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Abstract

We propose a method to incorporate information from Dynamic Stochastic Gen-

eral Equilibrium (DSGE) models into Dynamic Factor Analysis. The method com-

bines a procedure previously applied for Bayesian Vector Autoregressions and a Gibbs

Sampling approach for Dynamic Factor Models. The factors in the model are rotated

such that they can be interpreted as variables from a DSGE model. In contrast to

standard Dynamic Factor Analysis, a direct economic interpretation of the factors is

given. We evaluate the forecast performance of the model with respect to the amount

of information from the DSGE model included in the estimation. We conclude that

using prior information from a standard New Keynesian DSGE model improves the

forecast performance. We also analyze the impact of identified monetary shocks on

both the factors and selected series. The interpretation of the factors as variables

from the DSGE model allows us to use an identification scheme which is directly

linked to the DSGE model. The responses of the factors in our application resemble

responses found using VARs. However, there are deviations from standard results

when looking at the responses of specific series to common shocks.
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1 Introduction

Dynamic Factor Models are becoming increasingly popular in empirical macroeco-

nomics due to their ability to cope with a large number of data series. The idea

is to gather the informational content of a high dimensional data vector in a small

dimensional vector of common factors. Each series is decomposed into a sum of a

(linear) combination of these common factors and an idiosyncratic term. Assump-

tions on the correlations between the idiosyncratic terms - in the simplest case there

assumed to be orthogonal - make the identification feasible. Compared to a small

dimensional Vector Autoregression (VAR), the analysis is more robust with respect

to the disturbing influence of idiosyncratic components of the series (such as mea-

surement errors).

From an economist’s point of view however, the interpretation of the results and in

particular the factors is difficult: Their relationship to economically interpretable

concepts is not immediate. This often leads to a purely statistical a analysis. ’Story-

telling’ in an economically sensible way, which is essential for policy makers, is not

immediately possible in the standard setting. Another problem is that even though

the parameter space is reduced to some degree compared to a VAR, still many pa-

rameters have to be estimated. Generally, the problem with a large parameter space

is reflected in the fact that scarcely parameterized models very often have a better

forecasting performance than models with a large number of parameters.

In this paper, we propose a Bayesian method which provides a solution to both

problems mentioned above: We first rotate the factors such that the relationships

between factors and data series leads to a natural economic interpretation. The fact

that the factors are only identified up to an invertible rotation is thereby exploited:

We use an informative prior on the factor loadings in order to rotate the factors.

Even an almost flat prior rotates the factors: As the likelihood is flat, the ’curvature’

induced by the prior causes a rotation. By increasing the tightness it is possible to

implement believes about the relationship between specific series and factors. Given

the economic interpretation induced by the rotation, we then combine prior infor-

mation from a small scale Dynamic Stochastic General Equilibrium (DSGE) model

with information contained in the data in order to estimate process. DSGE models

provide a complete description of the dynamics of economic concepts, parameterized

only by a small set of deep structural parameters. Thereby, depending on the weight

of the prior, the parameter space is shrinked towards a parsimonious representation

of the data.

To our knowledge, there is no contribution in the literature which builds prior knowl-
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edge from DSGE models into Dynamic Factor Analysis. By contrast, there are

sophisticated methods designed for VARs. The availability of VAR techniques moti-

vates the idea to use a Gibbs Sampler for the estimation of a Dynamic Factor Model:

Given an initial set of parameters, we draw from the distribution of the unobserved

factors. Given the factors, standard regression and, most importantly, VAR tech-

niques can be applied to draw from the distribution of parameters. This draw can

again be used to simulate a new set of factors. For a sufficient number of iterations

over these two steps, the draws converge to the joint distribution of parameters and

states (see Geweke (2005) for a description of Gibbs sampling methods in general

and Kim and Nelson (1999) for their application to state space models). In this way,

the procedure allows to incorporate Bayesian VAR methods into the estimation of

the factor dynamics. The method used in this paper was developed by DelNegro and

Schorheide (2004). Intuitively, a sample of artificial data (’dummy observations’) is

simulated with the DSGE model. This sample is added to actual data and the VAR

is estimated over this augmented data set. The size of the dummy observation sample

relative to the actual sample gives the weight of the DSGE model restrictions in the

estimation. For comparison purposes, the same idea can be used to implement the

so-called Minnesota Prior. Instead of a DSGE model, some statistical model (e.g.

independent Random Walks for each variable) delivers the set of dummy observations

(see Sims (2005) for a general discussion of dummy observation priors).

Factor models are useful to study the transmission of structural shocks to economic

variables. Forni, Lippi, and Reichlin (2003) and Giannone and Reichlin (2006) argue

that they are more suitable than VARs, as the large information set potentially helps

to overcome non-fundamentalness problems. In previous studies, identification has

been achieved using merely ad-hoc contemporaneous and long-run restrictions. A

main advantage of our setting is, that it is possible to use an identification scheme

which is directly linked to the DSGE model. The method relies on the fact that in

the DSGE model, the shocks are exactly identified. It builds on the strategy pro-

posed by DelNegro and Schorheide (2004) in the context of VARs. The validity of

the method hinges on the assumption that all the factors in our model can indeed be

directly related to variables in the DSGE model. We therefore compare the outcome

to an agnostic identification strategy relying on sign restrictions. This idea goes back

to Faust (1998) and has been elaborated by Uhlig (2005) and Canova (2002) in the

context of structural VARs. The latter identification strategy does not necessarily

rely on the interpretation of all the factors as variables of the DSGE model. The

first strategy - even though widely used in the context of VARs - is novel in the

factor model literature. The second scheme has already been recognized as potential
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strategy in Stock and Watson (2005). However, pointing to computational problems,

they do not apply the method. Interpreting some factors as economic variables, the

major computational problems can be solved in our model.

The closest precursor to this paper is Boivin and Giannoni (2006). They estimate

a DSGE model with a large data set, interpreting variables in the DSGE model as

factors and their observed data as their (imperfect) measures.1 Our model continu-

ously bridges the gap between a non-structural factor model and the model of Boivin

and Giannoni (2006) in the following sense: In the extreme case of degenerate priors

on some of the factor loadings and by strictly imposing the restriction of the DSGE

model one estimates the DSGE model akin to Boivin and Giannoni (2006).2 By

relaxing restrictions implied by the DSGE model and making the priors for the fac-

tor loadings less informative, it is possible to move towards a non-structural factor

model.

Our approach is also related to the analysis in Giannone, Reichlin, and Sala (2006).

They show that the state variables of a DSGE model can be interpreted as com-

mon factors driving the observed variables. However, the focus is slightly different:

Giannone, Reichlin, and Sala (2006) model the dynamics of one observed series per

variable in the DSGE model in which the number of variables can be larger than the

number of shocks. In contrast, we assume that we have the same number of shocks

as variables in the DSGE model. Instead, we interpret the variables in the DSGE

model as common factors driving a large number of observed variables.

As an application, we estimate the model on quarterly US data from 1985 to 2007.

For the DSGE model prior, we use the standard version of the New-Keynesian model

as proposed by DelNegro and Schorheide (2004). This model relates output, inflation

and interest rates. We therefore select variables from the data set which are supposed

to be directly related to these concepts.

A first result is that observed interest rates and observed prices are well described

by one corresponding factor even for a very loose prior on the factor loadings. For

1The idea to introduce measurement errors into the empirical analysis of DSGE models by means of a
factor structure goes back to Sargent (1989) and Altug (1989). It has also been studied in other papers,
e.g. Watson (1993) and Ireland (2004).

2When the size of the dummy observation sample is infinite, the resulting estimator does not allow
for misspecification. Nevertheless, the estimator differs from the one in Boivin and Giannoni (2006) in
the sense that we minimize the discrepancy between the unrestricted Maximum Likelihood estimator of a
finite order VAR of the factors and the respective values implied by the model parameter (see DelNegro
and Schorheide (2004)). If the DSGE model has a VAR representation of the order considered, the
estimation is equivalent, but most models used in modern macroeconomics do not have a finite order VAR
representation. Another difference is that we do not apply the method suggested by Jacquier, Johannes,
and Polson (2004) to reduce the influence of the prior distribution. Boivin and Giannoni (2006) use this
method to check the robustness of their estimates with respect to the choice of priors.
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the observed output series, the result is not as clear cut: Industrial production is

well described by the ’output factor’ while GDP loads also on the inflation factor.

Posterior marginal data densities suggest that a moderate tightness of the prior for

both the factor loadings and the DSGE prior are optimal. Also, we find that includ-

ing information from the DSGE model improves the forecast performance for output

series compared to a simple the non-structural Minnesota prior. For prices and inter-

est rates, the results is ambiguous. Compared to a simple univariate autoregressive

model, the performance of estimates using the DSGE prior is markedly better for

most of the series. For large weights of the prior distribution the performance gets

worse. This also indicates that the DSGE model is too restrictive in some dimen-

sions.

We then analyze the impact of an identified monetary shock on the factors and the

observed series. We find that the response of the factors are largely in line with the

predictions of the New Keynesian DSGE model, also for small weights of the DSGE

prior: A contractionary monetary shock decreases inflation, decreases interest rates

(which is assumed in sign restriction identification) and has a negative impact on

output growth. There are also some differences, however: The impact on the interest

rates is more persistent in the factor model compared to what theory predicts. And,

although the distribution of the long-run impact on output is centered around zero,

the dispersion is rather wide. Hence, long-run neutrality of monetary shocks cannot

be convincingly verified. The analyis of the responses of the observed series reflects

the findings on the structure in the estimated observation equation: The impact of

the shock on observed prices and interest rates are close the their corresponding fac-

tors’. The same is true for Industrial Production. However, the sign of the reaction

of GDP is ambiguous.

The paper is structured as follows: Section 2 describes the empirical model and its

identification. Section 3 sets out the example for DSGE model from which the prior

distribution is inferred. Section 4 contains the estimation method. In section 5, the

empirical application of the method is given. Section 6 concludes.
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2 Empirical Model and Identification

It is assumed that the data evolves according to the following state space system:

Observation equation:

Xt = ΛFt + vt (1)

State equation:

Φ(L)Ft = et (2)

Xt is a potentially high dimensional vector of N data series observed over T time

periods. Ft is a vector of unobserved dynamic factors with a small dimension M .3

Each variables in Xt loads on at least one factor. Λ is the N ×M matrix of factor

loadings. The factors Ft are related to its lagged values by Φ(L) = I − Φ1L− . . .−
ΦpL

p.

The error processes are assumed to be Gaussian White noise:(
ut

et

)
∼ iidN

([
0

0

]
,

[
R 0

0 Σ

])
where

ut = vt −Ψvt−1

and R and Ψ are diagonal.4 Ultimately, we will relate the residuals to structural

shocks εt = H−1
V ARet with cov(et) = IM to analyze the response of the factors and the

observed series to these shocks. We assume that HV AR is invertible, hence that there

are as many shocks as factors. The identification of HV AR is described in Section

5.6.

A difference between this setting and standard factor models (e.g. Stock and Watson

(2002b)), is that the loading matrix Λ is rotated in order to give an economic inter-

pretation to the factors5. A structure that can easily be interpreted would be one in

which a particular set of variables does only load on one factor. For instance, if differ-

ent measures of output, e.g. industrial production for different sectors and measures

for GDP, load exclusively on one particular factor, this factor can be interpreted as

factor ’output’. Ideally, the data series are linked to the factors as follows:

3The interpretation of the factors as economic concepts from a DSGE model sidesteps an issue in factor
analysis, namely how to identify the number of factors M in the model. In our setting, the number of
factors is just the number of concepts the macroeconomist has in mind when she builds a model.

4Doz, Giannone, and Reichlin (2006) examine the properties of a quasi-likelihood estimator under
omitted serial and cross-sectional correlation. They conclude that the effect is negligible if the size of the
cross-section is large and the omitted cross-sectional correlation is limited (approximate factor structure).

5The standard procedure is to use an arbitrary statistical normalization.
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Λobj =



1 0 . . . 0

1 0 . . . 0
...

...
...

1 0 . . . 0

0 1 . . . 0

0 1 . . . 0
...

...
...

0 1 . . . 0

0 0 . . . 1

0 0 . . . 1
...

...
...

0 0 . . . 1


.

