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Abstract

We propose an approach to measure the mobility immanent in regular

Markov processes. For this purpose, we distinguish between mobility in equi-

librium and mobility associated with convergence towards equilibrium. The

former aspect is measured as the expectation of a functional, defined on the

Cartesian square product of the state space, with respect to the invariant

distribution. Based on large deviations techniques, we show how the two

aspects of mobility are related and how the second one can be characterized

by a certain relative entropy. Finally, we show that some prominent mobility

indices can be considered as special cases.

JEL classification: C22, J62

Keywords: mobility index, large deviations, relative entropy



1 Introduction

The capacity or facility of movement from one state to another is an im-

portant characteristic of a stochastic process. It is therefore not surpris-

ing that there have been several attempts in the literature to capture this

aspect in terms of a single so-called mobility index. As it turns out, the

notion of mobility is of a multifaceted nature so that different alternative

approaches prevail in the literature (see the surveys by Fields and Ok [16]

or Maasoumi [20]). Here we follow the spirit of Batholomew [2] and inter-

pret mobility as movements between states.1 We view these movements as

realizations of a stochastic process which we take as the primitive for our

approach to the measurement of mobility. In order to make our point, we

restrict ourselves to time homogenous regular Markov processes defined on

finite state spaces. This means that the process is characterized by an initial

distribution and a primitive transition matrix.

The paper is motivated by the longstanding insight that the notion of

mobility comprises different aspects: the extent to which the process leads

to movements between states over time and the degree to which future states

1 Alternative interpretations view mobility as equalizing opportunity (Bénabou and

Ok [3]), welfare enhancing or similarly as inequality reducing (Atkinson [1], Dardanoni [10],

or Maasoumi [20, 132]). From an empirical point of view, the stochastic dominance ap-

proach represents a promising alternative because it allows to implement different mobility

concepts. Although all the approaches start from different views, they are not unrelated

to each other. In subsections 2.2 and 2.4 we investigate some connections to our approach.
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do not depend on the initial state.2 Usually, the first aspect is measured on

the basis of the equilibrium or invariant distribution of the stochastic process

whilst the measurement of the second aspect is based on the eigenvalues

of the underlying transition matrix (see Sommers and Conlisk [28]). This

insight led us to classify mobility indices into equilibrium and convergence

mobility indices. Most conventional mobility indices can actually be classified

according to these two characteristics.

The aim of this paper is a methodological one as it provides a joint basis

for equilibrium and convergence mobility indices. The starting point of the

analysis consists in the specification of a mobility functional. This functional

is defined on the Cartesian square product of the state space and represents

just a rule of weighting movements between states. The expected value of

this functional with respect to the invariant distribution of the underlying

stochastic process then defines an equilibrium mobility index. Popular mo-

bility indices, like Bartholomew’s index or the index of unconditional prob-

ability of leaving the current class, can actually be represented in this way.

An application of the Ergodic theorem then implies that the time average of

the mobility functional converges to the corresponding equilibrium mobility

index. We show that this time average satisfies a large deviation principle

(LDP). This means that the probability that the time average exceeds the

value of the equilibrium mobility index by some prescribed amount converges

to zero at a constant exponential rate. This exponential rate then gives rise

to a kind of convergence mobility index which we call period mobility. We

2 In the sociologically oriented literature the first aspect is sometimes called ”pure”

or ”exchange mobility” as the spot-distribution remains unchanged in equilibrium.

Bartholomew [2] refers to these two aspects as measures of movements and measures

of generation dependencies. Gottschalk and Spolaore [18] refer to these two aspects of

mobility as ”reversal” and ”origin independence”.
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will show that this exponential rate can actually be computed from a spe-

cific relative entropy. In this way the specification of a mobility functional

gives rise simultaneously to an equilibrium and a convergence mobility index.

Thus the way to measure both aspects of mobility is no longer independent

from each other, but reduced to the choice of a mobility functional.

Replacing the expectation in the computation of the equilibrium mobil-

ity index by the corresponding ensemble average (i.e. the average over the

individuals in the population) shows that the mobility functional approach

has much in common with the measurement of total mobility by ”economic

distances” as analyzed by Fields and Ok [15] and Mitra and Ok [23]. Indeed

their axiomatic view can serve as a guide for the appropriate choice of a

mobility functional. An aspect we do not cover here.

The approach via a mobility functional must be contrasted with an older,

but important, strand of literature that defines mobility as a functional on

the set of transition matrices. This literature proposes an axiomatic approach

and postulates a set of desirable axioms for mobility indices (Shorrocks [27]).

Geweke, Marshall and Zarkin [17] grouped these axioms into persistence,

convergence- and temporal aggregation criteria. Whereas several mobility

indices are consistent with the persistence- and convergence criteria within

a considerable class of transition matrices, none of them satisfies all three

categories of criteria. Such inconsistencies had to be expected if one wants

to condense a matrix into a single number. Obviously, different indices detect

rather different aspects of mobility.

Although we do not investigate the implications of particular properties

of mobility functionals, we nevertheless highlight the importance of so-called

2-decreasing mobility functionals. The corresponding equilibrium mobility

indices turn out to be consistent with Shorrocks’ [27] monotonicity axiom,
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Conlisk’s [9] weak D-criterion as well as with Dardanoni’s [10] partial order-

ing in the case of monotone transition matrices with identical equilibrium

distributions.

While the notion of the equilibrium mobility index is related to concepts

discussed in the literature, the measurement of convergence mobility based

on the large deviation principle is completely new. Although the specific

LDP we derive in this paper can be regarded as a special case of a much

more general theory, we nevertheless state and prove a complete version of

it. This makes the paper self-contained and therefore easily accessible to

non-specialists.3 A full-fledged development of the large deviation principle

also allows to fully adapt the theory to the applications we have in mind

and prepares the ground for the numerical computations. We think that this

way to proceed enhances the interpretability and comparability of empirical

applications.

Our paper is organized as follows. Section 2 states the assumptions which

must be fulfilled by the underlying stochastic process and reviews some of

their most immediate implications. Next, we define the mobility functional

and the associated equilibrium mobility index. We then show that the corre-

sponding sample averages obey a strong law of large numbers and a central

limit theorem. Finally, we draw some connections to the existing literature.

Section 3 introduces the Large Deviations Principle and proves the core theo-

rem. Section 4 defines our convergence mobility index, called period mobility

index, and discusses some illustrative examples. Finally, section 5 discusses

a number of conclusions.

3 Hollander [19] presents an excellent introduction to the Theory of Large Deviations,

see especially chapter 4 on ”Large Deviations for Markov Sequences”. See also Dembo

and Zeitouni [13] who provide a general treatment of the subject and an application to

finite state space Markov Chains in Chapter 3.
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2 Definitions and Properties of the Equilib-

rium Mobility Index

2.1 Preliminaries

Our analysis is based on a discrete-time stochastic process {Xt}, t = 0, 1, 2, . . .,

where the random variables Xt take values in a finite state space E =

{1, 2, . . . , K}. The indices i and j always denote generic states running from

1 to K. For some arbitrary initial probability distribution µ at t = 0, we

assume that {Xt} is a Markov chain with a stationary K × K transition

matrix P = P (i, j). The measure induced by the Markov chain on the set

of trajectories E∞ is denoted by Pµ.4 Following the literature on mobil-

ity indices, we assume that the transition matrix is irreducible. With the

additional assumption that tr(P ) > 0, P becomes a primitive matrix (i.e.

∃m ∈ N : Pm À 0;5 Berman and Plemmons [4, Corrolary 2.2.28]) which

implies that the Markov chain Pµ is regular.6

Thus there exists a unique invariant or ergodic probability distribution

π. Moreover, limT→∞ µ′P T = π′ for any probability distribution µ, or equiv-

alently limT→∞ P T = P∞ where P∞ is a transition matrix whose rows are

all equal to π. In addition, ρ(P ) = 1 is a simple eigenvalue greater in magni-

tude than any other eigenvalue.7 Thus λ ∈ σ(P ) implies that λ = 1 or that

4 When there is no confusion, we omit the index referring to the initial distribution.
5 We adopt the following notation: A ≥ B if A(i, j) ≥ B(i, j) for all i and j; A > B if

A ≥ B and A 6= B; A >> B if A(i, j) > B(i, j) for all i and j. σ(A) and ρ(A) denote the

spectrum and the spectral radius of A.
6 The assumption tr(P ) > 0 is slightly more restrictive than is actually necessary.

