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Abstract

The macroeconomic implications of firms’ lumpy investment behavior are subject to
ongoing research. Lumpy investment results from fixed capital adjustment costs which
give firms an incentive to reduce the frequency of capital adjustments. However, pre-
vious studies have underestimated the lumpiness. Their assumption of constant capital
utilization reduces firms’ incentives to undertake large investments as it prevents reserve
capacity building. This paper shows that if capacity utilization is allowed to vary, firms
optimally undertake larger investments and leave parts of the new capital stock idle for
some periods, thereby reducing the frequency of investment activities. Using a dynamic
stochastic general equilibrium model with fixed capital adjustment costs, heterogeneous
firms, variable utilization, and aggregate technology shocks, I numerically compute firms’
optimal decisions on investment, utilization and labor demand. Compared to the con-
stant utilization model, the findings reveal magnified investment lumpiness: Firms adjust
capital less frequently, but invest more when they adjust. However, this appears to be
of minor macroeconomic relevance: Moments and impulse responses of macroeconomic
quantities change in a similar way when variable utilization is introduced in a lumpy or
in a frictionless model. New empirical evidence based on firm-level panel data confirms
some of the theoretical findings.
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1 Introduction

Analyzing the impact of aggregate shocks on aggregate endogenous variables is a major objec-

tive of many macroeconomic models. Because aggregate outcomes result from the interaction

of individual agents’ choices, macroeconomic dynamics may essentially depend on microeco-

nomic frictions and the heterogeneity of economic agents. This has become an important

issue in the analysis of investment dynamics because firm-level capital adjustments are char-

acterized by substantial frictions and heterogeneity. There are periods of inaction which are

occasionally interrupted by large alterations. Such lumpy, i.e., infrequent and large, adjust-

ments have been established as a prevalent feature of investment at the establishment level

(e.g., Doms and Dunne, 1998, Cooper et al., 1999, Cooper and Haltiwanger, 2006, and Gourio

and Kashyap, 2007). This lumpy investment behavior has been widely interpreted as evidence

for non-convexities in capital adjustment costs. For example, if capital adjustment is subject

to fixed costs, firms are only willing to invest if their capital stock deviates sufficiently from

the desired level. Supporting evidence is provided, for example, by Caballero et al. (1995),

Caballero and Engel (1999) and Cooper et al. (1999).

These non-convex adjustment costs and the resulting lumpy investment behavior at the

micro level do not necessarily affect macroeconomic dynamics and the impulse responses of

aggregate variables. On the one hand, aggregation smooths lumpy investment activities to the

extent that they are not synchronized. On the other hand, general equilibrium price move-

ments may additionally smooth investment spikes that survive aggregation. Disregarding this

second argument, partial equilibrium models suggest that lumpy microeconomic investment

is potentially important for aggregate investment (examples include Caballero et al., 1995,

Caballero and Engel, 1999, Cooper et al., 1999, and Cooper and Haltiwanger, 2006). In con-

trast, several general equilibrium models find negligible aggregate effects of lumpy investment

(e.g., Thomas, 2002, and Khan and Thomas, 2003, 2008). However, this irrelevance result

does not generically follow from general equilibrium. To what extent the effect of fixed costs

disappear in general equilibrium is a quantitative question that depends on the details of the

model calibration (Gourio and Kashyap, 2007). For example, Bachmann et al. (2013) show

that lumpy investment can explain a stylized fact of US macroeconomic data, namely the

conditional heteroscedasticity of the aggregate investment to capital ratio. This ratio is sub-

stantially more responsive to shocks in booms than in recessions. The results of Gourio and

Kashyap (2007) are also indicative of lumpiness affecting the impulse responses of aggregate
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investment. Bachmann and Ma (2012) and Bachmann and Bayer (2014) provide additional

examples in which microeconomic lumpiness matters for macroeconomic analysis.

The existing lumpy investment models posit that firms always fully utilize their capital.

However, this assumption is delicate in the presence of fixed capital adjustment costs. Firm-

level investment and capacity utilization decisions are inherently interrelated. The assumption

of constant utilization reduces the firms’ incentives for large investments, resulting in an

underestimation of investment lumpiness. In particular, the incentives to build up reserve

capacity are attenuated. The following example illustrates this issue. In an environment with

long-run technological progress, the firms’ desired capital services increase over time. Absent

fixed investment costs, firms can simply adjust their capital stock to the optimal level in each

period regardless of whether utilization is variable. In the presence of fixed costs, however,

firms have an incentive to reduce the number of capital adjustments. In particular, it may be

optimal to invest up to k̃ > k∗, where k∗ denotes next period’s optimal capital stock absent

fixed costs, and to omit investment and the associated fixed costs in the subsequent period.

This is the core idea behind lumpy investment: Because of fixed capital adjustment costs,

firms have an incentive to invest more than currently needed in order to relieve themselves

of the need to readjust too soon. As a consequence, firms prefer rare and large over frequent

and small adjustments. However, this key incentive for large investments is attenuated in the

existing lumpy investment models by requiring firms to fully utilize their capital. Intuitively,

if firms must use their capital stock k̃ in next period’s production, they have an incentive to

select k̃ close to k∗. If, in contrast, this assumption of full utilization is dropped, then firms

can easily invest up to a capital stock that is considerably larger than k∗. At the same time,

they can achieve optimal capital services k∗ by not fully utilizing their large capital stock.

To sum up, if forward-looking firms carry out an investment project, they choose the size of

the investment big enough such that, once the project is completed, there is some excess or

reserve capacity for future growth and no immediate need to undertake the next investment

project.

This paper relaxes the delicate assumption of constant capacity utilization, thereby al-

lowing for amplified microeconomic investment lumpiness due to reserve capacity building. It

contributes to the lumpy investment literature by providing an analysis of (i) how variability

in capacity utilization alters firms’ investment decisions and (ii) how, if at all, macroeconomic

variables are affected by the enhanced microeconomic lumpiness. For this analysis, I use a
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real business cycle (RBC) model with heterogeneous firms, fixed capital adjustment costs

and variable utilization. The economy is subject to aggregate productivity shocks. Apart

from variability of utilization, the model is closely related to the setup considered by Khan

and Thomas (2003). Firms differ in their capital stock and in the current draw of fixed in-

vestment costs. They jointly decide on labor demand, utilization, whether to invest at all,

and next period’s capital stock (if they invest). The utilization choice is conceptually very

different for investing and non-investing firms: It is an intratemporal choice for the former

and an intertemporal decision for the latter. The household side, in contrast, is kept simple:

Households decide on consumption, labor supply and the amount of shares to buy.

The extension of the lumpy investment model by variable utilization is motivated by at

least three additional reasons besides the aforementioned proper consideration of investments

in reserve capacity. First, this paper presents new firm-level evidence highlighting the impor-

tance of variable utilization for firms’ investment decisions. Using panel data, I show that

firm-level capacity utilization has a direct impact on individual firms’ probability of invest-

ment. Moreover, there are significant interaction effects with GDP growth. For example,

lagged GDP growth only has a positive impact on the investment probability if the utilization

rate is sufficiently high. An aggregation exercise demonstrates that forcing firm-level utiliza-

tion rates to be constant alters aggregate investment properties across the business cycle.

Second, because preferences for smooth consumption restrict the macroeconomic relevance

of lumpy investment in general equilibrium, a potentially greater impact of lumpiness might

only emerge in models that attenuate the tight link between consumption and investment

dynamics. Variable capacity utilization may provide a way to relax this tight link because,

in a standard RBC model, it leads to smoother consumption and more volatile investment.1

Third, variable capacity utilization concedes a limited intertemporal choice to firms refraining

from paying the fixed adjustment costs. In contrast, many previous studies have assumed that

these firms cannot influence the evolution of their capital stock, an assumption that has been

criticized.2 In this paper, non-investing firms affect their depreciation rate and, consequently,

1An alternative strategy is used by Bachmann and Ma (2012), who consider a model with capital goods
heterogeneity to relax the tight link between consumption and investment dynamics and to enhance households’
ability to smooth consumption. Indeed, they find that fixed capital adjustment costs are of macroeconomic
relevance. Their results indicate that the response of fixed capital investment to aggregate productivity shocks
differs in both magnitude and persistence depending on the presence of fixed capital adjustment costs.

2For example, Khan and Thomas (2008, p.396) point out that: “. . . as is the convention throughout the
literature, there was a stark assumption that nonconvex adjustment costs applied to all capital adjustments
irrespective of their size”. Khan and Thomas (2008) address this issue by allowing for low levels of capital
adjustment without incurring fixed costs. They assume that the range of investment rates exempt from such
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their future capital stock by changing current utilization. In contrast to Khan and Thomas

(2008), their influence on next period’s capital is naturally asymmetric: Non-investing firms

cannot increase capital, but reduce its depreciation by lowering utilization.

The results of this paper shed light on individual firms’ investment, utilization and labor

decisions in an environment with fixed capital adjustment costs. The findings reveal that

variable utilization magnifies lumpiness: Fewer firms invest on average, but the adjusting

firms choose a considerably higher capital stock. Moreover, firms with a lot of capital (i.e.,

firms that have recently invested) choose a utilization rate substantially below the maximum

feasible rate. Thus, this paper provides evidence for reserve capacity building which causes

enhanced investment lumpiness: Investing firms optimally choose a capital stock that is too

large in the short run and partially lies idle. Additional evidence for amplified lumpiness is

provided by an analysis of the investment rate distribution, which reveals that if utilization

is variable, firm-level investments relative to their capital stock are larger on average, more

volatile, more asymmetric and, in particular, feature substantially higher kurtosis.

The variability of utilization also affects firms’ optimal decisions on labor demand and

utilization. Additionally, it induces some cyclical differences: First, the target capital level of

investing firms increases more strongly with productivity when utilization is variable. Second,

the probability of investment fluctuates to a greater extent across the cycle. The latter finding

is confirmed by empirical evidence presented in this paper.

Regarding differences in the behavior of investing and non-investing firms, the results

indicate that non-investing firms usually choose a substantially lower utilization rate to save

capital for future years. Also, their labor demand is slightly lower in many cases.

While this paper’s results establish amplified investment lumpiness at the firm level owing

to variable utilization, the macroeconomic consequences of the lumpiness are less clear-cut.

Simulation results suggest that, despite the larger investment of those firms that adjust their

capital, the means of most macroeconomic variables differ only slightly across the constant

and variable utilization model. Regarding the volatility of macroeconomic aggregates, variable

utilization has a more pronounced impact. The variables characterizing investment lumpiness

(i.e., the target capital of adjusting firms and the fraction of such firms) are more volatile in

this paper’s model. The same holds for output, investment, labor, capital, and the investment

ratio, whereas consumption becomes less volatile. However, this pattern does not specifically

costs is symmetric around zero.
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pertain to the lumpy investment models. Note that allowing for variable capacity utilization

also has macroeconomic effects in a model without fixed capital adjustment costs (henceforth

labeled frictionless model). Hence, the important question is whether the enhanced lumpiness

caused by variable utilization has an impact beyond the one that can be expected from

introducing variable utilization in a frictionless model. The results do not provide evidence

in favor of that. The standard deviation of macroeconomic aggregates appears to change in a

similar way when variable utilization is introduced in a frictionless or in a lumpy investment

model.

A similar conclusion holds for the impulse responses to aggregate technology shocks: The

responses of this paper’s model differ considerably from those of the lumpy investment model

with constant utilization,3 but are comparable to those of a frictionless model with variable

utilization. In particular, the initial responses of output, investment, consumption and em-

ployment hardly depend on the existence of fixed capital adjustment costs. However, notable

differences pertain to the impulse response functions of capital, utilization and the target cap-

ital of investing firms. In this paper’s model, the response of aggregate capital is larger and

more persistent while aggregate utilization initially increases to a smaller extent compared to

the frictionless model with variable utilization. The initial response of investing firms’ target

capital is even massively larger. Since the response of aggregate investment is similar though,

this means that the additional investment in the aftermath of a positive productivity shock is

undertaken by few firms which invest a lot rather than all firms that invest a small amount.