Normalizing the non-zero elements to one scales the factors such that the variance

of the factor is not changed by premultiplying the factor loadings with Λobj
6. One

possibility to achieve such a structure is to directly impose the restrictions (see Boivin

and Giannoni (2006)). The disadvantage of this approach is that not all of the zero

restrictions are necessary to identify the model. Hence, imposing the structure may

be too restrictive. A different possibility is to exploit the fact that the factors are

only identified up to an invertible rotation. To see this, plug an invertible matrix Q

into the system:

Xt = ΛQQ−1Ft + vt

Q−1Φ(L)QQ−1Ft = Q−1et

Define F̃t = Q−1Ft, ẽt = Q−1et, Λ̃ = ΛQ and Φ̃(L) = Q−1Φ(L)Q which yields the

following system

Xt = Λ̃F̃t + vt

Φ̃(L)F̃t = ẽt

6Some normalizations are needed to exactly identify the factors. This is also the case when strictly
imposing the restrictions on Λ, see Boivin and Giannoni (2006). An alternative to Λobj implemented here
would be to assume that only one series in each group is related to the factor with loading one. This treats
the series asymmetrically, but possibly improves the fit of the model.
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The latter system is observationally equivalent to the former. The fact that we can

rotate the factors with any invertible transformation Q can be used to make the

factors interpretable without strictly imposing the zero restrictions: Starting from

an arbitrarily (just) identified model, we can rotate the factors such that Λ̃ = ΛQ

comes as close as possible to the desired factor structure7. In our Bayesian setting,

the natural way to rotate the factors is to use an informative prior distribution for

Λ with mean Λobj . This ’identifies’ the factors in the sense that it puts curvature

into the posterior density function for regions in which the likelihood function is

flat. It is clear however, that imposing an informative prior for Λ is restrictive to

some degree, depending on the tightness of the prior. The exact specification of the

prior distribution of parameters in the observation equation is described in section 4.

The prior distribution for the parameters in the state equation (2) is based on prior

information from economic theory. In the next section, we give an intuition for this

approach and describe the economic model we will use in our application.

7The idea of rotation has a long tradition in Factor Analysis, see Lawley and Maxwell (1971), but has
up to our knowledge not been applied in a dynamic setting.
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3 DSGE Model Prior

Presumably among the most popular models in contemporaneous monetary macroe-

conomics is the standard ’New Keynesian’ model. It describes the joint dynamics

of output, inflation and the interest rate based on optimizing behavior of a repre-

sentative consumer and firms which are restricted by some constraints on adjusting

prices. The model provides a complete description of comovement between output,

inflation and interest rates. When it comes to the empirical implementation, we typi-

cally have several data series at our disposal. For example, inflation can be measured

by the GDP deflator, consumer prices or producer prices. Often, it is not desir-

able to chose only one series out of these as immediate measure. We rather want

to explain generic comovements of economic variables instead of modeling dynamics

of selected data series. It is therefore natural to interpret the factors as variables

macroeconomists are interested in and the specific data series as indicators related

to that variable. Putting it that way, knowledge from macroeconomic theory can be

useful for the estimation of relationships between the factors in our empirical model.

The idea to include information from economic theory into the estimation can be

implemented using the approach by DelNegro and Schorheide (2004). Their method

is developed for the estimation of Bayesian VARs. Inspecting the state equation

(2) we see that it has exactly the form of a VAR. By using a Gibbs sampler with

data augmentation (in which the factors are interpreted as unknown parameters) it

is therefore straight-forward to imbed their method into our framework.

Building in prior information from economic theory into the estimation of the state

equation works as follows: Currently, most macroeconomic models fit into the ’Dy-

namic Stochastic General Equilibrium’ (DSGE) framework. They provide a complete

description of the dynamic process of a set of macroeconomic variables St. Establish-

ing a relationship between St and the factors Ft, these dynamics directly translate into

restrictions on the matrices Φ and Ω. The information on the restrictions possibly

helps getting more precise estimates of the parameters. However, DSGE models are

often highly stylized (in the sense that they are based on strong assumptions which

simplify the analysis). It is therefore preferable to use some information on the re-

strictions, but not to strictly impose them. Technically, this can be implemented with

’Dummy’ observations: We use observed data augmented with an artificial sample

generated with the DSGE model, the ’Dummy’ observations, to estimate the factor

model. The size of the artificial data relative to the actual data (which is unobserved

Ft in our case) gives the weight of the restrictions in the estimation. If the artificial

sample is very small, we basically estimate an unrestricted version. If the sample

10



is very large compared to the actual sample, we only use the actual data to update

estimation of the deep parameters of the DSGE models but then directly take the

estimates of Φ and Σ implied by the DSGE model.

The likelihood function of a standard VAR depends only on the first and the second

moments of the data. It follows that we only need to infer these moments from

the DSGE model to augment the actual data set. We illustrate how this can be

achieved with the following version of the standard New-Keynesian model (see Del-

Negro and Schorheide (2004) and Lubik and Schorfheide (2004) for a derivation).

The log-linearized equations are

yt = Etyt+1 −
1
τ
(rt − Etπt+1) + (1− ρg)gt +

ρ

τ
zt

πt = βEtπt+1 + κ(yt − gt)

rt = ρrt−1 + (1− ρ)[ψ1πt + ψ2yt] + εrt

All the variables in the model are in written in deviations from steady state. The

first equation is a standard Euler equation, linking output yt to the expected real

interest rate rt − Etπt+1, expected output Etyt+1 and exogenous technology zt. The

Philipps curve can be derived by assuming Calvo Price setting, perfectly competitive

labor markets and a linear production function. It relates current inflation πt to

expected inflation Etπt+1, the output gap yt and an exogenous demand shifter gt.

The third equation is a Taylor rule which attempts to describe the behavior of the

Central Bank. The nominal interest rate rt depends on the lagged nominal interest

rate and the reaction of the Central Bank to current inflation, the output gap and a

monetary shock εrt . The exogenous components gt and zt evolve according to

zt = ρzzt−1 + εzt

gt = ρggt−1 + εgt

The shocks εzt , εgt and the monetary policy shock εrt are assumed to be uncorrelated

with each other and across time.

Assuming rational expectations, there are several algorithms to solve the system. We

use Sims’ method (see Sims (2002)) and therefore define

11



St = (yt, πt, rt,Etyt+1,Etπt+1, gt, zt)′

εt = (εzt , ε
g
t , ε

r
t )
′

ηt = (ηy,t = yt − Et−1yt, ηπ,t = πt − Et−1πt)′

θ = (ψ1, ψ2, ρR, β, κ, τ, ρg, ρz, σR, σg, σz)′

add the equations

yt = Et−1yt + ηy,t

πt = Et−1πt + ηπ,t

and write the system as

Γ0(θ)St+1 = Γ1(θ)St + Ψ(θ)εt + Π(θ)ηt

The complete matrices Γ0(θ), Γ1(θ), Ψ(θ) and Π(θ) are given in the appendix8.

If there is a unique stationary rational expectations solution, it can be casted into

the following form:

St = G(θ)St−1 +H(θ)εt

The matrices G(θ) are H(θ) are complicated non-linear functions of θ. For detailed

information regarding the algorithm that maps Γ0(θ), Γ1(θ), Ψ(θ) and Π(θ) into G(θ)

and H(θ), we refer to Sims (2002). For an extension to indeterminate systems see

Lubik and Schorfheide (2004). The central assumption is that the factors represent

economic variables which are contained in the DSGE model. We can therefore define

the following selection equation relating the factors to the DSGE model variables.

F ∗
t = ZSt

We denote the DSGE model implied factors by F ∗
t as opposed to the factors in the

empirical model Ft. Note that even though the St is an autoregressive process of order

one, this property does not translate into the implied process for F ∗
t . Generally, F ∗

t

has a VAR representation of infinite order:

8The state vector contains also the expectations of future variables known at time t. This increases the
dimension of the state vector which makes computation more time consuming. On the other hand, it also
allows to directly introduce data that measures these expectations in the estimation which might be an
interesting extension for future work.
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F ∗
t =

∞∑
j=1

Φ(θ)jF
∗
t−j + e∗t

with et ∼ iidN(0,Σ∗(θ)). In the empirical model, we will approximate the system by

including only a finite number p of lagged factors:

F ∗
t ≈

p∑
j=1

Φ(θ)∗jF
∗
t−j + e∗t

Define

F ∗
P =


F ∗′

p F ∗′
p−1 . . . F ∗′

1

F ∗′
p+1 F ∗′

p . . . F ∗′
2

...
...

. . .
...

F ∗′
T−1 F ∗′

T−2 . . . F ∗′
T−p


and

F ∗ =


F ∗′

p+1

F ∗′
p+2
...

F ∗′
T


Then define Γ∗FF (θ) = E(F ∗′F ∗), Γ∗FFP

(θ) = E(F ∗′
P F

∗) and Γ∗FP FP
(θ) = E(F ∗′

P F
∗
P ).

These moments can easily be calculated given the solution to the DSGE model (see

Appendix of DelNegro and Schorheide (2004)). For a given θ, the implied coefficient

matrices Φ∗(θ) and Σ∗(θ) - the maximum likelihood estimates of Φ and Σ for a

truncated VAR on an infinitely large sample of artificial observations - are given by

the Yule-Walker equations:

Φ∗(θ) = Γ∗−1
FP FP

(θ)Γ∗
′

FFP
(θ)

Σ∗(θ) = Γ∗FF (θ)− Γ∗FFP
(θ)Γ∗−1

FP FP
(θ)Γ∗

′
FFP

(θ)

So the autocovariances up to the order p contain all the relevant information on the

VAR parameters implied by the DSGE model. In the estimation, we use these mo-

ments to shrink the parameter space of the coefficients in the state equation towards

the dynamics implied by the DSGE model. The concrete implementation of this idea

is described in the next section.

13



4 Estimation method

Following Kim and Nelson (1999) and Boivin and Giannoni (2006) we use a Gibbs

sampler to estimate the model. In general, Gibbs sampling works as follows. Par-

tition the set of parameters Θ in K subsets, Θ = (Θ1,Θ2, . . . ,ΘK) and define

Θ−k = {Θ1, . . . ,Θk−1,Θk+1, . . . ,ΘK}. Now suppose it is not possible to draw directly

from the distribution of Θ, p(Θ). But the conditional distributions p(Θk | Θ−k) are

standard. Starting at an initial value Θ0
−k repeat the following steps for j = 1, . . . , J

(i) Set Θj = Θj−1

(ii) For each k, draw from p(Θj
k | Θj

−k). Replace the k-th element in Θj by the

drawn value

(iii) Increase j by one and go back to step (i)

This yields a Markov chain in the parameters Θ:

p(Θj |Θj−1, ...,Θ1) = p(Θj |Θj−1)

Under certain regularity conditions satisfied here9, the stationary distribution of this

Markov chain is p(Θ). Discarding some initial draws to ensure that the effect of the

initial Θ0
−k becomes negligible, which amounts to assuming that the Markov chain

has converged to its stationary distribution, we draw from the joint distribution of

the parameter vector given the data. Building on Kim and Nelson (1999), Boivin

and Giannoni (2006) recognize that given the states Ft, standard methods could be

used to draw from the distribution of the parameters of the model and that given the

model parameters (Λ, R,Φ,Σ), standard methods could be used to sample from the

distribution of the states. In our case, Θ1 = (F1, . . . , FT ), Θ2 = (Λ, R), Θ3 = Ψand

Θ4 = (Φ,Σ, θ). Note that the set of parameters is augmented with the vector θ

which denotes the parameter of the DSGE model used as prior. We therefore sample

iteratively from the following conditional distributions:

p(F j | Φj−1,Σj−1, θj−1,Λj−1, Rj−1,Ψj , X) = p(F j | Φj−1,Σj−1,Λj−1, Rj−1,Ψj , X)

p(Λj , Rj | F j ,Ψj−1,Φj−1,Σj−1, θj−1, X) = p(Λj , Rj | F j ,Ψj−1, X)

9See Geweke (2005) for details on conditions that ensure convergence.
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p(Ψj | F j ,Λj , Rj ,Φj−1,Σj−1, θj−1, X) = p(Ψj | F j ,Λj , Rj , X)

p(Φj ,Σj , θj | F j ,Λj , Rj ,Ψ, X) = p(Φj ,Σj , θj | F j)

where Φj = (Φj
1, . . . ,Φ

j
p), F j = {F j

1 , . . . , F
j
T } and X = {X1, . . . , XT }. The steps are

now described in turn. We drop the index j for notational convenience, but keep in

mind that the steps constitute only one iteration of the Gibbs sampler.

4.1 Step 1: Drawing from p(F | Φ,Σ,Λ,R,Ψ,X)

The algorithm described in Kim and Nelson (1999) is used to draw from the joint

distribution of the states. The derivation assumes that the state space system (1)

and (2) is Markovian of order one. If p > 1 the system has to be rewritten into

a Markov system by redefining the state vector, see Appendix D10. A standard

Kalman filter can be used to calculate the distribution of Ft given X1, . . . , Xt and

the model parameters. Define It = {X1, . . . , Xt,Φ,Σ, θ,Λ, R}. We want to sample

from p(F1, . . . , FT | X1, . . . , Xt,Φ,Σ, θ,Λ, R) = p(F1, . . . , FT | IT ). Factorize the

joint density into a product of conditional densities:

p(F1, . . . , FT | IT ) = p(FT | IT )p(FT−1 | FT , IT ) . . . p(F1 | F2, . . . , FT , IT )

The Markov property of the system implies that p(Ft | Ft+1, . . . , FT , IT ) = p(Ft |
Ft+1, IT ) and p(Ft | Ft+1, IT ) = p(Ft | Ft+1, It). We therefore write

p(F1, . . . , FT | IT ) = p(FT | IT )p(FT−1 | FT , IT−1) . . . p(F1 | F2, I1) (3)

The joint distribution of Ft and Ft+1 given It is(
Ft

Ft+1

)
| It ∼ N

([
Ft|t

ΦFt|t

]
,

[
Pt|t Pt|tΦ′

ΦPt|t ΦPt|tΦ′ + Σ

])
where Ft|t = E(Ft | It) and Pt|t = V(Ft | It) are outputs of the Kalman filter. So

the distribution of St given St+1 and Xt can be found with the standard formula for

multivariate normal distributions:
10Also the fact that there is autocorrelation in the observation equation complicates the problem from

a numerical point of view. The Kalman filter has to adapted as described in Appendix D.
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E(Ft | Ft+1, It) = Ft|t + Pt|tΦ
′(GPt|tG

′ + Σ)−1(Ft+1 − ΦFt|t)

V(Ft | Ft+1, It) = Pt|t + Pt|tΦ
′(ΦPt|tΦ

′ + Σ)−1ΦPt|t

So Ft | Ft+1, It is normally distributed with expected value and variance that can

easily be calculated with the output of the Kalman filter. The last step of the Kalman

filter gives us the mean and the variance of FT | IT . We draw from this distribution.

