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This paper studies the identification of coefficients in generalized linear predictors

where the outcome variable suffers from non-classical measurement errors. Combining a

mixture model of data errors with the bounding procedure proposed by Stoye (2007), I
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the structure of the measurement error. The method is illustrated by analyzing a simple
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1 Introduction

Validation studies suggest that many important economic variables suffer from non-classical

measurement error (see e.g. Bound et al., 2001, for a survey).1 Point identification in the

presence of non-classical measurement error typically relies on strong assumptions regard-

ing the structure of the data and the distribution of the measurement errors that may be

inappropriate in many applications (Chen et al., 2011). This motivates a recent line of re-

search to focus on set identification of the parameters of interest under weaker and more

credible assumptions. Examples include the estimation of features of marginal distributions

in the presence of data errors (e.g. Horowitz and Manski, 1995; Dominitz and Sherman, 2006;

Kreider and Pepper, 2011), direct misclassification in discrete distributions (Molinari, 2008),

estimation of treatment effects in the presence of non-standard data errors (e.g. Gundersen

et al., 2012; Kreider et al., 2012), and the identification of coefficients in linear regressions

where the covariates suffer from misclassification (Bollinger, 1996; Kreider, 2010).

In this paper, I propose a flexible two-step approach to construct bounds for the coeffi-

cients in generalized linear predictors in the presence of non-classical measurement error in

the dependent variable. In the first step, I derive identified sets for the conditional cumulative

density function (CDF) and the conditional mean of the outcome variable that are translated

into bounds for the coefficient vector in generalized linear predictors in the second step. Fol-

lowing a growing body of literature data errors are conceptualized in a mixture model.2 This

framework models the observed conditional distribution of the outcome variable as a mixture

of the true distribution that is of interest and an unknown and unrestricted erroneous dis-

tribution. I explore the identifying power of different non-parametric assumptions about the

underlying structure of the measurement error. In particular, the data corruption and the

data contamination assumption (Horowitz and Manski, 1995) and the multiplicative mean

independence assumption (Kreider and Pepper, 2011) are discussed. Moreover, I show how to

incorporate the presumption of under- and overreporting in surveys for example due to social

desirability by imposing monotonicity assumptions in the spirit of Dominitz and Sherman

(2006). These assumptions are related to the restrictions considered by Molinari (2008) who

addresses the problem of data errors in discrete variables.

1I refer to classical measurement error if the errors in the dependent variable and the covariates are
independent of the true variables and the error term in the true model.

2Examples include Horowitz and Manski (1995); Dominitz and Sherman (2004, 2006); Kreider and Pepper
(2011).
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The second step uses the results in Stoye (2007) to translate the identified sets for the

conditional CDF and the conditional mean into identified sets for the parameter vector in

generalized linear predictors. The two-step procedure naturally separates the specification of

the data error process from the computation of the bounds on the coefficient vector which

increases transparency and illustrates the identifying power of the underlying restrictions on

the data error process.

Importantly for the interpretation and applicability of the results in this paper, Pono-

mareva and Tamer (2011) show that the identified set for the best linear predictor in Stoye

(2007) coincides with what they call the ”least squares set”. The least squares set consists of

the set of parameters that are best linear approximations to the conditional mean function.

Consequently, the best linear predictor considered in this paper provides an easy to interpret

quantity of interest under misspecification.

The method is applied by analyzing the problem of drawing inferences in a simple earnings

regression where the dependent variable suffers from non-classical measurement error. The

results based on data from the Swiss Household Panel3 suggest that imposing additional non-

parametric assumptions substantially narrows the data corruption bounds. Moreover, the

empirical illustration indicates that allowing for non-classical and unrestricted measurement

error substantially impedes identification.

The remainder of this paper is structured as follows: section 2 presents general framework

and introduces the mixture model of data errors, section 3 discusses the two-step approach

to identification. The empirical illustration is presented in section 4 and section 5 concludes.

All proofs are collected in the appendix.

2 Notation and Framework

I am interested in the characterization of the identified sets for the coefficients in generalized

linear predictors where the dependent variable Y is continuous and suffers from non-classical

measurement error. The generalized linear predictor Ŷ of Y from X is given by (Stoye, 2007),

Ŷ = G(xθ) (1)

3This study has been realized using the data collected by the Swiss Household Panel (SHP), which is based
at the Swiss Centre of Expertise in the Social Sciences FORS. The project is financed by the Swiss National
Science Foundation.
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with

θ ≡
(∫

x′xFyx

)−1 ∫
x′G(y)−1dFyx

= (EX ′X)−1EX ′G−1(Y )

where Fyx(y, x) is the cumulative density function (CDF), Y ∈ [K0,K1] ⊆ R is the dependent

variable and X ∈ RK denotes a row vector of covariates. G : R → R is a strictly increasing

and preassigned link function and θ is the coefficient vector of interest. An important special

case of this framework is the best linear predictor under square loss or Ordinary Least Squares

regression.

I decompose the identification analysis into two steps. In the first step, I analyze set

identification of Fy|x(y, x) and the conditional expectation E(Y |X = x) of the distribution

of (Y |X) when Y suffers from non-classical measurement error.

Measurement errors are conceptualized in the mixture model of data errors (Horowitz

and Manski, 1995). In this model it is assumed that the researcher is interested in the

conditional distribution of Y . But instead she observes the conditional distribution of the

random variable O that is generated by the following probability mixture,

O = Y Z + V (1− Z) (2)

where the conditioning on X = x is kept implicit. Z is a binary variable indicating whether a

realization of O is a draw from the distribution of the random variable Y that is of interest, or

from the erroneous distribution of the random variable V that is unknown and left completely

unrestricted. In order to gain intuition and to compare the mixture model with other data

error models, I rewrite Equation 2 as follows

O = Y Z + V (1− Z)

= Y + ξ (3)

where ξ ≡ (1 − Z)(V − Y ). Hence, the mixture model of data errors can be viewed as a

special case of continuous variables with non-classical error ξ that is not independent of the

outcome variable Y (Chen et al., 2011). It is worth noting that whilst most of the statistics

literature is concerned with errors that affect every observation, the mixture model assumes
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that some realizations of the observed conditional distribution are error-free while others are

subject to arbitrary error patterns (Bound et al., 2001).

