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Abstract

We analyze evolutionary games with replicator dynamics that have frequency
dependent stage games. In such an evolutionary game, the payoffs of a strategy
at any point in time are functions of the strategy shares given by the players’
strategy choices at that time. This framework is suited to model feedback effects
between population variables and individual incentives, indirect network effects,
and behavior under social norms. We show that the replicator dynamics with
frequency dependent stage games is well behaved, i.e. has unique solutions and is
simplex invariant for all initial strategy states. Moreover, we present an extension
of Liapunov’s Theorem that facilitates the analysis of evolutionary equilibria for
frequency dependent evolutionary games.
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1 Introduction

We analyze evolutionary games with replicator dynamics that have frequency depen-
dent stage games. A stage game that is frequency dependent features strategy payoffs
which are functions of the shares of strategies chosen by the players at a given point in
time. We show that the replicator dynamics with frequency dependent stage games is
well behaved, i.e., has unique solutions and is simplex invariant for all initial strategy
states. Moreover, we present an extension of Liapunov’s Theorem that facilitates the
analysis of evolutionary equilibria for evolutionary games with frequency dependent
stage games (called frequency dependent evolutionary games in the following).

The class of frequency dependent evolutionary games, which includes the standard
evolutionary games as a special case, applies to a broader range of economic contexts
than the standard framework. In the following we present some interesting examples
which can be analyzed with a model based on a frequency dependent evolutionary
game.

Whenever feedback effects between population variables and individual incentives
exist, a frequency dependent evolutionary game framework is better suited for an
analysis than the standard framework. The reason is that payoffs for certain strate-
gies can be modelled as functions of the population behavior, i.e., as functions of the
strategy shares prevalent in the population. For example, when analyzing the evolu-
tion of corruption in a society, such a feedback effect could play an important role.
The individual incentives to corrupt depend on the prevalence of corruption: When
corruption is widely spread, corrupt behavior may have greater benefits (gains from
corruption need not to be hidden) and lower costs (corrupt activities are less likely to
be punished).

In the same way corrupt activities become less costly the more corruption there is,
social norms are felt the more intensely by an individual the larger the population share
adhering to it is. A frequency dependent evolutionary game is well suited to include
the changing costs of offending against a social norm and the resulting dynamics in the
behavior under social norms (see Lindbeck et al., 1999, for the example of the social
norm to live off one’s own work).

Similar in structure, but with a different interpretation, indirect network effects as
studied in Caillaud and Jullien (2003) can be grasped as frequency dependent evolu-
tionary games. The utility of customers choosing between two market intermediaries
offering matching services on the web does not only depend on how many others sub-
scribe to a certain intermediary, but also on how the two intermediaries adjust their
pricing schemes in reaction to present market shares in order to attract a larger cus-
tomer community. Frequency dependent evolutionary game representing markets of
two-sided interaction and different ”locations” will reproduce the results of Ellison and
Fudenberg (2003) in which markets do not tip for one location.

Frequency dependent evolutionary games may also help to explain certain puzzles in
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biology as the following example shows. Left-handers happen to be lighter and smaller
than right-handers, which should put left-handers in an evolutionary disadvantage.
However, the share of left-handers has not been driven to zero in any human population.
Biologists now argue that this is because benefits from left-handedness balance its costs
out: Left-handers have a strategic advantage in fights, because most right-handers
have very little experience of fighting left-handers, but not vice versa.! To model this
hypothesis, the advantage from the experience to fight a certain type must be captured
as a strategy stage dependent payoff.

We have chosen to demonstrate the analysis of frequency dependent stage games
in evolutionary games with the replicator dynamics. The reason is that the replicator
dynamics, together with fictitious play and partial best-response dynamics, is the most
widely used and studied strategy adjustment rule in evolutionary games. Although it
originated as a concept in evolutionary biology (Maynard Smith and Price, 1973),
economists have studied many individual behavioral rules that result in the replicator
dynamics on the population level: Imitation driven by dissatisfaction and imitation
of successful agents (Weibull, 1995, pp. 188), imitation rules motivated by regret
theory (Alos-Ferrer and Nermuth, 2003; Cubitt and Sugden, 1998), expedient and
monotone learning rules (Borgers et al., 2004), and stochastic forms of fictitious play
and reinforcement learning (Hopkins, 2002; Borgers and Sarin, 1997; Gaunersdorfer
and Hofbauer, 1995). It is this work which makes frequency dependent evolutionary
games with the replicator dynamics an attractive framework whenever learning or
imitation behavior seems adequate.