Given this draw, we iteratively draw from p(Ft | X,Ft+1) where Ft+1 is the value

drawn from p(Ft+1 | It+1, Ft+2). According to equation (3), this gives us a draw from

the joint distribution of the factors given the parameters of the model and the data.

4.2 Step 2: Drawing from p(Λ,R | F ,Ψ,X) and p(Ψ | F ,Λ,R,X)

Given the states, standard methods can be used to draw from this distribution,

see Chib (1993), Bauwens, Lubrano, and Richard (1999) and Boivin and Giannoni

(2006). To draw from p(Λ, R | F ,Ψ,Φ,Σ, θ,X), we first filter the data and the states

X̃t = Xt −ΨXt−1 and F̃t = Ft −ΨFt−1 such that

X̃t = ΛF̃t + ut

Conditional on Ψ and using the assumption that R is diagonal, standard multi-

variate regression methods can be used to draw from the distribution of Λ and R.

We follow Boivin and Giannoni (2006) by using the conjugate prior described in

Bauwens, Lubrano, and Richard (1999), p.58. The prior distribution p(Rn,Λn | Ψn),

where n denotes the respective row in the observation equation, is of the normal-

inverted gamma-2 form (as defined in the appendix of Bauwens, Lubrano, and

Richard (1999)):

Rn ∼ iG2(3, 0.001)

Λn ∼ N(Λ0, RnM
−1
0 )

M0 is a matrix of parameter that influences the tightness of the priors in the obser-

vation equation. The larger the elements of M0 are, the closer we relate the observed

series to the factors a priori. It follows that the posterior distribution is

Rn|X,F ∼ iG(R̄n, T + 0.001)
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Λn|X,F ∼ N(Λ̄n, RnM̄
−1
n )

where

Λ̄n = M̄−1
n (M0Λ0 + F̃ ′X̃)

R̄n = 3 + u′u+ (Λ− Λ0)′(M−1
0 +′ (F̃ ′F̃ )−1)−1(Λ− Λ0)

M̄n = M0 + F̃ ′F̃

Given the draws from this distribution, we can calculate a draw from the distri-

bution of vt. Hence, to draw from p(Ψ | F ,Λ, R,Φ,Σ, θ,X), standard results for

autoregressive processes can be used: Assuming a standard normal prior for Ψn we

obtain

Ψn|X,F,Λ, R ∼ N(Ψ̄n, N̄
−1
k )

where

Ψ̄n = N̄−1
n R−1

k v′nvnΨ̂n

N̄n = 1 +R−1
k v′nvn

and Ψ̂n is the OLS estimate of vnt = Xnt−ΛFt on its lagged value (see Chib (1993)).

4.3 Step 3: Drawing from p(Φ,Σ, θ | F)

In this step, we invoke the method of DelNegro and Schorheide (2004). We give here

a merely intuitive description of their main results. For detailed information we refer

to the original paper.

The joint posterior distribution is factorized as follows

p(Φ,Σ, θ | F ,Λ, R,Ψ, X) = p(Φ,Σ | F , θ,Λ, R,Ψ, X)p(θ | F ,Λ, R,Ψ, X)

The prior p(Φ,Σ, θ) is specified hierarchically:

p(Φ,Σ, θ) = p(Φ,Σ | θ)p(θ)

This allows to first draw from the posterior distribution of θ, and the draw from

the posterior distribution of Φ and Σ given the draw of θ. The two steps are now

described in turn. In what follows we use the following definitions: We parameterize
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the size of the artificial data T ∗ relative to the actual sample size actual sample size:

T ∗ = λT . The maximum-likelihood estimates of Φ and Σ based on artificial sample

and actual sample are denoted by

Φ̃(θ) = (λΓ∗FpFp
+ F ′

PFP )−1(λΓ∗FP F + F ′
PF )

Σ̃(θ) =
1

(λ+ 1)T
[(λΓ∗FF +F ′F )−(λΓ∗FFP

+F ′FP )(λΓ∗FP FP
+F ′

PFP )−1(λΓ∗FP F +F ′
PF )]

where the definitions of the sample moments ΓFF = F ′F and ΓFP FP
= F ′

PFP are

analogous to their equivalents implied by the DSGE model. That is

FP =


F ′

p F ′
p−1 . . . F ′

1

F ′
p+1 F ′

p . . . F ′
2

...
...

. . .
...

F ′
T−1 F ′

T−2 . . . F ′
T−p


and

F =


F ′

p+1

F ′
p+2
...

F ′
T


Step 3.1: Drawing from p(θ | F) The distribution depends on prior knowl-

edge on specific parameters in the model. Usually, there is no way to obtain a

standard posterior distribution for θ. A standard way to draw from a non-standard

distribution is a Random Walk Metropolis-Hasting (MH) Algorithm. Given a draw

of θj−1 from the previous step, a candidate θ∗ is drawn from a proposal distribution:

θ∗ = θj−1 + εi

Then, the following ratio is calculated:

r =
p(Fj | θ∗)p(θ∗)

p(Fj | θj−1)p(θj−1)

We set θj = θ∗ with probability r. If the proposal is rejected, we set θj = θj−1.

The intuition is that we draw from a candidate from an arbitrary distribution and

reweigh the draws such that we draw from the desired distribution. For a exposition

of MH algorithms and MH within Gibbs algorithms see Geweke (2005). Prerequisite
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is that the Likelihood can be evaluated for a given θ. The relevant Likelihood is

p(F | θ) ∝
|Γ∗FpFp

(θ) + ΓFpFp |−
M
2 |(λ+ 1)T Σ̃(θ)|−

(λ+1)T−k
2

|Γ∗FpFp
(θ)|−

M
2 |λTΣ∗(θ)|−

λT−k
2

Step 3.2: Drawing from p(Φ,Σ | θ,F) The prior distribution of Φ and Σ

given θ is of the Inverted-Wishart-Normal form:11

Σ|θ ∼ IW (Σ∗(θ), T ∗ −Np− 1)

Θ|Σ, θ ∼ N(Φ∗(θ),Σ⊗ ΓFP FP
(θ)−1)

Note that the distributions are centered at the MLE of Φ and Σ on the artificial

sample. It follows that

Σ | θ ∼ IW
(
Σ̃(θ), (1 + λ)T −Np− 1

)
(4)

Φ | Σ, θ ∼ N
(
Φ̃(θ),Σ⊗ (Γ∗FP FP

(θ) + ΓFP FP
)−1
)

(5)

The posterior distribution is of the same form as the prior, but it is centered at

the MLE on both actual and artificial data. To get an intuition for the result, it is

illustrative to decompose the posterior distribution into the likelihood function and

the prior distribution:

p(Φ,Σ, θ | F) =
p(F | Φ,Σ, θ)p(Φ,Σ, θ)

p(F)
∝ p(F | Φ,Σ, θ)p(Φ,Σ, θ)

The likelihood is

p(Ft | Φ,Σ, θ) ∝ |Σ|−T/2 exp
(
−1

2
tr(Σ−1(F ′F − Φ′F ′

PF − F ′FP Φ + Φ′F ′
PFP Φ))

)
Replacing the sample moments as defined above yields

p(Ft | Φ,Σ, θ) = |Σ|−T/2 exp
(
−1

2
tr(Σ−1(ΓFF − Φ′ΓFFP

− Γ′FFP
Φ + Φ′ΓFP FP

Φ))
)

11This is a slight abuse of notation: We should vectorize the matrices Θ and Σ.
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The density function of the Inverted-Wishart-Normal distribution is

p(Φ,Σ | θ) = c(θ)−1|Σ|−
λT+n+1

2 exp
(
−1

2
tr(Σ−1(Γ∗(θ)− Φ′Γ∗(θ)− Γ∗(θ)′Φ + Φ′Γ∗(θ)′Φ))

)
= p(Φ,Σ | Γ(θ))

Note that Bayes’ Theorem gives

p(Φ,Σ | Γ(θ)) ∝ p(Γ(θ) | Φ,Σ)p(Φ,Σ)

Comparing this to the likelihood p(F | Φ,Σ, θ) we see that the prior distribution

of Σ and Φ given θ can be interpreted as augmenting the data set with dummy

observations F ∗ by multiplying the likelihood of ’dummy observations’

p(F ∗ | θ) ∝ |Σ|−
λT+n+1

2 exp
(
−1

2
tr(Σ−1(Γ∗(θ)− Φ′Γ∗(θ)− Γ∗(θ)′Φ + Φ′Γ∗(θ)′Φ))

)
with an (improper) prior

p(Φ,Σ) = Σ−n+1
2

The ’sample size’ of the artificial sample is λT , therefore λ is a parameter which

reflects the ’tightness’ of the DSGE model prior,. The larger λ, the larger the sample

compared to the actual sample. If λ is large, the estimates of Φ and Σ will concentrate

on the restrictions implied by the DSGE model. Tedious manipulations of

p(Φ,Σ | θ,F) ∝ p(F | Φ,Σ)p(Φ,Σ | θ)

show that Φ and Σ given θ and F are of the Inverted Wishart-Normal form stated

above.

To summarize, Step 3 of the Gibbs sampler works as follows: First draw θ∗, ac-

cept or reject these draw according to the rule described above. Given the resulting

θj , use the distributions (4) and (5) to draw Φj and Σj , respectively. Given this

draws, we start a new iteration with step 1.
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5 Empirical Application

This section describes the results when we apply the prior from the New Keynesian

model to a Dynamic Factor Model. The tightness M0 of the prior for Λ determines

how close the data series are connected a priori to the DSGE model concepts. The

value of λ determines the weight of the DSGE model in the estimation. As it is

not clear a priori what values should be chosen, we estimate the model over a grid

of values for M0 and λ. We provide some evidence on a optimal weight based on

the forecast performance. We also discuss the selection of the optimal weight λ and

M0 based on measures of in-sample fit. In particular, we decompose the variance

of the data into the fraction explained by the common factors and the variance of

the idiosyncratic component. Additionally, we provide the posterior marginal data

density as a selection criterion. Section 5.5 evaluates the estimates of the DSGE

model parameters.

We proceed as follows: In section 5.1 we describe the data. Section 5.2 addresses

some issues concerning the concrete implementation of the MCMC algorithm. The

choice of the prior distribution of the DSGE model parameters is discussed. Section

5.3 discusses the forecast performance. In Section 5.4 we provide the discussion of

the optimal weights based on measures of in-sample fit. Section 5.6 discusses how

identified monetary shocks influence the common factors and the observed series12.

5.1 Data

We use quarterly data from 1985 to 2007:3. We do not use data from periods earlier

than 1985 because there is evidence for structural break at around 1984 (see e.g.

Stock and Watson (2002a)). The data is taken from Federal Reserve Bank of St.

Louis Data base and from the Bureau of Labor Statistics. We select data corre-

sponding to the variables contained in the DSGE model: Output, Prices and Interest

Rates. The output series include data on real personal income, consumption ex-

penditures, domestic product, industrial production and capacity utilization. Prices

indicators are deflators of GDP and consumption expenditures, and consumer prices

indexes for several subgroups of goods. Interest rates include bonds with different

ratings, Treasury bonds and the FED funds rate. If there was only monthly data

available, we took averages to obtain a quarterly series. A complete list with detailed

information is given in Table 2.

12The calculations are done with our own MATLAB routines. To solve the DSGE model, we adapted
the MATLAB code written by Christopher Sims. Gauss routines written by Frank Schorfheide were used
to test our code.

21



A central issue is how the economic concepts contained in the factors relate to the vari-

ables in the DSGE model. We adapt the approach taken by DelNegro and Schorheide

(2004). They use output growth, inflation and annualized interest rates in levels for

the estimation. The following ’observation equation’ - which does not correspond

to the observation equation (1 - is therefore specified (’obs’ refers to the observed

series):

∆yt,obs = ln γ + ∆yt + zt

πt,obs = lnπ∗ + π∗t

rt,obs = 4(ln r∗ + lnπ∗ + rt)

Hence, we also take the growth rate of the price series to measure inflation, the

growth rate of the output series, and the interest rate series in levels for our estima-

tion. We adapt these equations by replacing ∆yt, πt and rt by their corresponding

factors. We do not use annualized interest rates as this introduces undesirable het-

eroscedasticity in the data and adjust the observation equation accordingly. The

series are demeaned, which implies that we omit the constants contained in the

equations above.