Whenever P (Z = 1|X = x) < 1, i.e. measurement error occurs with a positive probability,

Fy|x(y, x) and E(Y |X = x) are generally not point identified in the mixture model. However,

it is possible to derive identified sets for Fy|x(y, x) and E(Y |X = x) under non-parametric

assumptions about the measurement error.4 For later reference, let (F y|x(y, x), F y|x(y, x))

denote the bounding functions for Fy|x(y, x) such that F y|x(y, x) ≤ Fy|x(y, x) ≤ F y|x(y, x)

for all (y, x) and let (E(x), E(x)) denote the bounds on the conditional mean, E(Y |X = x)

such that E(x) ≤ E(Y |X = x) ≤ E(x).

In the second step of the identification analysis, I translate the identified sets for Fy|x(y, x)

and E(Y |X = x) into bounds for the coefficient vector θ. This is achieved by applying Propo-

sition 2.1 of Stoye (2007). This proposition derives tight bounds for the coefficient vector of

interest when the distribution of the dependent variable is only set identified. For a general

link function G(·) the analysis requires the characterization of F y|x(y, x) and F y|x(y, x). In

the important special case where G(·) is linear, knowledge of E(x) and E(x) is sufficient.

Throughout this paper, I assume perfect observability of the covariates and that the data

are missing at random. The framework can be extended to the case of missing and erroneous

outcome data by incorporating the results of Manski (2003, Chapter 1). The analysis of

erroneous covariate and outcome data is beyond the scope of this paper.5

3 Identification Analysis

This section is concerned with the identification analysis. Finite sample issues are discussed

in Section 4.

4Examples include Horowitz and Manski (1995); Dominitz and Sherman (2004); Kreider and Pepper (2011)
among others.

5For example Horowitz et al. (2003) analyze the identification of general statistical functionals when
covariate and outcomes are missing arbitrarily.
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3.1 Step 1: Bounding the Outcome Distribution

To illustrate the identification problem, decompose conditional CDFs of O and Y using the

Law of Total Probability.

Fo|x(o, x) = p(x)Fy|z,x(y, 1, x) + (1− p(x))Fv|z,x(v, 0, x) (4)

Fy|x(y, x) = p(x)Fy|z,x(y, 1, x) + (1− p(x))Fy|z,x(y, 0, x) (5)

where p(x) ≡ P (Z = 1|X = x). I write Fo|x(o, x) and Fv|x(v, x) for the CDFs of O and V

given X = x and Fy|z,x(y, i, x) and Fv|z,x(v, i, x) for the CDFs of Y and V given X = x and

Z = i for i = 0, 1.

The identification problem arises from the fact that the sampling process reveals only

Fo|x(o, x) but not Fy|x(y, x), the object of interest. In particular, knowledge of Fo|x(o, x) does

not imply restrictions on Fy|x(y, x) (Horowitz and Manski, 1995). To obtain bounds that are

tighter than the logical unit range additional assumptions are needed. To start out, assume

that the probability of misreporting is known,

Assumption 1. p(x) is known ∀x ∈ RK

I will maintain this assumption for deriving the main results in this section. At the end

of the section, I then show how to relax assumption 1 to the case of a known lower bound on

p(x).

Data Contamination and Data Corruption

Under assumption 1 only, Horowitz and Manski (1995) show that the following bounds on

the conditional CDF and the conditional mean apply.

Fy|x(y, x) ∈ [0, 1] ∩ [Fo|x(o, x)− (1− p(x)), Fo|x(o, x) + (1− p(x))] (6)

and

E(Y |X = x) ∈ [p(x)E(O|O ≤ τo|x(p(x), X = x) + (1− p(x))K0,

p(x)E(O|O > τo|x(1− p(x)), X = x) + (1− p(x))K1] (7)

where τo|x(·) is the quantile function of Fo|x(o, x). Following Huber (1981) and Horowitz and

Manski (1995), I will refer to these bounds as data corruption bounds. These bounds can
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be considered as worst case bounds under assumption 1 since they only impose that p(x) is

known. Unfortunately, they are often wide and uninformative in practice. Thus, it might

be desirable to impose additional structure on the measurement error process in order to

narrow the bounds. One possibility is consider to a situation where the mixing process Z is

independent of the outcome variable.

Assumption 2. Z and Y are independent given X = x, ∀x ∈ RK

Assumption 2 implies that Fy|z,x(y, 1, x) = Fy|x(y, x) and E(Y |Z = 1, X = x) = E(Y |X =

x). Following Huber (1981) and Horowitz and Manski (1995), this assumption is referred to

as data contamination. Horowitz and Manski (1995) show that under assumption 2 the

following bounds on the conditional CDF and the conditional mean apply,

Fy|x(y, x) ∈ [0, 1] ∩

[
Fo|x(o, x)− (1− p(x))

p(x)
,
Fo|x(o, x)

p(x)

]
(8)

and

E(Y |X = x) ∈ [E(O|O ≤ τo|x(p(x)), X = x), E(O|O > τo|x(1− p(x)), X = x)] (9)

These bounds are a weak subsets of the data corruption bounds. Although the independence

assumption of the contamination model can have substantial identifying power, it may not be

plausible in many applications. For example, misreporting of income, drug usage or health

status is often thought to be related to the true value. This motivates the analysis of the

identifying power of alternative assumptions.