The remainder of the paper is structured as follows. Section 2 presents new empirical

evidence based on firm-level panel data highlighting the importance of capacity utilization for

investment both at the micro and macro level. In section 3, I describe the building blocks of

the theoretical model, the competitive equilibrium, the specification and the calibration of the

model. The method for the numerical model solution is explained in section 4. The results

are discussed in section 5. It presents optimal firm-level decisions on investment, utilization

and labor in an environment with variable utilization and fixed capital adjustment costs, and

the macroeconomic consequences thereof. Finally, section 6 summarizes and concludes.

3Inter alia, the amplified lumpiness is apparent in the considerably larger responses of the fraction of
adjusting firms and the target capital of these firms.
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2 Empirical Analysis

This section investigates the relevance of variable capacity utilization for both firm-level and

aggregate investment. The analysis is based on quarterly firm-level panel data from the

KOF Swiss Economic Institute. I use answers to the KOF business tendency survey of the

manufacturing industry, a poll of Swiss industrial companies from a wide range of industrial

sectors that participate voluntarily.4

The main outcome of interest are two binary indicators about investment. In the sur-

vey, firms are asked whether their technical production capacity was (i) increased, (ii) left

unchanged, or (iii) decreased in the preceding three months. I use this categorical variable to

construct two binary indicators: first, an investment dummy equal to one if production capac-

ity was increased and zero if it was left unchanged or decreased and, second, a disinvestment

dummy equal to one if production capacity was decreased and zero if it was left unchanged

or increased.

The key explanatory variables are lagged firm-level capacity utilization and lagged real

GDP growth. Firms are asked to state their average utilization rate of production capacity in

the preceding three months. The variable is categorical, ranging from 50% utilization up to

110% in steps of 5 percentage points. Given this rather fine grid of possible answers, I treat

the variable as continuous. Real GDP growth rates are obtained from the State Secretariat

of Economic Affairs SECO.5

Table 1 shows basic descriptive statistics for my sample. It includes 1824 firms from

2004 Q1 to 2014 Q3 (43 quarters). Not all firms are observed over the entire period. Overall,

there are 36328 firm-quarter observations for the investment indicators and 32369 for capacity

utilization.

Table 1: Descriptive statistics

Mean SD obs

Investment (yes/no) 13.8% 36328
Disinvestment (yes/no) 4.2% 36328
Capacity utilization 82.3% 14.2 32369
Real GDP growth rate 0.5% 0.6 43

Notes: Mean, standard deviation (SD) and number of
observations (obs)

4For additional information such as sample questionnaires, see http://www.kof.ethz.ch/en/surveys/
business-tendency-surveys/manufactoring/.

5Data are available at http://www.seco.admin.ch/themen/00374/00456/04878/index.html?lang=en.
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To investigate how capacity utilization affects investment, I specify a linear panel data

model for the investment decision of firm i in period t with firm-specific effects and interaction

terms as

dit =
4∑
j=1

βjGDPt−j +
4∑
j=1

γjuit−j +
4∑
j=1

δjGDPt−juit−j + ci + εit, (1)

where dit is the decision on either investment or disinvestment in period t, uit−j denotes

capacity utilization, ci is a firm-specific unobserved effect that may be correlated with the

regressors uit−j , and εit is a time-varying error. Moreover, time dummies are included, but

not shown for readability.6

Different strategies can be used to remove the unobserved effect ci from equation (1). I

use the within transformation, which subtracts the average over time of (1) from the model

equation:

dit − di· =
4∑
j=1

βj(GDPt−j −GDP·) +
4∑
j=1

γj(uit−j − ui·)

+

4∑
j=1

δj(GDPt−juit−j −GDP·ui·) + εit − εi·, (2)

where a dot in the subscript indicates time-averages, e.g., di· = T−1
∑T

t=1 dit. The pooled

OLS estimator of the demeaned equation (2) is called the fixed effects (FE) estimator. Under

the assumption of strict exogeneity,

E(εit|GDP1, . . . , GDPT , ui1, . . . , uiT , ci, time dummies) = 0, t = 1, . . . , T, (3)

the FE estimator is consistent and unbiased. Given thatGDP is an aggregate variable whereas

εit is firm-specific, strict exogeneity is likely to hold. However, the firm-specific error εit may

possibly affect future capacity utilization, rendering u in (2) potentially endogenous.

To solve the potential endogeneity problem associated with FE estimation of (1), I rely

6Because the dependent variables are binary, (1) represents a linear probability model. Logit or probit
models are often used to analyze binary choices, but since these models do not easily generalize to the combi-
nation of fixed effects and dynamics (as considered in model (4)), I confine the analysis to linear probability
models. This type of model has well-known limitations. It implies heteroscedastic errors, which I address by
computing heteroscedasticity-robust standard errors. Moreover, estimated probabilities from this model are
not restricted to the unit interval. However, because I am interested in estimating mean effects, this issue
should not substantially affect the results.
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on lagged instruments from the panel. In particular, the first-differenced error εit− εit−1 may

be correlated with uit−1−uit−2, but should be unrelated to uit−2 and further lags, which can

therefore be used as instruments. This procedure relies on εit being serially uncorrelated. To

ensure this, I include lagged dependent variables in equation (1) and specify the following

linear dynamic panel data model:

dit =

p∑
j=1

αjdit−j +

4∑
j=1

βjGDPt−j +

4∑
j=1

γjuit−j +

4∑
j=1

δjGDPt−juit−j + ci + εit, (4)

which additionally includes time dummies. The number of dependent variable lags p is chosen

such that εit is serially uncorrelated. p = 1 is sufficient in the model with the investment

dummy as dependent variable whereas p = 2 is needed in the model for the disinvestment

dummy.

I estimate (4) using the system GMM estimator proposed by Blundell and Bond (1998),

who build on the work of Arellano and Bover (1995). As outlined in Arellano and Bond (1991),

estimation of (4) may proceed by first-differencing the equation to remove the fixed effect and

using dit−2, uit−2 and further lags to instrument ∆dit−1 and ∆uit−1 on the right-hand side.

System GMM augments this so-called difference GMM by additionally using lagged differences

as instruments for the level equation.7 Thus, system GMM estimates simultaneously in levels

and differences with different instruments for the two equations. The moment conditions are

given as follows:

E[dit−l∆εit] = 0, E[uit−l∆εit] = 0, for t ≥ 3, l ≥ 2, (5)

E[∆dit−1(ci + εit)] = 0, E[∆uit−k(ci + εit)] = 0, for t ≥ 3, k = 1, . . . , 4. (6)

I perform the estimation using the Stata command xtabond2 of Roodman (2009b).

The number of instruments is quadratic in the time dimension of the panel because the

number of applicable lags in (5) increases with T . As discussed in Roodman (2009a), too many

instruments (instrument proliferation) is a common problem in connection with system GMM.

It is problematic because many instruments can cause overfitting of endogenous variables and

imprecise estimation of the optimal weighting matrix. Because my sample consists of 43

quarters of observations, the empirical analysis based on the system GMM estimator is prone

7This is valid under the assumption that changes in any instrumenting variable are uncorrelated with ci.
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to the problems associated with instrument proliferation. Therefore, I restrict the number of

instruments.

I apply two different ways to reduce the number of instruments. The first consists in

reducing the moment conditions (5) by considering only a few instead of all available lags. I

estimate various model specifications, the largest model using up to the sixth lag as instru-

ments. The second way consists in collapsing the instrument set (see Roodman, 2009a). The

moment conditions (5) and (6) are replaced by

E[dit−l∆εit] = 0, E[uit−l∆εit] = 0, for l ≥ 2, (7)

E[∆dit−1(ci + εit)] = 0, E[∆uit−k(ci + εit)] = 0, for k = 1, . . . , 4, (8)

in which case the instrument count is linear in the time dimension of the panel. Just as (5) and

(6), the moment conditions (7) and (8) embody the belief of orthogonality between differenced

errors and lagged levels of d and u, and between errors in levels and lagged differences of d and

u. However, in contrast to the moment conditions (5) and (6), the estimator only minimizes∑
dit−l∆εit and

∑
uit−l∆εit for each l rather than for each l and t separately. Similarly,∑

∆dit−1(ci+ εit) and
∑

∆uit−k(ci+ εit) are only minimized in total, not separately for each

t. Thus, less information is conveyed by a collapsed instrument set. On the other hand, no

lags are actually dropped, which is a potential advantage over the approach of reducing the

number of instruments by capping the number of lags used as instruments.

Applying the system GMM estimator involves many specification choices. Therefore, it

is important to check the robustness of the results. I use various specifications: Anderson

and Hsiao (1982) difference and level estimators, which use only either the most recent lagged

difference or lagged level as instruments for the first difference of equation (4), the difference

GMM estimator proposed by Arellano and Bond (1991), and the system GMM estimator

discussed above with either a restricted number of lags used as instruments or with a collapsed

instrument set. Despite some quantitative differences, the results are qualitatively robust to

different specifications of the GMM estimator. The aggregate findings (presented in figures 1

and 2 below) and the resulting conclusions are even more robust. First stage regressions

of level variables on first-differences and of first-differenced variables on lagged levels clearly

confirm the strength of the instruments used in the different model specifications.

Table 2 presents the estimated coefficients of the FE and system GMM model with the
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investment indicator as dependent variable. Table 3 shows the corresponding results for the

disinvestment dummy. Columns (1) and (3) contain the estimates for the models without

interaction terms. The estimated coefficients are of the expected sign: Both recent GDP

growth and utilization have a positive impact on the probability of investment and a negative

impact on the probability of disinvestment.

Columns (2) and (4) of tables 2 and 3 present the estimates for the models including inter-

action terms. The findings show a significant impact of capacity utilization on the probability

of investment. Moreover, some of the interaction terms are significant as well, indicating that

the impact of lagged GDP growth on the probability of investment or disinvestment hinges

on the firm-level utilization rate. For example, according to the results in column (2) of ta-

ble 2, the effect of an increase in GDP growth by one percentage point on the probability of

investment two quarters later is given by:

∂dit
∂GDPt−2

= −0.0548 + 0.0009uit−2. (9)

Thus, the impact of GDPt−2 on the investment probability is zero at a utilization rate of

60%. For firms with a utilization rate of 100%, however, an increase in GDP growth by one

percentage point increases the probability of investment two quarters later by 3.6 percentage

points. Thus, lagged GDP growth only has a positive effect on the investment probability if

the utilization rate is sufficiently high.

Overall, the findings in tables 2 and 3 show that firm-level investment decisions across

the business cycle crucially depend on capacity utilization. Not only does the investment

decision directly depend on utilization, but the rate of capacity utilization also influences how

firm-level investment responds to aggregate GDP growth.