One further issue is, that in particular in classical analysis of factor models, there is

a large and still developing literature of statistical tests to determine the number of

factors. We do not attempt to do a methodically sound analysis of our data set in

that respect: In our factor model, the number of factor is determined by the number

of shocks in the DSGE model. However, the eigenvalues of the covariance matrix of

the data provides some indication that three factors are not at odds with the data.

We have three eigenvalues which are distinctively different from zero: 78.5, 5.9 and

3.6. The next smaller values are 0.9, 0.8 and 0.5 which are much closer to zero. This

is indicative because the number of factors corresponds to the number eigenvalues

which go to infinity with increasing cross-sectional dimension.

5.2 Implementation

The prior distribution for θ is taken from DelNegro and Schorheide (2004). Pa-

rameters are assumed to be independently distributed according to Table 1. We do

not attempt to estimate the steady state values for the interest rate and therefore

calibrate r∗

γ = β = 0.99.

We assume the same prior for the coefficients in the observation equation for each

series (see section 4). However, we standardize the variance of the series to the stan-
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Table 1: Prior Distribution

Parameter Distribution Mean Std.Deviation

ψ1 gamma 1.5 0.5
ψ2 gamma 0.125 0.1
ρr beta 0.5 0.2
κ gamma 0.3 0.15
τ gamma 2 0.5
ρg beta 0.8 0.1
ρz beta 0.3 0.1
σR inverse gamma-1 0.251 0.139
σg inverse gamma-1 0.630 0.323
σz inverse gamma-1 0.875 0.430

1 The inverse gamma-1 density is parametrized as in DelNegro
and Schorheide (2004): p(σ|ν, s) ∝ σ−ν−1e−νs2/2σ2

where ν =
4 and s equals 0.2, 0.5 and 0.7, respectively.

2 Following DelNegro and Schorheide (2004), we truncate the
prior density such that the parameter space is restricted to
the determinacy region (corresponding to approximately 98.5
% of the prior mass as defined above).

dard deviation of one particular series in the sample: In particular, we standardize

all ’output series’ to have the same standard deviation as GDP. For the ’price series’

we use the GDP deflator and for the ’interest rate series’ we use the FED Funds

Rate as normalizing series. This makes the estimation more robust to the influence

of data series with large variance.

The variance of the innovations for the proposal draws in the MH-algorithm is chosen

in order to get an acceptance rate between 0.2 and 0.3. We iterate 200’000 times over

Step 1 to 3 described before. To mitigate the effect of the initial values, we discard

the first 20% of the draws. For computational reasons we evaluate only every 16st

draw, such that we have 10’000 draws to calculate the distribution of the parameters.

Convergence is checked by using different initial values and graphically verifying that

the recursive means remain stable after the discarded draws.13

The number of lags p in the state equation is 4. In the benchmark model, we replace

the DSGE prior with a Minnesota prior. The Minnesota prior is implemented with

dummy observations as described in the appendix of Lubik and Schorfheide (2005).

The lag length of the AR model is also chosen to be 4.

13The only coefficient where the recursive mean are only stable after approximately 100’000 is τ .
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5.3 Forecast Performance

We build ’rolling forecasts’ for the last eight years of the sample. This yields 32 one-

period forecasts, 31 two-periods forecasts, etc for each variable. Due to the heavy

computational burden we did not reestimate the model for each sample. We evaluate

the forecast performance up to a horizon of two years for a grid of values for λ and

M−1
0 . For each λ and M−1

0 forecast horizon h we calculate the covariance matrix of

the errors as

Σforecast(λ,M−1
0 , h) =

1
32− h

2007:3∑
t=2000:4

(Xt+h − PtXt+h)(Xt+h − PtXt+h)′

where Xt are observed series. Note that if Xt contains only one series, the square

root of Σforecast(λ,M−1
0 , h) corresponds to the root mean squared error (RMSE).

Following DelNegro, Schorheide, Smets, and Wouters (2007), we calculate a multi-

variate statistic for the forecast performance as the inverse of this matrix, divided

by 2 to convert from variance to standard error and by the number of variables to

obtain an average figure. The percentage improvement in the multivariate statistic

across different models is computed by taking the difference multiplied by 100.

We use the mean of the posterior distribution for forecasting. We applied the follow-

ing algorithm: In each iteration of the MCMC algorithm, forecast the future states

given the draws of the states. Then use the draw of Λ to calculate the forecasts for

each variable. This results in one forecast for each variable at any given forecast

horizon for each draw. So the whole distribution of these linear forecasts can be eval-

uated. Under a quadratic loss function, the mean of this distribution is the optimal

forecast. Hence

PtXt+h =
1
J

J∑
j=1

ΛjPtSt+h,j + Ψh
j (Xt − ΛjSt,j)

PtSt+h,j = Φh
jSt,j

Note that the forecast with the mean of the estimates is not equal to the mean of

the distribution of forecasts. An extension would be the standard practice to use a

two step procedure for forecasting with Dynamic Factor Models: In a first step, the

factors (sometimes called ’diffusion indices’) are estimated. In the second step, the

variables of interest are regressed on the factors and on their own lags. The resulting

equation is used for forecasts. This procedure potentially improves the forecasts for
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all weights of the prior. But as we are mainly interested in relative performance

across different priors, we do not follow this approach.

RMSE for selected series Table 3 shows the RMSE for selected series for dif-

ferent forecast horizons and λ’s. For most of the series, the factor model outperforms

the AR(4) forecast substantially. Generally, the forecast error is minimized for mod-

erately positive values of λ. The optimal λ depends on the series and also on the

forecast horizon. For some series, the gain is quite big with respect to the estimation

with zero weight.

Multivariate statistic In Table 4 to 7, the multivariate statistics for different

groups of series are given. The multivariate statistics confirm the result that the

factor model shows a superior performance compared to the univariate AR(4) fore-

casts. Again, the optimal value for λ is positive, but small. Increasing the weight

to large values results in a worse performance. For the tightness of the prior in the

observation equation, the results are ambiguous: For output series, a tighter link

increases the gain, for prices there is no effect and for interest right a looser prior is

to be favoured. However, the differences are small. Comparing the forecast perfor-

mance to the factor model with a Minnesota prior, one can see that the Minnesota

prior also performs well. However, there is still a gain from using the DSGE prior

for the output series. Only for the one period forecast of prices, the Minnesota prior

performs better.

To summarize, including prior information improves the forecast performance con-

siderably for most of the variables at all forecast horizons compared to the simple

AR forecast. Note that there is also a gain over a horizon of two years. However,

the longer the horizon, the less reliable are the figures as the number of periods used

for the evaluation decreases. The optimal weight is clearly positive, but small: The

values hoover around a value of 1. Also the Minnesota prior performs considerably

better than the AR forecasts. Therefore, the gain of the DSGE prior compared to

this model is small.

5.4 Selection of weights of prior

The previous analysis focused on the out-of-sample forecasting performance of the

model for different prior weights. In this section, we provide information on in-

sample fit. First, we informally use the fraction of the data which is explained by

the common factors. Then, a formal assessment based on the posterior probabilities
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is provided.

5.4.1 Variation explained by common factors

The ratio of standard deviation of ΛFt, the common component of the observed series

and the standard deviation of the actual data is informally used as a measure for

the explanatory power of the DSGE model for the specific series. Table 11 reveals

that the fraction of the variance that is explained by the factors is quite large. The

fraction is only slightly influenced by the weight of the DSGE prior. That is, the

DSGE prior is not restricting the dynamics of the factors in way that influences

the fit of the model. This indicates that the distribution of the factors are mainly

determined by the information in the observation equation. The law of motion of the

factors has only small effects on the fit.

Comparing the ratios in Table 11 for different values of M0, we see that for some

variables, increasing the weight decreases the ’fit’, while it increases for other series.

Strikingly, the estimation with a low weight of the DSGE prior and a very loose

prior on the observed coefficients detoriate the fit of the interest rate series, without

increasing the fit of other series. This indicates that some ’curvature’ in the prior

density is needed to identify the factors. It is optimal to have a moderately tight

prior on the factor loadings in that respect.

5.4.2 Posterior probabilities

In this section, a formal assessment of the in-sample fit is provided: We index each

model by its values for the weight of the DSGE prior λ and the the tightness of the

prior distribution of the factor loadings M0, and denote the respective models by

Mλ,M0 . We then calculate the posterior probabilities of each model:

p(Mλ,M0 |X) =
p(Mλ,M0)p(X|Mλ,M0)

p(X)

To compare the different models, we put equal prior weight for the each model

p(Mλ,M0) =
1

#(models)

Hence, in relative terms, only the posterior marginal data density is used as a measure

of fit:

p(X|Mλ,M0) =
p(X|Θ,Mλ,M0)p(Θ|Mλ,M0)

p(Θ|X,Mλ,M0)
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The selection criteria favors models with a high likelihood, but imposes a penalty

on too loose priors. It works in the same way as the usual information criteria used

in standard time series analysis to select the lag length in autoregressions. Indeed,

the Schwarz or Bayesian information criterion is derived on a approximation of the

posterior data density14.

The density p(X|Mλ,M0) cannot be calculated analytically. However, the harmonic

mean estimator of Geweke (1999) can readily be applied. This estimator is based on

the following identity:

1
p(X)

=
∫

f(Θ)
p(X|Θ)p(Θ)

p(Θ|X)dΘ

where
∫
f(Θ)dΘ = 1. This expression is estimated with

1
p(X)

=
1
J

J∑
j=1

f(Θj)
p(X|Θj)p(Θj)

In principle, any function f(Θ) which integrates to one can be used. A standard

choice is

f(Θ) = q−1(2π)−d/2|VΘ|−
1
2 e−

1
2
(Θ−Θ̄)V −1

Θ (Θ−Θ̄) × I
[
(Θ− Θ̄)V −1

Θ (Θ− Θ̄) < F−1
χ2

d(q)

]
Θ̄ refers to the posterior mean and VΘ is the posterior variance of the draws.

The parameter q is deliberately chosen to dampen the effect of extreme draws out

of the posterior density. One word of caution maybe necessary at this point: In the-

ory the value of q has no influence on the estimated value of the marginal data

density. In practice, the estimation depends to some extend on the value of q

due to the finite number of draws. We therefore calculate the p(X) with q =

(0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95). We interpret the discrepency between the values

of p(X) for the different q’s as numerical inaccuracy.

In Table 12 we see the results for different weights of the DSGE prior λ and different

values of M−1
0 , the tightness of the prior on the factor loadings. It can be seen that

there are considerable differences for different values of q, which makes it difficult

to order all the models. A robust result, with respect to the choice of q is that for

14With a quadratic loss function, we would use the posterior probabilities to calculate a weighted average
of statistics of interests implied by the different models. However, it turns out that the model with highest
posterior receives a weight of almost one, while the other models receive no weight. Hence, to consider
the model with the highest posterior data density does not lead to different conclusion, unless an extreme
position on the prior model probabilities p(Mλ,M0) is taken.
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large values of λ, the fit detoriates. It is maximized for small values, in most cases

for λ = 0.25 or λ = 0.5. The optimal λ tends to be smaller for small values of M0.

This is intuitive: The more plausible the interpretation of the factors as the selected

economic variables is, the better the DSGE model describes the factors. It is hard to

tell what the optimal M0 is. All the differences are well in the range of the numerical

inaccuracy. A tendence maybe that for a very tight prior, that is large values of M0,

the fit is slightly worse. Recalling that the criterion is generally penalizing too loose

priors, we interpret this as evidence that we should not strictly impose the restric-

tions on the factor loadings matrix. However, inducing some information on what

the series actually measure does not harm the fit and may help to get more precise

estimates.

5.5 Parameter estimates

Before studying effects of shocks on factors and observed variables, we summarize

findings on the posterior distribution of the estimated parameters.

Parameters of DSGE model The posterior mean of θ is shown in Table 15.

While the width of the intervals decreases with increasing prior weight, the location

of the intervals of most of the coefficients is only slightly influenced. An exception

may be the reaction of the central bank to an increase in inflation. This coefficient

increases with increasing weight. The intertemporal elasticity of substitution τ−1 is

slightly higher for moderate values of λ compared to little prior weight or very large

prior weight.

Relationship of factors and observed series We inspect the properties of

the model with respect to nine variables, three for each group of variables: Personal

Income, total Industrial Production and GDP (as measures for output), the GDP

Deflator, the implicit Deflator on Personal Consumption and the Consumer Price

Index for all goods (as measures for inflation) and the Federal Funds Rate, 3-Month

Treasury US Bills and Moody’s Aaa Corporate Bond Yields (as measures for the

interest rate). Additionally, we compare the posterior distribution of the DSGE

model parameter vector θ over the grid of λ.