Stochastic Dominance Monotonicity Constraints

It is widely known that personally and socially sensitive topics (e.g. drug usage) are prone to

underreporting for socially undesirably topics and overreporting for socially desirable behavior

and attitudes (e.g. charity variables) (Bound et al., 2001). The presumption of under- and

overreporting can be incorporated in the mixture model of data errors by imposing the

following stochastic dominance monotonicity assumptions:6:

Assumption 3. Fy|z,x(y, 0, x) ≥ Fv|z,x(v, 0, x), ∀x ∈ RK (Overreporting)

6These assumptions can be interpreted as the distributional equivalent of the monotonicity assumption
considered by Dominitz and Sherman (2006, assumption 7) who analyze school performance measures using
a mixture model.

7



Assumption 4. Fy|z,x(y, 0, x) ≤ Fv|z,x(v, 0, x), ∀x ∈ RK (Underreporting)

Since the mean respects stochastic dominance, assumption 3 implies E(Y |Z = 0, X =

x) ≤ E(V |Z = 0, X = x) while assumption 4 implies E(Y |Z = 0, X = x) ≥ E(V |Z = 0, X =

x).

The applicability of assumptions 3 and 4 is not at all limited to the cases just outlined.

Assumptions 3 and 4 might be gainfully invoked if validation studies point at persistent

under- or overreporting or in cases where missing values are imputed but the imputation

procedure is known to be downwards or upwards biased.

Propositions 1 and 2 present the bounds on the conditional distribution function and on

the conditional mean under both stochastic dominance assumptions.

Proposition 1. Under assumptions 1 and 3, Fy|x(y, x) is bounded by

Fy|x(y, x) ∈ [0, 1] ∩ [Fo|x(o, x), Fo|x(o, x) + (1− p(x))] (10)

Under assumptions 1 and 4, Fy|x(y, x) is bounded by

Fy|x(y, x) ∈ [0, 1] ∩ [Fo|x(o, x)− (1− p(x)), Fo|x(o, x)] (11)

These bounds are sharp given the assumptions.

Proposition 2. Under assumptions 1 and 3, E(Y |X = x) is bounded by

E(Y |X = x) ∈ [p(x)E(O|O ≤ τo|x(p(x)), X = x) + (1− p(x))K0, E(O|X = x)] (12)

Under assumptions 1 and 4, E(Y |X = x) is bounded by

E(Y |X = x) ∈ [E(O|X = x), p(x)E(O|O > τo|x(1− p(x)), X = x) + (1− p(x))K1] (13)

These bounds are sharp given the assumptions.

Note that the bounds in Propositions 1 and 2 are weak subsets of the bounds under data

corruption. The stochastic dominance assumptions may be combined with the independence

assumption of the data contamination model to further narrow the bounds.
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Proposition 3. Under assumptions 1, 2 and 3, Fy|x(y, x) is bounded by

Fy|x(y, x) ∈ [0, 1] ∩

[
Fo|x(o, x),

Fo|x(o, x)

p(x)

]
(14)

Under assumptions 1, 2 and 4, Fy|x(y, x) is bounded by

Fy|x(y, x) ∈ [0, 1] ∩

[
Fo|x(o, x)− (1− p(x))

p(x)
, Fo|x(o, x)

]
(15)

These bounds are sharp given the assumptions.

Proposition 4. Under assumptions 1, 2 and 3, E(Y |X = x) is bounded by

E(Y |X = x) ∈ [E(O|O ≤ τo|x(p(x)), x), E(O|X = x)] (16)

Under assumptions 1, 2 and 4, E(Y |X = x) is bounded by

E(Y |X = x) ∈ [E(O|X = x), E(O|O > τo|x(1− p(x)), X = x)] (17)

These bounds are sharp given the assumptions.

Note that that the bounds in Propositions 3 and 4 are weak subsets of the data contam-

ination bounds.

Intuition behind Propositions 1 - 4 comes from the decomposition of Fo|x(o, x) and

Fy|x(y, x) in equations 4 and 5. Notice that the difference between both distributions origi-

nates from the difference between Fy|x,z(y, 0, x) and Fv|x,z(v, 0, x). Thus, restricting the re-

lationship between Fy|z,x(y, 0, x) and Fv|z,x(v, 0, x) using stochastic dominance assumptions

directly restricts the object of interest, Fy|x(y, x), to be stochastically larger or smaller than

the observed distribution.

To illustrate the identifying power of the stochastic dominance assumptions, I reconsider

the example in Horowitz and Manski (1995).

Example 1. Let the (unconditional) observed distribution be a standard normal with CDF

Φ(y) and assume that the probability of a true report is p = 0.9. Then, the following bounds

on the CDF of Fy(y) apply,

9



Assumptions F y(y) F y(y)

1 max[0,Φ(y)− 0.1] min[1,Φ(y) + 0.1]

1 & 2 max[0, (Φ(y)− 0.1)/0.9] min[1,Φ(y)/0.9]

1 & 3 Φ(y) min[1,Φ(y) + 0.1]

1 & 4 max[0,Φ(y)− 0.1] Φ(y)

1, 2 & 3 Φ(y) min[1,Φ(y)/0.9]

1, 2 & 4 max[0, (Φ(y)− 0.1)/0.9] Φ(y)

Figures 1 - 3 provide a graphical illustration of Example 1.

— Insert Figures 1 - 3 around here —

Multiplicative Mean Independence

Until now, I have focused on assumptions that allow to derive bounds on the conditional

CDF. Consequently, these assumptions are applicable to the analysis of generalized linear

predictors with arbitrary G(·). Here, I discuss the multiplicative mean independence as-

sumption (Kreider and Pepper, 2011) that focuses on conditional means only. Therefore, it’s

applicability is limited to the important special case of linear link functions. Multiplicative

mean independence relaxes the (mean) independence assumption of the data contamination

model by allowing the conditional means to differ by a factor of proportionality, denoted by

γ(x). Formally,

Assumption 5. E(Y |Z = 0, X = x) = γ(x)E(Y |Z = 1, X = x), ∀x ∈ RK

The proportionality factor γ(x) is either known or can be bounded. It is instructive to

discuss the implications of assumption 5 and the choice of the proportionality factor γ(x) by

means of the following example (Kreider and Pepper, 2011) : the use of illicit drugs is thought

to be as prevalent among inaccurate reporters as among accurate reporters. Hence, γ(x) ≥ 1

might be plausible while the restriction γ(x) = 1 (contamination model) is untenable.