In the remainder of this section, I assess whether the relevance of variable capacity uti-

lization for investment decisions at the firm-level carries over to aggregate quantities. To

this end, I compare different aggregate investment and disinvestment time series, which are

constructed as follows: The regression results from column (4) in table 2 are used to predict

the probability of investment, which is then aggregated across firms using employment-based

weights. Moreover, an alternative probability of investment is predicted with capacity uti-

lization restricted to be fixed at the firm-specific mean. This alternative probability is also

aggregated across firms. The resulting employment-weighted fractions of investing firms are

11



Table 2: Regression results for investment dummy

FE GMM
(1) (2) (3) (4)

GDPt−1 0.0214*** -0.0375 0.0187*** -0.0328
(0.0073) (0.0259) (0.0072) (0.0483)

GDPt−2 0.0215*** -0.0548** 0.0207** -0.0498
(0.0076) (0.0228) (0.0080) (0.0313)

GDPt−3 0.0116 0.0162 0.0020 0.0149
(0.0078) (0.0249) (0.0086) (0.0345)

GDPt−4 0.0075 -0.0405 0.0195*** -0.0576
(0.0163) (0.0282) (0.0075) (0.0414)

uit−1 0.0026*** 0.0023*** 0.0022*** 0.0019***
(0.0003) (0.0004) (0.0004) (0.0005)

uit−2 0.0006* 0.0001 0.0004 0.0000
(0.0003) (0.0003) (0.0004) (0.0004)

uit−3 0.0007** 0.0008** 0.0009** 0.0010**
(0.0003) (0.0004) (0.0004) (0.0004)

uit−4 0.0001 -0.0002 0.0002 -0.0003
(0.0003) (0.0003) (0.0004) (0.0005)

GDPt−1uit−1 0.0007** 0.0006
(0.0003) (0.0006)

GDPt−2uit−2 0.0009*** 0.0008**
(0.0003) (0.0004)

GDPt−3uit−3 0.0000 -0.0001
(0.0003) (0.0004)

GDPt−4uit−4 0.0006** 0.0009*
(0.0003) (0.0005)

dit−1 0.2021*** 0.2005***
(0.0162) (0.0161)

Number of observations 18063 18063 17055 17055
Number of firms 1151 1151 1124 1124

Arellano-Bond test for AR(2): p-value 0.354 0.378
Arellano-Bond test for AR(3): p-value 0.935 0.941
Hansen test: p-value 0.783 0.772
Source: KOF Business Tendency Survey Manufacturing Industry 2004-2014, own calculations.
Notes: All models include year dummies. Cluster-robust standard errors in parantheses. (3) and (4) are
estimated by the Blundell and Bond (1998) system GMM estimator with lagged dependent variable and
lagged utilization (and interactions) instrumented. The instrument set is collapsed (cf. Roodman, 2009a),
which results in an instrument count of 228 and 371 for (3) and (4). The third and second last line show
the p-values for the Arellano and Bond (1991) autocorrelation tests of order 2 and 3. The last line presents
the p-value of the over-identification test proposed by Hansen (1982).
* p < 0.1.

** p < 0.05

*** p < 0.01
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Table 3: Regression results for disinvestment dummy

FE GMM
(1) (2) (3) (4)

GDPt−1 -0.0099** -0.0138 -0.0093** 0.0368
(0.0038) (0.0198) (0.0039) (0.0303)

GDPt−2 -0.0224*** -0.0248 -0.0212*** -0.0088
(0.0070) (0.0230) (0.0072) (0.0277)

GDPt−3 0.0010 0.0276 0.0139* 0.0626**
(0.0064) (0.0204) (0.0078) (0.0247)

GDPt−4 -0.0011 -0.0532** -0.0045 -0.0003
(0.0100) (0.0212) (0.0069) (0.0280)

uit−1 -0.0013*** -0.0014*** -0.0011*** -0.0008**
(0.0003) (0.0003) (0.0003) (0.0003)

uit−2 -0.0003 -0.0003 -0.0004 -0.0003
(0.0002) (0.0003) (0.0003) (0.0003)

uit−3 0.0003* 0.0005** 0.0000 0.0003
(0.0002) (0.0003) (0.0002) (0.0003)

uit−4 0.0004* 0.0001 0.0000 0.0001
(0.0002) (0.0003) (0.0003) (0.0003)

GDPt−1uit−1 0.0000 -0.0005
(0.0002) (0.0003)

GDPt−2uit−2 0.0000 -0.0002
(0.0003) (0.0003)

GDPt−3uit−3 -0.0003 -0.0006**
(0.0002) (0.0003)

GDPt−4uit−4 0.0006*** 0.0000
(0.0002) (0.0003)

dit−1 0.2637*** 0.2625***
(0.0236) (0.0236)

dit−2 0.0658*** 0.0643***
(0.0202) (0.0202)

Number of observations 18063 18063 16973 16973
Number of firms 1151 1151 1124 1124

Arellano-Bond test for AR(2): p-value 0.346 0.314
Arellano-Bond test for AR(3): p-value 0.437 0.412
Hansen test: p-value 0.550 0.860
Source: KOF Business Tendency Survey Manufacturing Industry 2004-2014, own calculations.
Notes: All models include year dummies. Cluster-robust standard errors in parantheses. (3) and (4) are
estimated by the Blundell and Bond (1998) system GMM estimator with lagged dependent variable and
lagged utilization (and interactions) instrumented. The instrument set is collapsed (cf. Roodman, 2009a),
which results in an instrument count of 265 and 408 for (3) and (4). The third and second last line show
the p-values for the Arellano and Bond (1991) autocorrelation tests of order 2 and 3. The last line presents
the p-value of the over-identification test proposed by Hansen (1982).
* p < 0.1.

** p < 0.05

*** p < 0.01
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plotted in figure 1.8 The figure reveals that restricting utilization to be constant results in

a different fraction of investing firms. The difference is cyclical: The restricted series un-

derpredicts investment activity in booms and overpredicts it in periods of low GDP growth.

Figure 2 shows an analogous analysis for the fraction of firms with negative investment. The

prediction of this fraction appears to be too low in recessions and too high in booms if uti-

lization is fixed. Figure 3 plots the difference in the predicted fraction of investing firms if

utilization is allowed to vary or kept constant. Figure 4 depicts the corresponding difference

in the predicted fraction of firms with negative investment. The differences are significant at

the one percent level.9

The aggregate results for the fraction of investing firms do hardly depend on the underlying

econometric model (FE or system GMM): The difference between the predicted fraction of

investing firms when utilization is either variable or forced to be constant is almost identical

for both models (cf. figures 3 and 17). Clearly, this difference is cyclical. This also holds

for the predicted fraction of firms with negative investment, although the difference between

the FE and the system GMM results is more pronounced (cf. figures 4 and 18). The results

depicted in figures 1 to 4 are robust to the use of alternative instrument sets in the system

GMM estimation.
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Figure 1: The fraction of investing firms when capacity utilization is fixed (gray dashed line) or variable (black
solid line). The estimation is based on column (4) in table 2.

8Appendix A contains figures analogous to 1 to 4, but based on the FE (column (2) in the tables 2 and 3)
instead of the system GMM results.

9This holds for the differences plotted in figures 3, 4, 17 and 18. Confidence intervals are computed using
the delta method. They are very narrow and therefore not depicted.
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Figure 2: The fraction of firms with negative investment when capacity utilization is fixed (gray dashed line)
or variable (black solid line). The estimation is based on column (4) in table 3.
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Figure 3: Difference in the predicted fraction of investing firms when utilization is variable or fixed. The
difference is based on the GMM model (column (4) in table 2).
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Figure 4: Difference in the predicted fraction of firms with negative investment when utilization is variable or
fixed. The difference is based on the GMM model (column (4) in table 3).

Overall, the empirical analysis suggests that capacity utilization is a relevant variable in

lumpy investment models. Compared to a fixed capacity utilization, high utilization rates

in booms cause a larger fraction of firms to invest and a lower fraction to disinvest, which

(depending on the size of the capital adjustment) may have macroeconomic effects. Analo-

gously, low utilization rates in recessions cause a smaller fraction of firms to invest and a larger

fraction to disinvest. In the light of this empirical evidence, capacity utilization appears to

be an important ingredient in models assessing the relevance of lumpy firm-level investment

for macroeconomic investment.

3 Theoretical model

I consider an RBC model with variable capacity utilization, heterogeneous firms and capital

adjustment costs. Within any period, these capital adjustment costs are fixed at the level

of a production unit, but may differ across units. As a consequence, some production units

will undertake capital adjustments while others will not, resulting in firm heterogeneity with

respect to the capital stock.

The model features long-run growth due to technological progress. Let γ denote the

gross growth rate of the economy along the balanced growth path caused by trend growth in

productivity. In the following exposition, I consider the detrended model, i.e., all variables

measured in units of output are deflated.
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Overall, the framework is closely related to the setups considered by Khan and Thomas

(2003, 2008), Bachmann et al. (2013) and Bachmann and Bayer (2014). The main departure

from these papers is to allow for variable capacity utilization, thereby introducing an intensive

margin along which capital input to production can be adjusted. The following sections

describe the model in detail.

3.1 Firms

The economy consists of a continuum of production units, henceforth labeled firms.10 Because

I do not model firms’ entry and exit decisions, the mass of firms can be normalized to one. At

any date, each firm is characterized by its predetermined capital stock k and its fixed cost of

investment κ ∈ [0, B]. This fixed cost is denominated in hours of labor. Thus, a firm deciding

to adjust its capital stock incurs costs of κw, where w denotes the real wage. In each period,

κ is drawn from a time-invariant distribution G, which is continuous and has support [0, B].

The distribution G is common across firms. The draws from G are independent both over

time and across firms.

There is a single commodity in the economy that can be consumed or invested. Each

firm produces this commodity using capital services and labor as inputs. Capital services are

given by the product of the capital stock k and capacity utilization u. In each period, k is

predetermined while u can be adjusted up to an upper bound ū.11 Labor n can be adjusted

without frictions. Each firm’s production is described by the function:

y = zF (ku, n), (10)

which satisfies the following properties:12

F1 > 0, F2 > 0, F11 < 0, F22 < 0, F12 ≥ 0.

z denotes exogenous aggregate productivity which is common across all firms. As in Khan

10Different interpretations of the size of production units are possible. For example, Cooper and Haltiwanger
(2006) and Khan and Thomas (2008) assume that the production units in the model correspond to plants,
while Bloom (2009) sets the number of productive units per firm at 250 for his simulation.

11Specifically, utilization can amount to 100% at most. However, I calibrate the model such that the steady
state utilization rate equals one in the model without capital adjustment costs. Because of this normalization,
ū > 1 and u ∈ (1, ū] indicates utilization rates which exceed steady state utilization in the frictionless model.

12Functions with subscript numbers represent derivatives of the function with respect to the indicated
arguments.

17



and Thomas (2003, 2008), I assume that z follows a Markov chain with finite states z ∈

{z1, . . . , zNz}, Pr(z′ = zj |z = zi) = πji and
∑Nz

j=1 πji = 1 for each i = 1, . . . , Nz.13

The aggregate state of the economy is described by (z, µ) where µ denotes the distribution

of capital across firms. This distribution of firm-level capital evolves according to a law of

motion Γ which depends on the aggregate state of the economy: µ′ = Γ(z, µ). Γ will be

described in more detail below.

Each firm’s capital stock evolves according to:

γk′ = (1− δ(u))k + i. (11)

γ denotes the steady state gross growth rate of capital. Depreciation is an increasing, convex

function of utilization, which is a standard way to model the costs associated with higher

utilization (cf. King and Rebelo, 2000). i denotes investment. i 6= 0 requires paying the fixed

costs of κw.

The firms maximize the expected sum of discounted profits by making a discrete decision

about investment and by choosing labor n, utilization u, and next period’s capital stock k′.

These decisions are interrelated. The optimal choices of labor and utilization may differ for

investing and non-investing firms. This difference is apparent for capacity utilization: For

firms that choose to invest, the decision on u is intratemporal and independent of the choice

on k′. In contrast, the choice on u is an intertemporal decision for non-investing firms because

u determines k′ through equation (11). Thus, unlike in Khan and Thomas (2003), Bachmann

et al. (2013) or Bachmann and Bayer (2014), non-investing firms can make an intertemporal

decision, albeit the choice set is limited to the attainable values of next period’s capital stock,

k′ ∈ [(1− δ(ū))k/γ, (1− δ(0))k/γ].