The estimates vary only slightly by changing the weight of the prior. Table 13 shows

the estimated factor loadings for λ = 1. It is indeed the case, that the series load

more on the factor which is economically related. Especially the interest rate and

price series are explained almost entirely by only one factor. Moreover, the loading is
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centered around one. This is also the case for Industrial Output for moderately tight

priors on the factor loadings. For the other output series the result is not as clear cut:

GDP loads positively on the output factor, as expected. However, the loading on the

price factor is distinctively negative. Real Personal Income is negatively influence by

the price factor. Increasing the tightness off the prior on the factor loadings shifts

the coefficients towards the mean: For M0 = 16, the loadings are very close to the

prior mean.

5.6 Transmission of Shocks

We investigate two questions concerning the transmission of monetary shocks. First,

we analyze how these shocks influence the common factors. Having identified the

factors as economic variables, we are able to compare the responses to typical re-

sults in the literature. Second, the model allows to investigate how structural shocks

influence observed series. The response is obviously driven by the response of the

common factors. However, deviations of the posterior distribution of the factor load-

ings from the prior distribution induces more complicated dynamics. We use two

different identification schemes. The first, agnostic identification scheme relies on

the sign restrictions. The second follows DelNegro and Schorheide (2004) in that

we rotate the Cholesky decomposition of the covariance matrix of the residuals et
with corresponding matrix implied by the DSGE model. In the next section, we

describe the two methods. We then document the results for different weights of the

DSGE prior. For the tightness of the prior for the factor loadings, we choose M0 = 1
2

according to the consideration in the previous section.

5.6.1 Identification of Shocks

Recall that the residuals in the state equation relate to structural shocks as

et = HV ARεt

with E(εtε′t) = IM . The goal is to estimate the reaction of the factors Ft to shocks

εt:

HV AR =
∂Ft+h

∂ε′t

Given the responses on impact ∂Ft
∂ε′t

, one can use Φ(L) to calculate the responses

for h > 0. Once this reaction is determined, one can calculate the response of Xt as
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follows:

∂Xt+h

∂ε′t
= Λ

∂Ft+h

∂ε′t

The problem of identification arises because HV AR can not be uniquely deter-

mined using only information from the reduced form estimation of the factor model.

HV AR is only restricted by its relationship to the covariance matrix of the reduced

form residuals:

Σ = HV ARE(εtε′t)H
′
V AR = HV ARH

′
V AR

It is always possible to plug an orthonormal matrix Ω into the equation above:

Σ = HV ARΩΩ′H ′
V AR

and define H̃ = HV ARΩ. This matrix also satisfies the restrictions implied by the

reduced form estimation. However, it implies potentially very different reactions of

Ft to the shocks. Hence, given an arbitrary H̃, there have to be further restrictions

on Ω in order to determine the responses HV AR. The two approaches we use differ

in the way Ω is chosen.

DSGE Model Rotation DelNegro and Schorheide (2004) propose an approach

which relies on the fact that in the DSGE model, the shock are exactly identified.

That is, the matrix

∂F̃t

∂ε′t
=
∂ZSt

∂ε′t
= H(θ)

is uniquely determined. Recall that H(θ) can be calculated using standard methods

to solve linear(ized) DSGE models. Furthermore, there is a unique decomposition of

this matrix into the product of a triangular matrix Htr,DSGE(θ) and an orthonormal

matrix Ω(θ):

H(θ) = Htr,DSGE(θ)Ω(θ)

The idea is to set H̃ to Htr,V AR, the Cholesky decomposition of Σ, and then to use

Ω(θ) as a rotation:

HV AR(θ) = Htr,V ARΩ(θ)
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On impact, the response differ to the extend that Htr,DSGE(θ) and Htr,V AR differ.

That is, if the covariance matrix of residuals is similar to its counterpart in the DSGE

model, then the responses on impact will be close. For horizons bigger than zero,

there is the influence of Φ which allows for further deviations of the factor model

responses to the DSGE model implications.

Sign Restrictions The idea of the second approach is to be ’agnostic’: One tries

to find restrictions on the sign of the response which are consistent with commonly

accepted theories. Depending on the nature of this restrictions, it is possible to

reduce the range of possible rotations Ω. This idea goes back to Faust (1998) and

has been elaborated by Uhlig (2005) and Canova (2002). We implement the ’pure’

sign restriction approach, as opposed to the ’penalty-function approach’. Hence,

we do use an additional to select the ’best’ of all impulse response vectors. All

impulse responses satisfying the sign restrictions are considered to be equally likely.

In the ’pure’ sign restriction approach, one estimates the impulse-responses and the

reduced form coefficients jointly. The impulse responses are parameterized as follows:

Hsign = HcholΩα, where Ωα is the orthonormal rotation matrix with one column given

by a vector of unit length α. Hchol is the Cholesky decomposition of the covariance

matrix Σ = HcholH
′
chol. Uhlig (2005) shows that the set of impulse response functions

can be characterized by a suitable choice of α. The prior for the coefficients in the

state equation is formulated as

p(Φ,Σ, α) ∝ p(Φ,Σ)I(α)

where I(α) is one if the sign restrictions are satisfied and zero otherwise. This

can be implemented by repeating the following steps for each iteration of the MCMC

algorithm:

1. Calculate the Cholesky decomposition of the Σj = AjA
′
j

2. Draw a 3× 1-vector α̃j with independently and standard normally distributed

elements and normalize the length to one: αj = α̃j

||α̃j ||

3. Calculate aj = Ajαj and check if implied responses satisfy the sign restriction.

4. If it satisfies the restrictions keep all the parameters drawn in iteration j. If it

does not satisfy the restrictions, discard all of the draws.

Note that the posterior distribution of the reduced form coefficients is different

from the pure reduced form estimation. Draws for which it is more likely that the

sign restrictions are satisfied receive more weight.

31



In our setting, it is possible to restrict the response of the factors or the response of

a set of observed series (or both). We restrict the response of the interest rate factor

and the inflation factor, and not the observed series directly. This results in a more

robust identification with respect to unimportant idiosyncratic noise. Moreover, it

can also be justified by the fact that reaction of observed interest rates and observed

inflation are very well described by the reaction of the corresponding common fac-

tors: The factor loadings are close to the block-diagonal structure. To the extend

that this is true, our approach is meaningful, even if one is not convinced that the

factor indeed correspond to the variable in the DSGE model: One can interpret the

rotation as a technical device to approximately implement sign restrictions on the

response of a whole set of observed variables. To identify the shocks, we impose that

a contractionary monetary policy shock does not lead to

• an increase in the price factor

• an increase in the interest rate factor

The restrictions are required to hold for the first 5 period, following Uhlig (2005).

5.6.2 Response of Common Factors

The different identification approaches do not lead to conflicting results: The 80%

HPD overlap to a large extend (see Figures 3 to 6). The intervals of the response

on impact implied by the DSGE model rotation are more narrow than the intervals

implied by the sign restriction. This is especially true for the reaction of the output

factor. In that sense, including more information leads to more precise results.

Generally, we find that the response of the factors resembles those from standard

VAR analysis: A contractionary monetary shock decreases interest rates (which is

assumed in sign restriction identification), decreases inflation and has a negative

impact on output growth. The responses on impact in the factor model are close to

the responses in the DSGE model. In some dimensions however, there are pronounced

differences between the implications of the DSGE model and the factor model: One

striking observation is that the reaction of interest rates to a monetary shock is far

more persistent in the factor model than in the DSGE model. This is even true for

a fairly large weight of the DSGE prior. Figure 7 reveals a further major difference

regarding the long-run response of the level of output: Whereas the DSGE model

predicts long run neutrality of money shocks, the corresponding response in the factor

model does not allow to make precise statements on this. The 80% HPD intervals

are quite large. Hence, there seems to be seems to be considerable uncertainty on

this effect.
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5.6.3 Response of Observed Series

The responses of prices and interest rates are very well described by the responses

of the common factors, see Figure 8 and 9. This is directly implied by the fact that

the posterior distribution of the factor loading matrix is close to its prior mean. The

same is true for Industrial Production. This implies that Industrial production reacts

in line with the standard view: The response of output to a contractionary monetary

policy shock is negative. For other output series, there are considerable deviations

(Figure 10): Personal Income shows no reaction and Consumption Expenditures even

reacts slightly positive to a contractionary monetary policy shock. Importantly, we

confirm Uhlig (2005)’s result that the reaction of GDP to a monetary policy shocks

is ambiguous. We want to stress, that this result is also achieved with an agnostic

identification approach, not relying on the interpretation of the factors. However,

the DSGE prior contributes to tighten the dispersion of the posterior distribution.
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6 Conclusion

Dynamic Factor Models are powerful tools to handle large data sets. So far, the

theory and also the applications focused mainly on finding statistically meaningful

representations of the data. Inspired by the work of Boivin and Giannoni (2006)

and DelNegro and Schorheide (2004), we proposed a method to relate the statistical

model to economic theory, without fully imposing the theoretical restrictions. Our

model continuously bridges the gap between a non-structural factor model and their

model in the following sense: In the extreme case of degenerate priors on some of

the factor loadings and by strictly imposing the restriction of the DSGE model one

estimates the VAR approximation to DSGE model where data is measured with er-

ror. By relaxing restrictions implied by the DSGE model and making the priors for

the factor loadings less informative, it is possible to move towards a non-structural

factor model.

We illustrated our method with an application on US data. A very simple New

Keynesian model proved to be useful to reduce the forecast errors for all horizons.

Intermediate values for the prior weight perform markedely better than simple AR(4)

forecasts. Taking the restrictions from such a simple DSGE model too literally wors-

ens the forecast performance for most of the series. Compared to a Minnesota prior,

the magnitude of the gain shrinks considerably.

To evaluate the in-sample fit, we calculate the posterior marginal data density and

informally use the fraction of the variation in the observed series explained by the

common factors to analyze selected observed series. The fraction of variation ex-

plained by the common factors does not deteriorate when the prior information from

the DSGE model is included for most of the series. This indicates that the restric-

tions implied by the DSGE model are supported by the data, once the idiosyncratic

components are filtered out. This finding is not supported by the measures of the

posterior marginal data densities, however: According to this criterion, a very loose

prior is optimal. For the tightness of the prior in the observation equation, the results

are ambiguous due to the numerical inaccuracy of the data density estimate.

Analyzing the estimated observation equation reveals that inflation and interest rate

series are closely related to their corresponding factors even for a very loose prior

on the factor loadings. Observed output series other than industrial production load

exclusively on the output factor only if the tightness is increased to more restrictive

values.

We finally evaluated the response of the common factor as well as the observed

variables to an identified monetary policy shock. Identification is achieved using
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an agnostic sign restriction approach and a method which more close relates to the

DSGE model implied restrictions. Both approaches lead to similar conclusions: The

common factors’ reaction to a monetary policy shock resembles the predictions from

standard theory. However, various measures of output show different reactions to a

monetary shock. Industrial production reacts negatively to a contractionary shock,

while the response of GDP close to zero. This result is consistent with finding of

Uhlig (2005) who finds ambiguous effects of a monetary shock on GDP. We add the

evidence that this is not true for all measures of output. Industrial production shows

a reaction which is consistent with the standard result that output reacts negatively

to a contractionary monetary policy shock.
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A Tables

Table 2: Data: From St. Louis Fed Economic Data FRED. Some CPI series directly from
BLS (indicated). Download: March 7, 2008. First Panel: Output Series, Second Panel:
Inflation Series. Third Panel: Interest Rate Series

Number Code Description

1 DPIC96 Current Real Disposable Personal Income Bil. of Chained 2000 $ Q SAAR 2008-02-28
2 FINSLC96 Current Real Final Sales of Domestic Product, 3 Decimal Bil. of Chained 2000 $ Q SAAR 2008-02-28
3 GDPC96 Current Real Gross Domestic Product, 3 Decimal Bil. of Chained 2000 $ Q SAAR 2008-02-28
4 GNPC96 Current Real Gross National Product Bil. of Chained 2000 $ Q SAAR 2007-12-20
5 NICUR Current National Income Bil. of $ Q SAAR 2008-02-28
6 PCDGCC96 Current Real Personal Consumption Expenditures: Durable Goods Bil. of Chained 2000 $ Q SAAR 2008-02-28
7 PCECC96 Current Real Personal Consumption Expenditures Bil. of Chained 2000 $ Q SAAR 2008-02-28
8 PCESVC96 Current Real Personal Consumption Expenditures: Services Bil. of Chained 2000 $ Q SAAR 2008-02-28
9 PCNDGC96 Current Real Personal Consumption Expenditures: Nondurable Goods Bil. of Chained 2000 $ Q SAAR 2008-02-28
10 INDPRO Current Industrial Production Index Index 2002=100 M SA 2008-02-15
11 IPBUSEQ Current Industrial Production: Business Equipment Index 2002=100 M SA 2008-02-15
12 IPCONGD Current Industrial Production: Consumer Goods Index 2002=100 M SA 2008-02-15
13 IPDCONGD Current Industrial Production: Durable Consumer Goods Index 2002=100 M SA 2008-02-15
14 IPDMAN Current Industrial Production: Durable Manufacturing (NAICS) Index 2002=100 M SA 2008-02-15
15 IPDMAT Current Industrial Production: Durable Materials Index 2002=100 M SA 2008-02-15
16 IPFINAL Current Industrial Production: Final Products (Market Group) Index 2002=100 M SA 2008-02-15
17 IPMAN Current Industrial Production: Manufacturing (NAICS) Index 2002=100 M SA 2008-02-15
18 IPMAT Current Industrial Production: Materials Index 2002=100 M SA 2008-02-15
19 IPMINE Current Industrial Production: Mining Index 2002=100 M SA 2008-02-15
20 IPNCONGD Current Industrial Production: Nondurable Consumer Goods Index 2002=100 M SA 2008-02-15
21 IPNMAN Current Industrial Production: Nondurable Manufacturing (NAICS) Index 2002=100 M SA 2008-02-15
22 IPNMAT Current Industrial Production: Nondurable Materials Index 2002=100 M SA 2008-02-15
23 IPUTIL Current Industrial Production: Electric and Gas Utilities Index 2002=100 M SA 2008-02-15
24 MCUMFN Current Capacity Utilization: Manufacturing (NAICS) % of Capacity M SA 2008-02-15
25 TCU Current Capacity Utilization: Total Industry % of Capacity M SA 2008-02-15