Its purpose is to avoid the discussion of uninteresting degenerate cases. Practically all

arguments carry over to primitive matrices.
7 The proofs of these implications can be found in any standard textbook on Markov
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|λ| < 1. The speed of convergence of P T towards P∞ as T goes to infinity

is therefore governed by those eigenvalues with moduli strictly smaller than

one. In particular, one can show that the asymptotic speed of convergence is

given by − log δ(P ) where δ(P ) is the second largest modulus of the eigen-

values of P, i.e. δ(P ) = max{|λ| : λ ∈ σ(P ) and λ 6= 1}.8 The asymptotic

speed of convergence or any other commonly used mobility index based on

σ(P ) can thus be related to the speed of convergence of P T towards P∞.

Consequently, we label them as convergence mobility indices. These indices

measure the degree to which future states do not depend on the initial state.

A list of the most commonly used indices is given in Table 1.

2.2 Definitions

In contrast to Shorrocks [27] or Geweke , Marshall and Zarkin [17], we do not

define our mobility index directly on the set of transition matrices. Instead,

more in the spirit of Bartholomew [2, 24-30], we base our concept on the

valuation of movements between states where the valuation is represented by

a mobility functional. This way of proceeding has one great advantage that

the definitions of the mobility indices proposed below can be easily carried

over to general stochastic processes.

Definition 1. A mobility functional f is a nonnegative functional on E × E
chains (for example Berman and Plemmons [4], Norris [25] or Stroock [30])

8 The asymptotic speed of convergence is defined as − log α with α =

supµ limT→∞ ‖µ′PT − π′‖ 1
T where the supremum is taken over all initial distributions

µ (Berman and Plemmons [4, 172]). It can be shown that the asymptotic speed of con-

vergence equals − log δ(P ) in our case (Berman and Plemmons [4, 199]). Sommers and

Conlisk [28] proposed δ(P ) as a measure of immobility, respectively 1− δ(P ) as a measure

of mobility.
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such that

f(i, i) = 0 for all i ∈ E and

f(i, j) > 0 for all i and j ∈ E with i 6= j

The mobility functional therefore attaches positive values to movements

from one state to another and zero when no movement occurs. Thus the mo-

bility functional provides some kind of ”economic distance” between states.

Although f may define a metric on E , definition 1 does not impose this re-

quirement: in particular neither the triangle inequality nor the symmetry

of f must hold. Upward movements can be valued differently from down-

ward movements. Note also that movements toward states which are “farther

away” need not receive higher values. From the Markovian viewpoint of equi-

librium and convergence mobility a generalization to functionals f defined on

higher powers than two of the state space E is not indicated. In fact, in

the equilibrium described by the stationary probability distribution π, the

Markov chain Pµ is entirely determined by its transition matrix P acting on

the square of the state space.

Given a mobility functional, we then define the equilibrium mobility index

as the expected value of this functional where the expectation is taken with

respect to the invariant probability distribution.

Definition 2. For any given mobility functional f on E × E and any irre-

ducible transition matrix P with its unique invariant distribution π,

M e
f (P ) =

∑
i∈E

π(i)
∑
j∈E

P (i, j)f(i, j) (2.1)

is called the equilibrium f-mobility index of P . For any two irreducible

Markov chains Pµ1 and Qµ2, we say that Pµ1 is more mobile than Qµ2 with

respect to f, denoted by P ºe Q, if and only if M e
f (P ) ≥ M e

f (Q).
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The definition can be written more compactly as M e
f (P ) = tr(P ′diag(π)f)

where f denotes the matrix with elements f(i, j).9 The properties of f

guarantee that M e
f (P ) ≥ 0, but the index is not restricted to be smaller

or equal than one. The normalization of the index to the interval [0, 1]

can be achieved if M e
f (P ) is divided by amax, a number which depends only

on f (see section 3.2). It is easy to see that the equilibrium f-mobility of

the identity matrix IK equals zero, i.e. M e
f (IK) = 0 , so that the index

fulfills Shorrocks [27, 1015] Immobility axiom. As we restrict ourselves to

irreducible transition matrices with tr(P ) > 0 (which does not include IK),

the equilibrium mobility index is always strictly greater than zero. Hence

the Strong Immobility axiom is fulfilled on the union of the set of irreducible

transition matrices with tr(P ) > 0 and {IK}. Because the equilibrium index

measures mobility in a situation where the probability distribution remains

unchanged over time (i.e. remains equal to π), it measures what is called pure

exchange mobility in the sociologically oriented literature (see Dardanoni [10],

Fields and Ok [16], Maasoumi [20]).

The definition of the equilibrium mobility index encompasses several spec-

ifications encountered in the literature. Consider first, the power functional:

f(i, j) = |i−j|α, α ≥ 1. For α = 1, the equilibrium mobility index specializes

to Bartholomew’s index:10

M e
f (P ) =

∑
i∈E

π(i)
∑
j∈E

P (i, j)|i− j|. (2.2)

Another interesting choice for the mobility functional is f(i, j) = 1 −
δ(i, j) where δ(i, j) denotes Kronecker’s delta. This results in the index of

unconditional probability of leaving the current class which is nothing but

9 The diag(x) operator transforms any K-vector x into a K ×K diagonal matrix with

x on the diagonal.
10 Bartholomew [2] scaled this index by 1

K−1 to confine it to the interval (0, 1).
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the expected number of class changes:11

M e
f (P ) =

∑
i∈E

π(i)(1− P (i, i)) =
∑
i∈E

π(i)
∑
j∈E

P (i, j)(1− δ(i, j)). (2.3)

The above mobility functionals actually define metrics on the state space

E : they are non-negative, symmetric, equal to zero if and only if the argu-

ments coincide, and they satisfy the triangle inequality. While in the case

of Bartholomew’s index the functional expresses the ordinary distance be-

tween states i and j, the functional corresponding to the index of leaving the

current class is known in topology as the trivial metric.

The measurement of equilibrium mobility as the expected value of a mo-

bility functional lies in the spirit of Fields and Ok [15] and Mitra and Ok [23].

To see this, suppose that the population consists of N individuals, then re-

placing the expectations by the corresponding ensemble average (i.e. the

average over all individuals) leads to the following measure of mobility be-

tween two periods:

1

N

N∑
i=1

f(xi, yi) (2.4)

where xi and yi denote the state of individual i in the first, respectively

the second period. But this is nothing but the per capita version of ”to-

tal absolute income mobility” where the distance function between x =

(x1, . . . , xN) and y = (y1, . . . , yN), in their terminology, is just given by

dN(x, y) =
∑N

i=1 f(xi, yi). The interest in this interpretation of the equi-

librium mobility index is that the axioms proposed by Fields and Ok [15]

and Mitra and Ok [23] for dN(x, y) restrict the set of possible mobility func-

tionals. Indeed, if one views their axioms as compelling, the power mobility

functional turns out to be the generic case with α = 1 (Bartholomew’s case)

being of special importance.

11 In the literature, this index is usually scaled by K
K−1 .
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2.3 Empirical Mobility

The empirical counterpart to the equilibrium mobility index is just the time

average over consecutive f(Xt−1, Xt)’s. We call this average the empirical

f-mobility.

Definition 3. For any Markov process, {Xt}, defined on the state space E
and a mobility functional f on E × E, the time average ST of f(Xt−1, Xt)

ST =
1

T

T∑
t=1

f(Xt−1, Xt) (2.5)

is called the empirical f-mobility up to period T.

In case of Bartholomew’s functional, the empirical f- mobility is just the

average number of class changes. In case of the index of leaving the current

class, it is the average number of movements. Note that in the latter case the

assumption tr(P ) > 0 precludes the degenerate situation that ST is constant

over all possible realizations. Given the regularity assumptions about the

Markov chain, a strong law of large numbers (SLLN) holds.

Theorem 1 (SLLN). The empirical f-mobility converges to the following

limit:

lim
T→∞

ST = lim
T→∞

1

T

T∑
t=1

f(Xt−1, Xt) = M e
f (P ) (2.6)

for every initial distribution µ and any primitive transition matrix P.