Let v1(k, κ; z, µ) represent the expected discounted value of a firm with individual state

variables k and κ when the aggregate state of the economy is (z, µ). The expected value prior

to the adjustment cost draw κ amounts to

v0(k; z, µ) =

∫ B

0
v1(k, κ; z, µ)G(dκ). (12)

Let dzj (zi, µ) denote the discount factor that firms apply to their future value if aggregate

13Throughout this paper’s model description, time subscripts are omitted and next period’s variables are
denoted with a prime.
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productivity is zi in the current and zj in the next period. With this notation, the optimization

problem of a firm can be stated as dynamic programming problem:

v1(k, κ; z, µ) =

max

{
sup
u,n

[zF (ku, n)− wn+ (1− δ(u))k]− κw

+ sup
k′

[
−γk′ + E[dz′(z, µ)v0(k′; z′, µ′)]

]
; (13)

sup
u

[
sup
n

(zF (ku, n)− wn) + E
[
dz′(z, µ)v0

(
(1− δ(u))k

γ
; z′, µ′

)]]}
.

The outer maximization represents a binary choice on investing. Let I∗(k, κ; z, µ) ∈ {0, 1}

denote the optimal binary choice. The last line in (13) describes the optimization problem of

a firm that decides not to adjust its capital stock. Such a firm faces an intratemporal choice

on labor n and an intertemporal choice on utilization u, which affects current production

zF (ku, n) and next period’s capital k′ = (1−δ(u))k
γ . The associated policy functions are denoted

by nfN (k; z, µ) and uN (k; z, µ), respectively.14 Lines two and three in (13) represent the

optimization problem of a firm that decides to adjust its capital stock, thereby incurring fixed

costs of κw. The problem is formulated as if investing firms sell their capital stock remaining

after depreciation and purchase γk′. This formulation is equivalent to merely subtracting

investment from current profits, but it is more convenient because it reveals that the decisions

on k′ on the one hand as well as n and u on the other hand are separable. The optimal choice

of u and n is intratemporal and does not depend on the choice on next period’s capital. The

associated policy functions are denoted uI(k; z, µ) and nfI (k; z, µ). Similarly, the optimal k′

is independent of the choices on u and n. In fact, (13) reveals that the optimal choice on k′

is also independent of k and κ. Therefore, it does not depend on any firm-specific variable,

but only on the aggregate state of the economy. As a result, any firm choosing to undertake

capital adjustment will choose the same capital stock, denoted by k∗(z, µ).

There is an equivalent, but simpler representation of the dynamic programming problem

in (13) (see Khan and Thomas, 2003, 2008). This representation incorporates optimality con-

ditions from the households and competitive equilibrium conditions. Therefore, I will proceed

by presenting the household sector (section 3.2), characterizing the competitive equilibrium

14The superscript f is used to differentiate labor choices of firms from those of households. The subscript
N indicates non-investing firms. In contrast, subscript I will indicate investing firms.
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(section 3.3) and then analyzing the optimality conditions from the simplified dynamic prob-

lem (section 3.4). In section 3.5, I finally present the specification and calibration of the

functions and parameters of the model.

3.2 Households

The economy is populated by a continuum of identical households.15 Their wealth is held as

(one-period) shares in firms, which are denoted using the measure λ. Thus, the households

own the portfolio of firms in the economy. In each period, households choose consumption

C and supply labor N . Moreover, they decide on the amount of new shares λ′(k′) to buy of

firms which begin the next period with a capital stock of k′. Economically, this is a portfolio

choice problem with infinitely many assets indexed by k′. The optimization problem is given

as follows:

W (λ; z, µ) = sup
C,N,λ′

U(C, 1−N) + βE
[
W (λ′; z′, µ′)

]
(14)

s.t. C +

∫
K
ρ(k′)λ′(dk′) ≤ wN +

∫
K
v0(k)λ(dk),

with discount factor β < 1 and where U(C, 1−N) satisfies the following properties:

U1 > 0, U2 > 0, U11 < 0, U22 ≤ 0.

w denotes the real wage, ρ(k′) the price of new shares, and capital is defined on K ⊆ R+.

Let p denote the Lagrange multiplier associated with the constraint in the optimization

problem (14). The first order conditions for households’ optimal choices are standard and

given as follows:

U1(C, 1−N) = p, (15)

U2(C, 1−N) = pw, (16)

pρ(k′) = βE
[
v0 ′(k′)p′

]
, for each k′ ∈ K. (17)

Let C(λ; z, µ) and Nh(λ; z, µ) denote households’ choice of consumption and labor, respec-

tively. Moreover, let Λh(k′, λ; z, µ) denote the amount of shares that households buy of firms

15Being alike, these households act like a single, representative household which takes prices as given.
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which begin the next period with capital k′.

3.3 Recursive Competitive Equilibrium

A recursive competitive equilibrium is a set of functions

(
w, d, ρ, v0, v1, k∗, nfI , n

f
N , uI , uN , I

∗,W,C,Nh,Λh,Γ
)

that solve the firms’ problem (13), the households’ problem (14) and clear all markets. In

particular, the set of functions satisfies:

(i) Firm optimality: Taking w, d and Γ as given, v0(k; z, µ) and v1(k, κ; z, µ) satisfy

(12) and (13) with corresponding policy functions I∗(k, κ; z, µ), nfN (k; z, µ), uN (k; z, µ),

nfI (k; z, µ), uI(k; z, µ) and k∗(z, µ).

(ii) Household optimality: Taking w, ρ, v0 and Γ as given, W (λ; z, µ) satisfies (14) with

corresponding policy functions C(λ; z, µ), Nh(λ; z, µ) and Λh(k′, λ; z, µ).

(iii) Asset market clearing: The quantity of “capital k′ shares” bought corresponds to the

mass of firms with capital k′, i.e., Λh(k′, µ; z, µ) = µ′(k′) for each k′ ∈ K.16

(iv) Labor market clearing: Labor supply is equal to labor demand for production and fixed

costs of capital adjustment, which is denoted in units of labor:

Nh(µ; z, µ) =

∫
K

∫ B

0

(
nfN (k; z, µ)(1− I∗(k, κ; z, µ))

+nfI (k; z, µ)I∗(k, κ; z, µ)
)
G(dκ)µ(dk)

+

∫
K

∫ B

0
I∗(k, κ; z, µ)κG(dκ)µ(dk).

16The household sector can be summarized by a representative household. Therefore, the measure λ of
shares will coincide with the distribution of firm-level capital µ in equilibrium. Thus, I replace λ by µ in the
household’s policy functions.
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(v) Goods market clearing: Consumption and gross investment add up to output:

C(µ; z, µ) +

∫
K

∫ B

0
(γk∗(z, µ)− (1− δ(uI(k; z, µ))) k) I∗(k, κ; z, µ)G(dκ)µ(dk)

=

∫
K

∫ B

0

(
zF
(
kuN (k; z, µ), nfN (k; z, µ)

)
(1− I∗(k, κ; z, µ))

+zF
(
kuI(k; z, µ), nfI (k; z, µ)

)
I∗(k, κ; z, µ)

)
G(dκ)µ(dk).

(vi) Model consistent dynamics: The evolution of the firm-level capital distribution, µ′ =

Γ(z, µ), is induced by the exogenous process for z as well as optimal firm choices affecting

next period’s capital, namely k∗(z, µ), I∗(k, κ; z, µ) and uN (k; z, µ):

µ′(k′) = Γ(z, µ) =

∫
{

(k,κ)|k′= (1−δ(uN (k;z,µ)))k

γ
and I∗(k,κ;z,µ)=0

}G(dκ)µ(dk)

+

∫
{(k,κ)|k′=k∗(z,µ) and I∗(k,κ;z,µ)=1}

G(dκ)µ(dk).

The first integral in the above expression integrates over all combinations of k and κ

for which firms optimally choose not to invest and which result in next period’s capital

being k′. The second integral is only relevant for k′ = k∗(z, µ) and zero for k′ 6= k∗(z, µ).

It integrates over all combinations of k and κ for which firms optimally choose to invest.

This mass of the current capital distribution shifts to k∗(z, µ) in the next period.

3.4 Simplified Dynamic Problem

The firms’ optimization problem can be simplified using equilibrium implications of household

utility maximization (see Khan and Thomas, 2003, 2008). The arising problem is equivalent

to the model presented in the previous sections, but consists of a single Bellman equation

instead of (13) and (14), which simplifies equilibrium calculation.

The first step of this reformulation consists in finding equilibrium real wages and intertem-

poral prices using household optimality and general equilibrium conditions. An expression for

the equilibrium real wage is obtained by combining the first order conditions (15) and (16):

w(z, µ) =
U2(C, 1−N)

U1(C, 1−N)
, (18)

where C and N denote the market-clearing values of consumption and labor. Combining asset
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market clearing with the household budget constraint leads to the following equation:

C +

∫
K
ρ(k′)µ′(dk′) = wN +

∫
K
v0(k)µ(dk) = wN +

∫
K

∫ B

0
v1(k, κ)G(dκ)µ(dk).

Next, I plug in for v1 and use labor and goods market clearing as well as model consistent

dynamics. This results in the relation

∫
K
ρ(k′)µ′(dk′) =

∫
K
E
[
dz′v

0 ′(k′)
]
µ′(dk′).

Finally, solving the household first order condition (17) for ρ(k′) and substituting it in the

above expression yields:

∫
K
E
[
βp′

p
v0 ′(k′)

]
µ′(dk′) =

∫
K
E
[
dz′v

0 ′(k′)
]
µ′(dk′).

Thus, the discount factor applied by firms is equal to

dz′(z, µ) =
βp′(z′, µ′)

p(z, µ)
, (19)

where p(z, µ) equals marginal utility of consumption.

Following Khan and Thomas (2003, 2008), I use the discount factor implied by equation

(19) to write the firms’ optimization problem in terms of household utils instead of physical

output units:17

V 1(k, κ; z, µ) =

max

{
sup
u,n

[zF (ku, n)− wn+ (1− δ(u))k] p− κwp

+ sup
k′

[
−γk′p+ βE[V 0(k′; z′, µ′)]

]
; (20)

sup
u

[
sup
n

(zF (ku, n)− wn)p+ βE
[
V 0

(
(1− δ(u))k

γ
; z′, µ′

)]]}
,

where the price firms use to value their current output is given by p = U1(C, 1 − N), real

17For notational clarity, let V 0 and V 1 denote the value functions associated with the problem in terms of
household utils while v0 and v1 denote the corresponding functions of the problem in terms of output.
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wages are determined by w = U2(C,1−N)
U1(C,1−N) , and

V 0(k; z, µ) =

∫ B

0
V 1(k, κ; z, µ)G(dκ). (21)

Optimal labor and capacity utilization choices of an investing firm (nfI and uI) depend on

the aggregate state (z, µ) and the individual capital stock k. They are characterized by the

following first order conditions:

w = zF2(kuI , n
f
I ), (22)

δu(uI) = zF1(kuI , n
f
I ). (23)

The optimal capital choice k∗ of investing firms is independent of current capital k and capital

adjustment costs κ and satisfies:

γp = βE
[
V 0

1 (k∗; z′, µ′)
]
. (24)

Thus, all investing firms choose the same capital stock for the next period. The target capital

k∗ depends on the aggregate state (z, µ).

The first order conditions for non-investing firms are given by

w = zF2(kuN , n
f
N ), (25)

pzF1(kuN , n
f
N ) =

1

γ
δu(uN )βE

[
V 0

1

(
(1− δ(uN ))k

γ
; z′, µ′

)]
. (26)

These conditions determine optimal employment and capacity utilization (nfN and uN ) as a

function of k and (z, µ).

Finally, the binary investment decision is based on the comparison of the expected value

of adjusting capital and incurring the fixed costs on the one hand with the expected value of

foregoing adjustment on the other hand. The firm invests if

V ∗I − κwp ≥ V ∗N , (27)
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where

V ∗N (k; z, µ) ≡ (zF (kuN , n
f
N )− wnfN )p+ βE

[
V 0

(
(1− δ(uN ))k

γ
; z′, µ′

)]
, (28)

V ∗I (k; z, µ) ≡ (zF (kuI , n
f
I )− wnfI + (1− δ(uI))k)p− γk∗p+ βE

[
V 0(k∗; z′, µ′)

]
. (29)

It follows that a firm invests if and only if its fixed cost draw κ is below a certain threshold,

namely if

κ ≤ κ̄(k; z, µ) = min

{
V ∗I (k; z, µ)− V ∗N (k; z, µ)

w(z, µ)p(z, µ)
;B

}
. (30)

This amounts to a reservation price or reservation cost strategy, i.e., there is a maximum cost

of κ̄(k; z, µ)w(z, µ)p(z, µ) which a firm with capital k is willing to pay for the possibility to

adjust its capital.