26 GDPCTPI Current Gross Domestic Product: Chain-type Price Index Index 2000=100, Q SA 2008-02-28
27 GDPDEF Current Gross Domestic Product: Implicit Price Deflator Index 2000=100 Q SA 2008-02-28
28 GNPCTPI Current Gross National Product: Chain-type Price Index Index 2000=100 Q SA 2007-12-20
29 GNPDEF Current Gross National Product: Implicit Price Deflator Index 2000=100 Q SA 2007-12-20
30 GPDICTPI Current Gross Private Domestic Investment: Chain-type Price Index Index 2000=100 Q SA 2008-02-28
31 JCXFE Current Personal Consumption Expenditures: Chain-type Price Index Index 2000=100 Q SA 2008-02-28
32 PCECTPI Current Personal Consumption Expenditures: Chain-type Price Index Less Food and Energy, Index 2000=100 Q SA 2008-02-28
33 CPIAUCSL Current Consumer Price Index For All Urban Consumers: All Items Index 1982-84=100 M SA 2008-02-20
34 CUSR0000SAA Seasonally Adjusted, Area:+U.S. city average Item:+Apparel Base Period:++1982-84=100 (BLS)
35 CUSR0000SAF Seasonally Adjusted, Area:+U.S. city average Item:+Food and beverages Base Period:++1982-84=100 (BLS)
36 CUSR0000SAG Seasonally Adjusted, Area:+U.S. city average Item:+Other goods and services Base Period:++1982-84=100 (BLS)
37 CUSR0000SAH Seasonally Adjusted, Area:++U.S. city average Item:+Housing Base Period:++1982-84=100 (BLS)
38 CUSR0000SAM Seasonally Adjusted, Area:++U.S. city average Item:+Medical care Base Period:++1982-84=100 (BLS)
39 CUSR0000SAT Seasonally Adjusted, Area:++U.S. city average Item:+Transportation Base Period:++1982-84=100 (BLS)
40 CPIENGSL Consumer Price Index for All Urban Consumers: Energy Index 1982-84=100 M SA 2008-02-20
41 CPILEGSL Consumer Price Index for All Urban Consumers: All Items Less Energy Index 1982-84=100 M SA 2008-02-20
42 CPIUFDSL Consumer Price Index for All Urban Consumers: Food Index 1982-84=100 M SA 2008-02-20
43 CPIULFSL Consumer Price Index for All Urban Consumers: All Items Less Food Index 1982-84=100 M SA 2008-02-20

44 AAA Current Moody’s Seasoned Aaa Corporate Bond Yield % M NA 2008-03-04
45 BAA Current Moody’s Seasoned Baa Corporate Bond Yield % M NA 2008-03-04
46 CD1M CD1M Current 1-Month Certificate of Deposit: Secondary Market Rate % M NA 2008-03-04
47 CD3M 3-Month Certificate of Deposit: Secondary Market Rate % M NA 2008-03-04
48 CD6M CD6M Current 6-Month Certificate of Deposit: Secondary Market Rate % M NA 2008-03-04
49 FEDFUNDS Current Effective Federal Funds Rate % M NA 2008-03-04
50 GS1 Current 1-Year Treasury Constant Maturity Rate % M NA 2008-03-04
51 GS10 Current 10-Year Treasury Constant Maturity Rate % M NA 2008-03-04
52 GS2 Current 2-Year Treasury Constant Maturity Rate % M NA 2008-03-04
53 GS3 Current 3-Year Treasury Constant Maturity Rate % M NA 2008-03-04
54 GS3M Current 3-Month Treasury Constant Maturity Rate % M NA 2008-03-04
55 GS5 Current 5-Year Treasury Constant Maturity Rate % M NA 2008-03-04
56 GS6M Current 6-Month Treasury Constant Maturity Rate % M NA 2008-03-04
57 GS7 Current 7-Year Treasury Constant Maturity Rate % M NA 2008-03-04
58 M2OWN Current M2 Own Rate % M NA 2008-03-07
59 MORTG Current 30-Year Conventional Mortgage Rate % M NA 2008-03-04
60 MPRIME Current Bank Prime Loan Rate % M NA 2008-03-04
61 MZMOWN Current MZM Own Rate % M NA 2008-03-07
62 TB3MS Current 3-Month Treasury Bill: Secondary Market Rate % M NA 2008-03-04
63 TB6MS Current 6-Month Treasury Bill: Secondary Market Rate % M NA 2008-03-04
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Table 3: Percentage decrease of the RMSE relative to AR(4) forecast with M0 = 0.5

Observed Series h/λ 0.25 0.5 1 2 5 100

GDP 1 19.36 21.08 23.27 22.18 18.54 14.24
4 2.89 3.30 6.01 4.75 2.94 1.41
8 4.95 4.36 4.99 3.75 2.76 2.40
12 4.01 3.54 4.22 3.30 3.10 3.44

Industrial Production 1 30.91 32.91 32.25 30.13 21.66 13.19
4 0.43 3.03 7.30 8.33 7.79 6.90
8 3.78 3.24 4.20 5.11 5.89 6.69
12 1.95 1.64 2.86 4.40 6.25 7.50

Personal Income 1 64.50 62.97 63.52 60.98 60.69 60.97
4 -4.07 -4.62 -5.22 -5.33 -5.28 -5.74
8 0.64 0.52 0.67 0.74 0.98 0.96
12 3.36 3.17 3.35 2.82 2.40 2.29

GDP Defl 1 -1.32 -1.25 -1.46 -0.99 -0.71 -0.87
4 -0.78 -0.35 -0.27 0.90 1.54 1.25
8 -2.50 -2.28 -1.70 -0.76 -0.17 -0.89
12 0.88 0.92 1.27 1.34 1.11 0.16

Pers Cons Price Defl 1 -0.05 -0.06 0.19 0.43 0.69 0.65
4 -0.60 -0.53 0.54 1.61 2.82 2.97
8 -0.83 -0.71 0.61 1.54 2.54 2.40
12 0.38 0.41 1.53 1.93 2.50 2.20

CPI 1 2.68 2.50 2.34 2.30 2.16 1.89
4 -0.72 -0.59 -0.74 -0.96 -1.75 -2.50
8 -0.14 -0.21 -0.09 -0.31 -0.94 -2.09
12 1.33 1.17 1.10 0.41 -0.66 -1.93

Fed Funds Rate 1 14.93 13.94 12.23 11.07 11.12 11.73
4 1.65 1.11 -1.04 -4.55 -5.59 -5.06
8 12.97 11.88 10.60 7.32 6.67 6.24
12 23.16 22.33 22.46 20.71 20.72 20.01

3-M T-Bill 1 14.72 13.85 12.47 11.54 11.75 12.33
4 2.77 2.30 -0.13 -3.53 -4.40 -3.78
8 17.63 16.66 14.70 11.17 10.34 9.91
12 32.60 31.81 31.16 29.10 28.87 28.11

Moody’s Aaa Bonds 1 5.87 6.17 6.71 6.06 5.71 5.41
4 -0.93 -0.31 2.20 1.66 1.24 0.19
8 -0.14 0.23 1.59 1.04 0.78 0.27
12 1.74 2.23 3.62 3.34 3.25 3.00
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Table 4: Multivariate statistic relative to AR(4) forecast: GDP, IP total, Personal Income
GDP Defl, Pers Cons Price Defl, CPI, Fed Funds Rate 3-M T-Bill, Moody’s Aaa Bond

h/λ 0.25 0.5 1 2 5 100

M−1
0 = 1

2

1 9.33 9.12 8.43 7.57 7.15 6.80
2 3.26 3.39 3.11 2.52 2.29 2.14
3 4.37 4.52 4.41 3.98 3.76 3.67
4 4.55 4.60 4.40 3.83 3.51 3.35
8 5.99 5.84 5.72 5.44 5.28 5.17
12 6.60 6.49 6.47 6.33 6.05 5.95

M−1
0 = 1

1 9.22 9.04 8.48 7.62 7.09 6.95
2 2.76 2.94 2.90 2.46 2.09 1.94
3 3.78 4.00 4.09 3.84 3.59 3.47
4 4.05 4.15 4.13 3.74 3.36 3.23
8 5.74 5.61 5.49 5.28 5.12 4.97
12 6.44 6.36 6.31 6.20 6.06 5.88

M−1
0 = 2

1 9.03 9.03 8.57 7.82 6.87 6.61
2 2.29 2.70 2.74 2.32 1.84 1.70
3 3.29 3.70 3.84 3.51 3.33 3.25
4 3.61 3.88 3.90 3.46 3.17 3.01
8 5.53 5.46 5.31 4.90 4.94 4.82
12 6.30 6.27 6.20 6.00 5.96 5.77
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Table 5: Multivariate statistic relative to AR(4) forecast: Output Series

h/λ 0.25 0.5 1 2 5 100

M−1
0 = 1

2

1 5.86 5.87 5.92 5.96 5.88 6.06
2 4.84 4.95 4.98 5.00 4.92 5.00
3 5.05 5.08 5.14 5.16 5.12 5.22
4 3.65 3.64 3.67 3.64 3.62 3.63
8 2.61 2.64 2.62 2.63 2.63 2.65
12 1.95 1.99 1.96 2.01 1.99 2.02

M−1
0 = 1

1 6.02 6.02 5.99 6.08 6.00 5.92
2 5.02 5.05 5.11 5.13 4.99 4.98
3 5.23 5.27 5.30 5.35 5.21 5.12
4 3.76 3.79 3.78 3.81 3.71 3.65
8 2.71 2.65 2.68 2.73 2.70 2.65
12 1.88 1.93 1.90 2.03 1.99 2.05

M−1
0 = 2

1 6.18 6.20 6.27 6.26 6.24 6.20
2 5.16 5.24 5.26 5.27 5.22 5.14
3 5.34 5.41 5.45 5.47 5.35 5.28
4 3.86 3.88 3.92 3.93 3.88 3.79
8 2.74 2.76 2.74 2.76 2.72 2.70
12 1.78 1.86 1.91 1.98 2.02 1.99
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Table 6: Multivariate statistic relative to AR(4) forecast: Prices

h/λ 0.25 0.5 1 2 5 100

M−1
0 = 1

2

1 1.04 1.14 1.35 1.17 1.22 1.21
2 1.59 1.59 1.76 1.70 1.80 1.79
3 0.99 1.05 1.20 1.20 1.25 1.26
4 0.89 0.91 1.03 1.05 1.09 1.10
8 0.50 0.49 0.56 0.61 0.61 0.65
12 0.50 0.49 0.57 0.61 0.62 0.65

M−1
0 = 1

1 1.13 1.13 1.21 1.26 1.23 1.08
2 1.56 1.58 1.66 1.78 1.77 1.60
3 1.06 1.08 1.13 1.25 1.24 1.09
4 0.95 0.95 1.00 1.09 1.08 0.93
8 0.51 0.54 0.56 0.62 0.63 0.51
12 0.49 0.55 0.55 0.61 0.62 0.50

M−1
0 = 2

1 1.12 1.26 1.30 1.35 1.27 1.22
2 1.60 1.66 1.75 1.79 1.75 1.74
3 1.06 1.14 1.22 1.26 1.26 1.23
4 0.94 1.02 1.08 1.08 1.08 1.04
8 0.54 0.56 0.57 0.62 0.64 0.59
12 0.52 0.53 0.54 0.60 0.64 0.60
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Table 7: Multivariate statistic relative to AR(4) forecast: Interest Rates

h/λ 0.25 0.5 1 2 5 100

M−1
0 = 1

2

1 2.12 2.15 2.09 2.06 1.97 1.94
2 2.89 2.85 2.78 2.78 2.70 2.66
3 3.09 3.05 2.99 3.02 2.89 2.91
4 3.25 3.28 3.18 3.25 3.09 3.08
8 2.92 2.94 2.90 2.85 2.72 2.66
12 2.42 2.43 2.36 2.22 2.13 2.04