The plan of the paper is as follows. In Section 2 we present the standard evolu-
tionary games with replicator dynamics. In Section 3 we introduce the extension to
frequency dependent evolutionary games, prove the conditions under which the repli-
cator dynamics with frequency dependent stage games are well behaved and discuss
the 2x2-games with linear payoff functions. In the last section we present a Liapunov
Theorem which facilitates the analysis of frequency dependent evolutionary games.
Note that all proofs of Propositions and Theorems are collected in Appendix A.

2 Evolutionary Games with the Replicator Dynamics

An evolutionary game describes strategic interaction over time. It is defined by the
populations of players, a state space of strategies, a stage game, and an adaptation
rule which determines the dynamic adjustment process of strategy choices. Together
with fictitious play and best-response dynamics, the replicator dynamics is the most
common adaptation rule employed in evolutionary games. In this section, we briefly
present the standard variant of an evolutionary game with continuous-time replicator

1See the article ”Left-handedness: A sinister advantage” in The Economist, Dec 9th, 2004. It cites
literature in biology which finds that the share of left-handers is higher in more violent societies.
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dynamics.

The Population. We focus on one-population games. The population consists of a
continuum of infinitely-lived players which implies a continuous state space of strate-
gies.? Together with the assumption of continuous time, this allows us to specify the
dynamics of a game as a system of ordinary differential equations.

The Strategies. Each player chooses to play one of n pure strategies of a given
strategy set S.3 If an individual plays strategy i € S we denote his strategy choice by
o; = (0,...,1,0,...,007 € R™, where the 1 is the i-th component of ;.

The fraction of the population playing strategy i at time ¢ is denoted by z;(t) €
[0,1]. The strategy state of the game, x(t) = (x1(t),z2(t),...,z,(t))T, specifies the
frequency of each of the n strategies in t. The set of feasible strategy states, the
strategy state space, is the simplex ¥,_; of dimension n — 1.# Note that we will omit
the time index ¢ if there is no risk of misunderstanding.

The Stage Game. The stage game characterizes the strategic interaction of two
players at any point in time. It is defined by an expected payoff function f(o;,x),
f 9 xX,-1 — R, which gives the payoff of strategy o; given the strategy state x.

Most of the existing literature adopts a linear expected payoff function originally
employed in Maynard Smith (1982) and depicts the stage game as a payoff matrix A.
In every period players are drawn randomly and pairwise to play the stage game and
receive the expected payoff f(o;,x) = o} Ax.®

The Replicator Dynamics. Now let us describe how the strategy frequencies change
over time. The replicator dynamics (see Taylor and Jonker, 1978; Schuster and Sig-
mund, 1983) are defined by the differential equation system

z; = x; (flog,z) — flz,x)) VieS. (1)

If we divide the equations in (1) by the respective z;, the interpretation of the replicator
dynamics is clear: The higher a strategy’s payoff in comparison with the average payoff
in the population, the higher its relative growth rate.

For a simplified notation, we define the system’s right hand side as the function

*For other implications see Friedman (1998).

3Note that by changing the interpretation of strategy states, the replicator dynamics with mixed
strategies takes the same functional form; see Hofbauer and Sigmund (1998) for the structure of such
a setup. P

“The simplex X, _1 is defined as {z(t) € R" | z;(t) > 0and [ xi(t)=1 for i=1,..,n}.

5Tt is common in the literature not to differentiate between the expected payoff against the pop-
ulation and the realized payoff of a specific stage game played. There are several reasons for that
(Friedman, 1998): First, in large populations such as ours the expected payoff is a sufficient statistic.
Second, payoffs are often not generated by random pairwise encounters, but by general interactions
such as markets, and are therefore not stochastic.
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F:¥ — Y, and can then write equation (1) as & = F(x).6

Equilibrium Concept. The most common equilibrium concept in biological liter-
ature concerned with evolutionary games is the Evolutionary Stable Strategy (May-
nard Smith and Price, 1973) which is a static equilibrium concept that rests upon the
the payoff function of the stage game. Since we will abandon the assumption of a con-
stant stage game, an equilibrium concept which assures asymptotic stability of F' in an
equilibrium serves our purposes better: The Evolutionary Equilibrium’ (EE) specifies
an equilibrium in terms of the mathematical definitions of function F’s asymptotic
stability in a critical point.

Definition 1 A strategy state z* € X,_1 is an evolutionary equilibrium of an evo-
lutionary game if * is an attractor® of the dynamical system @ = F(x) defining the
game’s adjustment dynamics.

In other words, an evolutionary equilibrium is a subset of state space X,_1 which a
solution trajectory of # = F'(x) does not leave once reached. Additionally, if a solution
trajectory of the dynamics starts sufficiently close to the evolutionary equilibrium,
it remains close and converges asymptotically to the evolutionary equilibrium over
time. The open set of points in ¥,,_1 converging to a given EE are called its basin of
attraction.