Given the investment decision described in (30), the cross-sectional distribution of firm-

level capital evolves according to the following law of motion:

µ′(k′) = Γ(z, µ) =

∫
{
k|k′= (1−δ(uN (k;z,µ)))k

γ

} (1−G (κ̄ (k; z, µ)))µ(dk)

+

∫
K
1{k′ = k∗(z, µ)}G (κ̄ (k; z, µ))µ(dk). (31)

1{k′ = k∗(z, µ)} is an indicator function equal to one for k′ = k∗(z, µ) and zero otherwise.

Thus, the mass
∫
KG (κ̄ (k; z, µ))µ(dk) of the current capital distribution is shifted to k′ =

k∗(z, µ). For any other value of k′, only the first line in (31) is relevant.

The investment decision characterized in (30) allows to rewrite equilibrium consumption
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and labor as follows:

C(z, µ) =

∫
K

[
zF
(
kuN (k; z, µ), nfN (k; z, µ)

)
(1−G (κ̄ (k; z, µ)))

+ zF
(
kuI(k; z, µ), nfI (k; z, µ)

)
G (κ̄ (k; z, µ)) (32)

− (γk∗(z, µ)− (1− δ(uI(k; z, µ))) k)G (κ̄ (k; z, µ))

]
µ(dk),

N(z, µ) =

∫
K

[
nfN (k; z, µ) (1−G (κ̄ (k; z, µ))) + nfI (k; z, µ)G (κ̄ (k; z, µ))

+

∫ κ̄(k;z,µ)

0
κG(dκ)

]
µ(dk). (33)

Uniqueness of the goods and labor market equilibrium is likely to hold, but not guaranteed.

Appendix C contains some general considerations on uniqueness in lumpy investment models

as well as steady state and simulation results on uniqueness for this paper’s model specification

and calibration.

3.5 Specification and Calibration

The specification of preferences and technology closely follows the literature on lumpy invest-

ment. The model is calibrated to match annual data from Germany. Unfortunately, I do

not have access to a dataset with quantitative firm-level data on both utilization and invest-

ment.18 Therefore, I cannot re-calibrate the lumpy investment model for the case of variable

utilization. Instead, I choose most parameters according to Bachmann and Bayer (2014), who

estimate or calculate many parameters directly from German firm-level or national accounts

data.

In accordance with the literature on lumpy investment models (including Thomas, 2002,

Khan and Thomas, 2003, 2008, Bachmann et al., 2013, and Bachmann and Bayer, 2014), I

assume that the firms’ production function takes a Cobb-Douglas form with decreasing returns

to scale,

zF (ku, n) = z(ku)θnν , with θ > 0, ν > 0, θ + ν < 1, (34)

18The datasets used in previous studies do not include information on utilization while the dataset used in
section 2 of this paper contains utilization, but only qualitative information on investment.
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and that the representative household’s period utility function is additively separable and

linear in labor:

U(C, 1−N) = log(C) +A(1−N). (35)

This type of utility function results from the standard indivisible labor model in the spirit

of Hansen (1985) and Rogerson (1988). In this model, each individual can either work some

given positive number of hours or not at all. Hansen (1985) shows that the representative

household in such an economy has a utility function as given in (35).

The depreciation function is specified following Ríos-Rull et al. (2012):

δ(ut) = δ0 + δ1

(
u

1+1/ξ
t − 1

)
. (36)

With δ1 > 0 and ξ > 0, this depreciation function is increasing and convex in ut, a common

way to model the costs of variable capacity utilization (cf. King and Rebelo, 2000). Moreover,

this specification includes fixed capacity utilization as a special case if ξ → 0.

Given the functional forms specified in (34), (35) and (36), some of the optimality condi-

tions derived in section 3.4 can be simplified as follows:

p =
1

C
, (37)

w =
A

p
, (38)

nfI =

(
ν1+ξ(1−θ)z1+ξθξθkθ

w1+ξ(1−θ) [δ1(1 + 1/ξ)]ξθ

) 1
1+ξ(1−θ)−ν(1+ξ)

, (39)

uI =

[
θzkθ−1(nfI )ν

δ1(1 + 1/ξ)

] ξ
1+ξ(1−θ)

, (40)

nfN =

[
νz(kuI)

θ

w

] 1
1−ν

, (41)

uN =

 γθpz
1

1−ν k
θ

1−ν−1ν
ν

1−ν

δ1(1 + 1/ξ)βE

[
V 0

1

((
1−δ0−δ1

(
u
1+1/ξ
N −1

))
k

γ ; z′, µ′

)]
w

ν
1−ν


ξ

1+ξ(1− θ
1−ν )

. (42)

(37) shows that firms value current output using the marginal utility of consumption. The

27



real wage (38) is determined by the marginal rate of substitution of leisure for consumption.

(39) and (40) determine optimal choices of labor and utilization of firms that adjust their

capital stock. Labor demand of non-investing firms is characterized by (41). (42) implicitly

determines the utilization rate of these firms.

Following the literature (e.g., Thomas, 2002, Khan and Thomas, 2003, 2008, Bachmann

et al., 2013, and Bachmann and Bayer, 2014), I assume the fixed costs of investment to

be drawn from a uniform distribution G(κ) = κ/B. This assumption is not innocuous.19

Nevertheless, I rely on it because this facilitates comparing my findings to those of other

studies.

My calibration of the parameters heavily relies on Bachmann and Bayer (2014). In partic-

ular, the values of the parameters A, B, β, γ, δ0, θ and ν are identical to their model.20 Since

Bachmann and Bayer (2014) do not consider variable utilization, I rely on other sources for

the calibration of ū and the depreciation function’s parameters δ1 and ξ. As noted by King

and Rebelo (2000) and Ríos-Rull et al. (2012), little is known about ξ. I use ξ = 1, which

approximately corresponds to the point estimate from Basu and Kimball (1997). Following

Ríos-Rull et al. (2012), δ1 is chosen such that the steady state utilization rate equals one in

the model without capital adjustment costs. This normalization simplifies the comparison

of this paper’s model with the frictionless model. Given a steady state utilization of one, ū

is determined using the data from the KOF Swiss Economic Institute analyzed in section 2.

Mean firm-level utilization equals 82.3% in the dataset. Maximum feasible utilization is com-

puted as ū = 100/82.3 = 1.215, 21.5% above the frictionless model’s steady state. Finally,

the Markov chain for aggregate productivity is chosen as an approximation to a continuous

AR(1) process with Gaussian white noise innovations:

ln(z′) = ρz ln(z) + ε′, with ε′ ∼ N (0, σ2
z), |ρz| < 1. (43)

19Indeed, considering a different distribution, Gourio and Kashyap (2007) find macroeconomic effects result-
ing from fixed capital adjustment costs and investment lumpiness at the firm level. Their preferred calibration
features a “compressed” distribution, i.e., many firms bunch around two levels of fixed cost. With many firms
facing a similarly sized fixed costs, it is possible that an aggregate shock pushes a lot of firms across the
threshold from not investing to investing.

20B, the upper bound of the fixed cost distribution, has been calibrated very differently in the literature.
E.g., Thomas (2002) and Khan and Thomas (2003, 2008) choose a substantially lower value forB. Nevertheless,
the choice of B = 0.2 does not appear to be too large because, in the steady state of this paper’s model, it
leads to expenditure on adjustment costs that amount to approximately 4% of investment spending. This is
still considerably lower than suggested in Gourio and Kashyap (2007), who report average adjustment costs
of roughly 7.5% of investment based on the findings of Cooper and Haltiwanger (2006).
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I rely on the discretization procedure in Tauchen (1986) with nine grid points. The parameters

ρz and σz are calibrated such that, in a simulation of the model, the first-order autocorrela-

tion and the volatility of aggregate output correspond to those of detrended annual GDP of

Germany. Table 4 summarizes the parameter choices.

Table 4: Calibration of model parameters

Parameter Value Chosen to match/Source

Discount factor β 0.97 German average real interest rate (Bachmann and
Bayer, 2014)

Disutility of labor A 2 N = 0.33 in a model without capital adjustment
costs. This corresponds to working one third of
the available time.

Output elasticity of labor ν 0.5565 Share of labor expenditure in value added (Bach-
mann and Bayer, 2014)

Output elasticity of capital services θ 0.2075 Share of capital expenditure in value added (Bach-
mann and Bayer, 2014)

Depreciation rate δ0 0.094 Depreciation rate, German national accounting
data (Bachmann and Bayer, 2014)

Utilization-dependent depreciation
rate

δ1 0.0697 Normalization of u = 1 in the steady state of the
model without capital adjustment costs.

Inverse elasticity of δu(u) with re-
spect to utilization

ξ 1 Basu and Kimball (1997)

Maximum feasible utilization rate ū 1.215 Maximum feasible utilization relative to mean
firm-level utilization in the data from the KOF
Swiss Economic Institute

Autocorrelation of productivity ρz 0.37 First-order autocorrelation of German GDP (an-
nual, detrended)

Standard deviation of innovations
in productivity

σz 0.015 Volatility of German GDP (annual, detrended)

Gross economic growth γ 1.014 Aggregate investment rate, German national ac-
counting data (Bachmann and Bayer, 2014)

Adjustment cost parameter B 0.2 Skewness and kurtosis of German firms’ invest-
ment rates (Bachmann and Bayer, 2014)

4 Model Solution

Solving for the competitive equilibrium described in the previous sections is nontrivial. The

aggregate state vector includes µ, the distribution of capital across firms. This distribution is

nonstandard: It has point masses because, in each period, the mass of investing firms jumps

to the same point of the distribution. To address this issue, the common procedure in the

lumpy investment literature consists in assuming that agents base their decisions not on the

entire distribution, but only on a set of statistics or moments of the distribution.

Previous studies have mostly adopted the method of Krusell and Smith (1997, 1998) for
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the numerical model solution.21 However, alternative methods have been proposed to solve

incomplete market models with heterogeneous agents and aggregate risk. Den Haan (2010)

provides a comparison. He finds that, overall, the algorithm of Reiter (2010) performs best

in terms of accuracy. In particular, this algorithm “clearly performs the best in terms of the

accuracy of the individual policy rules and the accuracy of its aggregate law of motion is close

to the most accurate aggregate laws of motion”. Although it is not the fastest algorithm, the

method of Reiter (2010) still outperforms the Krusell-Smith algorithm in terms of speed. For

these reasons, I use the method of Reiter (2010) to solve the model described in this paper.

This algorithm solves the model by backward iteration on a finite grid of points in the

aggregate state space. Consistency between the solution of individual firms and the aggre-

gate solution is enforced in each backward iteration step. In contrast to the Krusell-Smith

algorithm, the solution method of Reiter (2010) does neither rely on a parameterization of

the aggregate law of motion nor on simulations of the model. The latter might be a reason

for both the better speed and the accuracy of the algorithm, as problems of sampling errors

due to model simulations are avoided.

In the remainder of this section, I provide an overview of the method of Reiter (2010) and

its application to the lumpy investment model with variable utilization. For more details, I

refer to Reiter (2010) and the literature cited therein.

First, a grid for firm-level capital is specified. I assume that capital lies between zero and

1.15.22 100 points within this range are selected, which delivers 99 intervals over which the

discrete cross-sectional distribution of capital is defined. Because there is more curvature in

the region of low capital, I select smaller intervals in this part of the distribution.