Kreider and Pepper (2011) show that under assumption 1 and 5 the following bounds
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apply:

E(Y |X = x) ∈ [LBx(p(x)), UBx(p(x))] (18)

where

LBx(p(x)) = max

{
K0

γ(x)
, E(O|O ≤ τo|x(p(x)), X = x)(1 + (γ(x)− 1)(1− p(x)))

}
(19)

and

LBx(p(x)) = min

{
K1

γ(x)
, E(O|O > τo|x(1−p(x)), X = x)(1+(γ(x)−1)(1−p(x)))

}
(20)

These bounds reduce to the data contamination bounds if γ(x) = 1.

The multiplicative mean independence assumption provides an interesting alternative

to the assumptions discussed so far. On the one hand it relaxes the data contamination

assumption and on the other hand it imposes a complementary type of structure on the

measurement error process as opposed to the stochastic dominance assumptions.

Assumptions on the Misreporting Probability

So far, the analysis was based on the assumption that p(x) is known. This assumption is

useful in cases where missing data is imputed and the proportion of missing values is known

(e.g. Horowitz and Manski, 1995) or when p(x) can be estimated from validation studies.

When there is no obvious way to determine an appropriate p(x) it might still be plausible to

assume a lower bound on the fraction of draws from the distribution of interest (e.g. Huber,

1981; Horowitz and Manski, 1995; Kreider and Pepper, 2011).

Assumption 6. p(x) ≥ λ(x) > 0, ∀x ∈ RK

Horowitz and Manski (1995, Proposition 1.D.) show that incorporating assumption 6

amounts to substituting λ(x) for p(x) in expressions for the bounds under data contamination

and data corruption.

Combining the multiplicative mean independence assumption with assumption 6 yields

the following bounds (Kreider and Pepper, 2011):

E(Y |X = x) ∈ [ inf
p(x)∈P(x)

LBx(p(x)), sup
p(x)∈P(x)

UBx(p(x))] (21)
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where P(x) denotes the set of feasible values for p(x) that is restricted by Equation 6 and

the following conditions

K0

γ(x)
≤ E(O|O > τo|x(1− p(x)), X = x) (22)

and

K1

γ(x)
≥ E(O|O ≤ τo|x(p(x)), X = x). (23)

If these conditions are satisfied the lower bound simplifies to min{E(O|X = x), LB(λ(x))}

for γ(x) ≤ 1 and the upper bound simplifies to max{E(O|X = x), UB(λ(x))}. If these

conditions do not hold, then E(Y |X = x) = E(O|X = x).

As for the bounds under data corruption and data contamination, the bounds under the

stochastic dominance assumptions 3 and 4 can be modified by substituting λ(x) for p(x).

Proposition 5 gives the formal result:

Proposition 5. Under assumptions 3 and 6, the Fy|x(y, x) and E(Y |X = x) are bounded by

Fy|x(y, x) ∈ [0, 1] ∩ [Fo|x(o, x), Fo|x(o, x) + (1− λ(x))] (24)

and

E(Y |X = x) ∈ [λ(x)E(O|O ≤ τo|x(λ(x)), X = x) + (1− λ(x))K0, E(O|X = x)] (25)

Under assumptions 4 and 6, Fy|x(y, x) and E(Y |X = x) are bounded by

Fy|x(y, x) ∈ [0, 1] ∩ [Fo|x(o, x)− (1− λ(x)), Fo|x(o, x)] (26)

and

E(Y |X = x) ∈ [E(O|X = x), λ(x)E(O|O > τo|x(1−λ(x)), X = x)+(1−λ(x))K1] (27)

12



Under assumptions 2, 3 and 6, Fy|x(y, x) and E(Y |X = x) are bounded by

Fy|x(y, x) ∈ [0, 1] ∩
[
Fo|x(o, x),

Fo|x(o, x)

λ(x)

]
(28)

and

E(Y |X = x) ∈ [E(O|O ≤ τo|x(λ(x)), X = x), E(O|X = x)] (29)

Under assumptions 2, 4 and 6 Fy|x(y, x) and E(Y |X = x) are bounded by

Fy|x(y, x) ∈ [0, 1] ∩ [Fo|x(o, x)− (1− λ(x))λ(x), Fo|x(o, x)] (30)

and

E(Y |X = x) ∈ [E(O|X = x), E(O|O > τo|x(1− λ(x)), X = x)] (31)

These bounds are sharp given the assumptions.

Despite the fact that I only focus on contamination, corruption, multiplicative mean

independence and stochastic dominance assumptions in this paper, the framework can be

extended to encompass many other potential assumptions that put some structure on the

measurement error process.

3.2 Step 2: Bounding the Coefficient Vector in Generalized Linear Pre-

dictors

Stoye (2007, Proposition 2.1) shows that if the marginal distribution of X, Fx(x), the bound-

ing functions, F y|x(y, x) and F y|x(y, x) and the bounds on the conditional mean, E(x) and

E(x), are known, then for any pre-assigned c ∈ RK , c · θ is bounded by

c ·
(∫

x′xdFx

)−1 ∫
x′g(x)dFx ≤ c · θ ≤ c ·

(∫
x′xdFx

)−1 ∫
x′g(x)dFx (32)

where g(x) and g(x) are defined by

g(x) ≡


∫
G−1(y)dF y|x if c · (

∫
x′xdFx)−1x′ > 0∫

G−1(y)dF y|x if c · (
∫
x′xdFx)−1x′ ≤ 0

(33)
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and

g(x) ≡


∫
G−1(y)dF y|x if c · (

∫
x′xdFx)−1x′ > 0∫

G−1(y)dF y|x if c · (
∫
x′xdFx)−1x′ ≤ 0

(34)

If G is linear g(x) and g(x) can be identified by

g(x) ≡

 G−1(E(x)) if c · (EX ′X)−1x′ > 0

G−1(E(x)) if c · (EX ′X)−1x′ ≤ 0
(35)

and

g(x) ≡

 G−1(E(x)) if c · (EX ′X)−1x′ > 0

G−1(E(x)) if c · (EX ′X)−1x′ ≤ 0
(36)

These bounds are tight whenever the bounding functions F y|x(y, x) and F y|x(y, x) exploit all

the available information about Fy|x(y, x).