3 The Replicator Dynamics with Frequency Dependent
Stage Games

3.1 Why Extending the Standard Framework?

In many situations of economic interaction, the frequency of certain strategies not only
matters because players are more or less likely to play against these strategies, but also
because their frequencies may change the payoffs of the stage game. If payoffs of the
stage game change with the frequency of certain strategies, it is unsatisfactory to apply
a model based on a standard evolutionary game. In order to model these situations,
we suggest the class of frequency dependent evolutionary games: The payoffs for all

5The replicator dynamics is simplex invariant:
=< P x >
Ti = Ti (f(al,x)—f(a:,m))z iUz‘f(Uivx)_f(iﬁw) x; = 0.

i€S €S i€S i€S

"The term evolutionary equilibrium was introduced by Hirshleifer (1982).

8 An attractor is defined as an asymptotically stable non-wandering set (in our case the only possible
non-wandering sets are critical points and points on limit cycles or graphics). For definitions of critical
points (also called equilibrium points or fixed points), limit cycles, graphics (also called separatrix
cycles), asymptotic stability, and non-wandering sets see Perko (2000) or any textbook on dynamic
systems.
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strategies are nonlinear functions of the strategy frequencies, i.e., the elements of the
payoff matrix of the frequency dependent evolutionary games are functions of the
distribution of strategies at any point in time.

Such an extension broadens the applicability of evolutionary games to a variety
of interesting topics. For instance, economic situations in which feedback effects play
an important role may rather be analyzed as frequency dependent evolutionary games
than as standard evolutionary games. Feedback effects between variables defined by
population behavior and individual decisions are present in many economic situations:
The payoff of a certain strategy may well depend on how many others choose the
strategy as well.

We give an example to clarify our point. In an evolutionary game modelling cor-
ruption, government employees choose between the strategy to be corrupt and the
strategy to be fair. The payoff for corrupt behavior contains the benefits and the costs
for a corrupt act. So far we could comprehend the situation as a standard evolutionary
game. However, the costs of corruption may very likely depend on the frequency of
corrupt agents, the reason being that the more corruption there is, the more likely it
is that a corrupt government employee gets around his punishment. Since the costs of
corruption are part of the payoff of the corrupt strategy, we have to employ a frequency
dependent evolutionary game framework.’

Other applications for which the frequency dependent evolutionary game may be
a suitable framework are the decisions for a level or type of education and the issue of
technology adaptation. Whenever agents decide between different educational levels
or different professions, their future salary will most certainly depend on how the
distribution of the educational levels is, respectively, how big the number of people
educated for a certain profession is. A large number of people with the same kind of
education may decrease their salary, a very small number could prevent the existence
of a certain industry. A similar reasoning can be made for the issue of technology
adaptation: The returns to investment of a certain technology depend on the frequency
of all technologies adopted in a population of firms, for instance because price setting
depends on the degree of competition and cost structures present.

Very little research has been done on frequency dependent evolutionary games. The
notion game with frequency dependent payoffs is due to Brenner and Witt (2003) who
look at two-strategy, two-player stage games with a strategy adaptation rule motivated
by reinforcement learning. The concept itself dates back to Joosten et al. (1994), who
first described games with changing payoffs, in a different context though. A few
other examples of frequency dependent games (not evolutionary ones) are provided
by Joosten et al. (2000) who introduce frequency dependent payoffs in the setup of
stochastic games.

9See Bruegger (2005) for such a model of corruption.
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3.2 Definition

We first define the class of frequency dependent evolutionary games.

Definition 2 An evolutionary game consisting of a population, a strategy state space,
a strategy state dependent stage game, and a dynamic adjustment process, belongs to
the class of frequency dependent evolutionary games.

In this paper, we are only concerned with frequency dependent evolutionary games
that have replicator dynamics as an adjustment process. According to Definition 2,
the replicator dynamics of a frequency dependent evolutionary game can be written as

i; = (0T A@x)z —zA(x)z) VieS. (2)

In the next section we find the conditions under which the general features of the
replicator dynamics still hold for frequency dependent evolutionary games.

3.3 Some General Results

The replicator dynamics of a frequency dependent evolutionary game is a system of
differential equations as specified in (2). Frequency dependent evolutionary games can
only be used as economic models if the solutions of (2) have a meaningful economic
interpretation. This is the case if (2) is a well-defined dynamics on the state space
Yn—1, i.e., if the following two conditions are satisfied:

(I) there are unique solutions ¢;(z%) for all initial conditions 20 € %,,_1,

(IT) these solutions must remain in the strategy state space for all initial conditions,
ie. ¢p(29) e, 1 VtandVale X, ;.

