Transparency International (TI), an international non-governmental

organization devoted to combating corruption. The first year the CPI was published is 1995.
2Other conclusions from cross-country studies include: Corruption increases poverty and income

inequality (Gupta et al., 2002; Hindriks et al., 1999; Johnston, 1989), it augments the public deficit

and public debt, increases mismanagement of public services and the respective transaction costs (Tanzi,

2002; Tanzi and Davoodi, 2000), it reduces the effectiveness of social spending, the formation of human

capital (Gupta et al., 2002), expenditure on education and health (Tanzi, 2002) and tax revenue (Tanzi

and Davoodi, 2000).
3In a corrupt environment private investment, both domestic and foreign, yields lower returns be-

cause of additional costs and a climate of heightened uncertainty (Mauro, 1995). This result has been

supported by the work of Brunetti et al. (1998), Chong and Calderon (2000), Mauro (1995), Mauro

(1997), Mauro (1998), Knack and Keefer (1995), Wei (2000), Tanzi and Davoodi (2000) and others.

Furthermore, Ades and Di Tella (1997) present a formal model.
4North (1990), Murphy et al. (1993), Murphy et al. (1991) and Husted (1999) present models of

how institutions affect growth, and for empirical evidence see Tanzi and Davoodi (2000), Dollar and

Kraay (2003), Kaufmann et al. (2000), Buscaglia (2001), Keefer and Knack (1997); among others.
5See Hofstaedter (1973) for the example of the United States.
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with several equilibria such that variables of different countries can converge to distinct

equilibria. The impact of corruption on growth may be different on two paths not

converging to the same equilibrium.

In the following we explain why we think that a dynamic consideration is essential

for understanding the consequences of corruption. Based on this, we then present a

model that captures the dynamic aspects of corruption. We use the results to criticize

the cross-country approach and to make suggestions for future empirical work.

Why is a dynamic setup appropriate to study corruption? Because only a dynamic

setup allows for the comprehension of feedback effects between the individual decisions

to corrupt and population variables like growth or corruption rate. It is clear that the

individual decisions determine the corruption and the growth rate: The more individu-

als decide to engage in corrupt activities, the higher is the corruption rate (Chakrabarti,

2001), and the less individuals decide to invest in production, the lower is the growth

rate. However, the corruption and the growth rate themselves have an impact on the

individual incentives to corrupt. In both cases, the quality of government institutions

can be suggested as a link. Institutions that are weakened by corruption are likely to

impose lower costs on corrupt behavior than strong institutions. From this we expect

the corruption rate to have a positive impact on the individual incentive to corrupt.6

Similarly, we expect the growth rate to affect the individual decisions to corrupt. The

value of property rights increases in presence of growth. Since people are willing to

spend more to protect property rights the more they are worth (Eggertsson, 1990),

growth increases the quality of institutions.7 So we expect growth to reduce the incen-

tives to corrupt. Note that a comprehension of the feedback effects described requires

the quality of institutions to be an endogenous variable depending on the population

variables.

There is a variety of dynamic frameworks that could be employed. We choose the

one of an evolutionary game. In our view, this approach has three advantages. First,

feedback effects as described above can be included by extending the framework to a

frequency dependent evolutionary game (Bruegger, 2005). Second, a large number of

agents choose between different behavioral strategies, which explicitly represents the

6This reasoning is not new, Paldam (2002) and Rose-Ackerman (1999) have argued that a high

corruption rate may be self-sustainable. Andvig and Moene (1990) come to the same conclusion using

a slightly different argument.
7Chong and Calderon (2000) find empirical evidence that institutional quality itself is a consequence

of economic growth.
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individual decisions. Third, the setup of an evolutionary game naturally captures the

situation of scarce information that prevails for illegal activities such as corruption. We

assume an imitation rule as a strategy selection rule since imitation is a plausible way of

mastering a situation of scarce information. In comparison, a general equilibrium model

of corruption would also generate several equilibria, but not identify off-equilibrium

behavior and path dependence of current population states. A growth model with a

representative agent would capture the dynamic aspect of corruption, but not allow for

the explicit specification of the individual incentives.

Let us briefly describe our model. The underlying game of the evolutionary game

we consider consists of three strategies: agents choose between a private sector activity,

being a fair government employee, and being a corrupt government employee. The pri-

vate sector activity is an innovative activity, i.e. the investing strategy. It’s return is a

fixed surplus when playing against a fair government employee or another private entre-

preneur. In case the private entrepreneur plays against a corrupt government employee,

the corrupt government employee siphons the surplus and the private entrepreneur is

left without return. A fair government employee earns the government wage no matter

whom he plays against. The corrupt government employee also earns the government

wage if playing against another government employee. However, if he plays against a

private entrepreneur, he extorts the surplus from private sector activity but bears the

costs of the corrupt act - that is, the probability of getting caught red-handed and

losing all his income in this case. These payoffs imply that the more corruption there

is (the higher the frequency of corrupt government employees), the lower the incentive

for private investment.

How do population variables affect the individual decisions? As mentioned above,

the quality of institutions must depend on population variables like the corruption or

the growth rate. One way to establish this is to define institutional quality as the

detection probability of corruption. Note that a high detection probability results in

high costs of corruption. The costs of corruption enter the corrupt strategy’s payoff

and are therefore relevant for the decision to imitate it. The first type of institutions

we study is characterized by a general functional form of the detection probability: We

only assume that the detection probability depends negatively on the corruption rate.

The second type of institutions we consider is an example for a more specific case: We

assume that the detection probability depends positively on the population income.

This is suggested by the feedback effect between growth and institutional quality.
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For the general specification, the corruption dynamics features several evolutionary

equilibria: A clean equilibrium, a corrupt equilibrium, and a hybrid equilibrium. De-

pending on the initial strategy state and other exogenous variables, a population will

converge to one of these equilibrium. A clean equilibrium where corruption is extin-

guished can only exist if detection probability is high in absence of corruption. As a

consequence, populations with notoriously inefficient government institutions are not

expected to free themselves from corruption. However, if the quality of institutions

increases with more private activity, a population can converge to a clean equilibrium.

In a corrupt equilibrium private activity is driven out of the game and only corrupt

activity prevails. Such an equilibrium always exists if the detection probability is low

in presence of a high corruption rate. We conclude that if corruption in the govern-

ment affects the institution’s efficiency negatively, the possibility of a population being

trapped in a corrupt equilibrium will prevail. A hybrid equilibrium exists for a detection

probability that is not too high, but also only lightly affected by corruption. In such

an equilibrium, the entire government is corrupt but private activity is not suppressed.

As countries may feature institutions which qualities may change in different man-

ners for a given corruption rate or may start off with different corruption rates, there

is no reason to assume that they converge to the same equilibrium. Therefore, cross

country studies may actually blur the consequences of corruption. If countries con-

verging to different equilibria are pooled in one sample, the consequences of corruption

might be underestimated for countries converging towards the corrupt equilibrium (and

overestimated for those converging towards the clean equilibrium). The reason is that

a negative impact of corruption on growth is measured while corruption actually not

only lowers growth but prevents an increase. Only with a deeper understanding of how

institutional quality depends on growth and corruption will increase the explanatory

power of empirical analysis.

2 The Basic Model

In this section we present the model of corruption as an evolutionary game but without

endogenous quality of institutions yet. We refer to this version of the model as the basic

corruption game. We present its stage game and discuss our choice of an imitation rule

which generally leads to replicator dynamics. In addition, we introduce the notion of

an evolutionary equilibrium as an equilibrium concept.

An evolutionary game describes strategic interaction over time. It is defined by the



2 THE BASIC MODEL 6

populations of players, a state space of strategies, a stage game, and an adaptation rule

which determines the dynamic adjustment process.

2.1 The Population

We model corruption in a one-population game. We assume the population to consist

of a continuum of infinitely-lived players. This assumption has several well-discussed

implications (see Friedman, 1998, for a complete list). First, the state space of strategies

is continuous. In adherence to continuous time this allows us to specify the dynamics

of a game as a system of ordinary differential equations. Second, for an infinite number

of players the law of large numbers can be invoked. This allows us to ignore random

fluctuations and differing perceptions of the current state among players. Third, an

infinite number of players motivates the myopia assumption inherent to our dynamic

adjustment process specified below. Players’ influence on population are so small that

players do not attempt to influence other players’ future actions.

2.2 The Strategies

In order to model corruption, we need three strategies: strategy 1, strategy 2, and

strategy 3. Hence, the pure-strategy set of any player is S = {1, 2, 3}. To simplify

interpretations, we presume that individuals only play pure strategies. It is convenient

for upcoming calculations to introduce the following notation. If an individual plays

strategy i, i ∈ S, we denote his strategy choice σi as a vector in IR3:

σi ∈
{

σ1 =

(
1

0

0

)
, σ2 =

(
0

1

0

)
, σ3 =

(
0

0

1

)}
.

