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Abstract

The paper explores weak monotonicity and convexity assumptions in a model

for the decision to smoke with endogenous schooling. Theories of productive and

allocative efficiency as well as the influence of time preferences are accounted for in

order to derive testable constraints that bound the effect of schooling on smoking.

Data from the Swiss Health Survey indicate that the degree of endogeneity depends

on the level of schooling, and that schooling effects are likely heterogeneous with

a reduction of the propensity to smoke by at most 5.9 percentage points.
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1 Introduction

The effect of schooling on non-market outcomes has received interest of the economics

profession at least since Becker’s work on the allocation of time and production of non-

market goods (Becker, 1960, 1965, 1991). Schooling typically enters the production

process through efficiency parameters and thereby affects the marginal costs of the non-

traded good (Rosenzweig and Schultz, 1989; Grossman, 1972). Theories consistent with

this view justify a causal schooling effect. At the same time, the literature has recognized

the potential endogeneity of schooling. Preferences and tastes, for example, may play

the role of confounding factors in the production of goods and in the determination of

schooling (Fuchs, 1982; Farrell and Fuchs, 1982). Grossman (2006) surveys the related

theoretical and empirical literature.

The aim of this paper is to explore both types of theories in order to estimate the

causal effect of schooling on smoking. Previous evidence based on exogenous variation

has documented a negative and significant schooling effect (Sander 1995a,b; Currie and

Moretti, 2003; Kenkel et al., 2006; de Walque, 2007; Grimard and Parent, 2007; Gilman

et al., 2008; Tenn et al., 2008). However, credible information on instruments may not

always be available. The paper demonstrates how substantive estimates of the causal

effect can be obtained even in the absence of such variation. On the one hand, theories

of productive and allocative efficiency, following the categorization of Grossman (2006),

impose functional restrictions on the propensity to smoke with increased schooling. On

the other hand, the third-variable hypothesis restricts the way how the propensity to

smoke and education decisions jointly vary in subgroups of the population.

Two conclusions can be drawn from the theoretical models. First, they unambigu-

2



ously predict the signs of effects, and thus can be used to impose monotonicity con-

straints on the observed data distribution. In addition, the paper makes explicit use of

supplementary information that is common to many economic models, namely that of

decreasing marginal returns (e.g., Kreps, 1990: Ch. 2; Levhari and Weiss, 1974; Moffitt,

2007). For example, it may be plausible that additional knowledge gains are smaller

the higher the level of education, and that the marginal gains of health care usage in-

crease at a diminishing rate. Given a negative impact of education, this translates into

convexity constraints that add information to the identification strategy.

The contributions of the paper are twofold. First, it formally outlines how the

convexity aspect can be accounted for in testable restrictions on the data-generating

process. As a main result, the causal effect of schooling on the propensity to smoke can

only be bounded, with the width of bounds depending on the strength of the underlying

assumptions (Manski and Pepper, 2000; Boes, 2010). Second, the paper shows that

monotonicity and/or convexity may provide substantive estimates of the causal school-

ing effect, even without imposing exogeneity conditions. Using data from the Swiss

Health Survey, the analysis suggests that each additional year of schooling reduces the

propensity to smoke by at most 5.9 percentage points.

The paper proceeds as follows. The theoretical background and the assumptions

on the data generating process are provided next. The potential outcomes framework

will be used to discuss identification and estimation. The particularities of the data

are described in the third section. Sections 4 and 5 report the results, first the bounds

on the potential outcome distribution, and second the bounds on the causal effect of

schooling on the propensity to smoke. Section 6 concludes.
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2 Theoretical background

Several theories explain the productive efficiency effect of schooling on health (or non-

market outcomes in general), e.g., Michael (1972, 1973), Michael and Becker (1973),

and Grossman (1972, 1975, 2000, 2006). Productive efficiency stresses that people with

higher education translate health inputs (such as medical care or time) into outputs (such

as smoking) in a more efficient way because education raises the marginal products of

the inputs. I will use the static version of the Grossman (1972) pure investment model,

as discussed in Grossman (2006), to illustrate this effect. Suppose that in a given period,

say one year, the amount of time (h) allocated to market and non-market production is

an increasing function of health (H), for example because better health lowers the risk

of illness and the time lost through it. Moreover, assume that the marginal product of

health falls due to a finite upper limit of time available for the production of market

and non-market goods, so ∂h/∂H > 0, ∂2h/∂H2 < 0.