The following two propositions comprise the conditions for the system of differential
equations (2) to be well-defined. Proposition 1 is concerned with (I), it states the
sufficient conditions for the existence and the uniqueness of the solutions of system

2).

Proposition 1 If all elements of A(x) are Lipschitz-continuous functions, the repli-
cator dynamics of a frequency dependent evolutionary game has a unique solution for
every initial condition in the state space.

The next proposition is concerned with (II), it states the conditions under which
the unique solutions of the replicator dynamics of a frequency dependent evolutionary
games lie in the interior of the game’s state space.

Proposition 2 If all elements of A(x) are continuous functions, then the interior of
simplex ¥ and the boundary of the simplex ¥ are both invariant under the replicator
dynamics of a frequency dependent evolutionary game.
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Since Lipschitz-continuity implies continuity (see e.g. Walter, 1991), the differential
equation system (2) induces a well-defined dynamics if we assume the elements of
A(z) to be Lipschitz-continuous functions of x.

Proposition 2 implies in particular

N N N
dwi=1 = > &=0 = ip=-» .
i=1 i=1 izt
The change in the frequency of any strategy can be expressed through the changes
in frequencies of the remaining strategies. This allows us to reduce the differential
equation system of the replicator dynamics for frequency dependent evolutionary games
by one equation.
In Proposition 3, we state one more property of the replicator dynamics, which
often simplifies the calculations of the solution.

Proposition 3 The replicator dynamics of a frequency dependent evolutionary game
18 tnvariant under positive continuous transformations of payoffs.

Invariance under a positive continuous payoff transformation means that the functions
in A(z) can be multiplied by a positive real number without changing the solutions of
the system. Similarly, adding or subtracting a continuous function from the columns of
A(z) does not change the replicator dynamics of a frequency dependent evolutionary
game.

In the next section we focus on the class of evolutionary games that have stage
games with two strategies. We compare the evolutionary equilibria of the standard
evolutionary games with those of the frequency dependent evolutionary games.

3.4 The Two-Strategy Case

From Proposition 3 follows that we can write the payoff matrix of a two-strategy (2x
2) frequency dependent evolutionary game as

B a(z) 0
B(r) = ( ; b(m),

where a(x) and b(z) are Lipschitz-continuous by assumption. The replicator dynamics
(2) can be written as

1 = a(z)r) — (a(x);r% + b(a:)x%)

iy = b(z)zs — (a(z)2] +b(z)z3) .
By Proposition 2, £9 = —&1, which leaves us with

iil = 1‘1(1 — iUl) (l’l(l(ivl) — (1 — 1'1) b(fbl)) = F({L‘l) . (3)
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For arbitrary functions a(z1) and b(x1) the replicator dynamics can yield very com-
plicated behavior because F'(x1) may have many critical points which qualify as evo-
lutionary equilibria.

Most economic interpretations might not need highly nonlinear and non-monotonic
payoff functions. For many applications it may be sufficient to model whether a payoff
increases or decreases with the frequency of a strategy, and if these changes become
stronger or weaker the higher the frequency of the strategy. However, even with quite
simple functions for the payoffs, the number of critical points of F(x;) cannot be
determined generally. The only class of payoff functions that allows for a more precise
description of equilibrium behavior is the class of linear functions, i.e., a(z1) = a;+agry
and b(l’l) =b; + byxy.

Proposition 4 If a(xz1) and b(z1) are linear functions, a 2x2 frequency dependent
evolutionary game with replicator dynamics has at most one FE and at most one
unstable critical point in the interior of the simplex. Apart from the interior EE, it
can additionally have an EE at x1 = 0 (if F(0) < 0) and an EE at x1 = 1 (if F(1) > 0).

We now compare the standard games with their frequency dependent counter-
parts. Of the former, we distinguish between three categories: Prisoners’ Dilemma
(Type I and II), Coordination Games, and Hawk-Dove Games (see Weibull, 1995,
p.75). Analogous to these categories we assume for the frequency dependent Pris-
oners’ Dilemma I a(xz1) > 0 and b(z1) < 0, for the frequency dependent Prisoners’
Dilemma IT a(z1) < 0 and b(z1) > 0, for the frequency dependent Coordination Game
a(z1) > 0 and b(x1) > 0, and for the frequency dependent Hawk-Dove Game a(z1) < 0
and b(x1) < 0, z; € [0,1]. Table 1 summarizes our findings, which are proved in Ap-
pendix A. We have peg, pha,1,Prd2 €]0,1[, the explicit expressions can be found in

Table 1: Evolutionary Equilibria of standard and FD-games.