The fraction of the population playing strategy i at time t is denoted by xi(t) ∈
[0, 1]. The fractions of the population playing the three strategies (also called strategy

frequencies) are the variables in our model which changes we intend to describe over

time. The strategy state of the game,

x(t) =

(
x1(t)

x2(t)

x3(t)

)
,

specifies the frequency of each of the three strategies in t. We will drop the time index

t if there is no risk of misunderstanding.
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The set of feasible strategy states is called the strategy state space. Since strategy

frequencies must add up to one, the strategy state space for an evolutionary game is a

simplex. We define the simplex of dimension n− 1 as

Σn−1 =

{
x(t) ∈ IRn

∣∣∣∣ xi(t) ≥ 0 and
n∑

i=1

xi(t) = 1 for i = 1, ..., n

}
.

The strategy state space of our game is Σ2, since we can omit one dimension. We

redefine the strategy state as x = (x1, x2), from which we can always calculate x3 =

1− x1 − x2.

Let us now turn to the interpretations of the three strategies. Strategy 1 represents

the choice of holding down a job as government employee while not exploiting the power

of the position. That is, a player choosing Strategy 1 acts as a fair government employee.

Strategy 2 also comprises to serve in public service, but in contrast to Strategy 1, the

player now abuses the power of the public role for private benefits. Strategy 2 can

therefore be referred to as the strategy of a corrupt government employee. The third

option is to pursue a productive private sector activity. We refer to Strategy 3 as

the strategy of a private entrepreneur. Sometimes it is convenient to speak of public

servants or government employees generally; in this case we refer to the total of players

with Strategy 1 and 2. The share of public servants is abbreviated with xG = x1 + x2.

In every period, players are matched pairwise to play the stage game. In our

application, such a pairwise encounter of two players is interpreted as one economic

interaction. This means that each play of the stage game is considered as one economic

act. The strategy choice of a player represents his decision which sector to direct his

manpower to. The greater the share of individuals working in the public sector, xG,

the greater the share of economic activity that is processed entirely within the public

sector (games played among government employees) or with the help of the public

sector (games between private entrepreneurs and public servants).8

Note that our choice of a one-population model has three implications for the in-

terpretation of the basic corruption game. First, the size of government, measured

as the share of agents employing strategy 1 or 2, is endogenous. That means, agents

find ways and means to work for the government as long as it pays for them. Second,

government employees play against themselves. These interactions can be interpreted

8The share of economic activity taking place within the government (administration) is Pr(xG ≥
y)2 = x2

G and the share of economic activity happening within the private sector is Pr(y ≥ xG)2 =

(1− xG)2 = x3
2.
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as organizational and administrative tasks within a government which we believe to be

a realistic feature in a model including the public sector.9 Third, the private sector

cannot elude the interaction with the public sector, no matter whether it is beneficial or

damaging to its business.10 In the next subsection we describe how the three strategies

are presumed to interact.

2.3 The Stage Game

The stage game characterizes the strategic interaction of two players at any point in

time. The stage game of the basic corruption game is a normal form game defined by

payoff matrix A. In every period players are drawn randomly and pairwise to play the

stage game and receive the average payoff f(σi, x) = σT
i Ax.11

The assumptions for A are as follows. A fair government employee receives the wage

w at any point in time, independently of his opponent. The interpretation is that he is

paid w no matter whether he is busy mainly delivering services to the private sector or

doing work within the administration. The corrupt government employee, too, receives

the wage w at any point in time, but additionally seizes a corruption income when

playing against a private entrepreneur. The private entrepreneur generates a surplus

s when being paired with another private entrepreneur or a fair government employee,

and loses the fruits of his work when encountering a corrupt government employee.

The corruption income of the corrupt public servant can be specified as s− c, where c

depicts the individual costs of corruption. These assumptions lead to

A =




w w w

w w w + s− c

s 0 s


 . (1)

It is a simplifying assumption that the payoff of a private entrepreneur does not vary

9The rate at which the economic activities taking place within the administration increase with a

marginal change of xG is inherent in the game structure: ∂ Pr(xG≥x)2

∂xG
= 2xG.

10Note that this feature is similar to a type of world Niskanen proposes: sponsors (in our case these

are the private entrepreneurs as we will see in the next subsection) are passive in accepting the output

proposal of bureaucracy without any careful monitoring or evaluation of alternatives (Niskanen, 1996).
11As common in the literature, we do not differentiate between the average (expected) payoff against

the population and the realized payoff of a specific stage game played. There are several reasons for that

(Friedman, 1998): First, in large populations such as ours the expected payoff is a sufficient statistic.

Second, payoffs are often not generated by random pairwise encounters, but by general interactions

such as markets, and are therefore not stochastic.
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between playing against a fair public servant and playing against a private entrepre-

neur. From our view this simplification is justified by the following interpretation: an

entrepreneur makes the surplus s from his business activity while losing it with proba-

bility x2, because he cannot circumvent interaction with the government.12 Changing

the payoff for Strategy 3 when playing against Strategy 1 (this is element a31 of matrix

A), amounts to making a statement about the efficiency of public service. The reason

is that x1 would then affect the average payoff of Strategy 3. If a31 = s though, then it

is only x2 that influences the private entrepreneur’s average payoff. Although we have

an idea in which direction we could change a31, we do not want to include such an

effect in our model. It is our aim to analyze the impact of corruption and we do not

want to blur the results with other effects.

Note that the game can easily be scaled such that all agents engage in a production

alternative beside the three strategy games which is not subject to corruption and does

not enhance growth.13 Even if this production output is subject to taxes, it does not

change the equilibria of our model, wherefore we normalize its payoff to zero.

2.4 The Imitation Rule and the Adjustment Dynamics

Now let us describe in the following how the players select their strategies.

Our analysis is based upon the hypothesis, that strategy selection by imitation is

a realistic assumption when describing illegal behavior. Players imitate the strategy of

other, more successful players, where success refers to greater expected payoff. They

base their decision which strategy to imitate on sporadically and imperfectly observed

expected payoffs and behavior. Information is scarce because knowledgeable players

hide the information for which they can be prosecuted. To derive adjustment dynamics

we follow Weibull (1995, p. 155). Note that time is continuous in our model.

Assume that all agents review their strategy choice at any point in time. Let us

denote the probability with which an agent playing strategy i (called i-players in the

following) switches to strategy j, by ϕj
i (x). The share of i-players that will imitate

another strategy is
∑

j ∈S\i
xiϕ

j
i (x) = xi − xiϕ

i
i(x) .

12Imagine that the entrepreneur needs to collect permits or certificates from the administration, has

to pay taxes to the government, or is subjected to controls by law.
13Such a production alternative corresponds to the ”production of subsistence crop” in Murphy et al.

(1993).
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The share of players imitating i that have played a different strategy before is
∑

j ∈S\i
xjϕ

i
j(x) =

∑

j ∈S

xjϕ
i
j(x)− xiϕ

i
i(x) .

This leads to a net effect in the share of i-players of

ẋi =
∑

j ∈S

xjϕ
i
j(x)− xi . (2)

We now further specify this general adjustment dynamics by making assumptions

on ϕi
j(x): At time t, every player samples an opponent with a probability equal for

all opponents. Every player knows his own average payoff f(σj , x) which depends on

his strategy σj , he observes the opponent’s strategy and, with some noise, the oppo-

nent’s average payoff. Therewith, a j-player sampling an i-player observes f(σi, x)− ε

with probability xi, where ε is a random variable with a continuously differentiable

cumulative distribution function Φ : IR → [0, 1].

We assume the following imitation rule: A j-player imitates strategy i when his

own average payoff (known without noise) is smaller than the observed average payoff

of strategy i. That is, he imitates strategy i if f(σj , x) < f(σi, x)− ε. The probability

that a j-player imitates i is Pr[ε < f(σi, x) − f(σj , x)] = Φ[f(σi − σj , x)]. So the

adjustment dynamics takes the form

ẋi = xi

∑

j ∈S

xj

(
Φ[f(σi − σj , x)]− Φ[f(σj − σi, x)]

)
.

Finally we must specify the cumulative distribution function Φ. We assume a uniformly

distributed error term ε over the interval of possible expected payoff differences. So the

function Φ is linear, Φ(y) = α + βy, and the adjustment dynamics derived from the

imitation rule simplifies to

ẋi = 2βxi (f(σi, x)− f(x, x)) .