The production of health is characterized by the following process

H = eρ(S)F (M,T ) (1)

where F is linear homogeneous in the inputs medical care (M) and own time of the

consumer (T ). Schooling (S) is assumed to affect the marginal products of M and T by

the same percentage ρ(S), where ρ(S) is an increasing function of S. This is a factor

neutrality assumption, and hence increases in S do not change the relative equilibrium

use of M and T . The marginal products of M and T are assumed to have a finite

upper limit in S because at some stage everything is known about their usage in the

production of health, and thus ∂ρ(S)/∂S > 0, ∂2ρ(S)/∂S2 < 0. Consumers maximize

net benefits Wh − πHH , where W is the wage rate and πH is the marginal or average
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cost of producing health. Optimal demand for health is determined by the equality of

marginal benefits and marginal costs, i.e., W ∂h
∂H

= πH . As in Grossman (2000, 2006), a

unit increase in schooling S causes first order changes in optimal H by

dH

dS
= −

∂ρ(S)

∂S

∂h/∂H

∂2h/∂H2
> 0 (2)

Given that individual time preferences are fixed, the second order changes in the demand

for health are given by

d2H

dS2
= −

∂2ρ(S)

∂S2

∂h/∂H

∂2h/∂H2
< 0 (3)

and thus, increases in health are diminishing with additional schooling.

Theories of allocative efficiency stress that the better educated individuals choose

a more efficient mix of inputs, because they have, for instance, additional knowledge

about the use of inputs, which ultimately gives them a larger amount of the non-market

good. Unlike for the productive efficiency channel, education affects outcomes only if

the mix of inputs is changed (e.g., Rosenzweig and Schultz, 1983, 1989; Kenkel, 1991;

Rosenzweig, 1995; Goldman and Lakdawalla, 2005).

In the following, I will illustrate the allocative efficiency argument using a model

outlined in Glied and Lleras-Muney (2008). Suppose that health is produced using

technology A and other inputs C. The level of technology is assumed to grow at a

constant rate λ, and the technology available to each individual depends on the time

between innovation and adoption. The latter is assumed to depend on the level of

education in a way that

A(t) = T0e
λ(t−w(S)) (4)
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where T0 is the frontier level of technology at time t = 0. w(S) is assumed to decrease in

schooling S because the better educated adopt new technologies at a faster rate than the

less educated (e.g., due to a better access to and use of information in the production

of health). Moreover, this rate is assumed to decrease in schooling because the time of

adoption cannot occur prior to the innovation, so that ∂w(S)/∂S < 0 and ∂2w(S)/∂S2 >

0. Given a health production function H = H(A,C) with ∂H(A,C)/∂A > 0, the impact

of education on health can be evaluated as

dH

dS
= −λA

∂w(S)

∂S

∂H(A,C)

∂A
> 0 (5)

d2H

dS2
= −λA

∂2w(S)

∂S2

∂H(A,C)

∂A
< 0 (6)

which yields a decreasing marginal effect of education on health.

The third-variable hypothesis highlights a different aspect of the education-health

gradient. Fuchs (1982) and Farrell and Fuchs (1982), for example, argue that time

preferences affect schooling decisions as well as health related behavior. People who

are more future oriented, i.e., who discount time at a lower rate, will invest more in

schooling because they expect higher returns in the future. But people with a lower

time discount will also make larger investments in their own health because they expect

to live longer and/or they draw positive utility from future activities. De Walque (2007b)

discusses this view in a specific model for health related behavior with different types

of individuals with varying stock of human capital (see also Grossman, 2006)

At the core of the time preferences argument is the maximization of an intertemporal

utility function defined as the discounted sum of utilities Ut at each age t

U =
T∑

t=0

DtUt (7)
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where D is the discount factor. If consumers are more present (future) oriented, then

D will be small (large). De Walque (2007b) and Grossman (2006) suggest that the

relationship between schooling and health can be characterized by

dH

dS
=

dH/dD

dS/dD
> 0 (8)

because dH/dD > 0 and dS/dD > 0.