4 Illustration: Earnings Equation

To illustrate the approach proposed in this paper, I analyze the identification of the coefficient

in a simple earnings equation. I focus on a scenario where self-reported earnings are assumed

to be measured with non-classical errors, while the covariates are assumed to be error-free.

The framework is in the spirit of Bound et al. (1994) who use earnings equations and labor

supply functions to illustrate the impact of measurement error. I use pooled data from the

Swiss Household Panel (SHP) 2009-2010 (waves 11 and 12). The SHP is a yearly panel study

following a random sample of households in Switzerland over time, interviewing all household

members.7

I consider a stylized version of the Mincer earnings equation (Mincer, 1958, 1974). The

dependent variable Y is annual gross earnings in Swiss Francs and X contains years of school-

ing8 experience in yearst9, experience squared and a constant. I decide to confine the analysis

to male full-time workers to avoid sample selection issues associated with female and part-

7Complete information including free access to the data can be acquired trough www.swisspanel.ch.
8This variable is constructed from the categorical information in the Swiss Household Panel using infor-

mation about the Swiss education system. See the appendix for more details.
9The SHP includes information about actual experience, i.e. the number of years spent in paid work. I

use this information instead of construction experience from schooling and age.
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time workers. Unfortunately, the data set has missing outcomes and missing covariates. To

focus on measurement error, I discard all observations with missing data. When interpreting

the results it is important to keep in mind the implicit underlying assumption, namely that

Y and X are missing at random. Given this selection scheme, the final sample consists of

N = 2667 observations. Table 1 contains descriptive statistics.

Section 3 has discussed identification. I provide a brief discussion of estimation and

inference here. An obvious estimation approach for θ is to replace the population quantities

by their sample analogues, i.e. to consider θn ≡ (EnX
′X)−1EnX

′Y . Confidence intervals for

each component of the estimated θn are computed by means of a bootstrap. The intervals

are constructed as suggested by Imbens and Manski (2004) and exhibit a nominal coverage

probability with respect to the corresponding component of θ. It is worth noting that the

coverage probability applies to the population parameter as opposed to the population bounds

(see Imbens and Manski, 2004; Stoye, 2007, for a further discussion of this point).

For the present case of a linear link function G(·), Stoye (2007) suggests that any im-

plementation algorithm should operate on X only and ”fill in” the values of Y according to

the above formulas. This principle is adapted to the case of erroneous data. In particular, I

first compute lower and upper bounds, E(x) and E(x), for every X = x under the different

assumptions discussed in section 3.2. Second, E(x) and E(x) are ”filled in” according to the

conditions (35) and (36). For tractability, I consider discretized versions of experience and

experience squared and I choose a rather coarse grid for years of schooling (see Tables 2 and

3 in the appendix).

Table 4 shows OLS estimates ignoring measurement error. The results suggest that on

average earnings are significantly increasing in schooling. The coefficients of experience and

experience2 are both significant and imply a concave experience log earnings profile.

— Insert Table 4 around here —

The results from estimating the earnings equation under different non-parametric assump-

tions about the data error process for different values of p(x) are contained in Tables 5 -

8. These tables also contain 95% confidence intervals for each component of θn that are

computed using a N = 100 bootstrap. I choose K0 and K1 to be the minimum and the

maximum of the marginal empirical distribution of Y . Although the parameters p(x) and

γ(x) can in principle be arbitrary functions of x, they are assumed to be constant for the

ease of exposition.
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— Insert Tables 5 - 8 around here —

The data corruption bounds and the associated 95% confidence intervals are generally wide

emphasizing the severity of the identification problem in the presence of arbitrary measure-

ment error even for a small fraction of the population. Coupling the data corruption bounds

with the independence assumption of the data contamination model narrows the bounds con-

siderably. For example, if p(x) = 0.8 it reduces the width of the bounds by around 80%. The

mean independence assumption of the data contamination model can be relaxed by allowing

the conditional means to differ by a factor of proportionality. For the purpose of illustration,

I consider two values for γ(x), γ(x) ∈ {0.8, 1.2}. The results suggest that relaxing the data

contamination assumption by imposing the multiplicative mean independence assumption

does not substantially change the width of the bounds and 95% confidence intervals.

If the researcher is not willing to maintain (mean) independence assumptions but instead

believes that under- or overreporting might be a realistic feature of the self-reported earnings

data, she can formalize such presumptions by imposing the assumption 3 or 4. While powerful

compared to the data corruption model, imposing the stochastic dominance assumptions has

less identifying power the the (mean) independence assumptions. For p(x) = 0.8, the data

corruption bounds narrow by around 35% (assumption 3) to 60% (assumption 4). Combining

the data contamination model with the stochastic dominance assumptions yields by far the

most informative bounds. In particular, for p(x) = 0.8 the data corruption bounds are

reduced by over 90%.

5 Conclusion

Measurement error is a common problem in empirical research. In this paper, I analyze

identification of the coefficients in generalized linear predictors where the dependent variable

suffers from non-classical measurement error. I propose a two-step approach to construct

identified sets for the coefficient vector of interest. In the first step, I derive bounds on the

conditional CDF and on the conditional mean of the outcome variable. This is achieved by

conceptualizing measurement error in a mixture model. I consider bounds under alternative

sets of assumptions including stochastic dominance assumptions that can be motivated by

under- and overreporting in surveys. The second step uses the procedure proposed by Stoye

(2007) to translate the identified sets derived in the first step into bounds on the coefficient
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vector of interest. This two-step procedure features two main advantages: first, the natural

separation of the specification of the data error process increases transparency about the

underlying data error process. Second, the first step is very flexible in the sense that it allows

to incorporate a lot of alternative assumptions about the structure of the measurement error.