Except from a time rescaling, our dynamics is thus equal to the replicator dynamics

(see Taylor and Jonker, 1978; Schuster and Sigmund, 1983),

ẋi = xi (f(σi, x)− f(x, x)) ∀i ∈ S . (3)

Since we do not focus on rates of convergence in this paper, we can continue using

equation (3). We alternatively will refer to it as the replicator dynamics or the imita-

tion dynamics. Note that in our model, by equation (3), strategy selection from myopic
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imitation leads to a deterministic, continuous-time, continuous-state dynamics. Fur-

thermore, note that equation (3) is a system of ordinary differential equations. For a

simplified notation, we define the system’s right hand side as the (Lipschitz continuous)

function F : Σ → Σ, and can now write the imitation dynamics as ẋ = F (x).14

2.5 The Equilibrium Concept

Since we abandon the assumption of a constant stage game in Section 3 for the analysis

with endogenous quality of institution, a dynamic equilibrium concept needs to be

employed. Therefore we choose the evolutionary equilibrium EE15 which, unlike the

widely used concept Evolutionary Stable Strategy that refers to a constant stage game

(Friedman, 1998), assures stability of F in an equilibrium.

Definition 1 A strategy state x ∈ Σn−1 is an evolutionary equilibrium of an evolution-

ary game if x is an attractor16 of the dynamical system ẋ = F (x) defining the game’s

adjustment dynamics.

What is the interpretation of our equilibrium concept’s definition for evolutionary

games? By solving equation (3), we can describe which strategies will be imitated

more or less frequently for every strategy state in the state space. Thus, we can calcu-

late which strategy frequencies a population exhibits over time after having been in a

certain strategy state. Such a ”solution path” for a given initial strategy state is called

a solution trajectory. An evolutionary equilibrium is a subset of state space Σn−1 which

a solution trajectory does not leave once reached. Additionally, if a solution trajectory

of the dynamics starts sufficiently close to the evolutionary equilibrium, it remains close

and converges asymptotically to the evolutionary equilibrium over time. The open set

of points in Σn−1 converging to a given EE are called its basin of attraction.

14The replicator dynamics are simplex invariant:

X
i∈S

ẋi =
X
i∈S

xi (f(σi, x)− f(x, x)) =
X
i∈S

xif(σi, x)− f(x, x)
X
i∈S

xi

= f(x, x)− f(x, x) = 0 .

15The term evolutionary equilibrium was introduced by Hirshleifer (1982).
16An attractor is defined as an asymptotically stable non-wandering set (in our case the only possible

non-wandering sets are critical points and points on limit cycles or graphics). For definitions of critical

points (also called equilibrium points or fixed points), limit cycles, graphics (also called separatrix

cycles), asymptotic stability, and non-wandering sets see Perko (2000) or any textbook on dynamic

systems.
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3 Endogenous Quality of Institutions

In Section 3.1 we include the feedback between corruption and the individual incentive

to corrupt by modelling quality of institutions as an endogenous variable. In Section

3.2 we present our main result and discuss them in Section 3.3. Finally, we discuss the

corruption dynamics when the feedback effect between growth and institutional quality

is included in the corruption game.

3.1 The Strategy State Dependent Payoff Matrix

We change the stage game in two ways: First, we model the government wage as an

endogenous variable of tax revenue. Second, we define the costs of corruption as a

function of the strategy state. In order to do so, we write each component of the payoff

matrix (1) as a function of the strategy state x. It is obvious that these extensions

depart from standard evolutionary game theory. We now actually analyze a frequency

dependent evolutionary game (Bruegger, 2005).

Let us assume that government wage is a function of tax revenue (and population

income therefore), and that the government budget is financed through proportional

taxes. Furthermore, we assume that the government’s budget is balanced at any point

in time and that all legally earned payoffs are subject to taxes. The tax rate is denoted

by τ .

According to that, net income equals (1−τ)w(x) for the government employees and

(1− τ)s(x) for the private entrepreneurs. The costs of corruption are specified below.

Hence, we rewrite the payoff matrix of the corruption game as

A(x) =




(1− τ)w(x) (1− τ)w(x) (1− τ)w(x)

(1− τ)w(x) (1− τ)w(x) (1− τ)w(x) + s(x)− c(x)

(1− τ)s(x) 0 (1− τ)s(x)


 . (4)

The function c(x) depicts the expected costs of corrupting a private entrepreneur and

absorbing his surplus s(x) from private economic activity. The probability at which

a corrupt activity is detected is denoted by p(x), p(x) ⊆ [0, 1]. If corrupt actions are

detected with a high (low) probability we say that institutional quality is high (low).

We assume that if a corrupt government employee is caught red-handed, he is punished

by having drawn off his net income, i.e.

c(x) = p(x) ((1− τ)w(x) + s(x)) .
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Note that a corrupt government employee encountering a private entrepreneur obtains

the payoff w(x) + s(x) if p(x) = 0 and obtains a zero payoff if p(x) = 1. We leave de-

tection probability p(x) unspecified for the moment and describe the corruption game’s

dynamics for a general function p(x). Later we will discuss the game with a specification

of the function p(x). For now we make the following assumption.

Assumption 1 An increase in the share of corrupt government employees decreases

the probability that a corrupt act is detected, i.e.,

∂p

∂x2
(x) < 0 .

Further an increase in the share of corrupt government employees decreases the detec-

tion probability by more than an increase in the share of fair government employees,

i.e.,

∂p

∂x2
(x) <

∂p

∂x1
(x) .

Note that ∂p
∂x1

(x) can be positive or negative. Assumption 1 includes the feedback

between institutional quality and corruption in our model.

Though it is possible to analyze the game with w(x), s(x), and c(x) being functions

of x, we choose to normalize s(x) = 1. By that normalization we abandon the possi-

bility of a frequency dependent surplus from private activity. Though we are aware of

interesting specifications of s(x), we abstain from including such an effect. The reason

is that we model the costs of corruption for the private sector in the payoff matrix

directly, and do not want to lessen the explanatory power of the model by including

further effects. Note that by setting s(x) = 1, government activities are of no direct

utility for the private sector. But of course we can choose a p(x) such that the share

of fair government employees influences the costs of corruption.

These assumptions allow us to calculate the government wage explicitly. Tax rev-

enue r(x) is given by

r(x) = τxT




w(x) w(x) w(x)

w(x) w(x) w(x)

1 0 1


x

= τ ((x1 + x2)w(x) + (1− x1 − x2)(1− x2)) .

As mentioned above, the government is not able to tax the transfers from the private

entrepreneur to the corrupt government employee. Thus, only legal payoffs are enlisted



3 ENDOGENOUS QUALITY OF INSTITUTIONS 14

in the matrix used for tax revenue calculation. Now we can explicitly compute w(x)

using the budget constraint of the government:

w(x) =
r(x)

x1 + x2
,

=
τ ((x1 + x2)w(x) + (1− x1 − x2)(1− x2))

x1 + x2
.

By solving for government salary we receive

w(x) =
τ

1− τ

(1− x1 − x2)(1− x2)
x1 + x2

.

Plugging the explicit expression for w(x) into the definition of r(x) yields

r(x) =
τ

1− τ
(1− x1 − x2)(1− x2) .

This allows us to evaluate how the government wage and the tax revenue depend on

x1 and x2.

∂w(x)
∂x2

<
∂w(x)
∂x1

< 0 and
∂r(x)
∂x2

<
∂r(x)
∂x1

< 0 .

It is not surprising that the derivations of the government wage with respect to x1

and x2 are negative. Firstly, if either x1 or x2 increases, the frequency of private

entrepreneurs decreases. However, this fraction of the population is solely responsible

for the contribution of value to r(x), since government employees only pay tax on their

wages which are a fraction of r(x); hence the government employees cannot contribute

to tax revenue positively. Secondly, the higher the number of government employees

is, the lower is government salary for a given r(x). The reason is our assumption

of a balanced government budget: if x1 or x2 increases, r(x) has to be split among

more employees, so each gets a smaller wage. We also observe that the derivation

of government wage with respect to x2 is smaller than the one with respect to x1.

The rationale for this is the following. The more corrupt government employees there

are, the higher is the share of games played among corrupt employees and private

entrepreneurs. This implies that more of the entrepreneurs’ surpluses flow outside the

taxation system because they become illegal income from corruption. This reduces r(x)

and therewith w(x).

3.2 The Main Result - The Dynamics of Corruption

In the last subsection we specified the functions in the payoff matrix of the corruption

game, except for p(x) which we want to treat generally. We can rewrite the payoff
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matrix (4) as

A(x) =




0 0 0

0 0 1− c(x)

(1− τ)(1− w(x)) −(1− τ)w(x) (1− τ)(1− w(x))


 (5)

without changing its dynamics (Bruegger, 2005). The replicator dynamics for frequency

dependent evolutionary game yields a system of three differential equations for the

corruption game. We drop the third equation for ẋ3 and substitute x3 by 1− x1 − x2.