M−1
0 = 1

1 2.07 2.13 2.11 2.07 1.99 1.95
2 2.80 2.86 2.81 2.80 2.70 2.71
3 2.95 3.01 3.00 3.01 2.91 2.90
4 3.16 3.19 3.21 3.21 3.14 3.11
8 2.86 2.89 2.91 2.92 2.82 2.73
12 2.42 2.44 2.43 2.34 2.25 2.03

M−1
0 = 2

1 2.00 2.00 2.10 2.09 1.99 1.95
2 2.69 2.66 2.77 2.83 2.73 2.71
3 2.85 2.86 2.92 3.00 2.94 2.89
4 3.10 3.11 3.14 3.24 3.14 3.09
8 2.89 2.73 2.90 2.95 2.79 2.78
12 2.50 2.26 2.51 2.49 2.19 2.27

Table 8: Multivariate statistic relative Minnesota prior forecast: M−1
0 = 1 and λ = 1

h Output Prices Interest Rates

1 0.56 -0.23 0.01
2 0.30 -0.10 -0.06
3 0.44 -0.08 -0.07
4 0.02 -0.01 -0.07
8 0.16 0.00 -0.01
12 0.45 0.17 0.25
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Table 9: Fraction of Variance explained by Factors for λ = 0.25 (note that values above one
are possible because the estimation method does not require the variance of the components
to sum up to one

M0 0.25 0.5 1 2 4 16

GDP [0.72 0.89] [0.58 0.79] [0.58 0.79] [0.58 0.79] [0.61 0.80] [0.66 0.81]
IP total [0.89 1.03] [0.87 1.02] [0.87 1.01] [0.86 1.00] [0.85 0.98] [0.78 0.89]
Personal Income [0.25 0.46] [0.21 0.41] [0.20 0.40] [0.22 0.41] [0.25 0.45] [0.41 0.60]

GDP Deflator [0.69 0.95] [0.64 0.91] [0.65 0.90] [0.65 0.87] [0.63 0.83] [0.61 0.77]
Pers Cons Defl [0.24 0.62] [0.36 0.92] [0.45 0.93] [0.52 0.93] [0.57 0.91] [0.60 0.81]
CPI [0.65 0.92] [0.66 0.92] [0.65 0.90] [0.64 0.87] [0.62 0.83] [0.62 0.78]

Federal Funds Rate [0.03 0.13] [0.75 1.09] [0.79 1.09] [0.82 1.07] [0.84 1.05] [0.89 1.02]
3-month T-Bill [0.04 0.13] [0.77 1.10] [0.81 1.10] [0.82 1.08] [0.85 1.06] [0.90 1.03]
Moody’s Aaa Bond [0.05 0.16] [0.37 0.83] [0.52 0.92] [0.65 0.97] [0.74 0.99] [0.86 1.00]

Table 10: Fraction of Variance explained by Factors for λ = 1 (note that values above one
are possible because the estimation method does not require the variance of the components
to sum up to one

M0 0.25 0.5 1 2 4 16

GDP [0.59 0.80] [0.59 0.80] [0.59 0.79] [0.59 0.79] [0.61 0.80] [0.66 0.82]
IP total [0.87 1.02] [0.87 1.01] [0.87 1.01] [0.86 1.00] [0.84 0.98] [0.78 0.89]
Personal Income [0.22 0.41] [0.21 0.40] [0.21 0.40] [0.21 0.41] [0.25 0.45] [0.42 0.61]

GDP Defl [0.62 0.92] [0.64 0.91] [0.65 0.90] [0.65 0.88] [0.63 0.83] [0.62 0.77]
Pers Cons Defl [0.31 0.91] [0.37 0.92] [0.47 0.95] [0.54 0.94] [0.59 0.93] [0.62 0.83]
CPI [0.65 0.92] [0.65 0.92] [0.65 0.90] [0.64 0.87] [0.63 0.84] [0.63 0.79]

Federal Funds Rate [0.71 1.09] [0.73 1.08] [0.75 1.07] [0.78 1.05] [0.83 1.04] [0.88 1.01]
3-month T-Bill [0.73 1.10] [0.77 1.10] [0.78 1.09] [0.80 1.06] [0.83 1.04] [0.88 1.02]
Moody’s Aaa Bond [0.31 0.80] [0.40 0.84] [0.52 0.91] [0.65 0.96] [0.73 0.98] [0.86 1.00]
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Table 11: Fraction of Variance explained by Factors for λ = 100 (note that values above one
are possible because the estimation method does not require the variance of the components
to sum up to one

M0 0.25 0.5 1 2 4 16

GDP [0.59 0.80] [0.58 0.79] [0.58 0.79] [0.59 0.80] [0.61 0.81] [0.67 0.82]
IP total [0.84 1.01] [0.84 1.00] [0.85 1.00] [0.85 1.00] [0.84 0.98] [0.78 0.89]
Personal Income [0.21 0.41] [0.21 0.40] [0.21 0.41] [0.22 0.42] [0.25 0.45] [0.42 0.60]

GDP Defl [0.64 0.93] [0.65 0.93] [0.67 0.92] [0.67 0.90] [0.65 0.86] [0.63 0.79]
Pers Cons Defl [0.29 0.87] [0.38 0.92] [0.48 0.97] [0.56 0.97] [0.61 0.95] [0.63 0.84]
CPI [0.66 0.93] [0.66 0.92] [0.65 0.91] [0.65 0.89] [0.65 0.86] [0.63 0.80]

Federal Funds Rate [0.74 1.10] [0.75 1.09] [0.74 1.05] [0.75 1.02] [0.79 1.01] [0.85 0.98]
3-month T-Bill [0.75 1.10] [0.78 1.10] [0.78 1.07] [0.78 1.03] [0.80 1.01] [0.85 0.98]
Moody’s Aaa Bond [0.33 0.81] [0.42 0.85] [0.50 0.87] [0.61 0.91] [0.69 0.93] [0.82 0.96]
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Table 12: Log-Posterior Marginal Data Density (×10−3)

λ
M q 0.250 0.500 1.000 2.000 5.00 100.0

0.0625 0.05 × -3.781 -4.100 -5.844 -11.77 -188.5
0.1 × -3.780 -4.100 -5.843 -11.77 -188.5
0.25 × -3.779 -4.099 -5.842 -11.77 -188.5
0.5 × -3.778 -5.028 -5.873 -11.77 -188.5
0.75 × -3.773 -5.023 -5.983 -11.90 -188.5
0.9 × -3.778 -5.027 -5.872 -11.88 -188.5
0.95 × -3.778 -5.027 -5.872 -11.88 -188.5

0.25 0.05 -3.675 -3.812 -4.557 -6.212 -11.16 -187.7
0.1 -3.685 -3.811 -4.556 -6.211 -11.55 -187.7
0.25 -3.684 -3.887 -4.556 -6.210 -11.55 -187.7
0.5 -3.725 -3.886 -4.555 -6.233 -11.55 -187.7
0.75 -3.720 -3.948 -4.854 -6.228 -11.58 -187.9
0.9 -3.724 -3.952 -4.575 -6.233 -11.58 -187.7
0.95 -3.724 -3.952 -4.575 -6.233 -11.58 -187.8

0.5 0.05 -3.763 -3.650 -4.540 -5.720 -11.00 -187.5
0.1 -3.762 -3.649 -4.539 -6.061 -11.02 -187.7
0.25 -3.851 -3.881 -4.539 -6.121 -11.38 -187.7
0.5 -4.056 -3.880 -4.538 -6.125 -11.38 -187.7
0.75 -4.387 -3.989 -4.533 -6.120 -11.55 -246.6
0.9 -4.391 -3.882 -4.537 -6.125 -11.38 -187.7
0.95 -4.391 -3.994 -4.537 -6.125 -11.38 -187.7

1 0.05 -3.392 -3.490 -4.320 -6.149 -10.85 -187.6
0.1 -3.409 -3.494 -4.665 -6.148 -11.21 -187.6
0.25 -3.787 -4.260 -4.665 -6.147 -11.59 -187.6
0.5 -3.798 -4.504 -4.664 -6.165 -11.67 -187.8
0.75 -4.719 -4.499 -4.883 -6.336 -11.67 -188.1
0.9 -4.724 -4.504 -4.887 -6.340 -11.67 -188.1
0.95 -4.724 -4.504 -4.887 -6.340 -11.67 -188.1

2 0.05 -3.624 -3.630 -4.507 -5.883 -10.90 -187.8
0.1 -3.720 -3.629 -4.506 -5.883 -10.96 -187.8
0.25 -4.134 -3.794 -4.505 -6.563 -11.11 -187.8
0.5 -4.133 -3.964 -4.505 -6.562 -11.20 -187.9
0.75 -4.128 -3.959 -4.500 -6.557 -11.33 -187.9
0.9 -4.133 -3.963 -4.504 -6.561 -11.33 -187.9
0.95 -4.133 -3.963 -4.504 -6.561 -11.33 -187.9

4 0.05 -3.656 -3.708 -4.395 -5.842 -11.35 -187.3
0.1 -4.355 -3.707 -4.394 -5.842 -11.35 -187.5
0.25 -4.354 -4.198 -4.393 -6.062 -11.35 -187.5
0.5 -4.353 -4.197 -4.393 -6.061 -11.35 -187.6
0.75 -4.348 -4.192 -4.651 -6.375 -11.36 -187.6
0.9 -4.352 -4.197 -4.563 -6.379 -11.35 -187.6
0.95 -4.352 -4.197 -4.655 -6.379 -11.35 -187.6

16 0.05 -4.254 -3.984 -4.470 -5.831 -10.77 -187.7
0.1 -4.253 -3.984 -4.469 -5.830 -10.98 -187.7
0.25 -4.252 -3.983 -4.469 -5.894 -11.26 -187.7
0.5 -4.252 -4.083 -4.468 -5.893 -11.26 -187.7
0.75 -4.247 -4.078 -4.939 -6.035 -11.48 -187.9
0.9 -4.251 -4.082 -4.944 -6.039 -11.48 -187.9
0.95 -4.251 -4.082 -4.944 -6.039 -11.48 -187.9
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Table 13: 80% HPD invervals of factor loadings for λ = 1 and different values of M0

M0 = 1
16 Output Inflation Interest Rate

GDP [0.28 0.75] [-2.86 -1.42] [ -0.03 0.67]
IP total [0.64 1.19] [-1.18 -0.04] [-0.88 -0.26]
Personal Income [-0.01 0.28] [-2.11 -0.77] [0.06 0.65]

GDP deflator [-0.09 0.14] [1.27 2.28] [-0.85 -0.41]
Personal Consumption Price Deflator [-0.09 0.06] [0.01 0.93] [-0.30 0.07]
CPI [0.03 0.26] [1.36 2.27] [-0.93 -0.53]

Federal Funds Rate [-0.08 0.06] [-0.69 0.18] [0.01 0.40]
3-month T-Bill [-0.06 0.09] [-0.71 0.16] [-0.01 0.39]
Moody’s Aaa Bond [0.00 0.14] [-0.48 0.32] [-0.15 0.20]

M0 = 1
2 Output Inflation Interest Rate

GDP [0.63 0.97] [-1.14 -0.37] [0.04 0.41]
IP total [0.98 1.32] [-0.30 0.22] -0.16 0.18[]
Personal Income [0.14 0.43] [-1.00 -0.23] [0.01 0.33]

GDP deflator [-0.21 0.03] [1.00 1.50] [-0.36 -0.06]
Personal Consumption Price Deflator [-0.16 0.05] [0.37 0.91] [-0.13 0.23]
CPI [-0.06 0.18] [0.95 1.43] [-0.31 -0.02]

Federal Funds Rate [-0.10 0.07] [-0.26 0.27] [0.69 1.10]
3-month T-Bill [-0.07 0.11] [-0.16 0.32] [0.72 1.12]
Moody’s Aaa Bond [-0.00 0.17] [-0.17 0.30] [0.35 0.83]

M0 = 1 Output Inflation Interest Rate

GDP [0.64 0.94] [-0.81 -0.15] [0.01 0.30]
IP total [1.00 1.26] [-0.21 0.21] [-0.09 0.17]
Personal Income [0.17 0.44] [-0.80 -0.13] [-0.03 0.23]

GDP deflator [-0.19 0.02] [0.98 1.38] [-0.24 -0.01]
Personal Consumption Price Deflator [-0.16 0.04] [0.51 0.96] [-0.07 0.24]
CPI [-0.05 0.15] [0.92 1.32] [-0.19 0.03]

Federal Funds Rate [-0.10 0.06] [-0.15 0.24] [0.77 1.12]
3-month T-Bill [-0.07 0.10] [-0.13 0.25] [0.79 1.13]
Moody’s Aaa Bond [0.00 0.17] [-0.15 0.25] [0.54 0.94]

M0 = 16 Output Inflation Interest Rate

GDP [0.83 1.03] [-0.16 0.08] [-0.06 0.11]
IP total [1.00 1.12] [-0.07 0.08] [-0.05 0.08]
Personal Income [0.51 0.75] [-0.20 0.11] [-0.09 0.10]