EE of EE of
Game Category | Standard Game FD-Game
(values for x1) (values for x1)
PD I {0} {0}
PDII {1} {1}
CG {0,1} {0} or {0,1} or {0,peq}
HD 2} {1} or {pna,1,1} or {pra2}

Appendix A.

We see that no matter how the payoffs in a Prisoners’ Dilemma change with the
frequency of a strategy, the EE will be the same as in a game with constant payoffs.
However, for Coordination Games the situation is different: depending on the payoff
function, it is now possible that ;1 = 1 is no longer an EE, or that it is replaced
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by an EE in the interior of the strategy space. In the case of the Hawk-Dove Game,
frequency dependent payoffs can change the dynamics of the game too. While the
game with constant payoffs featured a unique interior EE, the frequency dependent
game can either have a (different) unique interior EE, too or have an EE at 1 = 1, or
both.

For Table 1 we have assumed that the functions a(x1) and b(z) either take negative
or positive values. However, frequency dependent evolutionary games also allow to
conjoin the different categories of games. We demonstrate this with an example.

Example 1

Let us consider a general situation of competition: Two players compete for a prize,
by either choosing competition technology 1 or 2. Technology 1 is more expensive,
but wins over technology 2. If two players with the same technology compete, they
share the prize. We assume that the costs for the technologies depends on how
many agents use a certain technology. This setup can be summarized with the

following payoff matrix:'°

aey = (B poal)y, "

—co(z) 5 —ca(x)

Let us normalize the prize p to 1, and assume that the costs for technology 1,
c1(x), increase, the more players use it. We assume ¢ (z1) = 0.82z1. Technology 2,
being the less sophisticated technology, becomes cheaper the more players adopt
it, ca(w2) = 0.2 — 0.22z5. On the interval z; € [0, 2] this game is a Prisoners’

Dilemma I, on the interval x; € [2,1] it is a Prisoners’ Dilemma II. The only

6’
EE in this game is z] = %. Independent of how many players use each of the

technologies initially, they converge to the equilibrium in which five out of six
players use technology 1. Note that an equilibrium in the interior of the state
space, |0, 1], can neither appear in a Prisoners’ Dilemma I nor II.

The EE is found by solving the differential equation
1 = 0.121(1 — 1) (5 — 62),

which we derive by first using Proposition 3 to transform A(z) in (4) into a diagonal
matrix, and then plugging the respective elements of this new matrix into (3). The
critical point x5, F(x}) = 0, is asymptotically stable because of DF(x}) < 0.

In the next section, we attend to an important complicacy which often appears in the
analysis of frequency dependent evolutionary games: Nonhyperbolic critical points on
the boundary of the simplex. We present an extension of Liapunov’s Theorem which
can be very helpful for analyzing nonlinear dynamical systems with a simplex as a
state space.

10Top left entry of matrix is payoff for technology 1 when competing with technology 2, top right is
payoff for technology 1 when competing with technology 2. Bottom row similar for technology 2.
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4 An Extention of Liapunov’s Theorem for Evolutionary
Games

To find the evolutionary equilibria of a frequency dependent evolutionary game, we
have to find the asymptotically stable equilibrium points of the corresponding differ-
ential equation system. In many cases this is not an easy task, since the differential
equation systems are highly nonlinear.

Local Theory of Nonlinear Differential Equation Systems distinguishes between
hyperbolic and nonhyperbolic critical points of a system.'! In order to evaluate the
stability of hyperbolic critical points, the Hartman-Grobman Theorem can be used, '?
i.e., the stability of a critical point z* is determined by the signs of the real parts of
the eigenvalues of DF(z*).13 This is the method we have applied to find the EE in
Example 1.

However, differential equation systems of frequency dependent evolutionary games
may have nonhyperbolic critical points. One method to show stability for nonhyper-
bolic critical points is due to Liapunov. The Liapunov Theorem (see e.g. Perko, 2000,
p. 131, Theorem 3) which states under which conditions the existence of a Liapunov
function (defined below) implies (asymptotic) stability of a critical point, only ap-
plies to critical points that are interior points of the definition space of F'(x). Hence,
the conditions of Liapunov’s Theorem rule out all equilibrium points on the simplex
boundary. To clarify the problem, we now give an example of a critical point which
cannot be analyzed by Liapunov’s method.

Example 2

Let us again look at the 2-strategy-2-player case with linear functions in the payoff
matrix. We have calculated

DF(x1) = (1-2z1)((a2+ bg)l‘% + (a1 + by — ba)x; — by)
+ [I,'l(l — 1’1)(2(@2 + bg) +a; + b1 — b2) .

From (3) we know, that 27 = 0 is a critical point for this category of games. We see
that DF'(0) = 0if by = 0. Consequently, if by = 0, the game cannot be analyzed by
using the Hartman-Grobman Theorem and we would suggest Liapunov’s method
to analyze the stability of 7. However, Liapunov’s method does not apply either
because ] = 0 is a point on the boundary of the simplex.