This leaves us with the planar system

ẋ1 = x1(1− x1 − x2) [(1− τ)(w(x)− 1)− x2(τ − c(x))]

ẋ2 = x2(1− x1 − x2) [(1− τ)w(x) + (1− x2)(τ − c(x))] .
(6)

We describe the dynamics of corruption in the following proposition.

Proposition 1 Under Assumption 1, the corruption game can only have the following

three critical points as evolutionary equilibria (EE):

• (x1, x2) = (τ, 0) is an EE if 1
2−τ < p(τ, 0),

• (x1, x2) = (0, 1) is an EE if p(0, 1) < τ ,

• (x1, x2) = (0, x̄2) exists as a critical point if there exists an x̄2 satisfying p(0, x̄2) =
τ

(1−x̄2)2τ+x̄2
and is an EE if − ∂c

∂x2
(0, x̄2) < τ

x̄2
2
.

There always exists at least one evolutionary equilibrium.

According to Proposition 1, the corruption game can have seven different combinations

of evolutionary equilibria. We show these in Figure 1: The bottom left vertex of

the simplex represents the strategy state (1, 0) (only fair government employees), the

bottom right vertex the strategy state (0, 1) (only corrupt government employees), and

the top vertex the strategy state (0, 0) (only private entrepreneurs).

The proof of Proposition 1 is given in Appendix A on the pages 26-39.

3.3 Interpreting the Main Result

Our first observation is, that the dynamics of corruption converge. We find three

strategy states that can be evolutionary equilibria under our assumptions. We discuss

them in turn.
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Figure 1: The possible combinations of evolutionary equilibria.

3.3.1 The Clean Equilibrium

The critical point (τ, 0) always exists and is an evolutionary equilibrium if the detec-

tion probability of corrupt behavior is sufficiently high in (τ, 0). We refer to this EE

as the clean equilibrium because all corrupt activity is crowded out by private activity

and fair government service. The higher the tax rate, the higher the share of govern-

ment employees in this equilibrium. The reason for this result is the way we defined

government wage: Since we distribute all tax revenue equally among the government

employees, their share will rise until the government salary equals the net return from

private activity.

We know that a clean equilibrium exists, if the function p(x), the society’s detection

probability, takes a high values for x2 → 0. We conclude that for a society with a

judiciary functioning efficiently at a low corruption rate, a clean equilibrium exists.

This is a slightly optimistic finding: As long as institutions detect corruption well for

low corruption rates, at least some initial strategy states converge towards the clean

equilibrium.

Note that a population may have a clean equilibrium for some tax rates, but not

for others. Let us briefly discuss the condition for the clean equilibrium, 1
2−τ < p(τ, 0).

The left hand side of the inequality is an increasing function in τ , p(τ, 0) as a function

of τ , can actually lie above, below or intersect with it. If p(τ, 0) lies above (below), the

clean equilibrium exists for all tax rates (does not exist for any tax rate). If the two

function intersect and p(τ, 0) is the steeper (flatter) function at the intersection point,

then the clean equilibrium only exists for tax rates above (below) a certain threshold.

Of course we can have several threshold and therefore intervals of tax rates in which
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the clean equilibrium exists.

3.3.2 The Corrupt Equilibrium - The Corruption Trap

The second critical point, (0, 1), also exists independently of the specification of p(x).

Furthermore, it is an evolutionary equilibrium if the function p(x) takes a value low

enough in (0, 1). In this case we speak of a corrupt equilibrium or a corruption trap

because in this equilibrium all agents choose to be corrupt government employees.

A society’s detection probability p(x) takes low values for a high corruption rate if

corruption badly affects a society’s judiciary or its implementation. As soon as elements

of a judiciary that are responsible for the detection of corruption can be corrupted, we

expect that the society can be trapped in the corruption equilibrium for at least some

initial strategy states.17

Of course the tax rate plays an important role for the existence of the corruption

trap. The higher the tax rate is, the higher can p(0, 1) be such that the corruption trap

still exists. So one way to escape from a path towards the corruption trap is to cut

taxes. We will elaborate on this possibility further below.

3.3.3 The Hybrid Equilibrium

The last critical point, (0, x̄2) does not exist for all τ and all p(x). The right hand side

of the condition for its existence is a function which can become greater than 1 for big

τ , so this equilibrium exists for small and moderate tax rates only.

If (0, x̄2) exists and if the costs of corruption are not decreasing too strongly in

x2, then it is an EE of the corruption game. We refer to it as the hybrid equilibrium

17The corrupt equilibrium may appear unlikely at first glance, because all players choose to be

government employed although government wage converges to zero. We offer two arguments in favor

of this evolutionary equilibrium. The first is an example: During Carlos Menem’s last term of office as

President of Argentina, 70% (!) of the labor force was employed by the local governments in many of

the provinces (namely Chaco, Tucumán, La Rioja, and others). The majority of government employees

barely worked yet collected their salary in the end of the month. At that time, Argentina certainly

fulfilled the condition for the existence of the corrupt equilibrium: although the corruption rate was

high, almost nobody was convicted for corrupt activities. Only 5% of Argentineans reported that they

would seek judicial help in case of severe problems. The efficiency of the judiciary was too low for people

to bother reporting corruption (and other crimes). The example is taken from TI’s Daily Corruption

News Service, http://www.transparency.org/cgi-bin/dcn-read.pl?citID=35148. The second argument

is a theoretical one. The dynamics converge at an extremely low speed towards (0, 1), so our model

does not actually suggest any observations of (0, 1) or its close vicinity.



3 ENDOGENOUS QUALITY OF INSTITUTIONS 18

because the government service is entirely corrupt but does not suppress private eco-

nomic activity. If a society’s detection probability p(x) does not depend strongly on

the corruption rate and is neither very high nor very low, then we expect the hybrid

equilibrium to exist. Consequently, a society whose judiciary is not too strong but also

not too badly affected by corruption may have a hybrid equilibrium and can converge

to it at least for some initial strategy states.

3.3.4 Discussion

The stability conditions for the three critical points are independent of each other.

Therefore the specification of p(x) and the tax rate τ may imply any combination of

the three evolutionary equilibria for the corruption game. By definition the EE are

the attractors of (6), and since Proposition 1 denotes all EE, every trajectory through

an initial strategy state x0 ∈ Σ2 of system (6) converges to one of the EE.18 If two or

three EE exist for a given p(x) and τ respectively, then the initial state is decisive for

the EE the population converges to. The sets of initial strategy states that converge

to a certain evolutionary equilibrium are called the evolutionary equilibria’s basins of

attraction. We now discuss three implications of Proposition 1 for which we do not

have to calculate the basins of attraction of the EE.

First, the corruption trap has the lowest population income. Reducing the tax rate

can eliminate the corruption trap. The intuition for this is that the net payoff for

private activity is enhanced and the government wage reduced, such that the return as

a corrupt government employee is decreased. However, reducing the tax rate can also

eliminate the clean equilibrium, since the institutions could be weakened depending

on how institutional quality depends on the share of fair government employees. As a

consequence, corruption could then not be suppressed.

Second, the model does not require that the quality of the institutions must be high

at any point on a path towards the clean equilibrium. If corruption is high and therefore

the quality of institutions low, a country can still converge to the clean equilibrium for

some initial strategy states.

Third, a population with institutions which are not very efficient but also not vul-

nerable to corruption can converge to a hybrid equilibrium. Without a specific function

18Note that the separatrices are exceptions. The separatrices of a dynamical system are those tra-

jectories that approach a saddle point in the limit. The corruption game can have two saddle points at

most; these are (0, x̄2) and (τ−x̂2, x̂2) (see Proof of Proposition 1). So we have at most two separatrices

within the simplex.
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for p(x) it is not possible to say if the population income is higher in the hybrid than

the clean equilibrium.

What does Proposition 1 imply for empirical research? Cross section data may

actually contain countries that are developing along solution trajectories that converge

to distinct equilibria. If this is the case, our estimation of the impact of corruption

on growth will not be meaningful. For any selection of data points in the simplex

containing points converging to different equilibria, an estimation of the impact of

corruption on growth is far too optimistic for those countries that converge to the

corrupt equilibrium: While corruption will have no long term effect for those on the

trajectory to the clean equilibrium, those that converge to the corrupt one suffer big

losses in income from corruption. We can now understand how a group of Asian

countries can show a positive correlation between corruption and growth rate: They

either converged to the hybrid equilibrium or follow a trajectory that show increasing

share of private and corrupt activity before converging in one of the three equilibria.