A sufficient condition for the second order changes to be negative would be that

increases in education are larger than increases in health if the time discount increases.

The evaluation of the relative impact of the time discount is ultimately an empirical

question, and a number of recent papers deal with this subject (Cairns, 2006; Khwaja

et al. 2006; Scharff and Viscusi, 2010). In a context similar to this paper, van der Pol

(2010) finds an almost linear impact of the time discount on health, and a convex impact

on schooling (see Table II in van der Pol, 2010). This suggests that d2H/dS2 < 0.

Now suppose that smoking status is one possible indicator of health. Let Y (s) de-

note the potential smoking status (0 = non-smoker, 1 = smoker) for each conjectured

schooling level s, i.e., if the individual was exogenously assigned schooling s ∈ S. Theo-

ries of productive and allocative efficiency imply that the propensity to smoke decreases

at a diminishing rate with additional schooling s. This holds for each subgroup of the

population, with any realized schooling S = t. Formally,

Assumption (1). For all (s1, s2, t) ∈ S3 with s1 ≤ s2, and for all α ∈ [0, 1], (i)

P [Y (αs1 + (1− α)s2) = 1|S = t] ≤ αP [Y (s1) = 1|S = t] + (1− α)P [Y (s2) = 1|S = t],

and (ii) P [Y (s1) = 1|S = t] ≥ P [Y (s2) = 1|S = t].

Part (i) accounts for the convexity aspect, part (ii) implies a weakly monotonically

decreasing propensity to smoke if schooling is exogenously increased. The implications
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of assumption (1) for the identification of the propensity to smoke if everybody was

assigned s years of schooling are discussed in Boes (2010); see also Manski (1997) and

Manski and Pepper (2000). In a nutshell, assumption (1) allows to combine (by (i)) the

observed propensity to smoke for those with S = t, P [Y = 1|S = t], with the upper

bounds of the counterfactual probabilities P [Y (s) = 1|S = t] for all s 6= t that follow

from the monotonicity (ii) of P [Y (s) = 1|S = t] in s.

The third-variable hypothesis translates into a somewhat different assumption. As

outlined above, people with a larger time discount D are characterized by a higher real-

ized schooling and a lower propensity to smoke (due to their different health behavior).

Under convexity the assumption can be stated formally as

Assumption (2). For all (s, t1, t2) ∈ S3 with t1 ≤ t2, and for all β ∈ [0, 1], (i)

P [Y (s) = 1|S = βt1 + (1− β)t2] ≤ βP [Y (s) = 1|S = t1] + (1− β)P [Y (s) = 1|S = t2],

and (ii) P [Y (s) = 1|S = t1] ≥ P [Y (s) = 1|S = t2].

The identifying power of assumption (2), and assumptions (1) and (2) jointly is

outlined in Boes (2010). Like before, assumption (2) allows to make linear combinations

of the observed propensity to smoke P [Y = 1|S = s] with the upper bounds on P [Y (s) =

1|S = t] for all t 6= s. If both assumptions are imposed jointly, then this allows to linearly

combine all observed propensities to smoke for each schooling level to find a sharp

upper bound on the effect of schooling on smoking (basically by estimating the lowest

convex combination of observed data points, see the calculations below). Moreover, the

convexity in both directions (s and t) implies convexity of the observed data distribution

P [Y = 1|S] in realized schooling S, which is a testable assumption.
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3 Data

The analysis is based on the 2007 wave of the Swiss Health Survey (SHS). The SHS is

a representative cross section of the Swiss population that records a large number of

socioeconomic and health related characteristics. For this study, I extracted data on to-

bacco consumption (yes/no; which includes smoking of cigarettes, cigars, and/or pipes),

information on the highest education achieved as well as the respondent’s age, gender,

and monthly net personal income. Raw education is stored in 10 categories which are

linked to the average number of formal years of schooling using official school statistics

(see the appendix). The final sample consists of 10,189 individuals after consistency

checks, cleaning for missing values and invalid responses.

Table 1 reports the relative proportion of smokers by the years of schooling. The

simple bivariate statistics suggest that the propensity to smoke is highest among the

less educated, and smallest among the more educated individuals. Differences in the

propensity smoke by schooling are larger the smaller the level of schooling which points

to a non-linear, possibly convex association.