Proof. This is just an application of the Ergodic theorem (see for example

Stroock [30]) to a function f defined on two consecutive states.

Thus one can use ST to estimate the equilibrium f-mobility index directly

from the sample paths without estimating in a prior step the transition ma-

trix of the process. This immediate conclusion from SLLN is reinforced

because a central limit theorem (CLT) also holds in this context.

10



Theorem 2 (CLT). Let {Xt} be a stationary regular Markov chain with finite

state space, then the empirical f-mobility satisfies the central limit theorem:

√
T

(
ST −M e

f (P )
) D−−−−→ N(0, σ2) (2.7)

for any mobility functional f. The variance σ2 of the normal distribution is

given by

σ2 = var(Yt) + 2
∞∑

j=1

cov(Yt, Yt+1) > 0

where Yt = f(Xt−1, Xt) for t = 1, 2, . . ..

Proof. {Xt} is φ-mixing with mixing coefficients φ
(X)
m declining to zero ex-

ponentially fast, i.e. there exist positive constants c and ρ, ρ < 1, such that

φ
(X)
m = cρm (Billingsley [6, Example 2, 167-8]). Theorem 14.1 in David-

son [12, 210] implies that Yt = f(Xt−1, Xt) is also φ-mixing with mixing

coefficients φ
(Y )
m ≤ φ

(X)
m , m > 1. The CLT then follows from theorem 20.1 in

Billingsley [6, 174] because
∑∞

m=1

√
φ

(Y )
m < ∞.

Note that the above theorem uses the additional assumption that {Xt}
is stationary. This is equivalent to the assumption that the initial distribu-

tion (i.e. the distribution of X0) equals the unique invariant distribution π.

Whereas the CLT assesses the probability that ST differs from M e
f (P ) by

an amount of order 1√
T
, the large deviation approach, to which we will turn

next, relates to events where ST differs from M e
f (P ) by an amount of order

1
T
. Such deviations may be termed “large”. Although these events are “rare”

and their probabilities vanish exponentially fast, the rate at which this decay

takes place can be quantified. Moreover, this rate can be used to define a

convergence mobility index.
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2.4 Relations to Existing Criteria and Rankings

An important class of mobility functionals is given by 2-decreasing mobility

functionals.

Definition 4. A mobility functional f on E × E is 2-decreasing if

V (i, j) = f(i + 1, j + 1)− f(i + 1, j)− f(i, j + 1) + f(i, j) ≤ 0 (2.8)

for all i, j ∈ {1, 2, . . . , K − 1}.

The inequality is strict if i = j. 2-decreasing functions are the two-

dimensional analogues of non-increasing functions in one variable. −V (i, j)

can be interpreted as the area assigned by f to the rectangle with vertices

(i, j), (i+1, j), (i, j+1), (i+1, j+1) (see Nelsen [24]). The definition immedi-

ately implies that f(i+1, j)−f(i, j) and f(i, j+1)−f(i, j) are nonincreasing

functions of j and i, respectively. The power functional is 2-decreasing for

α ≥ 1 whereas the functional f(i, j) = 1− δ(i, j) is not.

2-decreasing functionals are especially useful in connection with mono-

tone transition matrices. These matrices attracted some attention because

they have theoretically plausible properties and are supported empirically

(Conlisk [9], Dardanoni [10], Dardanoni [11], Fields and Ok [16]). Monotone

transition matrices are transition matrices where row i + 1 stochastically

dominates row i for all i = 1, . . . , K − 1. This is equivalent to T−1PT ≥ 0

where T denotes the summation matrix.12

In order to isolate the pure mobility effect, we follow among others Dar-

danoni [10, 377] and consider only Markov chains with identical invariant

distributions. This normalization corresponds to the standard practice of

12 T is an upper triangular matrix with all elements on the diagonal and above equal to

one. T−1 is the matrix with ones on the diagonal, minus ones on the first superdiagonal

and zeros elsewhere.
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holding constant the mean when comparing the inequality of income distri-

butions or the riskiness of asset return distributions.

Based on Lemma 1, we then show that equilibrium mobility indices in-

duced by 2-decreasing mobility functionals are coherent with Dardanoni’s

partial ordering of monotone transition matrices sharing the same invariant

distribution (Dardanoni [10]). Moreover, Theorem 3 and 4 imply the consis-

tency with the monotonicity axiom of Shorrocks [27] and the weak D-criterion

of Conlisk [9], so that they satisfy all persistence criteria listed by Geweke,

Marshall and Zarkin [17].

Lemma 1. For any two irreducible transition matrices P and Q with the

same invariant distribution π and any 2-decreasing mobility functional f ,

T ′diag(π)(P −Q)T ≤ 0 implies P ºe Q.

Proof. Noting that M e
f (P ) = tr(P ′diag(π)f) where f denotes the matrix

with elements f(i, j) and using the properties of the trace operator, we get:

M e
f (P )−M e

f (Q) = tr ((P −Q)′diag(π)f)

= tr
(
(T ′diag(π)(P −Q)T )

(
T−1f ′T ′−1

))

The fact that
∑

i π(i) (P (i, j)−Q(i, j)) = 0 for all j and that
∑

j ((P (i, j)−Q(i, j)) =

0 for all i implies that T ′diag(π)(P −Q)T can be expressed as

T ′diag(π)(P −Q)T =


 N 0(K−1)×1

01×(K−1) 0


 .

Because T ′diag(π)(P −Q)T ≤ 0 by assumption, N ≤ 0. On the other hand

T−1f ′T ′−1 =


V′ c

b′ 0




13



where b and c are nonnegative K − 1 vectors. The (K − 1)× (K − 1) matrix

V has typical elements:

V(i, j) = f(i, j)− f(i, j + 1) + f(i + 1, j + 1)− f(i + 1, j) ≤ 0

where the inequality follows from f being 2-decreasing. This finally leads to:

M e
f (P )−M e

f (Q) = tr





 N 0(K−1)×1

01×(K−1) 0





V′ c

b′ 0





 = tr(NV′) ≥ 0

which is equal to P ºe Q (see Definition 2).

The implication goes only in one direction as we can give examples such

that P ºe Q with T ′diag(π)(P − Q)T not being nonpositive. Furthermore,

perfect mobility matrices ιπ′, ι = (1, . . . , 1)′, are maximal elements with re-

spect to equilibrium mobility because T ′diag(π)(ιπ′−P )T ≤ 0 for all mono-

tone transition matrices P with stationary probability distribution π (Dard-

anoni [10, theorem 2]). Therefore (ιπ′) ºe P whenever f is 2-decreasing.

Theorem 3. If P and Q are both monotone transition matrices with the

same invariant distribution π such that P (i, j) ≥ Q(i, j) for all i 6= j and

P (i, j) > Q(i, j) for some i 6= j, then P ºe Q if the mobility functional f is

2-decreasing.

Proof. The assumptions imply that T ′diag(π)(P −Q)T ≤ 0 (Dardanoni [10,

Appendix 2]). For 2-decreasing functionals, P ºe Q follows from Lemma 1.

Theorem 4. Let P and Q be two monotone transition matrices with the

same invariant distribution π. If the upper left (K − 1) × (K − 1) matrices

of T−1PT and T−1QT are denoted by ∆(P ) and ∆(Q), respectively, then

∆(Q) ≥ ∆(P ) implies P ºe Q if the mobility functional f is 2-decreasing.

14



Proof. ∆(Q) ≥ ∆(P ) implies T ′diag(π)(P − Q)T ≤ 0 (Dardanoni [10, Ap-

pendix 2]). For 2-decreasing functionals, P ºe Q follows from Lemma 1.

3 Large Deviations of Mobility Functionals

3.1 The Perron-Frobenius transformation

In this section we establish that the tail probabilities of the distribution of

empirical f-mobility converge to zero at an exponential rate. The derivation

of this result and the explicit expression of the rate of convergence will then

serve as the key tools in the analysis of convergence mobility. This analysis

will then naturally lead to a kind of convergence mobility index which we call

period f-mobility index. This requires, however, additional concepts which

we will now introduce.

