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Abstract
An arbiter can decide a case on the basis of his priors, or the two
parties to the conflict may present further evidence. The parties may
misrepresent evidence in their favor at a cost. At equilibrium the two
parties never testify together. When the evidence is much in favor of
one party, this party testifies. When the evidence is close to the prior
mean, no party testifies. We compare this outcome under a purely
adversarial procedure with the outcome under a purely inquisitorial
procedure (Emons and Fluet 2009). We provide sufficient conditions
on when one procedure is better than the other one.

Keywords: evidence production, procedure, costly state falsification, adver-
sarial, inquisitorial.
JEL: D82, K41, K42

1 Introduction

How much testimony will an arbiter hear in adversarial proceedings when

the parties to the conflict may spend resources to misrepresent evidence in
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their favor? Will both parties come forward with boosted claims offsetting

each other, or will only the party for whom the evidence is favorable testify?

Are there circumstances where no party testifies? What are the efficiency

properties of the outcome? Is the adversarial procedure where the parties to

the conflict decide whether or not they testify better than the inquisitorial

procedure where the arbiter decides how much testimony he wants to hear?

In this paper we address these questions.

An arbiter has to decide on an issue which we take to be a real number,

for example, the damages that one party owes to the other. The defendant

wants the damages awarded to be small whereas the plaintiff wants them to

be large. Both parties know the actual amount owed to the plaintiff and both

would like to influence the arbiter’s decision. Presenting evidence, however,

involves a fixed cost. Moreover, the parties can boost the evidence in either

direction, but distorting the evidence involves additional costs: the greater

the distortion, the higher the cost. For instance, expert witnesses charge

more the more they distort the truth.

In a purely adversarial procedure the parties decide whether or not to

present testimony. The arbiter is passive at the discovery stage and only

intervenes at the adjudication stage. Once the parties have finished, he de-

cides the case on the basis of his priors about the amount at issue and of

what can be inferred from the parties’ actions. The arbiter seeks to min-

imize adjudication error, implying that his sequentially rational decision is

to adjudicate the posterior mean. When he hears no testimony, given the

symmetry of the parties’ actions, the posterior mean equals the prior, which

the arbiter therefore adjudicates. When he hears testimony, he updates his

beliefs upwards or downwards and adjudicates accordingly.

We first show that in equilibrium the parties never testify together: either

no or one party testifies. No party testifies when the true value is close to

the prior mean and thus influencing the arbiter has negligible private value:

it does not pay for the parties to incur the fixed cost of testifying. When,

however, the evidence is sufficiently in favor of one party, this party comes
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forward and testifies. If the plaintiff testifies, he overstates the true value;

if the defendant testifies, he understates the true value. Boasting increases

the more the true amount differs from the prior mean, yet at a decreasing

rate. Accordingly, for sufficiently large deviations from the prior mean, the

equilibrium is revealing, but it involves falsification on the part of the party

who testifies. The arbiter rationally corrects for the exaggerated amount and

adjudicates the true value. Stated differently, because the marginal cost of

slightly distorting the truth is negligible but the marginal return is not, the

arbiter expects some falsification, leading parties to do so systematically. At

equilibrium the arbiter expects both, error and falsification costs.

We measure welfare by summing the social loss from inaccurate adjudi-

cation and the parties’ submission costs. From a welfare point of view the

adversarial procedure has the following virtues: when the true value is close

to the prior mean, the parties remain silent and do not spend resources on

falsification, yet at the expense of incorrect decisions. Only when the true

value differs sufficiently from the prior mean do parties testify, thus enabling

correct decisions, yet at the expense of falsification.

In a second step we compare the equilibrium for the adversarial procedure

with our results for the purely inquisitorial procedure as derived in Emons

and Fluet (2009). Under the purely inquisitorial procedure the arbiter plays

first by deciding how much testimony he wants to hear. We assume that the

inquisitorial arbiter seeks to maximize welfare, taking into account submis-

sion costs and adjudication error. Specifically, he first announces whether

he wants to hear no, one, or both parties. The parties have to testify when

called upon by the arbiter and cannot testify unless they are asked to do so.

When the arbiter decides to hear no party, he rationally adjudicates the prior

mean; there is no falsification but error costs are positive. When he decides to

hear one party, depending on who testifies, the party over- resp. understates

the true value. The arbiter rationally corrects for the exaggerated amount

and adjudicates the true value. Accordingly, the equilibrium is revealing but

it involves falsification. When both parties submit, both testimonies involve
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falsification: one party over-reports while the other under-reports. The ar-

biter corrects for this by taking an average of the exaggerated testimonies.

Accordingly, under the inquisitorial procedure the arbiter incurs only error

costs (no testimony) or only falsification costs (single or joint testimony).

The optimal number of parties to submit evidence depends on the weight

given to inaccurate adjudication and the cost of obtaining evidence. If the

value of accuracy is above some threshold, the arbiter hears both parties

when the fixed cost of presenting evidence is small. For intermediate values

of the fixed cost, the arbiter goes for one party, and for large values he hears

no party at all.