1 Critical point * is hyperbolic, if none of the eigenvalues of DF(z*) has a zero real part.

12The Hartman-Grobman Theorem states that if F is differentiable then there exists a homeomor-
phism that maps the trajectories in an open set around a hyperbolic critical point * onto trajectories
near x* of the linear system & = Az with A = DF(x*). That is to say that near a hyperbolic critical
point z* the nonlinear system & = F(z) has the same qualitative structure as the linear system & = Ax
with A = DF(z").

13Sources (at least one eigenvalue of DF(x*) has a positive and at least one has a negative real part)
and saddles (all eigenvalues of DF(z*) have positive real parts) are unstable, sinks (all eigenvalues of
DF(z*) have negative real parts) are asymptotically stable.
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In some cases, Liapunov’s method can still be applied if we just consider the dynamical
system on a set containing the simplex, making a point on the simplex boundary an
interior point. However, since the behavior of the solutions to the dynamical system of
an evolutionary game tend to be complicated on simplex boundaries (remember that
the simplex as well as its boundaries are invariant under the dynamics of frequency
dependent evolutionary games), it might become impossible to find a Liapunov func-
tion for this extended definition set. In order to facilitate the analysis of frequency
dependent evolutionary games in these cases, we present a theorem which extends
Liapunov’s method to critical points on the simplex boundary.

Theorem 1 Let E be an open subset of & and z* € E.** Suppose that F(z) € C1(E)
and F(z*) = 0, where the simplex is invariant under © = F(x). Suppose further that
there exists a real valued function V € CY(E) satisfying V(x*) = 0 and V(z) > 0,
VeeE\z*. IfV(z) <0Vaz e E, z* is asymptotically stable.

Theorem 1 states that we do not have to find a Liapunov function for an environment
of x*, but only a Liapunov function for the environment of x* within the simplex. With
Example 3 we show how this can ease the proof that a critical point is an EE.

Example 3
To make the example as simple as possible, assume that a; = —2, a3 = 2, and
bo = —1 in a 2x2 frequency dependent evolutionary game with linear payoff

functions. The differential equation for the replicator dynamics, see (3), can then
be written as

B o= 231 —x)?.

We want to find out if 27 = 0 is an EE. The obvious Liapunov function for this
nonlinear system is V(x1) = 2% because V(0) = 0 and V(z1) > 0 for x; in the
p-neighborhood of 0, i.e. | — p, p[. We now have to show that V(z;) < 0 for the p-
neighborhood of 0 (Liapunov Theorem) or that V(1) < 0 for the p-neighborhood
within the simplex, i.e. |0, p[, according to Theorem 1.

Vizy) = 2xa; = 2z - (fx%(l - x1)2) = 7217“{’(1 - z1)2.

We see that V(z;) < 0 for z; €]0,p], but not z; €] — p,p[. This shows, how
Theorem 1 can facilitate a proof for asymptotic stability.

The Liapunov method does not provide us with a procedure or a hint on how to
find a Liapunov function, neither does our extension in Theorem 1. In many cases a
Liapunov function may be guessed with a little bit of experience and consideration of
the function F'(x). However, Theorem 1 certainly makes the search for a Liapunov
function easier since it has to comply with the conditions of Liapunov’s Theorem on a
smaller set.

“Notation: E is the set of osculation points of E. Point « is an osculation point of E if ENU,(z) #
0,Vp € R4. The set U,(z) is the p-neighborhood of x (or the open sphere around z). It is defined as
Up(z) ={y € R"; |z —y| < p}.
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5 Conclusions

If the share of players using a certain strategy in an evolutionary game has an impact on
the payoff of any strategy in the game, we deal with a frequency dependent evolutionary
game. In this paper, we have studied frequency dependent evolutionary games which
have the replicator dynamics as a strategy adjustment rule.

We have shown that under very general assumptions, the replicator dynamics with
strategy state dependent payoff functions is well-behaved, that is, has unique solutions
for all initial startegy states and is simplex invariant. We suggest the evolutionary
equilibrium as an equilibrium concept for frequency dependent evolutionary games.

Very few statements can be made in general about the evolutionary equilibria of
frequency dependent evolutionary games. The functional forms of the strategy state
dependent payoff functions are decisive for the set of equilibria. Nevertheless, we think
that the framework is suited for interesting applications in economics.
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A Appendix

Proof of Proposition 1

Proposition 1 follows directly from the Fundamental Existence-Uniqueness Theorem
(Picard-Lindeldf, see e.g. Perko (2000)).