Definition 5. Let P and Q be two regular Markov chains with corresponding

transition matrices P and Q and invariant distributions πP and πQ. If Q is

absolutely continuous with respect to P (or equivalently, P(i,j) = 0 implies

Q(i,j) = 0), the relative entropy of Q with respect to P up to period T,

HT (Q|P), is defined on the σ-algebra AT = σ(Xt, 0 ≤ t ≤ T ) by

HT (Q|P) =

∫
log

dQ

dP
dQ.

The Radon-Nikodym derivative of Q with respect to P on AT is defined as

dQ

dP

∣∣∣∣
AT

=
πQ(X0)Q(X0, X1) . . . Q(XT−1, XT )

πP (X0)P (X0, X1) . . . P (XT−1, XT )
Q|AT

− a.s.

Moreover, the specific relative entropy of the transition matrix Q with respect

to P per period-unit, h(Q|P ), is defined as

h(Q|P ) = lim
T→∞

1

T
HT (Q|P) =

∑
i∈E

πQ(i)
∑
j∈E

Q(i, j) log

(
Q(i, j)

P (i, j)

)
.
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The second equality above is, strictly speaking, not a definition but an

implication of the Shannon-McMillan-Breiman theorem (see, for example,

Billingsley [5, 129]). The relative entropy plays a key role in the theory of

large deviations so that it seems useful to restate two of its properties.13 If Q

is absolutely continuous with respect to P, respectively if P (i, j) = 0 implies

Q(i, j) = 0, we have:

• HT (.|P) and h(.|P ) are finite and strictly convex functions on the cor-

responding set of probability measures, respectively on the set of tran-

sition matrices.

• HT (Q|P) ≥ 0 and h(Q|P ) ≥ 0 with equality if and only if Q = P,

respectively Q = P .

Definition 6. For a given mobility functional f and any β ∈ R, the Perron-

Frobenius transform of an irreducible transition matrix P , denoted by Pβ, is

defined by the matrix

Pβ(i, j) =
Aβ(i, j)rβ(j)

λ(β)rβ(i)
(3.1)

where Aβ(i, j) = P (i, j) exp(βf(i, j)) and where rβ 6= 0 is a right eigenvector

associated with λ(β), the largest positive eigenvalue of Aβ. The set of matri-

ces {Pβ} = {Pβ|β ∈ R} is called the exponential Perron-Frobenius family of

P.

The Perron-Frobenius transform of P , Pβ, is also called the twisted tran-

sition matrix.14 Taking β > 0, the matrix Aβ is obtained from P by inflating

13 Note that our motivation for the introduction of the relative entropy into the discus-

sion of mobility measurement is completely different than in Chakravarty [8] or Maasoumi

and Zandvakili [21].
14 Our Perron-Frobenius transform corresponds to the Cramér transform (Hollander [19,

7]).
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those entries of P which have a corresponding positive value of f(i, j). The

higher the value of the corresponding f(i, j), the stronger the inflation of

P (i, j). The diagonal elements P (i, i) remain unchanged because f(i, i) = 0.

As Aβ is not a transition matrix anymore, we normalize it to obtain the tran-

sition matrix Pβ. From the construction it is intuitively clear that the twisted

transition matrix, as long as β > 0, is more mobile than the original one.

Moreover, as β increases, the equilibrium mobility index of Pβ increases. The

idea behind the twisted transition matrix is to distort the original transition

matrix P via the Perron-Frobenius transformation up to the point where

movements which were “large” under the original transition matrix become

“normal” under the twisted transition matrix.

Before we provide exact proofs of these assertions, we establish that the

Perron-Frobenius transform is well defined for any irreducible transition ma-

trix P .

Proposition 1. For any irreducible transition matrix P , Aβ and the Perron-

Frobenius transform of P , Pβ, both defined in Definition 6, have the following

properties:

(i) Aβ is irreducible. Thus λ(β) is a simple eigenvalue equal to ρ(Aβ).

To this eigenvalue correspond a left and a right eigenvector, `β and

rβ respectively, such that `β >> 0, rβ >> 0, and `′βrβ = 1. If P is

primitive then Aβ is also primitive.

(ii) Pβ = R−1
β

Aβ

λ(β)
Rβ with Rβ = diag(rβ) is an irreducible stochastic matrix

with unique invariant distribution πβ equal to Rβ`β. If P is primitive

then Pβ is also primitive.
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(iii) If P is primitive,

lim
T→∞

P T
β = lim

T→∞
R−1

β

(
Aβ

λ(β)

)T

Rβ = ιπ′β

where ι = (1, . . . , 1)′. Or, equivalently, A
(T )
β (i, j) = λ(β)T rβ(i)`β(j)

[
1 + O(δT

β )
]

with 0 < δβ < 1.15

Proof. These are standard results based on the Perron-Frobenius theorem

and can be found, for example, in Berman and Plemmons [4].

From (i) we see that rβ cannot have a zero coordinate. Thus a division

by zero in the definition of Pβ is impossible. (ii) implies that the Perron-

Frobenius transformation defines an operator on the set of irreducible (prim-

itive) transition matrices. We next summarize the properties of λ(β).

Proposition 2. For any irreducible transition matrix P with tr(P ) > 0,

λ(β), as defined in Definition 6, has the following properties:

(i) The domain of λ(β) is R.

(ii) λ(0) = 1.

(iii) λ(β) is strictly increasing.

(iv) λ(β) is analytic.

(v) λ(β) and log(λ(β)) are strictly convex.

(vi)
λ′(β)

λ(β)
=

∑
i∈E

πPβ
(i)

∑
j∈E

Pβ(i, j)f(i, j) = M e
f (Pβ)

where πPβ
is the invariant probability distribution of Pβ. In particular,

λ′(0)

λ(0)
= λ′(0) =

∑
i∈E

πP (i)
∑
j∈E

P (i, j)f(i, j) = M e
f (P )

15 We denote by A
(T )
β (i, j) the (i, j)-th element of the matrix AT

β .
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Proof. See appendix.

Note that the assumption tr(P ) > 0 ensures that log(λ(β)) cannot be

linear and is therefore strictly convex and not just convex. Assuming P to

be a primitive matrix is not sufficient as shown by some counterexamples.

From (v) and (vi) we see that M e
f (Pβ) increases in β because λ′(β)

λ(β)
, being the

derivative of the convex function log(λ(β)), is an increasing function.

3.2 Maximal Deviation

For the implementation of our approach it is important to characterize, for

a given mobility functional f , the maximal empirical mobility, denoted by

amax(P ), which can be achieved with positive probability. For this purpose,

consider the directed graph associated to the matrix P .16 This graph consists

of the vertices V1, . . . , VK where an edge leads from Vi to Vj if and only if

P (i, j) 6= 0. A path Π of length N in this graph is then just a sequence

Π = {Vi0 , Vi1 , . . . , ViN} = {i0, i1, . . . , iN} such that P (in−1, in) 6= 0 for all

n = 1, . . . , N . In analogy to the definition of the empirical f-mobility, we

assign to each path Π = i0, i1, . . . , iN a number s = s(Π) as follows:

s = s(Π) = s ({i0, i1, . . . , iN}) =
1

N

N∑
n=1

f(in−1, in).

It is easily checked that the maximal value of s over all paths, amax(P ), is

given by

amax(P ) = max
all circuits

1

N

N∑
n=1

f(in−1, in) < ∞

where a circuit is a path i0, i1, . . . , iN such that i1, . . . , iN are distinct but

i0 = iN . The maximum must be achieved by a circuit of length 2 ≤ N ≤ K

because f(i, i) = 0 for all i. It is clear that the value of amax(P ) does not

16 See Berman and Plemmons [4] for further details.

19



depend on the value of the positive transition probabilities, but only on

the positions of the zero entries. Thus equivalent transition matrices must

necessarily have the same amax(P ).17 In particular, all positive transition

matrices P , i.e. P À 0, have the same amax = amax(P ) ≥ amax(Q) where

Q is any other transition matrix. Thus, there exists a maximal amax that

depends only on the mobility functional f and that equals amax(P ), where P

can be any positive transition matrix.

3.3 The Large Deviation Principle

We are now in a position to state our main theorem. At this point, we

want to emphasize again that the mathematical results are not new but can

be deduced from a general theory (see Dembo and Zeitouni [13] or Hollan-

der [19]). Although our setting fulfills all assumptions of this general theory,

we have chosen a bottom up strategy because this general theory is not spe-

cific enough to be readily implemented. As we stress computational aspects

and the possibility of empirical applications, we state and prove a version of

the large deviation theorem which is self-contained and fully adapted to the

application we have in mind.