Next we compare welfare under the two procedures. The inquisitorial

procedure fares better than the adversarial one when the arbiter cares little

or when he cares a lot about error costs. If error costs are of minor impor-

tance, under the inquisitorial procedure the arbiter goes for no testimony so

that there are no falsification but only error costs. Under the adversarial pro-

cedure there is some range where parties testify so that there are falsification

costs. When the arbiter cares a lot about error costs, he chooses single or

joint testimony under the inquisitorial procedure so that he incurs no error

costs. Under the adversarial procedure there is some range where the parties

do not testify so that there are error costs. Accordingly, when the arbiter

has strong views about error costs, the inquisitorial procedure does better

because it gives the arbiter full control over what kind of cost he incurs.

Next we derive conditions for the adversarial procedure to be better than

the inquisitorial one. If incorrect decisions do not matter too much and

the fixed cost of testifying is sufficiently large, the adversarial procedure is

better than the inquisitorial one. The reason for this is as follows: For the

inquisitorial procedure no testimony is optimal under these conditions. For

intermediate deviations from the prior mean, the parties do not testify under

the adversarial procedure, hence we have the same outcome as under the

inquisitorial procedure. Nevertheless, for large deviations the parties come

forward and testify. For these large deviations, the falsification cost is lower
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than the cost of incorrect decisions.

If the fixed submission cost is above some threshold, single testimony

is optimal under the inquisitorial procedure. When inaccurate decisions do

not matter too much, the adversarial procedure again does better than the

inquisitorial one. The reason is now that boasting is lower under adversarial

than under inquisitorial testimony required from a single party. Finally, when

the fixed cost of testifying is small, so is the range where parties do not testify

under the adversarial procedure. The loss from inaccurate decisions is then

lower than the submission costs under the inquisitorial procedure.

We thus have a simple framework allowing us to compare pure forms of the

adversarial and inquisitorial procedures. Under either procedure, parties may

dissipate resources in influence activities. Our approach is to treat boosted

claims as costly signals. For the purpose of comparison we, therefore, select

for each procedure the least-cost signalling equilibrium. In the adversarial

procedure, the parties can submit evidence as they see fit. In the inquisitorial

procedure, they can present evidence only if specifically required to do so.

In either case, at the adjudication stage, the arbiter chooses the sequentially

rational action given his beliefs. Under the adversarial procedure, his role is

solely to adjudicate once the parties have presented their claims. Under the

inquisitorial procedure, he plays an active role by first deciding whom he will

hear.

It is standard in the literature to view accuracy in adjudication and pro-

cedural economy as the objectives at which legal procedures should aim; see

for instance Sobel (1985), Froeb and Kobayashi (2001), and Parisi (2002).

Adversarial systems of discovery clearly motivate parties to provide evidence.

Nevertheless, they are often criticized (e.g., Tullock 1975, 1980) for yielding

excessive expenditures through unnecessary duplication and costly overpro-

duction of misleading information. We refer to legal procedures for concrete-

ness. The same issues arise in regulatory or administrative hearings as well

as in many other contexts.

One strand of literature has viewed the trial outcome as an exogenous
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function of the litigants’ levels of effort or expenditure by using so-called suc-

cess contest functions; see Cooter and Rubinfeld (1989), Farmer and Pecorino

(1999), Katz (1988), and Parisi (2002). In these papers adjudication is a zero-

one variable, i.e., a party either wins or loses. Parties engage in a rent-seeking

game, leading to excessive expenditures. Our approach differs in that the ar-

biter’s decisions are part of a perfect Bayesian equilibrium. In our set-up

the arbiter is a sophisticated decision-maker who understands the parties’

incentives to boost their claims.

In another well-known strand of literature, trials are modeled as persua-

sion games. Parties cannot falsify the verifiable evidence as such, but are able

to misrepresent it by disclosing only what they see fit; see Sobel (1985), Mil-

grom and Roberts (1986), Lewis and Poitevin (1997), and Shin (1998). In our

framework, by contrast, the parties do not have access to hard information;

they dissipate resources in attempting to fabricate convincing stories.

Our paper is most closely related to the economics literature comparing

adversarial with inquisitorial procedures of truth-finding. In this literature,

“inquisitorial” usually refers to a system where a neutral investigator searches

for evidence, “adversarial” to one where the parties to the conflict control

the uncovering and presentation of evidence; see Shin (1998), Dewatripont

and Tirole (1999), Froeb and Kobayashi (2001), and Palumbo (2001). How-

ever, in civil litigation and by contrast with criminal trials, the presentation

of evidence essentially rests with the parties even in so-called inquisitorial

systems. The main difference is the judge’s involvement in controlling the

litigants’ presentation of evidence through bench requests, questions, and

the like; see Langbein (1985) or Parisi (2002) for a comparative description,

along these lines, of adversarial and inquisitorial systems. Demougin and

Fluet (2008) present an analysis of active versus passive judging in a persua-

sion game set-up. They show that a more active or inquisitorial arbiter may

eliminate inefficient equilibria. When presenting evidence involves a small

cost, multiple equilibria typically exist under a purely adversarial procedure

with a passive arbiter, some of which are more informative than others. Nev-
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ertheless, that paper does not deal with influence costs as such nor with the

trade-off between submission costs and accuracy.

The paper is organized as follows. In the next section we describe our

basic set-up. The following section derives the least-cost equilibrium. In the

subsequent section we compare the adversarial procedure with the inquisito-

rial one. Section 5 concludes. Proofs are relegated to the Appendix.