No causal conclusion can be drawn from Table 1, though, as the relationship between

schooling and smoking is likely confounded by observed and unobserved characteristics.

Possible background factors are the respondent’s age and gender. Figure 1 regression

adjusts for the latter two and plots the relative number of smokers for each schooling

category, given an average age of 48.8 years and a sample proportion of men of 46

percent. The adjusted results still suggest a downward sloping relationship between the

years of schooling and the propensity to smoke. Using polynomial smoothing, the best

fit is achieved if education enters the regression function in a quadratic form (indicated
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by the dashed line). While the observed data points do not display a perfectly convex

shape, the hypothesis of a convex relationship cannot be rejected.

In order to assess the causal effect of schooling on smoking, one might simply assume

that schooling is determined exogenously, perhaps conditional on age and gender. In this

case, Figure 1 would be sufficient to obtain the desired effect. For example, an increase

in schooling from 13 to 15 years was predicted to decrease the propensity to smoke

from 23.9 to about 21.3 percent, a difference of about 2.6 percentage points. However,

the exogeneity of schooling is not a plausible assumption in the presence of unobserved

confounders (such as time preferences or tastes) that dilute the causal interpretation of

Figure 1. The next two sections therefore exploit the assumptions stated above in order

to quantify the causal schooling effect.

4 Bounds on the distribution of potential outcomes

Using the empirical evidence alone, the potential outcome distribution P [Y (s)] can be

bounded by P (Y |S = s)P (S = s) + γP (S 6= s), with γ = 0 for the lower bound, and

γ = 1 for the upper bound. In many cases, as they are in this application, these no

assumptions bounds (Manski, 1990) are fairly wide and do not allow for informative

conclusions. In particular, due to the many schooling categories, the probability of

observing s is low relative to not observing s (with the exception of one category; see

Table 1), and hence, the obtained lower bounds are close to zero and the obtained upper

bounds are close to one, which is about the logical range for a probability function.

Assumptions (1) and (2) impose restrictions on γ such that tighter bounds on the

potential outcome distribution can be obtained. I will explore these assumptions in three
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steps, with increasing strength of identifying power. First, the monotonicity conditions

as stated in (1, ii) and (2, ii) will be imposed. Second, convexity in the sense of (1, i)

will be explored as additional restriction. Third, convexity as implied by (1) and (2)

jointly will be used to constrain the observed data distribution.

Assumptions (1, ii) and (2, ii) together imply a monotonically decreasing propen-

sity to smoke, as a function of schooling. The observed data points (see Figure 1) are

consistent with this implication, and thus the evidence cannot reject the joint mono-

tonicity hypothesis. Moreover, P (Y = 1|S = t) can be used as a tight lower bound and

P (Y = 1|S = s) as a tight upper bound on P [Y (s) = 1|S = t] for all s > t, and vice

versa for all s < t. These bounds can be used to derive the bounds on the potential

outcome distribution for each schooling level as indicated in Figure 2. Monotonicity

provides substantive information on the potential propensity to smoke by restricting

the range of possible values to a width of at most 5 percentage points (except for the

smallest education level).

If the propensity to smoke decreases at a diminishing rate with additional schooling

(assumption (1)), and (2, ii) is still fulfilled, then the tightest convex combination of

observed data points can be used as a tight upper bound on P [Y (s) = 1|S = t] for all

s < t. For example, the linear combination 0.5 ·P (Y = 1|S = 9)+0.5 ·P (Y = 1|S = 13)

is smaller than P (Y = 1|S = 11) and thus can be used to further improve upon the

monotonicity upper bound on P [Y (11) = 1|S = 12]. Such improvements are possible

for education levels 11, 12, 16, and 18. The resulting bounds are shown as the middle

bars in Figure 3 (left bars indicate the joint monotonicity of Figure 2). As it can be

seen, there are modest gains on the width compared to the monotonicity bounds.
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Convexity in the sense of (1) and (2) allows for an extension of the upper bounds

argument through combinations of the observed data points to the case s > t. The

bounds under this scenario are shown by the right bars in Figure 3. The width shrinks

to at most 3.5 percentage points, except for the lowest/highest education levels which

are not affected. The range of potential outcome probabilities varies by education. For

example, if everybody was assigned 12 (15) years of schooling, then the propensity to

smoke would be predicted 28.5 to 30.0 percent (24.8 to 28.7 percent). Figure 3 also

shows that the observed data points are in most cases inside the stated bounds, but

are outside for 11 and 12 years of schooling. The exogeneity of schooling is therefore

inconsistent with the convexity constraints for these two levels.