Second, I compute the steady state of the model without aggregate shocks. A steady

21Examples include Khan and Thomas (2003, 2008), Bachmann et al. (2013) and Bachmann and Bayer
(2014). They approximate the distribution µ by a finite set of its moments and its evolution Γ by a forecasting
rule, usually a log-linear rule, that predicts future moments based on current moments of µ and on aggregate
productivity. Moreover, a functional form for the equilibrium price is assumed. The numerical solution
proceeds in two steps, which are repeated until convergence is achieved. First, conditional on the assumed
pricing rule and the conjectured law of motion for the moments of the capital distribution, the dynamic
programming problem becomes computable and the firms’ value and policy functions can be solved for by
value function iteration. Second, given value and policy functions, the economy is simulated without imposing
the presumed equilibrium pricing rule. This simulation generates time series for p and moments of µ, which
are then used to update the assumed forecasting and pricing rules. Subsequently, the procedure returns to
the first step and continues until the forecasting and pricing rules converge.

22Zero is a natural lower bound. Larger upper bounds than 1.15 were used, but the steady state fraction
of firms with higher capital turned out to be zero. This upper bound is more than 70% larger than the
steady state capital stock of 0.66. Note that, in the presence of aggregate shocks, investing firms may choose
larger capital stocks than this upper bound. The value function at larger capital levels is computed using
extrapolation.
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state is reached if the fraction of firms lying in a specific interval of the capital distribution

is constant over time, i.e., if the histogram of firm-level capital does not change over time.

Solving for the steady state involves the following steps:

(1) Guess the steady state consumption C. Given C, p and w are determined by equations

(37) and (38).

(2) Solve for the optimal firm decisions by value function iteration.23

(3) Compute the matrix of transition probabilities between the intervals of the capital dis-

tribution. If p(D′) and p(D) denote next and current period’s probability distribution

over firm-level capital, then the transition matrix T is characterized by

p(D′) = Tp(D).

(4) Find the steady state distribution D∗ as the solution to p(D∗) = Tp(D∗).

(5) Check whether the steady state distribution implies a consumption level consistent with

the initial guess C. If not, restart with a different initial guess.

Third, one needs to specify a set of statistics m of the distribution µ which replace µ as

state variable. Thus, similar to the method of Krusell and Smith (1997, 1998), the firms are

assumed to base their decisions only on a few statistics m rather than the entire distribu-

tion µ. For computational feasibility, this paper uses only the first moment of the capital

distribution.24

Forth, a reference distribution DR(z,m) is specified. This is a guess of what the distribu-

tion should approximately look like if the aggregate state is (z,m). Following Reiter (2010),

I use a scaled version of the steady state distribution without shocks as reference distribu-

tion. The scale factor is chosen such that the reference distribution exactly satisfies the first

moment condition, i.e., EDR(z,m)[k] = m1.

Fifth, a proxy distribution DP (z,m) is chosen. This step selects the distribution that is

closest (in a mean square sense) to the reference distribution and exactly satisfies the moment

conditions. Of course, this step was only necessary if m would include more than the first
23The value and policy functions are solved for at 99 grid points corresponding to the midpoints Kj of the

intervals specified above.
24This practice is quite common in the literature. Bachmann et al. (2013) and Bachmann and Bayer (2014),

for example, also rely on the aggregate capital stock only.
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moment of the capital distribution because the reference distribution already exactly satisfies

EDR(z,m)[k] = m1.

Sixth, the model is solved by backward iteration. This involves the following steps:

(1) Initialize next period’s value function V 0(k′; z′,m′) by the steady state value function

for all z′ and m′.

(2) For any point (z,m) in the grid of aggregate states and for any value of z′, find the

equilibrium values of m′. This requires the following substeps:

(2.1) Guess m′ and p. Given p, w is determined by equation (38).

(2.2) Use an interpolation scheme to obtain the value function off the grid for m′. I use

the shape-preserving quadratic spline of Schumaker (1983) (see also Judd, 1998).

This method also provides an algorithm to obtain estimates of the slope of the

value function.

(2.3) Compute optimal labor, utilization and capital choices of investing firms starting

from the proxy distribution DP (z,m). Equations (39) and (40) yield the closed-

form solution for nfI and uI as a function of k, z and w. Given V ′ and the guess

for p, (24) determines the optimal capital choice k′.25

(2.4) Compute optimal labor and utilization choices of non-investing firms starting from

the proxy distribution DP (z,m). Computations are more involved than for in-

vesting firms. An essential element that speeds up the solution is the use of the

endogenous grid point method of Carroll (2006). The basic idea is to formulate a

grid for k′ rather than k. Let Kj , j = 1, . . . , nk, denote the grid points for firm-

level capital. Using the firms’ optimality conditions, one can deduce the capital

levels k̃j at which it is optimal to choose a capacity utilization leading to k′j = Kj .

The value function at the endogenous grid points k̃j can then be computed with-

out actually solving a maximization problem because the grid points are chosen

such that k′j = Kj is the optimal outcome. Finally, Schumaker splines are used to

obtain the value of non-investing firms at the grid points of the proxy distribution

instead of k̃j .

25The next period’s value function V ′ is known from the previous backward iteration step or, in the first
iteration, from the steady state.

32



(2.5) Substeps (2.3) and (2.4) yield the value of investment and non-investment at the

grid points of the proxy distribution. Equation (30) then determines the threshold

for the binary investment decision at each of these grid points.

(2.6) Compute aggregate variables. Check whether the resulting p and m′ are consistent

with the guess from substep (2.1). If not, restart with a different initial guess.

(2.7) From the previous substeps, the value Ṽ (k; z,m, z′,m′(z,m, z′)) is obtained at

each grid point for k of the proxy distribution. Schumaker splines are then used to

compute the value at the original grid points Kj .

(3) Update the value function using Ṽ (k; z,m, z′,m′(z,m, z′)) from the previous step. For

each Kh, z and m, the updated value function is given by

V (Kh; z = zi,m) =
∑
j

πjiṼ (Kh; z = zi,m, z
′ = zj ,m

′(zi,m, z
′ = zj)). (44)

Steps (2) and (3) of this backward iteration are repeated until convergence in the value function

is achieved. I use the criterion that the absolute difference between the value functions of two

consecutive iterations is at most 10−6 for all grid points.

As pointed out by Reiter (2010), computation can be accelerated by not solving for

m′(z,m, z′) in every iteration. After some full iterations consisting of steps (2) and (3),

m′(z,m, z′) is only computed every few iterations with some intermediate “acceleration iter-

ations” which use m′(z,m, z′) of the previous full iteration.

5 Results

This section presents the results from the lumpy investment model with variable capacity

utilization, starting with a description of the steady state, followed by a characterization of

optimal firm-level decisions on investment, utilization and labor, and closing with a description

of the macroeconomic implications thereof. The results of this paper’s model are compared

with those of three other models which differ in either or both of the following two dimensions:

whether utilization is variable and whether capital adjustment entails fixed costs. Thus, four

models are compared: this paper’s variable utilization lumpy investment model (VULIM), the

standard lumpy investment model (SLIM) with fixed utilization, a variable utilization fric-

tionless model (VUFM) without fixed capital adjustment costs, and the standard frictionless
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model (SFM) with neither variable utilization nor fixed costs.

5.1 Steady state

Figure 5 shows the distribution of firm-level capital in the steady state without aggregate

shocks. The fraction of firms owning a certain capital stock is increasing in capital. The figure

also plots the adjustment hazard, i.e., the fraction of firms paying the fixed costs and adjusting

capital to the target level. Clearly, the model features the increasing hazard property, i.e.,

the probability of investment increases with the distance from the target capital stock.26 The

reason for the increasing hazard becomes apparent in figure 6, which depicts the value of

investing (excluding the fixed costs) and the value of inaction. The farther below the target

level a firm’s capital stock is, the more the value of investment exceeds the value of inaction.

Thus, the willingness to adjust the capital and incur the fixed costs increases.
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Figure 5: Steady state distribution of firm-level capital (bars, right axis) and probability of capital adjustment
(dashed line, left axis).

Table 5 provides a comparison of the different models’ steady state. The ratios of aggregate

labor and consumption to output are almost identical across all models. The capital to output

ratio, however, is larger in the models without capital adjustment costs (VUFM and SFM).

In the VULIM, the aggregate steady state utilization rate is considerably higher than in the

other models while the capital to output ratio is smaller. Table 5 also reveals that, compared

26This feature has been well documented in the literature (examples include Caballero et al., 1995, Caballero
and Engel, 1999, Cooper et al., 1999, Thomas, 2002, Khan and Thomas, 2003, 2008, and Bachmann et al.,
2013).
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Figure 6: The value of investment excluding fixed costs (black line) and the value of not investing (gray line).

to the SLIM, fewer firms invest in the VULIM. Moreover, there are some differences in the

firm-level investment rate (i/k) distribution. In the VULIM, the mean and standard deviation

slightly exceed the respective moments for the SLIM. The most marked difference pertains to

the mean investment rate of investing firms, which is substantially larger in the VULIM.

Table 5: Steady state

VULIM SLIM VUFM and SFM

K/Y 1.32 1.36 1.49
N/Y 0.66 0.67 0.65
C/Y 0.84 0.84 0.84
U 1.09 1 1

Fraction of investing firms 0.16 0.18 1

Mean of i/k 0.20 0.19 0.11
Standard deviation of i/k 0.57 0.54 -
Mean of i/k if i/k > 0 1.26 1.06 0.11

Notes: Capital letters denote aggregate variables. N only includes labor used
for production, not the fixed costs denominated in hours of labor. The models
VUFM and SFM yield the same outcomes because δ1 is calibrated such that
steady state utilization is equal to one in the model without adjustment costs.
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5.2 Firm-level investment, utilization and labor decisions

5.2.1 Adjustment hazard

Figure 7 shows how aggregate productivity affects the probability of investment. The ad-

justment hazard is computed at the smallest, middle, and largest of the nine productivity

states.27 The probability of investment is clearly increasing in productivity. The difference in

the adjustment hazard curves between the lowest and the highest productivity state amounts

up to 17 percentage points. Moreover, the target capital level is increasing in productivity.

At low aggregate productivity states, high capital firms with tiny fixed costs optimally under-

take negative investment because their capital stock sufficiently exceeds the desired level. In

contrast, no firm wants to actively decrease its capital at the medium and higher productivity

states.
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Figure 7: The adjustment hazard of the VULIM at different levels of aggregate productivity: the lowest
productivity state (dashed line), the medium state (solid line), and the highest state (solid line with markers).

To analyze the importance of variable utilization for firms’ investment decisions, figure 8

compares the adjustment hazard of the SLIM and the VULIM for different productivity

states. The adjustment hazard of the SLIM fluctuates to a smaller extent across the cycle.

Consequently, there is a cyclical difference in the probability of investment between the two

27To isolate the impact of productivity, I calculate the probability of investment at the identical firm-
level capital distribution for different productivity states. Specifically, I calculate it at the proxy distribution
DP (z, m̄) (cf. section 4) for average moments m̄, where m̄ is computed as a simulation average (note that m̄
differs between the four models VULIM, SLIM, VUFM and SFM). For each model, I simulate the economy
over 5200 periods, starting from the steady state without aggregate shocks. The first 200 periods are discarded
to reduce the impact of the initial productivity state and capital distribution.
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models.28 At low states of aggregate productivity, the VULIM features a smaller probability

of investment for almost any firm-level capital stock. At high productivity states, firms with

large capital stocks are more likely to invest in the VULIM while low capital firms still have

a smaller probability of adjusting capital.
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Figure 8: The adjustment hazard of the VULIM (gray lines) and the SLIM (black lines) at different levels of
aggregate productivity: the lowest productivity state (dashed lines), the medium state (solid lines), and the
highest state (solid lines with markers).

5.2.2 Capacity utilization

The utilization decision is conceptually very different for investing and non-investing firms. For

the former, it is an intratemporal choice that is comparable to the decision on labor demand.