2 The Model

A plaintiff A has sued a defendant B to obtain damages x ∈ R. Damages

are distributed with density f(x) with full support over the real line.1 We

assume f(x) to be unimodal and symmetric; the mean is given by µ and

the variance by σ2. At the beginning of the trial all parties involved, i.e.,

plaintiff, defendant, and arbiter, know the distribution of x. The mean µ is

such that, given the expected outcome of the trial, it is worthwhile for the

defendant to sue.2

After the plaintiff has filed suit, both, plaintiff and defendant, learn the

realization of x, meaning they become perfectly informed. The trial cannot

be stopped at this point; the adjudicator has to decide the case. In particular,

we rule out any out-of-court settlement negotiations.

The arbiter can adjudicate solely on the basis of his priors at that stage

of the procedure as given by f(x). Alternatively, he may receive further

evidence submitted from the perfectly informed but self-interested plaintiff

and defendant. The plaintiff A would like the adjudicated value of x to be

large while the defendant B would like it to be small.3

1We assume full support over the real line in order to avoid boundary conditions. The
probability of extreme values of x can be made, however, arbitrarily small.

2We will make this precise at the end of section 3.
3Throughout the text we take x to be damages. Yet other examples abound: For

example, in a divorce case x may be the amount of support A should get from B; in
regulatory hearings x may the rental charge for a local loop, the incumbent wants the
charge to be high whereas the entrant wants it to be low.
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After plaintiff and defendant have learned x, they may testify in court.

Testimony by the parties is costly. A submission is of the form “the value of

the quantity at issue is xi”, i = A,B. It should be thought of as a story or

argument rendering xi plausible, together with the supporting documents,

witnesses, etc. The cost of a presentation is γ + .5 (xi − x)2 , i = A,B,

where γ > 0. The actual value is x, which is observed by the party, and xi

is the testimony or the statement submitted.

A distorting presentation is more costly than simply reporting the naked

truth as it involves more fabrication. We take a quadratic function to cap-

ture the idea that the cost of misrepresenting the evidence increases at an

increasing rate the further one moves away from the truth: it becomes more

difficult to produce the corresponding documents or experts charge more the

more they distort the truth.4

After the plaintiff and defendant have observed x, they decide simultane-

ously whether they do not testify, denoted by ∅i, or whether they testify and

report xi, i = A,B. We denote their decision by si ∈ Si := {∅i∪R}, i = A,B.

The cost is

ci(si, x) =

{
γ + .5 (xi − x)2 , if si = xi;
0, if si = ∅i,

i = A,B. Total submission cost is C = cA + cB.

The arbiter observes the defendant’s and the plaintiff’s choices and then

adjudicates x̂(sA, sB). The arbiter is concerned about the loss from inaccu-

racy in adjudication and the parties’ submission costs. Accordingly, there

is a potential trade-off between procedural costs and the social benefits of

correct adjudication. From the arbiter’s perspective, the total social loss is

L = l + C

where l is the loss from inaccurate adjudication or “error costs” and C is

4Using quadratic falsification costs is standard in the literature. Maggi and Rodŕıguez-
Clare (1995) work with ci(xi, x) = γ + κ (xi − x)2 and interpret κ as capturing the pub-
licness of information. If κ = 0, falsification is costless, therefore, information is purely
private. As κ increases, it becomes more costly to falsify information and for an arbitrarily
large κ the public-information model obtains.
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total submission cost.

Let x̂ denote the arbiter’s decision. The loss from inaccurate adjudication

is

l(x̂, x) = θ(x̂− x)2

where θ > 0 is the rate at which the arbiter trades off accuracy against

submission costs. If the true value is adjudicated, error costs are zero. The

more the decision errs in either direction, the higher the losses from inaccurate

adjudication and such losses increase at an increasing rate the further one

moves away from the truth. The loss l should be interpreted as the societal

cost of incorrect decisions. For instance, in tort cases incorrect adjudication

may have an adverse effect on deterrence.

The set-up is as follows. The parties observe x and then simultaneously

pick sA and sB. The arbiter observes the parties’ choices and then adjudicates

x̂.

The parties choose sA and sB so as to maximize πA and πB where

πA(x̂, sA, x) = x̂− cA(sA, x) and

πB(x̂, sB, x) = − x̂− cB(sB, x).

If the arbiter hears testimony, he updates his beliefs which denotes the prob-

ability distribution over x in the information set given by the testimony. He

then adjudicates x̂ so as to minimize the loss from inaccurate adjudication.

To satisfy the arbiter’s concern about inaccurate decisions we look for equi-

libria where he infers the true x if he hears testimony. To satisfy the arbiter’s

concern about submission costs, we pick out of the set of revealing equilib-

ria the one where theses costs are minimal. We focus on symmetric perfect

Bayesian equilibria.