If personal income is held constant, then the results do not change much. Figure 4

shows that the obtained bounds under the three sets of assumptions are almost the same

as in Figure 3. Two effects are at play. First, the regression adjusted point estimates of

the education dummies are reduced by about 8-10 percentage points if income is fixed,

consistent with the previous empirical evidence cited above. Second, if adjusted for the

mean value of the logarithmic income variable of about 7.6 and estimated coefficient

0.013, the reduction is almost entirely compensated. Since the functional form relation-

ship between schooling and smoking does not change conditional on income, the range

of possible values for the potential propensity to smoke is not sensitive to the income

variable being fixed. In terms of a parsimonious model specification, the income variable

is therefore not considered further. This result is unlike the respondents’ age and gender

that both change the functional relationship if not conditioned on.
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5 Bounds on the causal effect

The implications of assumptions (1) and (2) regarding the causal schooling effect, for-

mally defined as P [Y (s2) = 1] − P [Y (s1) = 1] for s2 > s1, are not directly inferable

from Figures 2 and 3. A simple comparison of upper bounds on P [Y (s1) = 1] and lower

bounds on P [Y (s2) = 1] in order to obtain a lower bound on the causal effect is invalid

because the overall bounds are obtained as a weighted average of upper/lower bounds,

and thus the weights (in this case the schooling distribution) matter. Table 2 provides

valid estimates for the interventions indicated in column 1.

Under exogeneity, the causal effect is point identified and equal to the observed

difference between the propensities to smoke for adjacent schooling levels (column 2).

These differences are inferable from Figure 1 (by comparison of the dots). Column 3

shows the Manski (1990) no assumptions bounds, i.e., the bounds that are obtained

under no restrictions on the data generating process. As can be seen, the latter are very

wide and allow for almost any admissible negative effect. This result was expected given

the discussion above.

Like in the preceding section, the monotonicity/convexity assumptions are explored

in three steps: (i) monotonicity only, (ii) convexity from (1) and monotonicity from (2),

and (iii) convexity from (1) and (2). Imposing monotonicity substantially increases the

lower bound on the causal effect and thus decreases the width of the bounds, given the

fixed upper bound zero (column 4). The point estimates vary between -11.8 percentage

points and -3.4 percentage points. Since the estimates are based on different schooling

effects, one might divide by the absolute increase in schooling in order to get a com-

parable lower bound for one-year raises. The results suggest that this lower bound lies
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between -1.5 and -4.6 percentage points (at most -5.9 percentage points for an additional

year of schooling between 7 and 9 years).

If convexity in the sense of (1, i) is imposed as additional assumption (column 5),

then the width of the bounds further shrinks, and if convexity in the sense of (1) and (2)

is imposed jointly (column 6), then additional gains in terms of more informative point

estimates are obtained. Under the latter set of assumptions, the estimated lower bound

lies between -1.3 and -3.9 percentage points (again with the exception of the lowest

years of schooling which are not affected by the convexity constraints). These results

are consistent with the previous evidence using instrumental variables, e.g., Currie and

Moretti (2003), de Walque (2007a), Grimard and Parent (2007), and Tenn et al. (2010).

It should be noted that the observed differences are outside the estimated bounds for two

scenarios (15 → 16 and 16 → 17), and thus again, the results suggest that exogeneity

cannot be rejected over the entire schooling range.