We conclude that a meaningful estimation of the impact of corruption can be obtained

if the sample shows the same convergence behavior. To determine the equilibrium a

country converges to is a very challenging task and we need to gain further insights

about the role of institutions in a dynamic setting. The reason is that only with a

specific description of how the quality of institutions depends on growth and corruption

rate, we will be able to determine the basins of attractions of the different equilibria.

The description of the basins of attractions would then allow us to classify countries

according to their convergence behavior more reliably.

The type of institutions we have studied up to now is characterized by Assumption

1: The more corruption there is, the lower the probability that a corrupt activity is

detected. In the next section, we consider another type of institutions which quality

also depends on the population income. We specify the detection probability function

explicitly and show how the basins of attraction can be determined. In order to describe

each equilibrium’s basin of attraction formally, the system would have to be solved

explicitly. As it is the case for many nonlinear differential equation systems, this is not

possible. Instead, we provide an example of a function p(x) and describe the global

behavior of the corruption game by numerical simulations.
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3.4 The Feedback Effect between Income and Quality of Institutions

In our model, the legal population income is

l(x1, x2) =
(1− x1 − x2)(1− x2)

1− τ
. (7)

The higher the income of a population is, the more valuable are property rights. Conse-

quently, populations are disposed to provide more resources to protect property rights

the richer they are. Let’s assume that players have the possibility to protect their

property rights, for instance by establishing a judiciary that is independent of the gov-

ernment. We then suggest that the efficiency of the judiciary depends on the amount

of financial resources available. Therefore it seems reasonable to assume that p(x)

depends positively on income l(x).

For simplicity, we implement p(x) as a linear function of l(x). Since p(x) is a

probability it can only take values in [0, 1]. Consequently, we define it as

p(x) = (1− τ)l(x) = (1− x1 − x2)(1− x2) .

Note that ∂p
∂x2

< ∂p
∂x1

< 0. An increasing share of corrupt as well as fair government

employees decreases p(x). The reason is that only private activities generate income

where government employees are financed over taxes and do not contribute to popula-

tion income.

The clean equilibrium exists for p(τ, 0) > 1
2−τ , i.e. for τ < 1

2(3 −√5) = 0.38. The

corrupt equilibrium exists for p(0, 1) < τ , which is always satisfied because p(0, 1) = 0.

The critical point (0, x̄2) is not an attractor for τ < 0.25, because condition (14) is then

violated; and it does not exist for other τ because (8) does not have a solution in [0, 1]

for τ > 0.25. So the hybrid equilibrium does not exist.

According to these results, the model predicts the following for a society in which the

detection probability of corrupt activity depends positively on income: If tax burden is

moderate, it either converges to the clean or the corrupt equilibrium, depending on the

initial strategy state. If taxes are very high, it converges to the corrupt equilibrium.

We display the solution trajectories in Figure 2, they are calculated with the tax

rates τ = {0.1; 0.15; 0.2; 0.3; 0.5; 0.8}.
As we see in Figure 2, the basin of attraction of the corrupt equilibrium broadens

with τ increasing. The reason is that a high τ reduces the incentive of private activity

because of a smaller relative payoff; firstly because more taxes have to be paid and

secondly because government wage is higher. This reduced incentive for private activity
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Figure 2: The dynamics of corruption with feedback effect.

is then responsible for a decrease in the population income, which itself increases the

payoff of a corrupt government employee. So under a higher tax rate, initial strategy

states with a lower share of corrupt government employees will converge towards the

corruption trap.

How can we interpret the shape of the basins of attraction? The corruption rate

equals x2
x1+x2

in our model, which are straight lines from (0, 0) to points of the opposite

edge of the simplex. So for a given tax rate, a population with a lean government may

start off with a high corruption rate and still converge to the clean equilibrium. Con-

trarily, a population with a large government that starts off with the same corruption

rate may converge to the the corrupt equilibrium.

This example of a specific function p(x) suggests that understanding the quality of

institutions under different circumstances is crucial for the analysis of corruption: Only
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then are we able to say to which equilibrium a population converges from the current

strategy state. This knowledge then allows for reliable empirical consideration.

4 Conclusions

To our knowledge, this is the first attempt to include feedback effects from population

variables such as corruption and growth rates to the individual decision to corrupt.

Most importantly we show that such an analysis requires the quality of institutions to

be an endogenous variable. We find that, for a general characterization of the feedback

effects, a population can converge to different equilibria which leads to path depen-

dence for the behavior of a population. Consequently, populations with distinct initial

strategy frequencies may converge to different equilibria in the long run. However, not

only may they follow different solution paths, but also may they feature different equi-

libria they can converge to. Depending on how the ability of institutions to cope with

corruption under different growth and corruption rates changes, the set of equilibria

actually changes.

These results have important implications for empirical research: Only if all coun-

tries in a sample converge to the same equilibrium, we expect findings with a high ex-

planatory power. If countries converge to different equilibria, a cross country analysis

is prone to underestimate the implications of corruption for those countries converging

to a corruption trap. Similarly, the consequences of corruption are overestimated for

those countries converging to a clean equilibrium.

In order to classify countries according to their convergence behavior, a deeper

understanding of how institutions and institutional quality depend on the dynamic

process they partly shape. We hope that our results stimulates economic research on

this topic.

We think that the framework of an evolutionary game has served for the purposes

well to make the point we intended to discuss. It has allowed us to look at aspects

like feedback effects that can only be analyzed in dynamic setups. However, in order

to keep dynamics tractable and still allow for individual decisions, the decision rules

we have to impose on the agents are bound to strong assumptions that apply to all

agents in the game. Further, the dynamics become too involved to allow for a more

sophisticated comprehension of the private sector.
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A Appendix: Proofs of Propositions

A.1 Proof of Proposition 1

We accomplish this proof in two parts. First, we apply the local theory of nonlinear

systems and second, we use theorems of global theory of nonlinear systems to show

that we have found all attractors of (6).

A.1.1 Local Theory of Nonlinear Systems

From the conditions for the existence and uniqueness of a solution in a frequency

dependent evolutionary game (Bruegger, 2005) and the differentiability (and therefore

Lipschitz-continuity) of the functions w(x) and c(x) we know that the differential equa-

tion system (6) has a unique solution. We redefine F : IR → IR as the right hand side

of system (6).

F (x) =

(
F1(x)

F2(x)

)

=

(
x1(1− x1 − x2) [(1− τ)(w(x)− 1)− x2(τ − c(x))]

x2(1− x1 − x2) [(1− τ)w(x) + (1− x2)(τ − c(x))]

)
.

In order to find the critical points of the system, we set F (x) = 0:

x1(1− x1 − x2) [(1− τ)(w(x)− 1)− x2(τ − c(x))] = 0

x2(1− x1 − x2) [(1− τ)w(x) + (1− x2)(τ − c(x))] = 0 .

There are nine possibilities which are solution candidates for this equation system.

1) x1 = 0 ∧ x2 = 0

2) x1 = 0 ∧ (1− x1 − x2) = 0

3) x1 = 0 ∧ (1− τ)w(x) + (1− x2)(τ − c(x)) = 0

4) (1− x1 − x2) = 0 ∧ x2 = 0

5) (1− x1 − x2) = 0 ∧ (1− x1 − x2) = 0

6) (1− x1 − x2) = 0 ∧ (1− τ)w(x) + (1− x2)(τ − c(x)) = 0

7) (1− τ)(w(x)− 1)− x2(τ − c(x)) = 0 ∧ x2 = 0
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8) (1− τ)(w(x)− 1)− x2(τ − c(x)) = 0 ∧ (1− x1 − x2) = 0

9) (1− τ)(w(x)− 1)− x2(τ − c(x)) = 0

∧ (1− τ)w(x) + (1− x2)(τ − c(x)) = 0 .

Conditions 1), 2), and 4) state that the vertices of the simplex are fixed points.

Condition 5) gives us the edge of the simplex where x3 = 0 as a set of critical points,

conditions 6) and 8) give two single points in this set as fixed points.

Condition 3) gives us a critical point on the edge of the simplex where x1 = 0. It only

exists if there is a solution x̄2 which satisfies

(1− τ)w(0, x̄2) + (1− x̄2)(τ − c(0, x̄2)) = 0 . (8)

By plugging

w(0, x̄2) =
τ

1− τ

(1− x̄2)2

x̄2

into (8), we receive

c(0, x̄2) =
τ

x̄2
. (9)

We substitute the expression for c(0, x̄2) given by (11) into the last equation and get

p(0, x̄2) =
τ

τ(1− x̄2)2 + x̄2
.