Proof of Proposition 2

For simplex invariancy of the replicator dynamics of a frequency dependent evolution-
ary game the following three conditions must be satisfied:

N
Z:c =0 (5)

zh_r)ré+x =0 (6)
lim ©; = 0 (7)
a:i—>17

Condition (5) guarantees that the solution of the system satisfies ZZ]\L L x; = 1 if the
initial condition is an element of simplex 3. Conditions (6) and (7) impose the upper
bound 1 and the lower bound 0 on the solution x(¢). The three together limit the
solution z;(t) to the simplex X.

We introduce the following notation for row i of matrix A:

Ai = (Gi1,0i2, ..y Qin—1,Qin) -

Condition (6) can be written as

N
g =ty o (St ) | = g )
where we denote the function in brackets by g(z). If all elements of A are continuous
functions on simplex ¥, then g(x) is a continuous function on ¥ because sums and
products of continuous functions are continuous functions. The simplex ¥ is compact,
from this it follows (Theorem of Weierstrass) that g(x) is compact (and therefore
bounded). So we have

lim @; =0.
z;—0t

We next consider condition (7),

xr;—1— x;—17

N
lim #; = lim z; | (Adix) — ij(Aj:U) ,
j=1
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under the assumption that a;;(x) are continuous functions. By the reasoning above
we know that sums and products of the functions a;j(x) are bounded and that limits
on ¥ are finite therefore. Thus we can write

N
N
-
7=1
= —Z lim z;(Ajz)
. Ti—1T
J#i

For z; — 17, we have that z; — 0T for j # . Again continuity of the functions a;;(z)
on Y implies that

x]-h—r>l(l)+ zj(Ajz) =0

and therefore we have

lim z; = 0.
xi—>17

Finally condition (5) can be shown by summation of all equations in (2):

N N
Z T, = Z z; (€jA(z)x — o' A(z)z)
i=1 i=1

N N

= D_mileiA@r) = 3 @i’ Al)z)
l;l =1 N

= (@) Alw)r — (@A) Y
i=1 i=1

N
- (Z) A(w)e - ' Aw)e
=1

= 2'A(x)xr —2'A(z)z = 0.

From the above it is clear that if z; = 0, we have #; = 0. Thus the boundary of ¥ is
invariant. When rewriting equation (2) as
:tA
= = (UTA(.CE)$ —zA(z)z) Vie s
z;
we see that the differential equation system intuitively describes the relative change
of the solutions z;(t). From this it is obvious that if ;(0) > 0 < x;(t) > 0. So the

interior of ¥ is invariant, too.
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Proof of Proposition 3

If we multiply all payoffs with A > 0, we can write the replicator dynamics as
i; = x; (0T ()7 — 2AA(2)z) = Aoy (0T A(z)z — zA(2)7) |
which is a system with the same solutions z;(t) as (2).

Now let B(z) be a matrix with n identical rows, which we denote by

b(x) = (b1(x),b2(x),...;bp—1(x), bp(x)) .

The elements of B(z) are continuous functions on .

i; = (o7 [A(z) + B(z)] v — 2 [A(2) + B(z)] 2)
zi (0T A(z)x + b(z)x — v A(z)z — 2b(2)7)
x; (UTA(JJ)x — zA(z)z) .

Proof of Proposition 4

By plugging the linear functions into (3), we get

.fl = .1'1(1 - .731) (:cla(xl) - (1 - I‘l)b(.%'l))
= z1(1 —x1) ((a2 + b))zt + (a1 + by — ba)a1 — by) .
The polynomial (ag + be)x?3 + (a1 + by — be)x1 — by has 2 roots. So it has at most 2
roots on the interval ]0,1[. Because F'(x;) is continuously differentiable, not both of
these potential roots can be EE: We need DF'(z7) < 0 for a root x7] to be an EE. So we

can at most have one EE and one unstable critical point in the interior of the simplex.
Furthermore, 0 and 1 are critical points too, each of which can be an EE or unstable.

Calculations for Table 1

Note that

DF(z1) = (1-2x1)(z1a(z1) — (1 —21)b(z1))
+21(1 = 21) (a(z1) + 210 (1) + b(z1) — (1 — 21)b(1))
= (1-221) ((a2 + bo)z] + (a1 + by — b2)21 — by)
+z1(1 —z1) (2(ag + b2)z1 + a1 + by — ba) .

Prisoners’ Dilemma I: If a(z1) < 0 and b(x;) > 0, the only critical points are
x1 = 0 and 1 = 1, because this implies za(z1) — (1 — z1)b(z1) < 0. DF(0) < 0 and
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DF(1) > 0, so x; = 0 is the only EE.
Prisoners’ Dilemma II: The critical point z1 = 1 is the only EE, reasoning similar

to Prisoners’ Dilemma 1.