For the latter, however, it is an intertemporal decision. Figure 9 plots the utilization rate of

investing and non-investing firms for average aggregate productivity and mean moments of

the capital distribution. Except for very low or high capital levels, non-investing firms choose

a substantially lower utilization rate.29 This lower rate allows the firms to save capital for

future years, i.e., to smooth capital over the periods until the firm adjusts its capital stock

for the next time.

The utilization function of both investing and non-investing firms is decreasing in cap-

28This finding is in line with the empirical evidence presented in section 2 which reveals a cyclical difference
in the predicted fraction of investing firms when utilization is variable or forced to be constant.

29This finding is consistent with the data analyzed in section 2. In a fixed effects regression of utilization
on the investment dummy, real GDP growth and an interaction term, the coefficient of the investment dummy
is significantly positive. The results indicate that investing firms ceteris paribus have a 4.6 percentage points
higher utilization rate than non-investing firms.
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Figure 9: Utilization of investing (gray line) and non-investing (black line) firms.
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Figure 10: Utilization of investing (gray lines) and non-investing (black lines) firms at different levels of
aggregate productivity: the lowest productivity state (dashed lines), the medium state (solid lines), and the
highest state (solid lines with markers).
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ital. Note that firms with a lot of capital, i.e., firms which have recently invested, choose

a utilization rate that lies substantially below the maximum feasible rate. Thus, investing

firms adjust their capital stock to an extent such that they have reserve capacity.30 There is

an intuitive explanation for that: Forward-looking firms facing fixed capital adjustment costs

jointly plan their investment and utilization paths. In the light of trend productivity growth,

it is optimal to invest up to a capital stock that is too large (i.e., not fully utilized) in the

short run, but allows to keep up with economic growth for some more years. Moreover, reserve

capacity building is optimal because of depreciation: If there were not any reserve capacity,

depreciation would soon cause the newly adjusted capital stock to fall below the desired level.

These considerations highlight the inherent interrelation between firm-level investment and

capacity utilization decisions, which is one of the main motivations for this paper.

Figure 10 depicts the utilization rate of investing and non-investing firms for different

aggregate productivity states. Utilization of both types of firms is increasing in productivity.

For high capital stocks, the utilization rate of non-investing firms can exceed the one of

investing firms. This is the case for firms whose capital stock is close to or exceeds their target

level. Intuitively, because utilization is an intertemporal decision for non-investing firms, these

firms have an incentive to utilize their capital in a way to approach or remain close to their

target level. Compared to investing firms, this incentive entails a larger utilization rate for

firms whose current capital is close to or exceeds the target level and a lower utilization

otherwise.

Finally, a comparison reveals that capacity utilization of investing firms is very similar in

the lumpy investment model and the frictionless model (see figure 19 in the appendix).

5.2.3 Labor demand

The labor demand of both investing and non-investing firms is determined by the optimality

condition w = zF2(ku, n). Consequently, their labor demand (for a given k) only differs if they

choose different utilization rates. Since investing firms have a larger utilization rate in many

cases (as discussed in section 5.2.2), their labor demand usually also exceeds the demand of

non-investing firms.

Figure 11 compares the labor demand of the VULIM and the SLIM for average aggregate

productivity and mean moments of the capital distribution. The labor demand of firms in the
30The results in section 5.2.4 show that the target capital of investing firms is indeed larger in the VULIM

than in the SLIM.

39



VULIM is larger for small levels of firm capital while it is smaller for high capital levels. This

finding corresponds to the discussion in section 5.2.2: In the model with variable utilization,

adjusting firms invest up to a large capital stock which is not immediately fully utilized.

Therefore, labor demand is smaller for large levels of capital. As the capital diverges from

the target due to depreciation and technological progress, both utilization and labor demand

increase relatively to the SLIM.

A comparison of the lumpy investment models (VULIM and SLIM) with the correspond-

ing frictionless models (VUFM and SFM) reveals that labor demand is very similar for the

investing firms (see figures 20 and 21 in the appendix).
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Figure 11: Labor demand of the VULIM (gray lines) and the SLIM (black line). The dashed line indicates
investing firms, solid lines depict non-investing firms. In the SLIM, the labor demand of both types of firms
coincides.

5.2.4 Investment decisions and investment rate distribution

In the model with variable utilization, investing firms build up reserve capacity, i.e., they

adjust capital such that the new stock is not fully utilized. As a consequence, the target

capital level is larger than in the model with constant utilization. This finding holds for

all states of productivity, but particularly for medium and high states. Thus, the difference

between the target capital of the VULIM and the SLIM is pro-cyclical.

Table 6 shows the target capital and the investment of adjusting firms for both models

and all states of productivity.31 In addition, the table presents the fraction of firms adjusting

31The quantities in table 6 are computed at the proxy distribution DP (z, m̄) for average moments m̄, where
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their capital stock. In any productivity state, the VULIM features fewer of those firms. Thus,

the SLIM overestimates the average fraction of adjusting firms. In contrast, it underestimates

the cyclical variability in this fraction. This finding is in line with the empirical evidence

presented in section 2. Overall, table 6 suggests that investment is more lumpy if capacity

utilization is variable because there are fewer adjusting firms, but the investing firms adjust

up to a higher target capital.

In the frictionless models, the target capital is substantially smaller than in the lumpy

models (see table 12 in the appendix) because the firms can readjust their capital stock in

every period without incurring fixed costs. There are only small differences between the target

capital levels of the VUFM and the SFM. Thus, the fact that variable utilization leads to larger

target capital levels of investing firms specifically pertains to the lumpy investment models.

This is related to the incentive for rare and large investments in the lumpy models and the

reserve capacity building, which only comes into complete effect if utilization is allowed to

vary.

Table 6: Investment decisions as a function of aggregate productivity

Productivity VULIM SLIM
Fraction Target Conditional Fraction Target Conditional
active capital investment active capital investment

z = 0.93 0.070 1.02 0.54 0.094 0.98 0.51
z = 0.95 0.078 1.10 0.61 0.104 1.00 0.52
z = 0.97 0.087 1.16 0.66 0.112 1.04 0.56
z = 0.98 0.097 1.23 0.72 0.119 1.09 0.60
z = 1.00 0.107 1.28 0.76 0.127 1.13 0.64
z = 1.02 0.117 1.34 0.81 0.136 1.17 0.67
z = 1.03 0.127 1.39 0.85 0.144 1.21 0.70
z = 1.05 0.138 1.44 0.89 0.153 1.24 0.73
z = 1.07 0.148 1.48 0.93 0.161 1.28 0.77

Notes: Fraction active denotes the fraction of firms adjusting their capital stock, thereby in-
curring fixed costs. Target capital is the capital level that active firms select. Conditional
investment denotes the investment conditional on being active, i.e., the investment of adjusting
firms.

The distribution of the firm-level investment rates (i/k) is characterized in table 7. The

table entries are obtained by simulating the VULIM and the SLIM over 5200 periods starting

from the steady state distribution. I use the identical simulation of the aggregate productivity

series for both model simulations. Differences in the investment rate distribution are there-

fore only caused by different model properties (i.e., variable or fixed utilization). The first

200 periods are discarded to reduce the impact of the initial productivity state and capital

m̄ is computed as a simulation average as described in section 5.2.1. Note that m̄ is model-dependent.
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distribution.

The resulting distribution of the investment rates features a higher mean, standard devia-

tion, skewness and kurtosis in the VULIM. Thus, firm-level investments relative to the capital

stock are larger on average and more lumpy. Moreover, the rise in the skewness highlights

that variable utilization magnifies the asymmetry of investment rates.

The moments of the investment rate distribution show a clear dependence on aggregate

productivity. The mean and the standard deviation increase with productivity, the skewness

and the kurtosis decrease. The positive correlation between the standard deviation of invest-

ment rates and the business cycle fits recent empirical evidence: Bachmann and Bayer (2014)

have established the pro-cylicality of the firm-level investment rate dispersion.

In the frictionless models, all firms are identical and have the same investment rate.

Table 13 in the appendix shows that this investment rate of the VUFM and SFM amounts to

approximately half of the mean investment rate of the lumpy models.

Table 7: Moments of the investment rate distribution as a function of aggregate productivity

Productivity VULIM SLIM
Mean Std. dev. Skewness Kurtosis Mean Std. dev. Skewness Kurtosis

z = 0.93 0.16 0.63 5.6 47.0 0.16 0.51 4.3 26.0
z = 0.95 0.18 0.67 5.4 44.1 0.17 0.54 4.2 24.9
z = 0.97 0.18 0.68 5.4 43.4 0.17 0.54 4.1 24.5
z = 0.98 0.19 0.69 5.3 42.4 0.18 0.56 4.1 24.1
z = 1.00 0.20 0.71 5.2 41.3 0.18 0.57 4.0 23.6
z = 1.02 0.20 0.73 5.2 40.4 0.19 0.58 4.0 23.2
z = 1.03 0.21 0.75 5.1 38.9 0.19 0.59 3.9 22.6
z = 1.05 0.22 0.75 5.1 38.8 0.20 0.60 3.9 22.4
z = 1.07 0.22 0.76 5.0 38.3 0.20 0.60 3.9 22.0

5.3 Macroeconomic implications

Section 5.2 has documented various effects of variable utilization on firms’ optimal decisions.

In comparison to the standard lumpy investment model, firms on average (i) adjust their

capital stock less frequently, (ii) have a higher target capital level and therefore invest more

once they adjust capital, (iii) feature higher utilization and labor demand if their capital stock

is small, and (iv) choose smaller utilization and labor if their capital stock is large. (i) and (ii)

are suggestive of amplified investment lumpiness compared to the SLIM. This is also reflected

in the moments of the investment rate distribution: The mean, standard deviation, skewness,

and particularly the kurtosis in the VULIM exceed the respective moments in the SLIM.

In addition to differences between the VULIM and the SLIM on average, the results on
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the firm-level decisions reveal some cyclical differences. First, the models’ adjustment hazards

differ more markedly in low productivity states. Second, the SLIM underestimates the cyclical

variability of both the target capital level and the fraction of adjusting firms. Finally and

obviously, utilization depends on the state of productivity in the VULIM while it is restricted

to be constant in the SLIM.

In general, the lumpiness at the micro level may be smoothed by aggregation and general

equilibrium price movements. This section analyzes to what extent this holds for the SLIM

and the VULIM, where the latter features magnified lumpiness arising from variable utiliza-

tion. Section 5.3.1 compares moments of aggregate, macroeconomic quantities from the four

models VULIM, SLIM, VUFM and SFM. Section 5.3.2 presents impulse response functions

to aggregate productivity shocks.

5.3.1 Moments of macroeconomic quantities

The following discussion of moments of macroeconomic aggregates focuses on the differences

between the four models rather than on the magnitude of the moments themselves. The model

introduced in this paper is too simple to aim for producing realistic aggregate moments.32

For this reason and because of data unavailability33, this paper’s model is not calibrated to fit

certain business cycle properties. Instead, as described in section 3.5, many parameter values

are adopted from Bachmann and Bayer (2014), who estimate or calculate most parameters

from national accounts or firm-level data.

This section analyzes whether the magnified lumpiness in the VULIM, which is caused

by the building up of reserve capacity when utilization is variable, has macroeconomic conse-

quences. Table 8 presents the mean of macroeconomic quantities obtained from a simulation

of the four models.34 The lumpiness of the SLIM and the magnified lumpiness of the VULIM

is apparent in the higher target capital and the larger investment of those firms which actually

adjust their capital. However, this lumpiness has only negligible effects on aggregate output,

32For instance, this model considers only one aggregate shock and firm heterogeneity along the capital
dimension. Other models have considered investment-specific shocks (Khan and Thomas, 2003), firm hetero-
geneity in productivity (Khan and Thomas, 2008; Bachmann et al., 2013; Bachmann and Bayer, 2014), sectoral
productivity shocks (Bachmann et al., 2013), or time-varying idiosyncratic productivity risk (Bachmann and
Bayer, 2014). The extension of the lumpy investment model by variability in capacity utilization, however,
has required a reduction of model complexity in other dimensions for reasons of computational feasibility.