Proposition 3. For any irreducible transition matrix P with tr(P ) > 0,

the Legendre-Fenchel transform I(a) of log λ(β) is given for any threshold

a ∈ (
M e

f (P ), amax(P )
)

by

I(a) = − inf
β∈R

(log λ(β)− aβ) = sup
β∈R

(aβ − log λ(β)) = aβ(a)− log λ(β(a))

where β(a) is positive, finite, and unique.

Proof. See appendix.

17 Two transition matrices P and Q are equivalent if and only if P (i, j) = 0 implies

Q(i, j) = 0 and Q(i, j) = 0 implies P (i, j) = 0.

20



Theorem 5. For any threshold a ∈ (
M e

f (P ), amax(P )
)
, there exists a unique

β(a) ∈ R and a Perron-Frobenius transform of P , Pβ(a), such that

(i)

lim
T→∞

1

T
logP

{
ST =

1

T

T∑
t=1

f(Xt−1, Xt) ≥ a

}
= −I(a)

= − sup
β∈R

(aβ − log λ(β))

= −h(Pβ(a)|P )

(ii)

M e
f (Pβ(a)) =

∑
i∈E

πPβ(a)

∑
j∈E

Pβ(a)(i, j)f(i, j) = a

Proof. See appendix.

Note that the assumption tr(P ) > 0 guarantees that there always exists

a non-trivial threshold a > M e
f (P ) . This Theorem shows that the tail

probabilities of the distribution of ST decline exponentially fast towards zero.

For large T , the exponential speed of convergence approaches a constant

equal to the relative entropy of the Perron-Frobenius transform of P , Pβ(a),

with respect to P . The larger h(Pβ(a)|P ) the quicker this convergence takes

place. The second part of the Theorem shows that β(a) and therefore the

distortion of P is chosen such that the equilibrium f-mobility index of the

twisted transition matrix, Pβ(a), equals a.

Consider two positive transition matrices P and Q with the same equi-

librium mobility index M e
f . It seems plausible to view the transition matrix

P as being more mobile than Q if the event
{
ST ≥ a for a > M e

f

}
is more

probable under P than under Q. For large T , this is, according to Theorem 5,

equivalent to saying that h(Qβ(a)|Q) is larger than h(Pβ(a)|P ) which means

that the distortion necessary to achieve an equilibrium mobility index equal
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to the threshold a is larger for Q than for P .18 This reasoning leads in the

next section to the definition of a convergence mobility index associated with

f which we call period f-mobility index.

4 Period mobility and examples

4.1 Period Mobility Index

Based on the reasoning of the previous section, we propose to define a con-

vergence mobility index associated with f as follows:

Definition 7. Given a threshold a ∈ (
M e

f (P ), amax(P )
)
, the period f-mobility

index, Mp
f (P |a) , is defined as

Mp
f (P |a) = exp

{−h(Pβ(a)|P
}

where Pβ(a) is the Perron-Frobenius transform of P with the property M e
f (Pβ(a)) =

a (see Theorem 5).

Straightforward arguments show that our period mobility index Mp
f (P |a)

is nothing but the asymptotic probability for T to infinity of consecutive

deviations above threshold a from one period to the next:

Mp
f (P |a) = lim

T→∞
P {ST+1 ≥ a|ST ≥ a} .

This interpretation justifies the name period mobility index. Since the index

corresponds to a probability, it automatically lies between 0 and 1. Val-

ues near 0 correspond to low mobility whereas values near 1 correspond to

high period mobility. The main purpose of mobility indices is to compare

stochastic processes with respect to their mobility.

18 Steiner [29, Section 9.2.2.1] discusses a generalized form of Theorem 5 which treats

also events
{

ST ≤ a for 0 < a < Me
f

}
.
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Definition 8. Given two regular Markov processes having transition matrices

P and Q with tr(P ) and tr(Q) > 0, P is defined to be strictly more mobile

with respect to period f-mobility at γ than Q, denoted by P Âp Q at γ, if

Mp
f (P |a(γ, P )) > Mp

f (Q|a(γ,Q)), for γ ∈ (0, 1).

To any number γ ∈ (0, 1) and any irreducible transition matrix P , the func-

tion a(γ, P ) associates a threshold a according to the following rule:

a(γ, P ) = M e
f (P ) + γ

(
amax(P )−M e

f (P )
)
.

P is uniformly more mobile than Q if the above inequality holds for all γ.

As the ranking with respect to period mobility may depend on γ (see

section 4.2), the choice of the threshold can become crucial. In order to

motivate the method proposed in the definition above, we restrict ourselves

to equivalent transition matrices P and Q. They have the property that

amax(P ) = amax(Q). Consider now the following two different cases:

case 1 (M e
f (P ) = M e

f (Q)): In this situation both transition matrices have

identical intervals from which the threshold can be chosen:
(
M e

f (P ), amax(P )
)

=
(
M e

f (Q), amax(Q)
)

. Thus a(γ, P ) = a(γ,Q) for all γ ∈ (0, 1) so that

the resulting threshold is the same for both matrices in absolute terms.

case 2: Suppose without loss of generality that M e
f (P ) < M e

f (Q). In this

case, the ranges to chose the threshold are no longer identical for both

matrices. Thresholds in the interval
(
M e

f (P ), M e
f (Q)

)
are only feasible

for matrix P . It therefore makes no sense to compare these matrices at

the same threshold. However, it seems appropriate to compare them

at identical relative distances above their corresponding equilibrium

indices. This is just what the function a(γ, P ) does.
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Although our rule for assigning a threshold may be considered ad hoc, it

has the virtue that the applied researcher can fix a value for γ independently

of the transition matrices under consideration. In addition, our rule can also

be applied to transition matrices which are not equivalent.

4.2 Examples

We are now in a position to illustrate our approach. We do this on the

basis of the Bartholomew-functional f(i, j) = |i − j| and the following six

transition matrices:

P1 =




0.60 0.35 0.05

0.35 0.40 0.25

0.05 0.25 0.70


 P2 =




0.6 0.3 0.1

0.3 0.5 0.2

0.1 0.2 0.7




P3 =




0.600 0.399 0.001

0.301 0.400 0.299

0.099 0.201 0.700


 Px =




0.40 0.55 0.05

0.55 0.40 0.05

0.05 0.05 0.90




Pmobile =




1/3 1/3 1/3

1/3 1/3 1/3

1/3 1/3 1/3


 Pident =




0.998 0.001 0.001

0.001 0.998 0.001

0.001 0.001 0.998




The first two transition matrices, P1 and P2, have been introduced by

Dardanoni [10]. The third matrix P3 is a positive analogue to the third

matrix used in Dardanoni’s examples.19 Dardanoni used these matrices to

document the inconsistency between alternative mobility indices. In the

following, we call these matrices the Dardanoni-matrices. They share the

particularity that their Bartholomew mobility index is the same. P1 and P3

19 The original third matrix by Dardanoni [10] had a zero-entry in position (1,3). We

substituted this matrix by a positive analogue P3 in order to compare positive matrices

only.
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even have the same index of unconditional probability of leaving the current

class as well as the same Prais and eigenvalue index.

The transition matrix Px was chosen to demonstrate that the ranking of

transition matrices according to period mobility may depend on the value

chosen for the threshold. Px shares the same Bartholomew index with the

Dardanoni-matrices. In addition, Px also shares the same values for the in-

dex of leaving the current class as well as the Prais and the eigenvalue index

with P1 and P3. The matrix Pmobile has rows equal to its invariant distri-

bution, (1/3, 1/3, 1/3)′. Transition matrices with equal rows are commonly

described as perfectly mobile because the probability of moving to any class

is independent of the state initially occupied. Finally, the matrix Pident de-

notes a transition matrix close to the identity matrix and is thus considered

as representing a Markov process with high persistence, that is with a low

probability to move to a different state. Note that all six transition matrices

share the same invariant distribution (1/3, 1/3, 1/3)′. Table 2 summarizes

the characteristics of all transition matrices.