GDP deflator [-0.09 0.03] [0.96 1.10] [-0.08 0.03]
Personal Consumption Price Deflator [-0.08 0.04] [0.91 1.05] [-0.04 0.09]
CPI [-0.03 0.08] [0.94 1.09] [-0.06 0.05]

Federal Funds Rate [-0.06 0.04] [-0.06 0.07] [0.94 1.06]
3-month T-Bill [-0.06 0.05] [-0.06 0.07] [0.94 1.06]
Moody’s Aaa Bond [-0.03 0.08] [-0.06 0.08] [0.90 1.04]
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Table 14: 80% HPD interval of DSGE model parameter θ for different weights λ and
M0 = 1

λ 0.25 0.5 1 2 5 100

ψ1 [1.09 1.67] [1.10 1.70] [1.16 1.70] [1.14 1.69] [1.68 2.12] [1.73 2.09]
ψ2 [0.13 0.32] [0.15 0.35] [0.15 0.35] [0.17 0.36] [0.08 0.23] [0.10 0.23]
ρr [0.51 0.78] [0.55 0.76] [0.61 0.79] [0.67 0.81] [0.70 0.81] [0.70 0.80]
κ [0.14 0.54] [0.16 0.54] [0.16 0.54] [0.11 0.34] [0.05 0.17] [0.03 0.12]
τ−1 [1.49 2.55] [1.41 2.47] [1.75 2.65] [2.20 3.49] [1.85 3.24] [1.84 2.41]
ρg [0.85 0.96] [0.88 0.97] [0.90 0.97] [0.93 0.98] [0.94 0.99] [0.95 0.99]
ρz [0.20 0.70] [0.23 0.70] [0.36 0.79] [0.47 0.82] [0.93 0.98] [0.95 0.99]
σR [0.04 0.08] [0.05 0.08] [0.05 0.09] [0.06 0.10] [0.04 0.07] [0.04 0.06]
σg [0.10 0.21] [0.09 0.20] [0.10 0.21] [0.09 0.21] [0.27 0.41] [0.33 0.47]
σz [0.13 0.26] [0.14 0.27] [0.14 0.27] [0.15 0.27] [0.09 0.14] [0.10 0.14]

Table 15: 80% HPD interval of DSGE model parameter θ for different weights λ and
M0 = 1

2

λ 0.25 0.5 1 2 5 100

ψ1 [1.07 1.56] [1.03 1.52] [1.20 1.92] [1.55 2.09] [1.58 1.92] [1.67 2.00]
ψ2 [0.12 0.31] [0.14 0.33] [0.16 0.36] [0.09 0.27] [0.11 0.25] [0.11 0.25]
ρr [0.46 0.74] [0.52 0.77] [0.61 0.78] [0.64 0.78] [0.64 0.77] [0.66 0.78]
κ [0.16 0.56] [0.13 0.48] [0.14 0.41] [0.06 0.24] [0.04 0.15] [0.03 0.13]
τ−1 [1.31 2.55] [1.53 2.65] [1.97 3.08] [1.62 2.71] [1.47 2.34] [2.45 3.23]
ρg [0.84 0.96] [0.88 0.97] [0.90 0.98] [0.92 0.98] [0.93 0.98] [0.94 0.98]
ρz [0.16 0.62] [0.18 0.70] [0.41 0.88] [0.88 0.98] [0.93 0.97] [0.94 0.98]
σR [0.04 0.08] [0.05 0.09] [0.05 0.09] [0.04 0.07] [0.03 0.06] [0.04 0.06]
σg [0.10 0.21] [0.09 0.20] [0.09 0.23] [0.22 0.36] [0.27 0.42] [0.30 0.45]
σz [0.13 0.25] [0.13 0.26] [0.12 0.25] [0.09 0.15] [0.09 0.14] [0.11 0.16]
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Figure 1: Upper panel: Posterior mean of Φ for increasing values of the prior weight λ.
Lower panel: Width of posterior 80% HPD interval for increasing values of the prior weight
λ.
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Figure 2: Posterior mean of Σ for increasing values of the prior weight λ.
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Figure 3: Response of factors to a contractionary monetary shock: λ = 100 and M−1
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Figure 4: Response of factors to a contractionary monetary shock: λ = 5 and M−1
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Figure 5: Response of factors to a contractionary monetary shock: λ = 1 and M−1
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Figure 6: Response of factors to a contractionary monetary shock: λ = 0.25 and M−1
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Figure 7: Cumulated (’Level’) Response of Output Factor for M−1
0 = 0.5 and selected

values for λ
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Figure 8: Response of selected observed output series with λ = 1 and M−1
0 = 0.5 (growth
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Figure 9: Responses of selected observed inflation series with λ = 1 and M−1
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Figure 10: Responses of selected observed interest rates with λ = 1 and M−1
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C DSGE model in generic form

St = [yt, πt, rt, Et[yt+1], Et[πt+1], gt, zt]

εt = [εr,t, εg,t, εz,t]

ηt = [yt − Et−1[yt], πt − Et−1[πt]]

θDSGE = [ψ1, ψ2, ρR, β, κ, τ, ρg, ρz, ρgz, σR, σg, σz]

’Expectational’ equations have to be added:

xt+1 = Et(xt+1) + ξt

So the model used in Lubik and Schorfheide (2004) can be written as

Γ0st = Γ1st−1 + Ψεt + Πηt

Γ0 =



1 0 τ −1 −τ −1 0

−κ 1 0 0 −β 0 κ

−(1− ρR)ψ2 −(1− ρR)ψ1 1 0 0 0 (1− ρR)ψ2

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1



Γ1 =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 ρg 0

0 0 0 0 0 0 ρz
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Ψ =



0 0 0

0 0 0

1 0 0

0 0 0

0 0 0

0 1 0

0 0 1



Π =



0 0

0 0

0 0

1 0

0 1

0 0

0 0



Ω =

 σ2
R 0 0

0 σ2
g 0

0 0 σ2
z



D Kalman Filter with Autocorrelated Errors

For a reference, see Anderson and Moore (1979). It is assumed that the vector of

data evolves according to the following state space system:

Xt = ΛFt + vt

Ft = Φ(L)Ft−1 + et

Ft is a vector of unobserved dynamic factors with a small dimension M . Xt is a

potentially high dimensional vector of N data series observed over T time periods.

Each variables in Xt loads on at least one factor, Λ is the N × T matrix of factor

loadings. Factors Ft are related to lagged values of the factors by Φ(L) = Φ1L +

. . .+ ΦpL
p. The errors et and vt are distributed as follows:(

ut = vt −Ψvt−1

et

)
∼ iiN

([
0

0

]
,

[
R 0

0 Σ

])
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We assume that R and Ψ are diagonal.

The system can be rewritten into a system of order one by defining

Φ =



Φ1 Φ2 . . . Φp

IM 0 . . . 0

0 IM . . . 0

0 0
. . . 0

0 0 . . . IM 0


F̃t =

(
Ft Ft−1 . . . Ft−p

)′

X̃t = Xt −ΨXt−1

with

X−1 = 0

Λ̃ =
(

ΛΦ−ΨΛ ΛΦ1 . . . ΛΦp

)
For p > 1 we can write

X̃t = Xt −ΨXt−1

= ΛFt −ΨΛFt−1 + vt −Ψvt−1

= ΛFt −ΨΛFt−1 + ut

=
(

Λ
... −ΨΛ

... 0(p−2)×M

)
F̃t + ut

and

F̃t = ΦF̃t−1 + ẽt

where

Ω̃ = V ar(ẽt) =

(
Ω 0

0 0

)
In this case, the standard Kalman filter (see e.g. Hamilton (1994)) applies. For

p = 1 the definitions imply15

15We could also enlarge the state vector with lagged values. But there the solution provided here keeps
the dimension of the state vector small.
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X̃t = Λ̃Ft−1 + Λet + ut

Ft = ΦFt−1 + et

So the Kalman Filter has to be adjusted as there is correlation between errors in

the observation and state equation. Additionally, we have Ft−1 instead of Ft in the

observation equation. Note that conditional on the parameter Ψ, the sequence {Xt}
contains the same information as {X̃t} and therefore E[Ft|{X̃k}] = E[Ft|{Xk}]. The

joint distribution of X̃t and Ft is

(
X̃t

Ft

)
|{Xk}t−1

k=1 ∼ N

((
X̃t|t−1

Ft|t−1

)
,

(
ht c′t

ct Pt|t−1

))

where:

Ft|t = ΦFt−1|t−1 + cth
−1
t (X̃t − X̃t|t−1︸ ︷︷ ︸

Λ̃Ft−1|t−1

)

ht = Et−1[(X̃t − X̃t|t−1)(X̃t − X̃t|t−1)
′]

= Et−1[(Λ̃Ft−1 + ∆et + εt − Λ̃Ft−1|t−1)(Λ̃Ft−1 + ∆et + εt − Λ̃Ft−1|t−1)
′]

= Λ̃Pt−1|t−1Λ̃
′ + ∆Ω∆′ +R

ct = Et−1[(Ft − Ft|t−1)(X̃t − X̃t|t−1)
′]

= Et−1[(Φ(Ft − Ft−1|t−1) + et)(Λ̃Ft−1 + ∆et + εt − Λ̃Ft−1|t−1)
′]

= ΦPt−1|t−1Λ̃
′ + Ω∆′

Pt|t−1 = Et−1[(Ft − Ft|t−1)(Ft − Ft|t−1)
′]

= Et−1[(ΦFt−1 + et − ΦFt−1|t−1)(ΦFt−1 + et − ΦFt−1|t−1)
′]

= ΦPt−1|t−1Φ
′ + Ω

Pt|t = ΦPt−1|t−1Φ
′ + Ω− cth

−1
t c′t

Given initial values P0|0 = E(Ft)(Ft)′ and F0|0 = 0 we can iteratively calculate

Pt|t and Ft|t for t = 1 . . . , T . Note that the assumption X−1 = 0 ensures that the

sample size is not reduced, even for p > 1.
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E Inverse Wishart Distribution

The Wishart distribution is the multivariate version of the inverted Gamma distribu-

tion. Let Σ be a n× n positive definite random matrix. Σ has the inverted Wishart

IW (S, ν) distribution if its density is of the form:

p(Σ|S, ν) ∝ |S|ν/2|Σ|−(ν+n+1)/2 exp(−1
2
tr(Σ−1S))

To sample Σ from this distribution, draw n× 1 vectors Z1, . . . , Zν form a multi-

variate normal N(0, S−1) and let

Σ =

(
ν∑

i=1

ZiZ
′
i

)−1

(see Bauwens, Lubrano, and Richard (1999)).

F Inverted Gamma Distribution

There is considerable confusion about the implementation of the inverted gamma

distribution for maybe three reasons: First, some authors specify the priors for the

variances, others for the standard deviations. Second, there are differences in the

parametrization of the density function. Third, most authors report the mean and

the standard deviations of the prior distribution, while the distribution is specified in

terms of other hyperparameter. Ideally, the authors explicitly state the density func-

tion they use (as their mean and standard deviations as well as the hyperparameters,

e.g. DelNegro and Schorheide (2004). However, most authors do not. A complete

discussion is contained in Bauwens, Lubrano, and Richard (1999). The define the

density of the variance x = σ2 as

fx(x) =
1

Γ(ν
2 )

(s
2

)−ν
2
x−

1
2
(ν+2)e−

s
2x

We follow Bauwens, Lubrano, and Richard (1999) in that we refer to this density

as ’inverted gamma-2 density’. We skip the indicator function for the variance and

standard deviations here and in what follows. All the densities are equal to zero if

its arguments are negative.

From variances to standard deviations To calculate the implied density for

y = σ =
√
x, one needs to apply change of variable formula. Define y = g(x) =

√
x.
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The inverse is g−1(y) = y2 and its first derivative ∂g−1(y)
∂y = 2y. Applying the formula

yields

fy(y) =
1

Γ(ν
2 )

(s
2

)−ν
2 (y2)−

1
2
(ν+2)e

− s
2y2 |2y|

=
2

Γ(ν
2 )

(s
2

)−ν
2
y−(ν+1)e

− s
2y2

This density is called the ’inverted gamma-1 density’.

Different parametrizations In the this paper, we use the parametization of

DelNegro and Schorheide (2004) (see notes to Table 1 in their paper):

fy(y) =
2

Γ(ν
2 )

(
νs2∗
2

)−ν
2

y−(ν+1)e
− νs2∗

2y2

Hence, the difference between the specifications is

s = νs2∗

The values given in Table 1 refer to s∗. The parametrization of the inverted

gamma-2 density follows Bauwens, Lubrano, and Richard (1999). The parameter ν

is the same in either specification.

From parameters to moments For ν > 1, the expected value of y is

E(y) =
√
s

2
Γ(ν−1

2 )
Γ(ν

2 )

and for ν > 2, the variance is

V(y) =
s

ν − 2
− E(y)2

There is no easy way to invert the system. Hence, the specification is terms of ν

and s.

For ν > 2, the expected value of x is

E(x) =
s

ν − 2

and for ν > 4, the variance is
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V(x) =
2

ν − 4
E(x)2

It follows that

ν =
(

2E(x)2

V(x)
+ 4
)

and

s = E(x)(ν − 2)
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