The two-step method is illustrated by analyzing a simple earnings equation using Swiss

data. The following conclusions can be drawn from the empirical application. First, if

additional assumptions such as data contamination, multiplicative mean independence and

stochastic dominance are plausible, they can gainfully be invoked to narrow considerably the

data corruption bounds. Second, the stochastic dominance assumptions can have substantial

identifying power, in particular, when coupled with the data contamination assumption.

Third, allowing for arbitrary measurement error only for a small proportion of the sample

causes substantial problems for identification and inference.

The analysis in this paper assumes perfect observability of the covariates and that the

data are missing at random. Clearly, these assumption may not hold in many applications.

It is thus an important task for future research to investigate identification under in more

general setups.
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A Proofs

Proof of Proposition 1. The proof borrows from proof of Theorem 3 in Dominitz and Sher-

man (2006). Because assumption 3 does not restrict Fy|z,x(y, 1, x), the identified set for

Fy|z,x(y, 1, x) for a given p(x) follows from Horowitz and Manski (1995, Corollary 1.2),

Fy|z,x(y, 1, x) ∈ [0, 1] ∩ [(Fo|x(o, x)− (1− p(x)))/p(x), Fo|x(o, x)/p(x)] (37)

≡ Fy|z,x(y, 1, x, p(x)) (38)

The identified set for Fy|x(y, x) is given by

Fy|x(y, x) ∈ {p(x)Fy|z,x(y, 1, x) + (1− p(x)Fy|z,x(y, 0, x) :

Fy|z,x(y, 1, x) ∈ Fy|z,x(y, 1, x, p(x))

and Fy|z,x(y, 0, x) ∈ Fy|z,x(y, 0, x, p(x))} (39)

where Fy|z,x(y, 0, x, p(x)) denotes the identified set Fy|z,x(y, 0, x) for a given p(x). Because

the sampling process is uninformative on Fy|z,x(y, 0, x), without further restrictions, we have

that

Fy|z,x(y, 0, x, p(x)) = [0, 1] (40)

However, assumption 3 together with Equation 4 implies the following restriction on Fy|z,x(y, 0, x),

Fy|z,x(y, 0, x) ≥ Fe|z,x(e, 0, x)

=
Fo|x(o, x)− p(x)Fy|z,x(y, 1, x)

1− p(x)
(41)

Thus, under assumption 3, Fy|z,x(y, 0, x, p(x)) is given by

Fy|z,x(y, 0, x, p(x)) = [0, 1] ∩
[
Fo|x(o, x)− p(x)Fy|z,x(y, 1, x)

1− p(x)
, 1

]
(42)

and sharp bounds on Fy|x(y, x) are given by

Fy|x(y, x) ∈ {p(x)Fy|z,x(y, 1, x) + (1− p(x)Fy|z,x(y, 0, x) :

Fy|z,x(y, 1, x) ∈ Fy|z,x(y, 1, x, p(x)) (43)

and Fy|z,x(y, 0, x) ∈ Fy|z,x(y, 0, x, p(x))}

= [0, 1] ∩ [Fo|x(o, x), Fo|x(o, x) + (1− p(x))] (44)

The proof under assumption 4 is analogous.
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Proof of Proposition 2. Proposition 1 gives bounds on the cumulative density function Fy|x(y, x)

under assumptions 1, 3 and 4. The sharp bounds in Proposition 2 follow from the fact that

the mean respects stochastic dominance.

Proof of Proposition 3. The proof borrows from proof of Theorem 3 in Dominitz and Sher-

man (2006). By assumption 2, Fy|z,x(y, 1, x) = Fy|z,x(y, 0, x) = Fy|x(y, x). As in the proof

of Proposition 1, assumption 3 together with Equation 4 imposes the following additional

restriction on Fy|z,x(y, 0, x),

Fy|z,x(y, 0, x) ≥ Fo|x(o,x)−p(x)Fy|z,x(y,1,x)

1−p(x) (45)

By assumption 2, it follows that

Fy|z,x(y, 0, x) ≥
Fo|x(o, x)− p(x)Fy|z,x(y, 1, x)

1− p(x)
(46)

=
Fo|x(o, x)− p(x)Fy|z,x(y, 0, x)

1− p(x)
(47)

Solving for Fy|z,x(y, 0, x) yields

Fy|z,x(y, 0, x) ≥ Fo|x(o, x) (48)

Assumption 2 then implies,

Fy|z,x(y, 1, x) ≥ Fo|x(o, x) and Fy|x(y, x) ≥ Fo|x(o, x) (49)

Using similar arguments as in the proof of Proposition 1, one can show that sharp bounds

on Fy|x(y, x) are given by

Fy|x(y, x) ∈ [0, 1] ∩ [Fo|x(o, x), Fo|x(o, x)/p(x)] (50)

The proof under assumptions 2 and 4 is analogous.

Proof of Proposition 4. Proposition 3 gives bounds on the cumulative density function Fy|x(y, x)

under assumptions 1, 2, 3 and 4. The sharp bounds in Proposition 4 follow from the fact

that the mean respects stochastic dominance.

Proof of Proposition 5. Propositions 1 - 4 show that under assumptions 1 and 3 respectively

assumptions 1, 2 and 3, the upper bound on Fy|x(y, x) and the lower bound on E(Y |X = x)

coincide with the bounds under data corruption respectively data contamination. Hence,

the sharp bounds in Proposition 5 follows directly from Corollary 1.2 and Proposition 4 in
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Horowitz and Manski (1995). Furthermore, notice that the sharp lower bound on Fy|x(y, x)

and the sharp upper bound on E(Y |X = x) do not depend on p(x) and hence remain

unchanged. The proof under assumptions 2, 4 and 6 is analogous.
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B Tables and Figures

Table 1: Summary Statistics

Mean St.Dev. Min. Max.
annual earnings 109328.200 68540.110 300 2000000
years of schooling 14.763 2.470 9 18
experience 25.053 11.540 0 60
Notes: The sample includes male full-time workers for the years
2009 and 2010. Earnings are measured in Swiss Francs, years of
schooling and experience are measured in years. Source: Swiss
Household Panel (SHP).