So the potential critical point (0, x̄2) only exists if p(0, x2) intersects with the function

g(x2) = τ
τ(1−x2)2+x2

at least once on ]0, 1[ for a given τ . The function g(x2) is strictly

increasing in the parameter τ and can take values that are greater than one. We

conclude that for high τ , an x̄2 will not exist. The function g(x2) is decreasing in x2

when its image is in the interval ]0, 1[.

Condition 7) implies

(1− τ)(w(x1, 0)− 1) = 0

w(x1, 0) = 1
τ

1− τ

1− x1

x1
= 1 ⇒ x1 = τ ,

so (τ, 0) is a fixed point.
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Finally, condition 9) supports a critical point if there is a solution to

(1− τ)(w(x1, x2)− 1)− x2(τ − c(x1, x2)) = 0

(1− τ)w(x1, x2) + (1− x2)(τ − c(x1, x2)) = 0 .

We rewrite the system as

(1− τ)w(x1, x2)− (1− τ)− x2(τ − c(x1, x2)) = 0

(1− τ)w(x1, x2) + (τ − c(x1, x2))− x2(τ − c(x1, x2)) = 0

and find c(x1, x2) = 1 by subtracting the two equations. Plugging this result into the

first of the equations of the system gives

(1− τ)(w(x1, x2)− 1)− x2(τ − 1) = 0

(w(x1, x2)− 1) + x2 = 0 → w(x1, x2) = 1− x2 .

We now use the explicit expression for w(x1, x2) and find

w(x1, x2) = 1− x2 → τ

1− τ

(1− x1 − x2)(1− x2)
x1 + x2

= 1− x2

τ

1− τ
(1− x1 − x2) = x1 + x2

τ = x1 + x2 .

Let us denote x̂2 as the solution of c(τ − x̂2, x̂2) = 1, and we derive further

c(τ − x̂2, x̂2) = 1

p(τ − x̂2, x̂2)((1− τ)(1− x̂2) + 1) = 1

p(τ − x̂2, x̂2) =
1

(1− τ)(1− x̂2) + 1
.

So, only if we assume a p(x1, x2) such that p(τ−x̂2, x̂2) intersects with a function h(x2),

h(x2) =
1

(1− τ)(1− x2) + 1
,

on [0, τ ], there exists a fixed point (τ − x̂2, x̂2). Note that h(x2) is increasing in τ and

increasing in x2. The image of the function h(x1) is in [12 , 1].

We enlist the critical points we have found in the first column of Table 1.

In a next step we want to analyze the stability of the critical points we have found

above.
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If a critical point x0 is hyperbolic,19 it is either a sink,20 a saddle,21 or a source22 (De-

finitions e.g.by Perko, 2000, p.102). It follows from the Hartman-Grobman Theorem23

that sinks of a differential equation system are asymptotically stable and sources and

saddles are unstable. So in order to determine if a hyperbolic critical point is asymp-

totically stable (and thus an EE) or not we only need to calculate the eigenvalues of

the Jacobian of F (x) evaluated at the critical point. Therefore, we first calculate the

elements of the Jacobian DF (x1, x2).

∂F1

∂x1
= (1− 2x1 − x2)

(
(1− τ)(w(x)− 1)− x2(τ − c(x))

)

+ x1(1− x1 − x2)
(

(1− τ)
∂w(x)
∂x1

+ x2
∂c(x)
∂x1

)

∂F1

∂x2
= −x1

(
(1− τ)(w(x)− 1)− x2(τ − c(x))

)

+ x1(1− x1 − x2)
(

(1− τ)
∂w(x)
∂x2

− (τ − c(x)) + x2
∂c(x)
∂x2

)

∂F2

∂x1
= −x2

(
(1− τ)w(x) + (1− x2)(τ − c(x))

)

+ x2(1− x1 − x2)
(

(1− τ)
∂w(x)
∂x1

− (1− x2)
∂c(x)
∂x1

)

∂F2

∂x2
= (1− x1 − 2x2)

(
(1− τ)w(x) + (1− x2)(τ − c(x))

)

+ x2(1− x1 − x2)
(

(1− τ)
∂w(x)
∂x2

− (τ − c(x))− (1− x2)
∂c(x)
∂x2

)
.

For convenience we also restate

w(x) =
τ

1− τ

(1− x1 − x2)(1− x2)
x1 + x2

and (10)

c(x) = p(x)
(
(1− τ)w(x) + 1

)
with (11)

∂w

∂x1
= − τ

1− τ

(
1− x2

(x1 + x2)2

)
(12)

19None of the eigenvalues of DF (x0) has a zero real part.
20All eigenvalues of DF (x0) have negative real parts.
21At least one eigenvalue of DF (x0) has a positive and at least one has a negative real part.
22All eigenvalues of DF (x0) have positive real parts.
23The Hartman-Grobman Theorem states that if F is differentiable then there exists a homeomor-

phism that maps the trajectories in an open set around a hyperbolic critical point x0 onto trajectories

near x0 of the linear system ẋ = Ax with A = DF (x0). That is to say that near a hyperbolic critical

point x0 the nonlinear system ẋ = F (x) has the same qualitative structure as the linear system ẋ = Ax

with A = DF (x0).
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∂w

∂x2
=

τ

1− τ

(
1− 1 + x1

(x1 + x2)2

)
. (13)

We treat the critical points one by one in the order of Table 1.

Critical point (0,0): It is easy to see that ∂F1
∂x2

(0, 0) = 0 and ∂F2
∂x1

(0, 0) = 0. The

eigenvalues of DF (0, 0) are thus ∂F1
∂x1

(0, 0) and ∂F2
∂x2

(0, 0).24 We find

∂F1

∂x1
(0, 0) = (1− τ)w(0, 0)

∂F2

∂x2
(0, 0) = (1− τ)w(0, 0)(1− p(0, 0)) + τ − p(0, 0) .

The expression (1− τ)w(0, 0) is clearly positive, because of

lim
x1→0
x2→0

w(x1, x2) = ∞ .

If p(0, 0) such that ∂F2
∂x2

(0, 0) 6= 0, then the critical point (0, 0) is hyperbolic and one

positive eigenvalue is enough to know that it is unstable (see e.g. Perko, 2000, Theorem

2, p. 130). If p(0, 0) such that ∂F2
∂x2

(0, 0) = 0, then the second eigenvalue is equal to zero

and (0, 0) is not hyperbolic. It is then an unstable node, a saddle, or a saddle-node and

unstable therefore (see e.g. Perko, 2000, Theorem 1, p. 151).

Critical point (0,1): The critical point (0, 1) does always exist and is not hyperbolic.

In fact, we even have DF (0, 1) = 0, which indicates a very complex behavior of the

system near the critical point. For most other critical points it is more convenient to

analyze the behavior near them in IR2 (although we are only interested in the dynamics

on the simplex).25 For showing asymptotic stability of (0, 1) however, we will restrict

our analysis to the simplex, which makes our efforts more comprehensible in this case.

One method to show stability for critical points that are not hyperbolic is due to Lia-

punov. The theorem (see e.g. Perko, 2000, p. 131, Theorem 3) that states under which

conditions the existence of a Liapunov function (defined below) implies (asymptotic)

stability of a critical point only applies to critical points that are interior points of

the definition space of F (x). The critical point (0, 1) is a boundary point of the sim-

plex. Therefore we have to apply an extended theorem proved in Bruegger (2005)which

24The eigenvalues of a matrix
 

a b

c d

!
are equal to a and d if either b = 0 or c = 0 or both.

25One reason is that the Hartman-Grobman Theorem requires open subsets containing the hyperbolic

critical points. Most of our critical points are on the boundary of the simplex, however.
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states that the existence of a Liapunov function guarantees asymptotic stability for a

boundary point of the simplex if the simplex is invariant under ẋ = F (x).

Theorem 1 (Bruegger, 2005) Let E be an open subset of Σ and x0 ∈ E.26 Suppose

that F (x) ∈ C1(E) and F (x0) = 0, where the simplex is invariant under ẋ = F (x).

Suppose further that there exists a real valued function V ∈ C1(E) satisfying V (x0) = 0

and V (x) > 0, ∀x ∈ E \ x0. If V̇ (x) < 0 ∀x ∈ E, x0 is asymptotically stable.

We now have to show that there exists a Liapunov function for system (6) as defined

in Theorem 1. We will give evidence of existence by presenting an example: We show

in the following that function V (x),

V (x) = x2
1 + (1− x2)2 ,

is a Liapunov function. It is clear that V (x) > 0 ∀x ∈ IR2 \ (0, 1), hence V (x) > 0 ∀x ∈
Σ2. Further V (0, 1) = 0. Let us now look at V̇ (x).