Additional improvements can be obtained if the results using instrumental variables

are taken into account. In specifications similar to the one chosen here, Currie and

Moretti (2003), de Walque (2007a) and Grimard and Parent (2007) show that the in-

strumental variables estimates are larger in absolute magnitude than the ordinary least

squares estimates. If measurement error is small in magnitude and the effects are con-

stant within educational levels, then the OLS estimates may be used as an upper bound

on the percentage point change instead of zero. These upper bounds are given in Table

2, column 2. The results suggest that the effect of increasing schooling from 12 to 13

years, for example, reduces the propensity to smoke by about 2.3 to 3.4 percentage

points, a reasonably small range of values to draw informative policy conclusions.
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Table 2 can also be used to obtain the lower bound on a different causal effect, namely

the effect of increasing the years of schooling to the next higher level for subgroups with

a given education. Formally, this effect can be expressed as P [Y (s2) = 1|S = s1] −

P [Y (s1) = 1|S = s1], which is often referred to as the treatment effect on the treated.

The latter term is identified from the observed data distribution by the propensity to

smoke for those with s1 years of schooling. A lower bound on the former term can

be obtained as P [Y = 1|S = s2] under the monotonicity constraints. Thus, the lower

bounds on the treatment effect on the treated are given by column 2, with the positive

estimates set to zero. The results suggest that this effect is at most -2.3 percentage

points per additional year of schooling, again with the exception of the lowest schooling

levels with -4.1 percentage points for the estimated lower bound.

6 Conclusion

The adverse health effects of smoking are well-known and reach from increased risk

of lung cancer and coronary heart disease to adverse reproductive and early childhood

effects (among others, US Department of Health and Human Services, 2004). If people

invest in their education at sub-optimal levels (evidence in favor of this is provided, for

example, by Levhari and Weiss (1974)), and schooling has a causal effect on smoking,

then there are good reasons to subsidize individual skill formation, which will ultimately

improve health and related behaviors.

This paper used weak monotonicity and convexity assumptions in the spirit of Manski

and Pepper (2000) and Boes (2010) to bound the causal effect of schooling on smoking.

The assumptions were motivated in the context of economic theories of productive and
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allocative efficiency accounting for the endogeneity of schooling through unobserved

time preferences. The results suggest that the magnitude of effects depends on the

schooling level. The lowest bound of -5.9 percentage points is obtained for the lowest

educated individuals, the estimates for the other education groups suggest a bound of

at most -3.9 percentage points. The results are consistent with the previous literature

using instrumental variables, but the analyses here do not require exogenous variation

in order to obtain substantive estimates of causal education effects.

The analysis could be extended to allow for variation in subgroups. Cutler and

Lleras-Muney (2008, 2010), for example, use different data sources to quantify the rela-

tive importance of various explanations for the education gradient. Using the proposed

identification strategy one would condition on covariates or regression-adjust the ob-

served propensity to smoke as a function of schooling. In that way, the relative impact

can be evaluated. However, the SHS is not large enough to allow for such detail be-

cause the propensity to smoke needs to be estimated for each education level. It would

therefore be reasonable to allow for some smoothing over the schooling range.
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Tables and Figures

Table 1: Summary statistics conditional on schooling

Schooling (S) P (S) P (smoke|S) P (male|S) E(age|S) E(inc|S) N

7 years 0.0044 0.400 0.42 51.0 7.02 45

9 0.0947 0.301 0.32 53.3 6.87 966

11 0.5456 0.309 0.43 49.2 7.39 5,564

12 0.0293 0.294 0.38 48.0 7.32 299

13 0.0095 0.258 0.10 45.6 6.95 97

15 0.0947 0.257 0.53 48.2 7.98 966

16 0.0950 0.271 0.63 46.8 8.37 969

18 0.0706 0.275 0.56 45.9 8.41 720

22 0.0561 0.251 0.62 47.0 8.53 572

Total 1 0.293 0.46 48.8 7.62 10,198

Source: Swiss Health Survey 2007, own calculations. Notes on variables: smoke equals

one if the respondent consumes cigarettes, cigars, and/or pipes. inc is the log of monthly

personal net income in Swiss Francs.
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Figure 1: Adjusted propensity to smoke conditional on schooling
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Source: Swiss Health Survey 2007, own calculations. Notes: The propensity to smoke (Y )

for each schooling level (S) is regression adjusted for the respondents’ age and gender. Point

estimates are shown by the black dots, the vertical grey bars display a 95% confidence interval.