Table 2: Schooling categories and assigned years of schooling

Category Years of Schooling
Compulsory Schooling 9
Apprenticeship/Matura 13
Higher Vocational School 16
University 18
Notes: I use the variable EDCAT that con-
tains information about the highest education
level achieved (11 categories). These cat-
egories are summarized in four groups and
linked to years of schooling using informa-
tion about the Swiss education system, see e.g
http://www.edk.ch/dyn/14861.php (last accessed
2013, January 7).
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Table 3: Discretized Variables

Reported exper., Erep Discretized exper. Discretized exper. squared
Erep < 10 5 34
10 ≤ Erep < 20 15 219
20 ≤ Erep < 30 24 591
30 ≤ Erep < 40 34 1168
Erep > 40 45 2077
Notes: Experience is measured in years. To account for unequal dispersion
of the data within cells, within-cell means are chosen as grid points for both,
experience and experience2.

Table 4: Least Squares Estimates

Coeff. Std.Err. [95% Conf. Interval]
school. 0.098 0.004 0.091 0.106
exper. 0.054 0.003 0.047 0.060
exper.2 -0.001 0.000 -0.001 -0.001
constant 9.285 0.065 9.158 9.413
Notes: Dependent variable: logarithm of annual gross
income in Swiss Francs. Source: Swiss Household Panel
(SHP).
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Table 5: Bounds on the coefficient vector, p(x) = 0.90

Data Corruption Data Contamination
95% L.B. U.B. 95% 95% L.B. U.B. 95%

school. -0.106 -0.098 0.274 0.282 0.059 0.066 0.129 0.137
exper. -0.100 -0.095 0.184 0.191 0.019 0.024 0.075 0.082
exper.2 -0.003 -0.003 0.002 0.002 -0.001 -0.001 0.000 0.000
constant 6.428 6.591 12.257 12.439 8.653 8.822 9.874 10.013

Mult. Mean. Indep., γ(x) = 1.2 Mult. Mean. Indep., γ(x) = 0.8
95% L.B. U.B. 95% 95% L.B. U.B. 95%

school. 0.059 0.067 0.132 0.140 0.057 0.065 0.127 0.135
exper. 0.020 0.025 0.076 0.083 0.018 0.024 0.073 0.080
exper.2 -0.001 -0.001 0.000 0.000 -0.001 -0.001 0.000 0.000
constant 8.811 8.999 10.071 10.234 8.467 8.646 9.676 9.836

Stoch. Dom. (Ass. 3) Stoch. Dom. (Ass. 4)
95% L.B. U.B. 95% 95% L.B. U.B. 95%

school. -0.030 -0.022 0.207 0.215 0.014 0.022 0.165 0.173
exper. -0.038 -0.032 0.135 0.142 -0.014 -0.009 0.102 0.109
exper.2 -0.003 -0.002 0.001 0.001 -0.002 -0.002 0.000 0.000
constant 7.222 7.374 10.770 10.946 8.332 8.503 10.772 10.931

Stoch. Dom. (Ass. 3) & Cont. Stoch. Dom. (Ass. 4) & Cont.
95% L.B. U.B. 95% 95% L.B. U.B. 95%

school. 0.075 0.084 0.112 0.120 0.073 0.080 0.116 0.123
exper. 0.037 0.044 0.064 0.072 0.029 0.034 0.064 0.071
exper.2 -0.001 -0.001 -0.001 0.000 -0.001 -0.001 0.000 0.000
constant 8.845 9.027 9.467 9.637 8.921 9.080 9.692 9.831
Notes: Dependent variable: logarithm of annual gross income in Swiss Francs. K0

and K1 are equal to the minimum and the maximum of the the marginal empirical
distribution of log earnings. p(x) and γ(x) are constant across x. Confidence intervals
are computed using a N = 100 bootstrap. Source: Swiss Household Panel (SHP).
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Table 6: Bounds on the coefficient vector, p(x) = 0.80

Data Corruption Data Contamination
95% L.B. U.B. 95% 95% L.B. U.B. 95%

school. -0.290 -0.279 0.436 0.447 0.038 0.045 0.151 0.159
exper. -0.230 -0.226 0.306 0.313 0.004 0.009 0.092 0.099
exper.2 -0.006 -0.006 0.005 0.005 -0.002 -0.002 0.000 0.000
constant 3.873 4.068 14.911 15.140 8.275 8.457 10.213 10.348

Mult. Mean. Indep., γ(x) = 1.2 Mult. Mean. Indep., γ(x) = 0.8
95% L.B. U.B. 95% 95% L.B. U.B. 95%

school. 0.038 0.046 0.157 0.166 0.034 0.043 0.145 0.153
exper. 0.005 0.009 0.095 0.103 0.003 0.009 0.088 0.095
exper.2 -0.002 -0.002 0.000 0.000 -0.002 -0.001 0.000 0.000
constant 8.593 8.795 10.622 10.787 7.931 8.119 9.805 9.974

Stoch. Dom. (Ass. 3) Stoch. Dom. (Ass. 4)
95% L.B. U.B. 95% 95% L.B. U.B. 95%

school. -0.147 -0.137 0.313 0.322 -0.053 -0.044 0.221 0.229
exper. -0.120 -0.113 0.214 0.221 -0.063 -0.059 0.146 0.152
exper.2 -0.004 -0.004 0.002 0.003 -0.003 -0.003 0.001 0.001
constant 5.364 5.519 12.184 12.390 7.664 7.834 12.012 12.172