A straightforward computation shows that we have the following inequal-

ities with respect to equilibrium mobility:

M e
f (Pident) < M e

f (P1) = M e
f (P2) = M e

f (P3) = M e
f (Px) < M e

f (Pmobile)

Thus, according to the criterium of equilibrium mobility, Pident represents

the least mobile process whereas Pmobile represents the most mobile process.

The other four processes have index values between these two but cannot be

distinguished in terms of equilibrium mobility.

As all matrices have strictly positive entries, their amax is the same and

equals 2. A circuit which achieves amax is {1, 3, 1}. Since the Dardanoni-

matrices and Px also share the same equilibrium mobility index, comparisons

of period mobility in relative and absolute terms are identical (case 1 in
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subsection 4.1). However, if these matrices are to be compared with Pmobile

or Pident only a relative perspective makes sense (case 2 in subsection 4.1).

In Figure 1 we have plotted our period mobility index as a function of

γ.20 This figure shows that the ranking

Pident ≺p P3 ≺p P1 ≺p P2 ≺p Pmobile

is independent of γ and therefore uniform. Table 2 reports the actual values

of the index for γ = 0.5. This means that we measure period mobility at

a threshold halfway between amax and the value of the equilibrium mobility

index.

While it is impossible to distinguish Dardanoni’s matrices with respect

to equilibrium mobility, the matrices are somewhat different concerning their

convergence mobility. If one likes to capture both aspects of mobility, the

resulting rankings were up to now completely arbitrary and depend heavily

on the choice of combination of equilibrium and conventional convergence in-

dices.21 The virtue of our approach is that it reduces this arbitrariness to the

choice of a mobility functional f . Moreover, we think that the specification

of a mobility functional is straightforward given a particular application in

mind. This decision then determines the pair of indices which captures both,

equilibrium and convergence mobility.

Although it was possible to rank the Dardanoni matrices, Pident, and

Pmobile uniformly in terms of period mobility such a situation cannot be ex-

20 The numerical implementation is straightforward and is based on the results presented

in Proposition 3 and Theorem 5. As the function to be optimized is strictly convex and

possesses a unique supremum, the actual computations are free from numerical complica-

tions. MATLAB routines are available from the authors.
21 For example, the combination of the Batholomew index with the Prais index leads to

a different ranking than the combination of the Batholomew index with the second largest

eigenvalue index.
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pected to prevail under all circumstances. Consider, for example, the tran-

sition matrices P2 and Px. Figure 2 plots their period mobility indices as a

function of γ. For 0 < γ < 0.2884, Px Âp P2 holds whereas for 0.2884 < γ < 1

the reverse is true, i.e. Px ≺p P2. Since amax(P2) = amax(Px) = 2 and

M e
f (P2) = M e

f (Px), a(γ, P2) = a(γ, Px) for all γ ∈ [0, 1] so that relative and

absolute comparisons yield identical results. The value γ = 0.2884 corre-

sponds to a threshold a = 0.9089. In order to get an intuition of the de-

pendence of period mobility ranking with respect to γ, compare thresholds

below and above 0.9089.

• For a ∈ (
M e

f (P ), 0.9089
)
, the probabilities of consecutive large devia-

tions of empirical mobility are higher for transition matrix Px because

Px shows less weight on its main diagonal and is thus less persistent

than P2. Note in this respect the comparatively high transition proba-

bilities Px(1, 2) and Px(2, 1) which receive weight 1 by the Bartholomew

functional.

• For a ∈ (0.9089, 2), the chances for consecutive large deviations are

now higher for transition matrix P2 for two reasons. First, moving to

adjacent states does not boost empirical mobility further because such

movements receive only weight 1. Thus the high transition probabil-

ities Px(1, 2) and Px(2, 1) don’t help anymore to keep the probability

for consecutive large deviations of empirical mobility at high levels.

Second, matrix P2 shows higher probabilities of larger movements, i.e.

transitions 1, 3 and 3, 1, which receive weight 2 by the Bartholomew

functional. Therefore, such movements are necessary to keep the proba-

bility of continued large deviations at high levels. The higher the chosen

threshold a, the more important the higher probabilities of transitions

1, 3 and 3, 1 of matrix P2 become.
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Although this example shows that there is no guarantee for a uniform

ranking with respect to period mobility, it also instructs us to examine the

whole plot of the period mobility index as a function of γ (as in figures 1 and

2) as this plot provides useful information which enhances the understanding

and interpretation of mobility.22

5 Conclusions

This paper has shown how the choice of a mobility functional simultaneously

determines an equilibrium and a period mobility index. The equilibrium

mobility index was defined as the expected value of the mobility functional

evaluated with respect to the invariant distribution. By restricting the class

of mobility functionals to so-called 2-decreasing functionals, interesting rela-

tions to the existing literature are opened up. The period mobility index is

related to the speed at which the tail probabilities of the empirical mobility

converge to zero. For a given deviation from equilibrium mobility, this con-

vergence takes place at an exponential rate which can be expressed as the

relative entropy of the twisted with respect to the original transition matrix.

This exponential rate then leads to the definition of the period mobility in-

dex. As the numerical computations are easily implemented, we suggest to

report both, the value of the equilibrium mobility index and the plot of the

period mobility index as a function of γ. This conveys information on both

aspects of mobility in an efficient manner.

The measurement of mobility thus reduces to the specification of a mo-

bility functional. This way of proceeding presents several advantages. First,

22 The problem is similar to the case of no first-order stochastic dominance in Fields,

Leary and Ok [14]. Like in this paper, we propose to examine the mobility ranking over

the whole range (over all γ ∈ (0, 1) in our case).
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the weighting of movements between states by a mobility functional seems to

us a natural starting point which facilitates the interpretation and evaluation

of mobility. Second, the arbitrariness inherent in the measurement of both

aspects of mobility with conventional indices is reduced. Finally, the method

is very flexible as it can be readily extended to more general state spaces and

Markov processes.
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A Proofs

Lemma 2. Any primitive transition matrix P and any functional f on E×E

satisfy the following uniform recurrence condition (R): There exists a positive

integer m such that

η = min
i∈E

∑
j∈E
P(Xm = j, Sm > a|X0 = i) > 0 for a ∈ (

M e
f (P ), amax(P )

)
.

(A.1)

Proof. We will show for all i and j, that there exists a path Π which leads

from i to j such that s(Π) > a. Let Π∗ be a circuit such that s(Π∗) =

s ({i∗0, i∗1, . . . , i∗N}) = amax(P ). As P is primitive, there exists an integer m1

such that for all i we can find a path Π1 which leads from i to i∗0 in m1 steps.

Similarly, we can find for any j a path Π2 which leads from i∗N to j in m1

steps. We can then construct a path Π =



Π1, Π

∗, . . . , Π∗
︸ ︷︷ ︸

q times

, Π2



 which leads

from i to i∗0, passes q times through the circuit Π∗, and finally reaches j. The

functional f assigns to this path the value:

s(Π) =
m1

2m1 + qN∗ s(Π1) +
qN∗

2m1 + qN∗amax(P ) +
m1

2m1 + qN∗ s(Π2) (A.2)

For q going to infinity, the first and the last term in this expression go to zero

whereas the second term approaches amax(P ). As a < amax(P ), s(Π) > a if

we choose q large enough. Although q still depends on i and j, we can choose

q∗ as the maximum of all q’s over all i and j. The integer m is then defined

as m = 2m1 + q∗N∗.

Lemma 3. The moment generating function MT (β) of
∑T

t=1 f(Xt−1, Xt)

equals

MT (β) = EP

(
exp

(
β

T∑
t=1

f(Xt−1, Xt)

))
=

∑
i∈E

µ(i)
∑
j∈E

A
(T )
β (i, j) (A.3)
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Proof.

MT (β) = EP

(
exp

(
β

T∑
t=1

f(Xt−1, Xt)

))

=
∑
x0

∑
x1

. . .
∑
xT

exp

{
β

T∑
t=1

f(xt−1, xt)

}

× P (xT−1, xT )× . . .× P (x0, x1)× µ(x0)

=
∑
x0

∑
x1

. . .