3 The least-cost equilibrium

Suppose the plaintiff follows the strategy sA = ∅A for x < x0
A and sA = xA(x)

otherwise; the defendant’s strategy is sB = ∅B for x > x0
B and sB = xB(x)
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otherwise. Let xi be increasing and differentiable in x if i testifies alone or if

they testify together, i = A,B.5

We rule out totally unrevealing equilibria, meaning x0
A and/or x0

B are

bounded. There is thus some range where at least one party sends a signal

and x is revealed.6

Next, we need some structure on out-of-equilibrium beliefs. We assume

that at an out-of-equilibrium information set the arbiter believes that it was

reached with the minimum number of deviations from the equilibrium strate-

gies. A similar restriction on beliefs, termed the minimality condition has

been used by Bagwell and Ramey (1991) or Emons and Fluet (2008, 2009).

First we show that the plaintiff and the defendant never testify together.

together. The formal derivation of the following results are relegated to the

Appendix.

Lemma 1: In equilibrium the plaintiff and the defendant never testify to-

gether, i.e., x0
B < x0

A.

To show this result we assume on the contrary that parties testify to-

gether. Yet it always pays for a party to deviate because this either changes

the adjudicated value in his favor or signalling costs fall by more than rev-

enues.

We can now state the least-cost signalling equilibrium. The equilibrium

has the following structure:

5No party will ever signal over the entire support. If he signals, he incurs at least a
cost of γ. He will not invest this amount to signal the arbiter that he is among the worst
possible types.

6Under a properness restriction on the arbiter’s out-of-equilibrium beliefs an equilib-
rium cannot be totally unrevealing (Myerson (1978)). To see this, suppose on the contrary
that the arbiter believes E(x) = µ for all si ∈ Si, i = A,B. If the parties actually choose
not to testify, the arbiter’s beliefs are borne out in equilibrium. Now suppose the arbiter
observes some xA � µ. Sending signal xA is a “big” mistake for the type µ plaintiff
and a “small” mistake for the type x = xA plaintiff at the proposed equilibrium. If the
arbiter believes that big mistakes are less likely than small ones, he should conclude upon
observing xA that the plaintiff is of type x = xA.
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(i) If x ∈ (µ − γ, µ + γ), neither party testifies; the arbiter believes and

adjudicates E(x | ∅A, ∅B) = x̂(∅A, ∅B) = µ, i.e., the prior mean.

(ii) If x ≥ µ+γ, the defendant plays ∅B and the plaintiff sends the signal

xA ≥ x solving

x = xA − 1 + e−(xA−µ−γ). (1)

The arbiter believes and adjudicates

E(x | xA, ∅B) = x̂(xA, ∅B) = xA − 1 + e−(xA−µ−γ) = x.

(iii) If x ≤ µ−γ, the plaintiff plays ∅A and the defendant sends the signal

xB ≤ x solving

x = xB + 1− e−(µ−γ−xB). (2)

The arbiter believes and adjudicates

E(x | ∅A, xB) = x̂(∅A, xB) = xB + 1− e−(µ−γ−xB) = x.

To sum up:

Proposition 1: In the least-cost equilibrium if x ≤ µ−γ, the defendant sends

the message xB solving (2) while the plaintiff is silent. If x ∈ (µ− γ, µ+ γ),

neither party testifies. If x ≥ µ+γ, the plaintiff sends the message xA solving

(1) and the defendant is silent. If one party testifies, the arbiter infers and

adjudicates the true x; if both parties do not testify, the arbiter rationally

expects and adjudicates µ.

Let us now look at the message xi, i = A,B in more detail. Solving (1)

and (2) yields

xA = x+ 1 + ProductLog(−e(µ+γ−x−1)) and

xB = x− 1 + ProductLog(−e−(µ−γ−x+1))

where the ProductLog is the inverse function of f(w) = wew.7 Consider, e.g.,

the plaintiff. We have xA(µ+γ) = µ+γ, i.e., at the threshold x0
A = µ+γ the

7See, e.g., http://en.wikipedia.org/wiki/Lambert’s W function for more on the Pro-
ductLog.
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plaintiff signals the true x at zero variable cost. For x > x0
A, xA(x) > x and

limx→∞ xA(x) = x+1. The plaintiff boasts damages; boasting increases with

damages, yet at a decreasing rate. See Figure 1. Except for the threshold,

if the plaintiff testifies, he falsifies. For xA > x0
A, E(x | xA, ∅B) is strictly

monotone in xA: different x’s give rise to different xA’s, to which the arbiter

reacts by computing the correct expectation. Given ∂E(x | xA, ∅B)/∂xA 6= 0

and the marginal cost of lying is zero around the true value, it pays for the

plaintiff to falsify if he testifies.

x

( )Ax x

 

Figure 1: The least cost signalling strategies 

( )Bx x

( ) and x ( )A Bx x x

ix

B

A



 

 

 

1x

1x

The social loss as seen by the adjudicator is

LA =

∫ µ−γ

−∞
(γ + .5(x− xB)2)f(x)dx+ θ

∫ µ+γ

µ−γ
(x− µ)2f(x)dx

+

∫ ∞
µ+γ

(γ + .5(x− xA)2)f(x)dx

where the supersript A indicates the adversarial procedure. By symmetry,

the social loss can be rewritten as

LA = 2θ

∫ µ+γ

µ

(x− µ)2f(x) dx+ 2

∫ ∞
µ+γ

(γ + .5(x− xA)2)f(x)dx. (3)
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From a welfare point of view the adversarial procedure has the following

virtues: when the value of information is small, the parties remain silent

and do not spend resources on falsification, yet at the expense of incorrect

decisions. Only when the value of information is sufficiently large, parties

testify thus enabling correct decisions, yet at the expense of falsification.