The dashed line is a smoothed quadratic fit over the observed data points.
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Figure 2: Bounds on the potential propensity to smoke
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Source: Swiss Health Survey 2007, own calculations. Notes: P [Y (s) = 1] denotes the potential

propensity to smoke (Y ) if everybody in the population was assigned s. Estimated bounds are

regression adjusted for the respondents’ age and gender. Bars indicate the width of the bounds.

Left bars show the upper/lower bounds under no assumptions, middle bars additionally impose

monotonicity in the sense of (1) or (2), right bars show the bounds under monotonicity (1)

and (2). Crosses indicate the propensity to smoke if schooling was assumed exogenous (which

correspond to the observed data points in Figure 1).
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Figure 3: Bounds on the potential propensity to smoke
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Source: Swiss Health Survey 2007, own calculations. Notes: P [Y (s) = 1] denotes the potential

propensity to smoke (Y ) if everybody in the population was assigned s. Estimated bounds

are regression adjusted for the respondents’ age and gender. Bars indicate the width of the

bounds. Left bars show the upper/lower bounds under monotonicity only (assumptions (1, ii)

and (2, ii)), middle bars additionally impose convexity in the sense of (1, i), right bars impose

convexity in the sense of (1) and (2). Crosses indicate the propensity to smoke if schooling

was assumed exogenous (which correspond to the observed data points in Figure 1).
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Figure 4: Bounds on the potential propensity to smoke with income fixed
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Source: Swiss Health Survey 2007, own calculations. Notes: See Figure 3. Estimated bounds

are regression adjusted for the respondents’ age, gender, and income.
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Table 2: Lower bounds on the causal effect of schooling on smoking

Schooling Observed No ass. Monotonicity Convexity (1) and Convexity

s1 → s2 difference (1) and (2) Monotonicity (2) (1) and (2)

7 → 9 -0.0827 -0.9663 -0.1179 -0.1179 -0.1179

(0.0017) (0.0723) (0.0724) (0.0723)

9 → 11 -0.0147 -0.7654 -0.0370 -0.0370 -0.0370

(0.0046) (0.0160) (0.0160) (0.0160)

11 → 12 -0.0151 -0.6166 -0.0335 -0.0293 -0.0293

(0.0053) (0.0195) (0.0203) (0.0203)

12 → 13 -0.0231 -0.9768 -0.0437 -0.0405 -0.0341

(0.0015) (0.0308) (0.0197) (0.0106)

13 → 15 -0.0256 -0.9695 -0.0537 -0.0537 -0.0470

(0.0018) (0.0204) (0.0205) (0.0312)

15 → 16 0.0013 -0.9051 -0.0456 -0.0456 -0.0389

(0.0028) (0.0099) (0.0099) (0.0173)

16 → 18 0.0066 -0.9106 -0.0456 -0.0453 -0.0386

(0.0029) (0.0099) (0.0101) (0.0175)

18 → 22 -0.0244 -0.9345 -0.0615 -0.0607 -0.0538

(0.0027) (0.0199) (0.0195) (0.0233)

Source: Swiss Health Survey 2007, own calculations. Notes: Estimated lower bounds on

the causal effect P [Y (s2) = 1]−P [Y (s1) = 1], where Y denotes the smoking indicator.

Column 2 shows P (Y = 1|S = s2)− P (Y = 1|S = s1). The following columns impose

assumptions with increasing strength; column 3 under no assumptions, column 4 under

joint monotonicity (1, ii) and (2, ii), column 5 additional convexity (1, i), column 6

under convexity (1) and (2). Estimates are regression adjusted for the respondents’ age

and gender. By assumption, the upper bound on the causal effect is zero under the

monotonicity/convexity assumptions. Bootstrapped standard errors in parentheses.
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Appendix

Table 3: Schooling categories and assigned years of schooling

Category Years of schooling

Early drop out of compulsory school 7

Compulsory school 9

Basic vocational education and training 11

Matura schools 12

Second vocational training 13

Higher vocational education and training 15

University of applied science; university of teacher education 16

University including federal institutes of technology 18

PhD/Doctorate 22

Notes: Highest education achieved. For an overview of the Swiss education sys-

tem, see http://www.edudoc.ch/static/web/bildungssystem/grafik bildung e.pdf

(last accessed 2010, Oct 13).
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