(∑
xT

exp {βf(xT−1, xT )} × P (xT−1, xT )

)

× exp

{
β

T−1∑
t=1

f(xt−1, xt)

}
× P (xT−2, xT−1)× . . .× P (x0, x1)× µ(x0)

=
∑
x0

∑
x1

. . .
∑
xT−1

Aβ(1)(xT−1) exp

{
β

T−1∑
t=1

f(xt−1, xt)

}

× P (xT−2, xT−1)× . . .× P (x0, x1)× µ(x0)

where Aβ(1)(xT−1) denotes the xT−1-th element of the vector of row sums.

Proceeding further in this manner, one finally gets23

MT (β) =
∑
x0

A
(T )
β (1)(x0)µ(x0) =

∑
i∈E

µ(i)
∑
j∈E

A
(T )
β (i, j).

Proof. Proof of proposition 2

(i) and (ii) are obvious.

Because f ≥ 0, 0 < Aβ < Aβ′ if β < β′. This implies λ(β) = ρ(Aβ) <

ρ(Aβ′) = λ(β′) because Aβ is primitive and therefore irreducible (see Berman

and Plemmons [4, corollary 1.3.29]). Thus λ(β) is strictly increasing which

proves (iii).

23 By A
(T )
β (1)(x0) we denote the sum of the x0-th row of the matrix AT

β .
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Because Aβ is irreducible, λ(β) is a simple root of the characteristic equa-

tion for Aβ. The implicit function theorem then implies that λ(β) is analytic

for all β ∈ R. This proves (iv).

If MT (β) denotes the moment generating function of
∑T

t=1 f(Xt−1, Xt) ,

lemma 3 implies that

MT (β) =
∑
i∈E

µ(i)
∑
j∈E

A
(T )
β (i, j) (A.4)

= λ(β)T
∑
i∈E

µ(i)
∑
j∈E

rβ(i)`β(j)
[
1 + O(δT

β )
]

(A.5)

where the second equality follows from Proposition 1. This implies that

limT→∞ [MT (β)]1/T = λ(β) because
{∑

i∈E µ(i)
∑

j∈E rβ(i)`β(j)
[
1 + O(δT

β )
]}1/T

approaches one as T →∞. As [MT (β)]1/T is a moment generating function

and (1/T ) log(MT (β)) is a cumulant generating function, these functions are

convex on R (Billingsley [7, 148]) for every T . As λ(β) and log λ(β) are the

pointwise limits of convex functions, they are convex (Rockafellar [26, 90]).

The two functions cannot be linear on some proper subinterval of R be-

cause they are analytic. They cannot be linear over the whole real line either,

because on the one hand λ(β) and log λ(β) diverge to infinity as β goes to

infinity and because on the other hand λ(β) and log λ(β) are bounded from

below by maxi∈E P (i, i) > 0, respectively by maxi∈E log P (i, i) > −∞ as

tr(P ) > 0. λ(β) and log λ(β) must therefore be strictly convex functions

which proves (v).

Because λ(β) is a simple root of the characteristic equation for Aβ, the dif-

ferential of λ(β) with respect to β is given by (see Magnus and Neudecker [22,

161-162])

λ′(β) =
dλ(β)

dβ
= `′β

dAβ

dβ
rβ (A.6)

where `β and rβ are left and right eigenvectors corresponding to λ(β) normal-

ized as `′βrβ = 1. Using the properties of Aβ and Pβ listed in Proposition 1,
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we obtain:

λ′(β) = λ(β)
∑
i∈E

`β(i)rβ(i)
∑
j∈E

P (i, j)eβf(i,j)rβ(j)

λ(β)rβ(i)
f(i, j) (A.7)

= λ(β)
∑
i∈E

πPβ
(i)

∑
j∈E

Pβ(i, j)f(i, j). (A.8)

This proves (vi). Thus f has expectation λ′(β)/λ(β) with respect to the

invariant distribution.

Proof. Proof of Proposition 3

Instead of Aβ consider the matrix e−aβAβ. This matrix has maximal

eigenvalue e−aβλ(β). Applying Proposition 2 to e−aβAβ implies that g(β) =

e−aβλ(β) is a differentiable strictly convex function of β with derivative equal

to

g′(β) =
de−aβλ(β)

dβ
= e−aβ[−aλ(β) + λ′(β)]. (A.9)

This derivative is negative at β = 0 for any a ∈ (
M e

f (P ), amax(P )
)

because

−aλ(0) + λ′(0) = −a + M e
f (P ) < 0.

Let ϕβ denote the left eigenvector of Aβ corresponding to λ(β) normalized

as
∑

i ϕβ(i) = 1. This eigenvector has strictly positive coordinates because

Aβ is primitive and we have

λm(β) = λm(β)
∑
j∈E

ϕβ(j) =
∑
j∈E

∑
i∈E

ϕβ(i)A
(m)
β (i, j) =

∑
i∈E

ϕβ(i)
∑
j∈E

A
(m)
β (i, j).

The (i, j)-th element of Am
β can be written as A

(m)
β (i, j) =

∑
ν P {Xm = j, Sm = ν|X0 = i} eβmν

where ν runs over all positive values of Sm. As Lemma 2 implies that P and

f satisfy the Uniform Recurrence Condition (R), we get:

λm(β) =
∑
i∈E

ϕβ(i)
∑
j∈E

∑
ν

P {Xm = j, Sm = ν|X0 = i} eβmν

≥ η
∑
ν>a

eβmν
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which implies λ(β) ≥ η1/meβν , or equivalently g(β) = e−aβλ(β) ≥ η1/meβ(ν−a),

for some ν > a. This shows that, although g′(0) < 0, g′(β) cannot be neg-

ative over the whole domain of β and that, for β large enough, g′(β) must

become positive. The strict convexity of g(β) then ensures that g(β) and

therefore log g(β) = log λ(β) − aβ attain a unique infimum in the interval

(0, +∞).

Proof. Proof of Theorem 5: The following lemma is needed before pro-

ceeding to the proof

Lemma 4. Let P be a primitive transition matrix. For any β ∈ R and

any transition matrix Q which is absolutely continuous with respect to P , the

following decomposition holds:

h(Q|P ) = h(Q|Pβ) + β
∑
i∈E

πQ(i)
∑
j∈E

Q(i, j)f(i, j)− log λ(β)

where f is a functional on E × E , Pβ is the Perron-Frobenius transform

of P , and λ(β) is the largest eigenvalue of Aβ (see definition 6). More-

over, for any a ∈ (
M e

f (P ), amax(P )
)

define the set of transition matrices

Πa =
{

Q :
∑

i∈E πQ(i)
∑

j∈E Q(i, j)f(i, j) = a
}
, then there exists a positive,

finite and unique β = β(a) such that Pβ(a) ∈ Πa and minQ∈Πa h(Q|P ) =

h
(
Pβ(a)|P

)
.

Proof. As Q is absolutely continuous with respect to P, and P and Pβ are

equivalent, dQ
dP

∣∣
AT

= dQ
dPβ

dPβ

dP

∣∣∣
AT

.24 The definition of the relative entropy

then leads to: HT (Q|P) = HT (Q|Pβ) +
∫

log
dPβ

dP

∣∣∣
AT

dQ.