Note that the loss is a linear function of the error cost weight θ with the

slope given by the error cost and the intercept given by the falsification cost.

Let us finally look at the plaintiff’s decision to sue. The plaintiff’s ex-

pected payoff in equilibrium is

E(πA) =

∫ µ−γ

−∞
xf(x)dx+ µ

∫ µ+γ

µ−γ
f(x)dx+∫ ∞

µ+γ

(x− γ − .5(x− xA)2)f(x)dx > µ− (γ + .5)

∫ ∞
µ+γ

f(x)dx

since (x−xA) < 1. The plaintiff sues if his expected payoff is positive. Thus,

µ > (γ + .5)
∫∞
µ+γ

f(x)dx is sufficient for the plaintiff to sue.

4 Comparing the adversarial with the inquisi-

torial procedure

Let us now compare our least-cost equilibrium under the adversarial proce-

dure with the least-cost equilibrium under the inquisitorial procedure which

we derive in Emons and Fluet (2009). Under the inquisitorial procedure the

judge decides how much testimony he wants to hear. More specifically, in the

first stage of the game we consider the arbiter announces whether he wants

to hear no, one, or both parties. We denote this decision by N,S, J where N

stands for no party being heard, S for only a single party being heard (this

would specify which one), and J for joint submissions.

Under procedure N , no party testifies and submission costs are, therefore,

zero. The arbiter then minimizes expected error costs solely on the basis of

the priors implying x̂ = µ. The expected total loss is LIN = θσ2 where the

superscript I indicates the inquisitorial procedure. Obviously, θσ2 is also

13



the value of perfect information, given the accuracy σ2 of the arbiter’s prior

information.

If only party A is heard, xA(x) = x+ 1 and x̂(xA) = xA− 1; if only party

B is heard xB(x) = x − 1 and x̂(xB) = xB + 1. The equilibrium is fully

revealing and error costs are, therefore, zero. The expected loss LIS = γ + .5.

If both parties are required to testify xA(x) = x+ .5, xB(x) = x− .5, and

x̂(xA, xB) = .5xA + .5xB. The equilibrium is fully revealing and error costs

are again zero. The expected loss LIJ = 2γ + .25.

Here the interesting result is that the extent of lying by, say, B under

single submission is twice the amount of his lying under joint submission.

The reason is that under single submission greater weight is given to the

party’s report, thereby inducing him to falsify more. Thus, confronting the

parties in hearings induces either of them to distort the evidence less than

when only one testimony is heard. Given the quadratic cost of lying, this

implies that the total variable cost of distorting is less under joint than under

single submissions. Yet when both parties are heard, we have a duplication

of the fixed submission cost γ.

Accordingly, under the inquisitorial procedure the arbiter has full control

over which kind of costs he incurs: either only error costs (no testimony)

or only falsification costs (single or joint testimony). The arbiter chooses

whether no, only one party, or both parties are required to submit evidence

so as to minimize the expected loss. For γ ≤ .25, the optimal procedure is J

if θσ2 ≥ 2γ + .25 and N otherwise; for γ > .25, the optimal procedure is S if

θσ2 ≥ γ + .5 and N otherwise. Figure 2 shows in the (θ, γ) plane the regions

where the arbiter requires both, only one, or no party to submit evidence; in

the figure we have set σ2 = 1.

When the value of information is large (i.e., θ > .75), the arbiter requires

joint submissions if the fixed submission cost is sufficiently small, single sub-

missions for intermediate values, and hears no one if the fixed cost is large.

When .25 < θ < .75, the relevant choice is only between joint submissions or

hearing no one: the value of information is then not large enough for single

14



submissions to be worth it since they entail too much falsification. Finally,

when θ < .25, the value of information is too small even to compensate for

the falsification costs under joint submissions.

Having described the outcome under the inquisitorial procedure, we now

give sufficient conditions for one procedure to be better than the other one.

Proposition 2:

a) When θ is small or when θ is large, the expected loss under the inquisi-

torial procedure is lower than under the adversarial procedure.

b) Let g(θ) := (1 +
√

2θ + 1)/2θ. If γ ≥ g(θ) and γ ≥ θ − .5 or if

γ ≥ .25, γ ≤ θ − .5, and γ ≤ g(θ), the expected loss under the adversarial

procedure is lower than under the inquisitorial procedure.

The proof for the superiority of the inquisitorial procedure is straight-

forward. When θ is small, no testimony is optimal under the inquisitorial

procedure, leading to a social loss of θσ2; see Figure 2. Obviously, the less

the arbiter cares about accuracy, the smaller this loss becomes. The loss

under the adversarial procedure as given by (3), is linear in θ. Hence, even

if θ = 0, society incurs the falsification costs with adversarial testimony.

If θ is sufficiently large, single or joint testimony is optimal under the

inquisitorial procedure, leading to a loss of γ + .5 or 2γ + .25; see Figure

2. The equilibria are fully revealing and error costs are, therefore, zero.

Under the adversarial procedure the parties do not testify over the interval

(µ − γ, µ + γ) leading to error costs that increase linearly with θ. We may

thus conclude: Under the inquisitorial procedure we have no falsification

costs under no testimony and no error costs under single or joint testimony.