V̇ (x) = 2x1ẋ1 + 2(1− x2)(−ẋ2)

= 2x2
1(1− x1 − x2)[(1− τ)(w(x)− 1)− x2(τ − c(x))]

− 2(1− x2)x2(1− x1 − x2)[(1− τ)w(x) + (1− x2)(τ − c(x))] .

We analyze V̇ (x) in E, the environment of (0, 1), which requires to evaluate w(x) and

c(x) in E.

lim
x2→1

w(x) = lim
x2→1

τ

1− τ

(1− x1 − x2)(1− x2)
x1 + x2

= 0

lim
x2→1

c(x) = lim
x2→1

p(x)
(
(1− τ)w(x) + 1

)
= p(0, 1) .

We conclude that for a sufficiently small environment of (0, 1) and for p(0, 1) < τ we

have

V̇ (x) = 2x2
1(1− x1 − x2)︸ ︷︷ ︸

>0

[ (1− τ)(w(x)− 1)︸ ︷︷ ︸
<0

−x2(τ − c(x))︸ ︷︷ ︸
>0

]

− 2(1− x2)x2(1− x1 − x2)︸ ︷︷ ︸
>0

[ (1− τ)w(x)︸ ︷︷ ︸
>0

+(1− x2)(τ − c(x))︸ ︷︷ ︸
>0

]

⇒ V (x) < 0 .

26Notation: E is the set of osculation points of E. Point x is an osculation point of E if E ∩Uρ(x) 6=
∅,∀ρ ∈ IR+. The set Uρ(x) is the ρ-neighborhood of x (or the open sphere around x). It is defined as

Uρ(x) = {y ∈ IRn; |x− y| < ρ}.
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So if p(0, 1) < τ , (0, 1) is asymptotically stable.

Critical point (0, x̄2): The critical point (0, x̄2) does not necessarily exist for all τ

and p(x1, x2). Because of ∂F1
∂x2

(0, x̄2) = 0 the eigenvalues of the jacobian DF (0, x̄2) are
∂F1
∂x1

(0, x̄2) and ∂F2
∂x2

(0, x̄2). By rearranging (8) to

(1− τ)w(0, x̄2)− x2(τ − c(0, x̄2)) = c(0, x̄2)− τ ,

we can write

∂F1

∂x1
(0, x̄2) = (1− x̄2)

(
(1− τ)w(0, x̄2)− x̄2(τ − c(0, x̄2))

)

= (1− x̄2)
(
c(0, x̄2)− τ

)

= τ
(1− x̄2)2

x̄2
> 0 ,

using (9) for the last equation. For the second eigenvalue we note that

(1− τ)
∂w

∂x̄2
(0, x̄2) = τ

x̄2
2 − 1
x̄2

2

and can then derive

∂F2

∂x2
(0, x̄2) = x̄2(1− x̄2) ·

[
(1− τ)

∂w

∂x2
(0, x̄2)− (τ − c(0, x̄2))− (1− x̄2)

∂c

∂x2
(0, x̄2)

]

= x̄2(1− x̄2) ·[
τ

(
x̄2

2 − 1
x̄2

2

− 1
)

+ c(0, x̄2)− (1− x̄2)
∂c

∂x2
(0, x̄2)

]

= x̄2(1− x̄2)
[
− τ

x̄2
2

+
τ

x̄2
− (1− x̄2)

∂c

∂x2
(0, x̄2)

]

= x̄2(1− x̄2)2
[
− τ

x̄2
2

− ∂c

∂x2
(0, x̄2)

]
.

We now have to determine the algebraic sign of the two eigenvalues. The second

eigenvalue is negative if
[
− τ

x̄2
2

− ∂c

∂x2
(0, x̄2)

]
< 0 .
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By replacing ∂c
∂x2

(0, x̄2) by

∂p

∂x2
(0, x̄2) [(1− τ)w(0, x̄2) + 1] + p(0, x̄2)(1− τ)

∂w

∂x̄2
(0, x̄2)

=
∂p

∂x2
(0, x̄2)

[
τ
(1− x̄2)2

x̄2
+ 1

]
− p(0, x̄2)τ

1− x̄2
2

x̄2
2

and rearranging terms we find the condition

p(0, x̄2)τ(1− x̄2
2)−

∂p

∂x2
(0, x̄2)

[
τ x̄2(1− x̄2)2 + x̄2

2

]
< τ (14)

for a negative second eigenvalue of DF (0, x̄2). We have assumed that p(x1, x2) is

decreasing in x2, however it is possible to find a p(x1, x2) that is consistent with (14).

We conclude that the critical point (0, x̄2) is then a saddle (and otherwise a source, since

the first eigenvalue is positive) which can attract solution trajectories in the simplex.

Condition (14) is satisfied, if p(0, x̄2) is not too high and p(0, x2) does not increase

strongly in x2.

Critical point (1,0): This critical point always exists but it is not hyperbolic. We

will show instability by analyzing the system (6) in the vicinity of (1, 0). This can be

done by looking at

−∂F1

∂x1
(1, 0) .

The intuition is as follows. Since (1, 0) is a fixed point, we have that ẋ1(1, 0) =

F1(1, 0) = 0. We now check which sign F1(x) takes if we marginally deviate from

(0, 1) by decreasing x1 marginally (and increasing x2 and x3 marginally). If −∂F1
∂x1

(1, 0)

is negative (positive), we know that ẋ1 is negative (positive) in the vicinity of (1, 0)

since it is zero in (1, 0). We find

−∂F1

∂x1
(1, 0) = −(−1) [(1− τ)(w(1, 0)− 1)] = −(1− τ) .

So marginally deviating from (1, 0) by marginally decreasing x1 causes the function F1

to take a negative value. That means that a solution curve x(t) of system (6) starting

in the vicinity of (1, 0) will move away from (1, 0). So (1, 0) cannot be asymptotically

stable.

Critical point {(x1,1− x1) |x1 ∈ ]0,1[ }: This set of critical points always exists

and its elements are neither hyperbolic nor isolated critical points. In order to show

instability we can use the arguments made for the critical point (1, 0). We will check
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what signs F1(x1, x2) and F2(x1, x2) take in the vicinity of (x1, 1−x1). Deviating from

the edge of the simplex (x1, 1 − x1) means that we marginally decrease x1 and x2 at

the same time. So we are interested in the signs of

−∂F1

∂x1
(x1, 1− x1)− ∂F1

∂x2
(x1, 1− x1) and

−∂F2

∂x1
(x1, 1− x1)− ∂F2

∂x2
(x1, 1− x1) .

Note first that

w(x1, 1− x1) = 0 and c(x1, 1− x1) = p(x1, 1− x1) .

We use the expressions of we have given for the elements of the Jacobian DF (x) and

find

− ∂F1

∂x1
(x1, 1− x1)− ∂F1

∂x2
(x1, 1− x1)

= −
{
− x1

[
(1− τ)(w(x1, 1− x1)− 1)− (1− x1)(τ − c(x1, 1− x1))

]}

−
{
− x1

[
(1− τ)(w(x1, 1− x1)− 1)− (1− x1)(τ − c(x1, 1− x1))

]}

= 2x1

[
− (1− τ)− (1− x1)(τ − p(x1, 1− x1))

]

= −2x1

[
1− p(x1, 1− x1)− x1(τ − p(x1, 1− x1))

]
.

If τ > p(x1, 1−x1) then 1−p(x1, 1−x1) > τ −p(x1, 1−x1) > 0 and hence 1−p(x1, 1−
x1) − x1(τ − p(x1, 1 − x1)) > 0. If p(x1, 1 − x1) > τ then 0 > x1(τ − p(x1, 1 − x1))

and again 1 − p(x1, 1 − x1) − x1(τ − p(x1, 1 − x1)) > 0. If p(x1, 1 − x1) = τ then

1− p(x1, 1− x1)− x1(τ − p(x1, 1− x1)) = 0 again. So we can state

−∂F1

∂x1
(x1, 1− x1)− ∂F1

∂x2
(x1, 1− x1) < 0 .

That means that all solution curves starting in the vicinity of (x1, 1 − x1) will move

away from x1 = 1. Because this result holds for all x1 ∈ (0, 1) the critical points in

the set {(x1, 1 − x1) |x1 ∈ ]0, 1[ } cannot be stable; it is impossible that trajectories

starting in the vicinity of this edge of the simplex move towards a point in this set. It

is redundant to determine the sign of F2(x) in the vicinity of {(x1, 1−x1) |x1 ∈ ]0, 1[ }.