24 The Markov processes Q, P, and Pβ have initial distributions equal to their corre-

sponding invariant distributions.
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For any given path (x0, x1, . . . , xT ), we have

log
dPβ

dP
(x0, x1, . . . , xT ) = log

(
πPβ

(x0)Pβ(x0, x1) . . . Pβ(xT−1, xT )

πP (x0)P (x0, x1) . . . P (xT−1, xT )

)

= log
πPβ

(x0)

πP (x0)
+

T∑
t=1

log

(
P (xt−1, xt)e

βf(xt−1,xt)r(xt)

P (xt−1, xt)λ(β)r(xt−1)

)

= log
πPβ

(x0)

πP (x0)
+ β

T∑
t=1

f(xt−1, xt)

+
T∑

t=1

log r(xt)−
T∑

t=1

log r(xt−1)

−
T∑

t=1

log λ(β)

= log
πPβ

(x0)

πP (x0)
+ β

T∑
t=1

f(xt−1, xt)

+ log r(xT )− log r(x0)− T log λ(β)

Taking expectations with respect to Q leads to:

∫
log

dPβ

dP

∣∣∣∣
AT

dQ =
∑
x0∈E

πQ(x0) log
πPβ

(x0)

πP (x0)

+ β

T∑
t=1

∑
xt−1∈E

πQ(xt−1)
∑
xt∈E

Q(xt−1, xt)f(xt−1, xt)

− T log λ(β) +
∑
xT∈E

πQ(xT ) log r(xT )−
∑
x0∈E

πQ(x0) log r(x0)

Because of the invariant distribution πQ, we have T times the same double

sum in the second term and because the last two terms are equal, the above

expression simplifies to:

∫
log

dPβ

dP

∣∣∣∣
AT

dQ =
∑
i∈E

πQ(i) log
πPβ

(i)

πP (i)

+ βT
∑
i∈E

πQ(i)
∑
j∈E

Q(i, j)f(i, j)− T log λ(β)
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where we have substituted i for x0 and xt−1 and j for xt. An application of the

ergodic theorem (see Stroock [30]) shows that h(Q|P ) = limT→∞ 1
T
HT (Q|P)

and h(Q|P ) = limT→∞ 1
T

log dQ
dP

∣∣
AT

Q|At-a.s. This result is also known as the

Shannon-MacMillan-Breiman theorem. From this we get

h(Q|P ) = lim
T→∞

1

T
HT (Q|P) = lim

T→∞
1

T

[
HT (Q|Pβ) +

∫
log

dPβ

dP

∣∣∣∣
AT

dQ

]

= lim
T→∞

1

T

[
HT (Q|Pβ) +

∑
i∈E

πQ(i) log
πPβ

(i)

πP (i)

+βT
∑
i∈E

πQ(i)
∑
j∈E

Q(i, j)f(i, j)− T log λ(β)

]

= h(Q|Pβ) + β
∑
i∈E

πQ(i)
∑
j∈E

Q(i, j)f(i, j)− log λ(β)

For a ∈ (
M e

f (P ), amax(P )
)
, Propositions 2 and 3 imply that there exists a

finite and unique β = β(a) > 0 such that
∑

i πPβ
(i)

∑
j Pβ(i, j)f(i, j) = a.

Therefore Pβ(a) ∈ Πa. Noting that h(Q|P ) ≥ 0 for all P and Q and that

h(Q|P ) = 0 implies Q = P , this proves minQ∈Πa h(Q|P ) = h(Pβ(a)|P ).

The proof of Theorem 5 proceeds in two steps. First we derive an upper

and a lower bound and then show that they converge to the same limit.

Proof. Upper bound.

The application of Chebycheffs inequality to the function g(x) = eTβx

with β > 0, sometimes called the exponential overbound lemma, leads to

P

{
1

T

T∑
t=1

f(Xt−1, Xt) ≥ a

}
≤ e−Tβa EP

[
eβ
PT

t=1 f(Xt−1,Xt)
]

where EP is the expectation with respect Pµ. Lemma 3 implies that the

expectation equals

EP

[
eβ
PT

t=1 f(Xt−1,Xt)
]

=
∑
x0∈E

A
(T )
β (1)(x0)µ(x0).
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Applying the log to Chebycheff’s inequality and dividing by T yields:

1

T
logP

{
1

T

T∑
t=1

f(Xt−1, Xt) ≥ a

}
≤ −βa +

1

T
log

(∑
x0∈E

A
(T )
β (1)(x0)µ(x0)

)

≤ −βa + log λ(β)

+
1

T
log

(∑
x0∈E

A
(T )
β (1)(x0)

λ(β)T
µ(x0)

)

≤ −βa + log λ(β) + o

(
1

T

)

The last step follows from Proposition 1 by observing that
(

Aβ

λβ

)T

converges

to `βr′β À 0. Taking the limit with respect to T implies:

lim
T→∞

1

T
logP

{
1

T

T∑
t=1

f(Xt−1, Xt) ≥ a

}
≤ −βa + log λ(β)

As this inequality holds for any β > 0, it must also hold for the infimum over

β > 0:

lim
T→∞

1

T
logP

{
1

T

T∑
t=1

f(Xt−1, Xt) ≥ a

}
≤ inf

β∈R
{−βa + log λ(β)}

= − sup
β∈R

{βa− log λ(β)}

= −h
(
Pβ(a)|P

)

According to Proposition 3 the infimum over R is attained in the interval

(0, +∞). Thus we are allowed to take the infimum, respectively the supre-

mum, over β ∈ R and not just over b ∈ R+. The last equality is a consequence

of the decomposition in Lemma 4.

Proof. Lower bound.

Take any Q such that
∑

i∈E πQ(i)
∑

j∈E Q(i, j)f(i, j) = a. For δ > 0,
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consider the two events A =
{

1
T

∑T
t=1 f(Xt−1, Xt) ≥ a

}
and

B =

{
dQ

dP

∣∣∣∣
AT

≤ eT (h(Q|P )+δ)

}
=

{
e−T (h(Q|P )+δ) dQ

dP

∣∣∣∣
AT

≤ 1

}

=

{
1

T
log

dQ

dP

∣∣∣∣
AT

≤ h(Q|P ) + δ

}
.

Then:

PP{A} ≥ PP{A ∩B} =

∫
1A∩BdP ≥ e−T (h(Q|P )+δ)

∫
1A∩B

dQ

dP

∣∣∣∣
AT

dP

≥ e−T (h(Q|P )+δ)PQ{A ∩B}.

By assumption the event A occurs almost surely under Q for T → ∞ as a

consequence of ergodicity. PQ{B} is controlled by the Shannon-MacMillan-

Breiman theorem. Thus PQ{A ∩ B} converges to 1 in probability. This

implies that

1

T
logP

{
1

T

T∑
t=1

f(Xt−1, Xt) ≥ a

}
≥ −h(Q|P )− δ + O

(
1

T

)

Setting Q = Pβ(a) with a =
∑

i∈E πPβ(a)
(i)

∑
j∈E Pβ(a)(i, j)f(i, j) and taking

limits with respect to T , we finally get:

lim
T→∞

1

T
logP

{
1

T

T∑
t=1

f(Xt−1, Xt) ≥ a

}
≥ − inf

δ>0
{h(Pβ(a)|P )+δ} = −h(Pβ(a)|P ).
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Table 1: Some commonly used mobility indices

name of index definition

equilibrium mobility indices

Bartholomew’s index
∑K

i=1 π(i)
∑K

j=1 P (i, j)|i− j|

index of unconditional probabil-

ity of leaving the current class

K
K−1

∑K
i=1 π(i)(1− P (i, i))

convergence mobility indices

Prais’ index
K−tr(P )

K−1

eigenvalue index
K−PK

1=1 |λi|
K−1

second largest eigenvalue index 1− δ(P )

asymptotic speed of convergence − log δ(P )

determinant index 1− det(P )

P . . . irreducible transition matrix

π . . . invariant distribution of P

λi . . . eigenvalues of P

δ(P ) = max{|λ| : λ ∈ σ(P ) and λ 6= 1}
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Table 2: Characteristics and mobility indices for test transition matrices

P1 P2 P3 Px Pmobile Pident

equilibrium mobility

indexa
0.4667 0.4667 0.4667 0.4667 0.8889 0.0027

period mobility indexa

γ = 0.5
0.4554 0.5495 0.3799 0.4720 0.7841 0.0630

Prais’ indexb 0.65 0.60 0.65 0.65 1.00 0.003

eigenvalue indexb 0.65 0.60 0.65 0.65 1.00 0.003

second largest

eigenvalue indexb
0.3854 0.4268 0.3994 0.1500 1.00 0.003

asymptotic speed of

convergenceb
0.4868 0.5565 0.5098 0.1625 +∞ 0.0030

determinant indexb 0.9475 0.87 0.9403 0.8725 1.00 0.0060

amax(P )a 2 2 2 2 2 2

invariant distribution 1
3 (1, 1, 1)′ 1

3 (1, 1, 1)′ 1
3 (1, 1, 1)′ 1

3 (1, 1, 1)′ 1
3 (1, 1, 1)′ 1

3 (1, 1, 1)′

a . . . Bartholomew mobility functional f(i, j) = |i− j|.
b . . . For definitions see Table 1.
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Figure 1: Period Mobility of Test Matrices (uniform ranking)
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Figure 2: Period Mobility of Test Matrices (nonuniform ranking)
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