Under adversarial testimony both falsification and error costs occur with

positive probability. Thus, when the arbiter cares very little or very much

about error costs, he does better with the inquisitorial procedure where he

fully controls which kind of costs he incurs.

Let us now look at the cases where the adversarial procedure does better

than the inquisitorial one. First we compare adversarial with no testimony. If
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γ ≥ g(θ), LA < LIN . Over the interval (µ−γ, µ+γ) our adversarial least-cost

equilibrium and N yield the same outcome — namely no testimony. In the

tails x ≤ µ−γ and x ≥ µ+γ, the adversarial procedure leads to the submis-

sion costs γ+.5(x−xi)2 < γ+.5 since |x−xi| < 1; the inquisitorial procedure

leads to the loss of inaccurate decisions θ(x − µ)2 > θγ2. If γ ≥ g(θ), sub-

mission costs are lower than the loss from inaccurate decisions. Submission

costs increase linearly while error costs increase with the square of γ. Thus,

for γ sufficiently large, adversarial testimony is better than no testimony. In

region N , no testimony is optimal under the inquisitorial procedure. Thus,

when we are in region N and γ ≥ g(θ), the adversarial procedure is better

than the inquisitorial one.





3 4 121.5
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1 4

1 4

Figure 2: Optimal amount of testimony under the inquisitorial procedure
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Next let us compare the adversarial outcome with single submission S.

Here we have that if γ ≤ g(θ), LA < LIS. Over the interval (µ− γ, µ+ γ) the

adversarial procedure leads to the loss from inaccurate decisions θ(x−µ)2 <

θγ2; in the tails the loss from boasting is γ+.5(x−xi)2 < γ+.5. The loss from

single testimony is γ + .5. For γ sufficiently small, the loss from inaccurate
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decisions is smaller than the submission cost for x ∈ (µ−γ, µ+γ). In region

S, single testimony is optimal under the inquisitorial procedure. Thus, when

we are in region S and γ ≤ g(θ), the adversarial procedure is better than the

inquisitorial one.

Last consider joint submissions J . Under joint submissions for large val-

ues of |x| the variable cost of falsifying of .25 is lower than the variable

cost under the adversarial procedure. Yet, the fixed cost is duplicated. For

x ∈ [µ− γ, µ + γ] the error cost under the adversarial procedure have to be

compared with the submission cost of 2γ+ .25 of the inquisitorial procedure.

A general comparison of joint submissions with the adversarial procedure

turns out to be impossible.

We can, nevertheless, make the following argument. For θ ≥ .75 along

the line γ = .25 single and joint testimony lead to the same expected loss

which is, moreover, continuous in γ for both procedures. From Proposition

2 we know that along this line for θ ∈ [.75, 12] the adversarial procedure

leads to losses strictly lower than single testimony. Therefore, by continuity,

adversarial testimony also leads to lower losses than joint testimony for γ =

.75− ε, θ ∈ [.75, 12], ε sufficiently small.8

Note that we have derived only sufficient conditions for one procedure to

be better than the other one. Hence, for the areas other than the ones we

have identified, we don’t know which of the procedures is better.

To sum up: If the arbiter has strong views about submission costs, the

inquisitorial procedure is better than the adversarial one, because the arbiter

has full control about which kind of cost he incurs. If the arbiter is concerned

about both, submission and falsification costs, the adversarial procedure may

be better than the inquisitorial one because parties testify when the private

and social value of information is high and do not testify when it is low.

8This type of argument can also be made for region N (S) facing the area S (N) where
the adversarial procedure is better than the inquisitorial one.
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5 Concluding Remarks

We have derived the equilibrium testifying behavior under adversarial ar-

bitration. When the true value of the amount at issue differs only slightly

from the prior mean, the parties remain silent and do not spend resources

on falsification. This comes at the expense of incorrect decisions, but the

social loss from inaccurate adjudication will then also be small. Only when

the true value differs sufficiently from the prior mean do parties testify. This

enables correct decisions, yet at the expense of falsification costs.

Moreover, we have compared the adversarial with the inquisitorial pro-

cedure, taking into account submission costs and accuracy in adjudication.

The inquisitorial procedure performs better when the arbiter has strong views

about error costs; the adversarial procedure may perform better when the

arbiter cares about both, error and falsification costs.

We have assumed extreme forms both for the adversarial and inquisitorial

procedures. Under the former, our arbiter is passive and can just wait for

testimony by the parties. Under the latter, the arbiter does not have the

option to let the parties freely decide whether they want to testify: he can

only either summon them to testify or refuse to hear them. Obviously, an

active arbiter who also has the option to let the parties freely testify would

yield the best of both worlds. On matters where accuracy has negligible social

value, he would refuse to hear the parties. When accuracy has very large

social value, he could summon one or both parties to testify. In intermediate

cases, he could let the parties decide whether or not they want to testify.

He then relies on the parties’ superior private information about the true

state to reach the best compromise between submission costs and accuracy.