Coordination Game: The Coordination Game requires a(x1) = a1 + azz > 0 and
b(x1) = by + box > 0. Hence, a3 > 0 and by > 0. The roots of z1a(x1) — (1 — x1)b(z1)
are

—(a1 + bl — bg) + \/(al + b1 — b2)2 + 4((12 + bg)bl
2(&2 —+ bg) )

Note that DF(0) = —b; < 0. So if r; €]0,1[ and ro €]0,1], then z; = 0 and z1 = 72
are EE. We have named 73 as p.q in Table 1. If either r €]0, 1] or ro €]0, 1] but not
both, then this root is an unstable critical point and {x; = 0,21 = 1} are the EE. If
none of the roots lies in ]0, 1], then F(z1) < 0 on ]0,1[ and 1 = 0 is the only EE.

T2 =

Hawk-Dove Game: We proceed analogously to the calculation for the coordination
game. In a Hawk-Dove Game, the FD-payoffs satisfy a(z1) = a1 + aez < 0 and
b(x1) = by + bax < 0. It follows that a1 < 0 and b; < 0. Note that DF(0) = —b; > 0.
The roots are the same as in the coordination game. If r1 €]0,1[ and r9 €]0, 1], then
xz1 =71 and 21 = 1 are EE. We have named 7 as ppq,1 in Table 1. If either r; €]0, 1]
or r2 €]0,1[ but not both, then this root is the sole EE. We have named that root
Phd,2 in Table 1. If none of the roots lies in (0,1), then F(x1) > 0on (0,1) and 21 =1
is the only EE.

Proof of Theorem 1

Note that we follow the proof of Theorem 3 in Perko (2000, p. 131) and make adjust-

ments to our case where necessary.

Function V(z) is called a Liapunov function. We define ¢;(x) as the flow of system
& = F(x). We can write

. d

V(z) = 2 V(e(2))lt=0 = DV (2)F(z). (8)
The first equation is due to the definition of the flow of a differential equation system,
the second equation is due to the chain rule.

Choose € > 0 sufficiently small that N.(z*) = U.(z*) N 39 C E. We define the compact
set Sg,

S. = {ze€R?|z—2* =c}nNN(z%).

Since V(x) is continuous there exists a minimum m, of V(z) on S: and V(z) > 0 for
r € E\ z* implies m. > 0. We also have V(z*) = 0 and since V(z) is continuous
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there exists a d such that |x — 2*| <  implies V' (z) < m.. Equations (8) imply that if

V(z) < 0 for x € E, V(x) is strictly decreasing along the trajectories of & = F(z). It
follows that for all Z € Ns(z*) = Us(2*) N X C E and t > 0 we have

V(or(2)) < V(Z) <me. (9)

Now suppose that for  with | —z*| < § there is a t; > 0 such that |¢¢, (Z)| = €. Then
since m. is the minimum of V(x) on Se, this would imply that V (¢, (Z)) > me which
contradicts (9). Thus for # with |Z—2*| < § and t > 0 it follows that |¢(Z)| < €.15 Note
that this is only true if the simplex is invariant under the dynamics of the differential
equation system # = F'(z). The reason is that simplex invariancy implies that the

trajectories through Z can only leave N.(z*) by crossing S..

So for  with |Z — z*| < 0 and t > 0, ¢:(Z) C N(z*). Let {tx} be any sequence
with ¢ — oo. Then since N.(z*) is compact, there is a subsequence {¢, (%)} of

{¢¢, (%)} that converges to a point y* € N.(z*).!1® Because V() is a continuous
function, V' (¢4, (Z)) — V(y*). Since V(x) is strictly decreasing along the trajectories
of & = F(x) we have that

V(oe(2)) > V(y)

for t > 0. Now we have to determine y*. Assume that y* # x*. Then for s > 0 we
have V(¢s(y*)) < V(y*). Continuity of V(x) implies that for all y sufficiently close to
y* we have V(¢s(y)) < V(y*) for s > 0. But then for y = ¢y, (Z) and n sufficiently
large, we have V(¢ps1¢, (Z)) < V(y*) which contradicts the above inequality. So by
contradiction we have

Y=z

Since V' (z) is strictly decreasing along trajectories and since the subsequence ¢y, ()
converges to z*, it follows for every sequence t; — oo that ¢ (Z) — x*. Therefore
&¢(Z) — x* as t — oo, which means that x* is asymptotically stable.

15By that, we have shown stability of #*, which is weaker than asymptotic stability.
16By Bolzano-Weierstrass: Every sequence in a compact set of R"™ has at least one convergent
subsequence (e.g. Koenigsberger, 2001, p. 51).
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