Stoch. Dom. (Ass. 3) & Cont. Stoch. Dom. (Ass. 4) & Cont.
95% L.B. U.B. 95% 95% L.B. U.B. 95%

school. 0.064 0.072 0.124 0.133 0.063 0.070 0.125 0.133
exper. 0.031 0.038 0.075 0.083 0.020 0.025 0.070 0.077
exper.2 -0.001 -0.001 0.000 0.000 -0.001 -0.001 0.000 0.000
constant 8.580 8.776 9.606 9.779 8.807 8.966 9.893 10.033
Notes: Dependent variable: logarithm of annual gross income in Swiss Francs. K0

and K1 are equal to the minimum and the maximum of the the marginal empirical
distribution of log earnings. p(x) and γ(x) are constant across x. Confidence intervals
are computed using a N = 100 bootstrap. Source: Swiss Household Panel (SHP).
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Table 7: Bounds on the coefficient vector, p(x) = 0.70

Data Corruption Data Contamination
95% L.B. U.B. 95% 95% L.B. U.B. 95%

school. -0.468 -0.454 0.592 0.606 0.018 0.026 0.171 0.179
exper. -0.356 -0.352 0.425 0.432 -0.009 -0.004 0.107 0.115
exper.2 -0.008 -0.008 0.007 0.007 -0.002 -0.002 0.000 0.000
constant 1.392 1.631 17.458 17.748 7.934 8.111 10.496 10.643

Mult. Mean. Indep., γ(x) = 1.2 Mult. Mean. Indep., γ(x) = 0.8
95% L.B. U.B. 95% 95% L.B. U.B. 95%

school. 0.018 0.028 0.180 0.188 0.016 0.025 0.161 0.169
exper. -0.010 -0.004 0.113 0.122 -0.009 -0.004 0.101 0.109
exper.2 -0.002 -0.002 0.000 0.000 -0.002 -0.002 0.000 0.000
constant 8.414 8.627 11.126 11.312 7.437 7.624 9.867 10.035

Stoch. Dom. (Ass. 3) Stoch. Dom. (Ass. 4)
95% L.B. U.B. 95% 95% L.B. U.B. 95%

school. -0.260 -0.248 0.415 0.425 -0.117 -0.108 0.275 0.283
exper. -0.200 -0.193 0.291 0.297 -0.109 -0.106 0.188 0.194
exper.2 -0.006 -0.005 0.004 0.004 -0.004 -0.003 0.002 0.002
constant 3.566 3.734 13.554 13.793 7.011 7.182 13.189 13.357

Stoch. Dom. (Ass. 3) & Cont. Stoch. Dom. (Ass. 4) & Cont.
95% L.B. U.B. 95% 95% L.B. U.B. 95%

school. 0.053 0.063 0.134 0.144 0.054 0.062 0.135 0.143
exper. 0.025 0.032 0.085 0.094 0.013 0.018 0.076 0.083
exper.2 -0.002 -0.001 0.000 0.000 -0.001 -0.001 0.000 0.000
constant 8.344 8.552 9.720 9.897 8.683 8.844 10.061 10.208
Notes: Dependent variable: logarithm of annual gross income in Swiss Francs. K0

and K1 are equal to the minimum and the maximum of the the marginal empirical
distribution of log earnings. p(x) and γ(x) are constant across x. Confidence intervals
are computed using a N = 100 bootstrap. Source: Swiss Household Panel (SHP).
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Table 8: Bounds on the coefficient vector, p(x) = 0.60

Data Corruption Data Contamination
95% L.B. U.B. 95% 95% L.B. U.B. 95%

school. -0.643 -0.626 0.744 0.761 -0.003 0.006 0.190 0.198
exper. -0.481 -0.477 0.540 0.547 -0.024 -0.018 0.123 0.132
exper.2 -0.011 -0.010 0.009 0.010 -0.002 -0.002 0.001 0.001
constant -1.034 -0.726 19.966 20.326 7.604 7.783 10.808 10.981

Mult. Mean. Indep., γ(x) = 1.2 Mult. Mean. Indep., γ(x) = 0.8
95% L.B. U.B. 95% 95% L.B. U.B. 95%

school. -0.004 0.007 0.201 0.209 -0.004 0.006 0.175 0.183
exper. -0.025 -0.019 0.132 0.141 -0.022 -0.016 0.113 0.122
exper.2 -0.002 -0.002 0.001 0.001 -0.002 -0.002 0.001 0.001
constant 8.263 8.477 11.673 11.873 6.978 7.160 9.944 10.124

Stoch. Dom. (Ass. 3) Stoch. Dom. (Ass. 4)
95% L.B. U.B. 95% 95% L.B. U.B. 95%

school. -0.371 -0.357 0.515 0.526 -0.180 -0.171 0.326 0.335
exper. -0.278 -0.272 0.366 0.372 -0.155 -0.152 0.228 0.235
exper.2 -0.007 -0.007 0.006 0.006 -0.004 -0.004 0.003 0.003
constant 1.800 1.990 14.899 15.173 6.392 6.569 14.351 14.532

Stoch. Dom. (Ass. 3) & Cont. Stoch. Dom. (Ass. 4) & Cont.
95% L.B. U.B. 95% 95% L.B. U.B. 95%

school. 0.044 0.053 0.145 0.154 0.043 0.051 0.143 0.151
exper. 0.018 0.026 0.095 0.104 0.005 0.010 0.082 0.089
exper.2 -0.002 -0.002 0.000 0.000 -0.001 -0.001 0.000 0.000
constant 8.116 8.324 9.833 10.013 8.583 8.745 10.260 10.420
Notes: Dependent variable: logarithm of annual gross income in Swiss Francs. K0

and K1 are equal to the minimum and the maximum of the the marginal empirical
distribution of log earnings. p(x) and γ(x) are constant across x. Confidence intervals
are computed using a N = 100 bootstrap. Source: Swiss Household Panel (SHP).
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Figure 1: Bounds under data contamination and data corruption
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Figure 2: Bounds under stochastic dominance
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Figure 3: Bounds under stochastic dominance and data contamination
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