This is not unlike the justification often given for “managerial judges” who

participate in activities such as pretrial discovery and settlement bargaining

(see Schrag, 1999).
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Appendix

Proof of Lemma 1. Suppose on the contrary that there is some range [x0
A, x

0
B] where

both parties testify and the equilibrium is revealing. At, say, x0
B the plaintiff A

reports xA(x0
B), the defendant B signals xB(x0

B), and E(x|xA(x0
B), xB(x0

B)) = x0
B.

See Figure 6.
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We have to distinguish three cases.
i) Let xA(x0

B) ≤ limε→0 xA(x0
B + ε). Here there is no signal xi which is sent by

party i for different two different values of x. The argument depends on whether
the plaintiff’s signalling costs go up or down when he switches from xA(x0

B) to
xA(x0

B + ε) given x = x0
B. For ε sufficiently small, the sign of the cost change is

the same if x = x0
B + ε.

Consider first the case where the plaintiff’s cost does not increase when he
switches from xA(x0

B + ε) to xA(x0
B). Let the true state be x0

B + ε. Along the
equilibrium path (xA(x0

B + ε), ∅B) and the arbiter correctly infers x0
B + ε.

If the plaintiff deviates to xA(x0
B), the arbiter observes (xA(x0

B), ∅B) which
is off the equilibrium. By the minimality condition the judge thinks that either
the defendant deviated while the plaintiff played his equilibrium action and the
underlying x = x0

B; or he thinks that the defendant played his equilibrium action
∅B while the plaintiff deviated and the underlying x =

∫∞
x0

B
xf(x)dx/

∫∞
x0

B
f(x)dx >

x0
B + ε for ε small. The arbiter assigns equal probability to both possibilities so

that E(x|xA(x0
B), ∅B) > x0

B + ε. Since the plaintiff’s cost does not increase and
his revenue increases, he will deviate.
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Now consider the case where the plaintiff’s costs decrease when he switches
from xA(x0

B) to xA(x0
B + ε). Let the true state be x0

B. Along the equilibrium path
(xA(x0

B), xB(x0
B)) and the arbiter correctly infers x0

B.
Suppose the plaintiff switches to xA(x0

B + ε) so that the arbiter observes
(xA(x0

B + ε), xB(x0
B)) which is off the equilibrium. Then the judge thinks that

the plaintiff deviated and x = x0
B or the defendant deviated and x = x0

B+ε. Thus,
E(x|xA(x0

B + ε, xB(x0
B)) = x0

B + .5ε. The plaintiff’s costs decrease, his revenue
does not decrease, hence he will deviate.

ii) Let xA(x0
B) > limε→0 xA(x0

B + ε) and limx→∞ xA(x) ≥ xA(x0
B). Here there

are signals xi which are sent by party i for two different values of x.
Consider first the case where xA(x0

A) < xA(x0
B+ε) or, by symmetry, xB(x0

B) >
xB(x0

A − ε) which is given by the dotted line in Figure 6. Here xB(x0
B) is played

by B only at x0
B in equilibrium. Let x′ > x0

B be such that xA(x′) = xA(x0
B). Now

suppose A lowers the signal to xA(x0
B) − ε so that the judge observes (xA(x0

B) −
ε, xB(x0

B)) which is off the equilibrium path. Then he thinks with equal probability
that either A deviated and x = x0

B or B deviated and x = x0
B− ε or x = x′− δ; let

the arbiter assign probabilities b > 0 and (1 − b) to the two possibilities. Hence,
E(x|xA(x0

B)− ε, xB(x0
B)) = .5x0

B + .5(b(x0
B − ε) + (1− b)(x′ − δ)). For ε going to

zero, so does δ and limε→0E(x|xA(x0
B)− ε, xB(x0

B)) > x0
B. A’s revenue increases,

hence he will deviate.
Now consider the case where xA(x0

A) > xA(x0
B +ε) or, by symmetry, xB(x0

B) <
xB(x0

A − ε). Here any equilibrium signal xi under joint testifying is also played
when i testifies alone. Let x′′ < x0

A be such that xB(x′′) = xB(x0
B).

Suppose the true state is x0
B. Along the equilibrium path (xA(x0

B), xB(x0
B))

and the judge infers x0
B. If A lowers his signal to xA(x0

B) − ε, the judge observes
(xA(x0

B) − ε, xB(x0
B)) which is off the equilibrium. Then the arbiter thinks with

probability .5 that A deviated and x = x0
B or x = x′′; the judge assigns probabilities

b and (1− b) to theses possibilities. With probability .5 he thinks that B deviated
and x = x0

B − ε or x = x′ − δ. Thus, E(x|xA(x0
B) − ε, xB(x0

B)) = .5(bx0
B + (1 −

b)x′′) + .5(b(x0
B − ε) + (1− b)(x′ − δ). We have limε→0E(x|xA(x0

B)− ε, xB(x0
B)) =

bx0
B + .5(1− b)(x′ + x′′). If this exceeds x0

B, A deviates.
If B lowers his signal to xB(x0

B) − ε, the judge observes (xA(x0
B), xB(x0

B) −
ε) which is off the equilibrium. Then he thinks that B deviated and x = x0

B

or x = x′; or he thinks A deviated and x = x0
B − ε or x = x′′ − δ. Hence,

E(x|xA(x0
B), xB(x0

B) − ε) = .5(bx0
B + (1 − b)x′) + .5(b(x0

B − ε) + (1 − b)(x′′ − δ)).
Again we have limε→0E(x|xA(x0

B), xB(x0
B)− ε) = bx0

B + .5(1− b)(x′ + x′′). If this
is less than x0

B, B will deviate.
iii) Let xA(x0

B) > limε→0 xA(x0
B + ε) and limx→∞ xA(x) < xA(x0

B). Here again
there is no signal xi which is sent by party i for two different values of x and the
argument is along the same lines as in i). �
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Proof of Proposition 1. The equilibrium strategies satisfy the following conditions:

(i) There exists x0
A > x0

B such that A plays sA = ∅A if x < x0
A and sA = xA

otherwise, for some xA yet to be determined; B plays sB = ∅B if x > x0
B and

sB = xB otherwise, for some xB yet to be determined.
(ii) The adjudicator’s beliefs are denoted ϕ(sA, sB). Along the equilibrium

path these beliefs are the updated expectation of x given the parties’ actions,
i.e., ϕ(sA, sB) = E (x | sA, sB). The adjudicator’s seeks to minimize the expected
quadratic error. Hence, his sequentially rational strategy is x̂ = ϕ(sA, sB).

Priors are represented by the density f(x) which is unimodal and symmetric
with mean µ and variance by σ2. We focus on equilibria where when one party
submits and the true x is inferred by the adjudicator.

Consider first the case x ≥ x0
A. Then only A signals and the equilibrium

strategies satisfy

∂πA(ϕ(xA, ∅B), xA, x)/∂xA = ∂ϕ(xA, ∅B)/∂xA − (xA − x) = 0
and ϕ(xA, ∅B) = x for all x ≥ x0

A.

Combining both conditions yields the differential equation

∂ϕ(xA, ∅B)/∂xA − (xA − ϕ(xA, ∅B)) = 0 for all x ≥ x0
A. (4)

The strategy xA is then a global maximum for party A; see Mailath (1987). The
general solution for the differential equation (4) is

ϕ(xA, ∅B) = Ke−xA + xA − 1. (5)

Signalling costs (excluding the fixed cost) are

.5 (xA − ϕ(xA, ∅B))2 = .5
(
1−Ke−xA

)2
.

The “smallest” message sent by A occurs when x = x0
A. Signalling costs in

that state of the world are minimized if xA(x0
A) = x0

A. This requires K = ex
0
A .

Substituting in (5) and recalling that ϕ(xA(x), ∅B)) ≡ x then yields

x = xA − 1 + e− (xA−x0
A) for all x ≥ x0

A. (6)

The solution xA to this equation is party A’s signalling strategy. The constant x0
A

remains to be determined.
Consider next the case where x ≤ x0

B. Now only B submits. The argument is
similar to the one above, except that B wants to persuade the adjudicator that x
is small. We obtain:

x = xB + 1− e−(x0
B−xB) for all x ≤ x0

B. (7)
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The solution xB to this equation is party B’s signalling strategy.
It remains to determine the constants x0

A and x0
B. When neither party submits,

the arbiter’s beliefs are

ϕ∅ := E (x | ∅A, ∅B) = E
(
x | x0

B < x < x0
A

)
. (8)

At x = x0
A party A is just indifferent between submitting and not submitting. If

the party submits, the true state is revealed at the cost of γ. If the party does not
submit, the arbiter adjudicates ϕ∅. Thus party A is indifferent if x0

A − γ = ϕ∅.
Using the same argument, when x = x0

B, party B is indifferent between submitting
and not if −x0

B − γ = −ϕ∅. Combining with (8) yields

ϕ∅ = E (x | ϕ∅ − γ < x < ϕ∅ + γ) .

Thus, the updated expectation given that x is in the interval [ϕ∅− γ, ϕ∅+ γ] must
be the mid point ϕ∅. With a symmetric unimodal prior density this is possible
only if ϕ∅ equals the prior mean µ.

Consequently, x0
A = µ+ γ, x0

B = µ− γ. The equilibrium signalling strategies,
therefore, satisfy

x = xA − 1 + e− (xA−µ−γ) for all x ≥ µ+ γ and
x = xB + 1− e− (µ−γ−xB) for all x ≤ µ− γ. �

Proof of Proposition 2 b).

For the loss under the adversarial procedure as given by (3) we have

LA < 2θ
∫ µ+γ

µ
(x− µ)2f(x) dx+ 2(γ + .5)

∫ ∞
µ+γ

f(x)dx (9)

since x− xA < 1.
For the loss under no testimony we have

LIN ≥ 2θ
∫ µ+γ

µ
(x− µ)2f(x)dx+ 2θγ2

∫ ∞
µ+γ

f(x)dx

because (x− µ)2 > γ2 for x ≥ µ+ γ. Therefore, if γ > g(θ), LA < LIN .
Using (9), since (x− µ)2 ≤ γ2 for ∈ [µ, µ+ γ], we have

LA < 2θγ2

∫ µ+γ

µ
f(x)dx+ 2(γ + .5)

∫ ∞
µ+γ

f(x)dx.

Hence, if γ < g(θ), LA < LIS = γ + .5. �
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