Critical point (τ,0): This critical point does always exist. It is easy to see that
∂F2
∂x1

(τ, 0) = 0 since x2 = 0. So we know that the two eigenvalues of DF (τ, 0) are
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∂F1
∂x1

(τ, 0) and ∂F2
∂x2

(τ, 0). Note that

w(τ, 0) = 1 ,

∂w

∂x1
(τ, 0) = − 1

τ(1− τ)
,

c(τ, 0) = (2− τ)p(τ, 0) .

The eigenvalues of DF (τ, 0) are

∂F1

∂x1
(τ, 0) = −(1− τ)

∂F1

∂x1
(τ, 0) = (1− τ)[1− (2− τ)p(τ, 0)] .

We conclude that if 1
2−τ < p(τ, 0), the critical point is a sink. If p(τ, 0) < 1

2−τ , the

critical point is a saddle.

Critical point (τ − x̂2, x̂2): In order to analyze the stability of (τ−x̂2, x̂2), we evaluate

the elements of DF (τ − x̂2, x̂2). Note that

w(τ − x̂2, x̂2) = 1− x̂2

∂w

∂x1
(τ − x̂2, x̂2) = − 1− x̂2

τ(1− τ)
∂w

∂x2
(τ − x̂2, x̂2) = −1− 1− x̂2

τ(1− τ)
.

We find

∂F1

∂x1
(τ − x̂2, x̂2) = (1− τ)(τ − x̂2)

(
− 1− x̂2

τ
+ x̂2

∂c

∂x1
(τ − x̂2, x̂2)

)

∂F1

∂x2
(τ − x̂2, x̂2) = (1− τ)(τ − x̂2)

(
− 1− x̂2

τ
+ x̂2

∂c

∂x2
(τ − x̂2, x̂2)

)

∂F2

∂x1
(τ − x̂2, x̂2) = (1− τ)x̂2

(
− 1− x̂2

τ
− (1− x̂2)

∂c

∂x1
(τ − x̂2, x̂2)

)

∂F2

∂x2
(τ − x̂2, x̂2) = (1− τ)x̂2

(
− 1− x̂2

τ
− (1− x̂2)

∂c

∂x2
(τ − x̂2, x̂2)

)
.

Because we have assumed that ∂p
∂x2

< 0 we have ∂c
∂x2

< 0, and therefore we know that

∂F1

∂x2
(τ − x̂2, x̂2) < 0 .

Again from Assumption 1 we derive

∂F1

∂x1
(τ − x̂2, x̂2) >

∂F1

∂x2
(τ − x̂2, x̂2)

∂F2

∂x1
(τ − x̂2, x̂2) >

∂F2

∂x2
(τ − x̂2, x̂2) .
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Let us abbreviate the elements of DF (τ − x̂2, x̂2) by ji, such that

DF (τ − x̂2, x̂2) =

(
j1 j2

j3 j4

)
.

The standard formula for eigenvalues of 2×2-matrices yields for DF (τ − x̂2, x̂2)

λ1 =
1
2

(
j1 + j4 +

√
j2
1 − 2j1j4 + j2

4 + 4j2j3

)
,

λ2 =
1
2

(
j1 + j4 −

√
j2
1 − 2j1j4 + j2

4 + 4j2j3

)
.

We are only interested in the real parts of the eigenvalues, for they determine the

stability of the critical point. A square root of a real discriminant ∆ always either has

a zero real part (if ∆ ≤ 0) or a positive real part (if ∆ > 0). Therefore we have that

λ1 ≥ λ2. If (τ − x̂2, x̂2) is stable if and only if λ1 < 0 ∧ λ2 < 0. So the necessary

condition for stability of (τ − x̂2, x̂2) is

λ1 < 0
1
2

(
j1 + j4 +

√
j2
1 − 2j1j4 + j2

4 + 4j2j3

)
< 0

j1 + j4 < −
√

j2
1 − 2j1j4 + j2

4 + 4j2j3

(j1 + j4)2 > j2
1 − 2j1j4 + j2

4 + 4j2j3

j1j4 > j2j3 .

We substitute the explicit elements of DF (τ−x̂2, x̂2) into the last equation. Simplifying

the expression leaves us with

1
τ
(1− τ)2(τ − x̂2)x̂2(1− x̂2)

(
∂c

∂x2
(τ − x̂2, x̂2)− ∂c

∂x2
(τ − x̂2, x̂2)

)
> 0

⇒ ∂c

∂x2
(τ − x̂2, x̂2) >

∂c

∂x2
(τ − x̂2, x̂2) .

This is contradictory to Assumption 1. Thus, as long as we adhere to Assumption 1,

(τ − x̂2, x̂2) cannot be stable.
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Table 1: Critical points of the corruption game.

Critical point Conditions on τ and Asymptotic stability

(x1, x2) p(x1, x2) for existence

of critical point

(0, 0) none unstable

(0, 1) none asymptotically stable

if p(0, 1) < τ

(0, x̄2) x̄2 such that asymptotically stable

p(0, x̄2) = τ
τ(1−x̄2)2+x̄2

if τ < −x̄2
2

∂c
∂x2

(0, x̄2)

(1, 0) none unstable

(x1, 1− x1) none unstable

with x1 ∈ ]0, 1[

(τ, 0) none asymptotically stable

if 1
2−τ < p(τ, 0)

(τ̄ − x̂2, x̂2) x̂2 such that unstable

p(τ − x̂2, x̂2) = 1
(1−τ)(1−x̂2)+1

A.1.2 Global Theory of Nonlinear Systems

It is left to show that no other attracting sets exist 27 and attractors 28 than those

found in the last subsection.

The Generalized Poincaré-Bendixson Theorem for Analytic Systems states that the ω-

limit set 29 of any trajectory of a two-dimensional, relatively-prime, analytic system is

either a critical point, a cycle, or a compound separatrix cycle. We show below that

the solution trajectories of system (6) cannot be closed. This allows us to exclude limit

cycles and compound separatrix cycles as ω-limits. We will then be able to conclude

that only evolutionary equilibria can be attractors.

27A closed invariant set A ∈ E is called an attracting set of a system ẋ = F (x) if there is some

neighborhood U of A such that for all x ∈ U , φt(x) ∈ U for all t ≥ 0 and φt(x) → A as t →∞.
28An attractor is an attracting set containing a dense orbit (a dense orbit is an orbit that comes

arbitrarily close to each point in the attractor).
29A point p ∈ E is an ω-limit point of the trajectory φ(t, x0) of the system ẋ = F (x) if there is a

sequence tn →∞ such that limn→∞ φ(tn, x) = p.
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In order to show that our system does not have any closed trajectories, we apply

index theory, a method that describes global behavior of the solutions to a differential

equation system (see e.g. Strogatz, 1994, Chapter 6). In Proof A.1 we have calculated

all critical points of system (6). They all are on the boundary of the simplex except

(τ − x̂2, x̂2), which is a saddle. We now assume that there exists a closed trajectory

to (6). Figure 3 shows all qualitatively different locations a closed trajectory could

occupy, they are indicated by the dotted curves T1, T2, and T3. The index at each of

the critical points is also shown in the figure (for an explanation of how to calculate

the index at critical points, see Strogatz, 1994, Chapter 6).

  x 2  

x 1  

±1 

+1 

-1 

T 1  

T 3  

T 2  

±1 

±1 

Figure 3: Locations of closed trajectories.

We can rule out closed trajectories as follows. Trajectories like T1 are impossible

because they cross the boundary of the simplex. The reason is the following. From

Bruegger (2005) we know that the simplex boundary is invariant under system (6).

So the boundary of the simplex contains straight-line trajectories. Since trajectories

cannot cross,30 we can exclude trajectories like T1. Trajectories like T2 can be excluded

as well because they do not enclose any fixed points at all. And trajectories like T3

violate the requirement that the indices inside the closed trajectories must sum up to

1 (see e.g. Strogatz, 1994, Theorem 6.8.2., p. 180). We conclude that system (6) does

not have any closed trajectories. Consequently, the ω-limit set of any trajectory of

our system is a critical point. It is clear from the definition of an attractor and the

concept of asymptotic stability, that only an asymptotically stable critical point can

30This follows directly from the Fundamental Existence-Uniqueness Theorem.
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be an attractor. We conclude that almost every trajectory through a point x ∈ Σ

approaches an EE in the limit. The sole exceptions are those trajectories that are the

separatrices of the system.

From the Poincaré-Bendixson Theorem we know that if a trajectory of a planar system

is confined to a closed, bounded region, then the trajectory is either attracted by a

critical point or a closed trajectory. Since the simplex is invariant under the dynamics

of system (6) and since we have shown that system (6) has no closed trajectories, we

can conclude, that there always exists an attractor in the corruption game. This results

holds for all p(x) and all τ .
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