33A proper calibration of the VULIM would require a dataset with quantitative firm-level data on both
utilization and investment.

34The models are simulated over 5200 periods starting from the steady state distribution. The identical
simulation of the aggregate productivity series is used for all models. To reduce the impact of the initial
capital distribution and productivity state, the first 200 periods are discarded.
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consumption, investment, and labor. The VULIM features a larger aggregate capital stock

though. Moreover, there is a smaller fraction of firms adjusting their capital. The simulation

results for the VULIM also show that, on average, investing firms choose a considerably higher

utilization rate than non-investing firms.

Table 8: Mean of macroeconomic aggregates

Variable VULIM SLIM VUFM SFM

Y 0.51 0.51 0.51 0.51
C 0.43 0.43 0.43 0.43
I 0.08 0.08 0.08 0.08
N 0.33 0.33 0.33 0.33
N investing 0.29 0.29
N non-investing 0.34 0.34
K 0.83 0.76 0.76 0.76
Target capital 1.25 1.12 0.76 0.76
I if investing 0.77 0.63 0.08 0.08
I/K 0.10 0.11 0.11 0.11
U 0.98 1.00
U investing 1.11
U non-investing 0.96
Fraction active 0.11 0.13 1.00 1.00

Table 9 presents the volatility of macroeconomic aggregates. Variable utilization appears

to have a considerable impact. The variables characterizing investment lumpiness are more

volatile in the VULIM than in the SLIM: The standard deviation of the target capital, the

investment of adjusting firms and the fraction of those firms is larger both in absolute terms

and relative to output. Also, the standard deviation of Y , I, N , K, and I/K rises, whereas

consumption becomes less volatile. However, this impact of variable utilization does not

specifically pertain to the lumpy model as a similar pattern can be observed comparing the

VUFM and the SFM. For example, consider the relative standard deviation of consumption

to investment. It is substantially lower in the VULIM than in the SLIM (0.39 instead of

0.56). Thus, the VULIM achieves to relax the tight link between consumption and investment

dynamics in the SLIM which has been mentioned as a potential reason for the aggregate

irrelevance of microeconomic lumpiness (cf. Bachmann and Ma, 2012). However, a similar

decrease in the relative standard deviation of consumption to investment is also obtained if

utilization is allowed to vary in the frictionless model.

The contemporaneous correlations between various macroeconomic series and output are

shown in table 10. For many variables, the differences between the VULIM and the SLIM are

small. Notable exceptions are the labor demand of adjusting firms and the fraction of those
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Table 9: Absolute and relative (to output) standard deviations of macroeconomic aggregates

Variable VULIM SLIM VUFM SFM
(1) (2) (3) (4) (5) (6) (7) (8)

Y 1.71 1.38 1.83 1.40
C 0.52 0.31 0.54 0.39 0.54 0.30 0.56 0.40
I 1.34 0.79 0.97 0.70 1.52 0.83 1.02 0.73
N 0.83 0.49 0.59 0.43 0.95 0.52 0.63 0.45
N investing 0.99 0.58 0.72 0.52
N non-investing 0.87 0.51 0.63 0.46
K 2.86 1.67 2.15 1.56 2.74 1.50 1.96 1.40
Target capital 6.80 3.98 4.98 3.61 2.74 1.50 1.96 1.40
I if investing 5.55 3.25 4.37 3.17
I/K 1.69 0.99 1.32 0.96 2.08 1.14 1.38 0.99
U 1.75 1.02 2.36 1.29
U investing 1.16 0.68
U non-investing 1.67 0.98
Fraction active 1.09 0.64 0.85 0.62

Notes: Columns (1), (3), (5) and (7) contain the standard deviation (multiplied by 100
for readability). The other columns contain the relative standard deviation compared
to output. I if investing denotes the investment conditional on adjusting capital. Labor
N and utilization U are listed both as aggregate and separately for investing and non-
investing firms.

firms, both of which are more markedly pro-cyclical in the model with variable utilization.

In contrast, consumption and, in particular, aggregate capital feature a considerably lower

correlation with output when utilization is variable. Compared to the frictionless models,

consumption, capital and the target capital level are more strongly correlated with output in

the lumpy models.

Finally, table 11 contains the first-order autocorrelation of the macroeconomic quantities.

Many series feature a quite similar persistence in the VULIM and the SLIM, except for output,

the target capital and the investment of adjusting firms, all of which are less persistent in the

VULIM. In the frictionless models, the series tend to be more weakly autocorrelated with the

exception of consumption and, in particular, target capital.

5.3.2 Impulse response functions

This sections presents the effects of aggregate technology shocks on macroeconomic quantities

for different models. The impulse response functions are obtained from simulations which start

at the steady state distribution. Aggregate productivity is set to the medium state (z = 1) in

t = 0. The technology shock consists in a switch to the aggregate productivity state z = z̃ in

t = 1. The subsequent evolution of aggregate productivity is simulated 300 times. Let X̂(i)
z̃,t
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Table 10: Correlation of macroeconomic aggregates with output

Variable VULIM SLIM VUFM SFM

C 0.78 0.84 0.67 0.79
I 0.97 0.95 0.96 0.94
N 0.95 0.92 0.95 0.90
N investing 0.86 0.72
N non-investing 0.95 0.93
K 0.18 0.30 0.13 0.28
Target capital 0.96 0.97 0.59 0.73
I if investing 0.98 0.98
I/K 0.90 0.86 0.90 0.85
U 0.69 0.65
U investing 0.48
U non-investing 0.67
Fraction active 0.86 0.69

Table 11: First-order autocorrelation of macroeconomic aggregates

Variable VULIM SLIM VUFM SFM

Y 0.35 0.42 0.31 0.39
C 0.77 0.79 0.84 0.82
I 0.27 0.28 0.22 0.22
N 0.27 0.26 0.22 0.19
N investing 0.26 0.23
N non-investing 0.28 0.28
K 0.91 0.90 0.88 0.86
Target capital 0.42 0.50 0.88 0.86
I if investing 0.41 0.50
I/K 0.26 0.24 0.22 0.19
U 0.42 0.36
U investing 0.71
U non-investing 0.42
Fraction active 0.32 0.34
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denote the time series in period t which results from simulation number i for an initial shock

to state z̃. The impulse response at period t is given by

IRFz̃,t =
1

300

300∑
i=1

(
X̂

(i)
z̃,t − X̂

(i)
1,t

)
for z̃ ∈ {0.93, 0.95, 0.97, 0.98, 1.02, 1.03, 1.05, 1.07}.

(45)

Thus, the impulse response corresponds to the average difference in the simulated macroeco-

nomic time series if aggregate productivity switched to state z = z̃ instead of staying at state

z = 1 in period t = 1.

Figure 12 shows the responses of output, consumption, investment, capital, employment,

utilization, target capital, and the fraction of adjusting firms to an aggregate productivity

shock of one percent.35 The responses are depicted in percentage deviations from steady

state except for utilization and the fraction of adjusting firms, whose responses are plotted in

percentage points. The magnified lumpiness of the VULIM is apparent in panels (g) and (h)

of figure 12. The initial increase in the target capital level is almost 50% higher than in the

SLIM. Moreover, the fraction of adjusting firms increases more strongly. As a result, aggregate

investment and capital respond more markedly to a positive productivity shock. The same

holds for employment and output. In contrast, the impulse response of consumption is rather

similar across the VULIM and the SLIM.

Thus, apart from consumption, variable utilization leads to substantial differences in the

responses of macroeconomic time series to technology shocks. However, this does not nec-

essarily imply that investment lumpiness at the micro level has substantial macroeconomic

consequences because the impulse responses depend on utilization variability in a frictionless

world as well. Indeed, a comparison of the VULIM with the corresponding frictionless model

(VUFM) reveals that the differences in some impulse responses are relatively minor. In partic-

ular, the initial responses of output, consumption, investment and employment hardly differ

across these models. However, pronounced differences between the VULIM and the VUFM

pertain to capital, utilization and the target level. The response of aggregate capital is larger

35More precisely, the impulse response functions are estimated for a switch from state z = 1 to z = 1.03,
but scaled down to a productivity shock of one percent for reasons of readability. In principle, there may
be non-linearities, i.e., the response may depend non-proportionally on the size of the initial productivity
change. However, the responses to different magnitudes of the initial shock turn out to be roughly similar. In
addition, the impulse responses may be different depending on the shock being positive or negative. However,
the differences turn out to be small for most of the series.
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Figure 12: Impulse responses to a one percent positive technology shock occurring at t = 1 for various models:
VULIM (gray solid lines), SLIM (black solid lines), VUFM (gray dashed lines), and SFM (black dashed lines).
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and more persistent in the VULIM while aggregate utilization initially increases to a smaller

extent. The initial increase in the target capital level is more than three times larger. Thus,

while positive productivity shocks enhance investment lumpiness at the micro level as invest-

ing firms adjust up to a higher target, the overall macroeconomic effects of lumpy investment

are small: Few firms invest approximately the same amount that would have been invested

by all firms otherwise.

The four models compared in figure 12 differ in the dimensions of utilization variability

and capital adjustment costs. In terms of the size of the responses, the variability of utilization

appears to be the more relevant dimension. Except for the target capital and the fraction of

adjusting firms, the initial magnitude of the impulse response differs more between the models

with variable and fixed utilization than between the models with and without fixed capital

adjustment costs.

The previous discussion on the impulse responses has been confined to economies starting

at the steady state distribution. The remainder of this section addresses the variation of

these responses over the business cycle. Following Caballero and Engel (1993) and Bachmann

et al. (2013), a responsiveness index (RI) is computed. This index measures the response

upon impact to an aggregate technology shock as a function of the economy’s aggregate state

(zt, µt). It is defined as follows:

RIt,X ≡
1

2

[
I+
X(zt, µt)− I−X(zt, µt)

]
, (46)

where X denotes the series for which the response is computed and where

I+
X(zt, µt) ≡ X̂(z+

t , µt)−X(zt, µt), (47)

I−X(zt, µt) ≡ X̂(z−t , µt)−X(zt, µt). (48)

X(zt, µt) denotes the value of X in period t obtained from the simulation over 5200 periods

described above. X̂(z+
t , µt) and X̂(z−t , µt) denote the values of X if aggregate productivity

had amounted to z+
t and z−t instead of zt, respectively, where z+

t and z−t denote the adja-

cent productivity states of zt.36 Potential asymmetries between I+
X(zt, µt) and I−X(zt, µt) are

averaged out in (46).

36If zt equals the lowest productivity state, z−t does not exist. In this case, RIt,X is defined as RIt,X ≡
I+X(zt, µt). Likewise, RIt,X ≡ −I−X(zt, µt) if zt equals the highest productivity state.
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Figures 13 and 14 depict the responsiveness index for the last 100 periods of the simulation

described above. The impulse responses to technology shocks upon impact are time-varying.

Panels (a) to (d) in figure 13 show that the initial response of the target capital level, invest-

ment, output, and employment is not only larger on average but also more volatile in this

paper’s VULIM compared to the SLIM. However, this pattern does not exclusively pertain

to the lumpy investment models. As shown in panels (e) to (h) in figure 13, a similar change

in the responsiveness to technology shocks results when utilization is allowed to vary in a

frictionless model.

However, the pattern is different for consumption. With variable utilization, the initial

response of consumption becomes more stable in the lumpy model but more volatile in the

frictionless model (cf. panels (a) and (c) of figure 14). The figure also shows that the response

of utilization is smaller and less volatile in the VULIM compared to the VUFM (panel (b)).

Finally, panel (d) of figure 14 reveals that the fraction of adjusting firms is more responsive

to technology shocks in the VULIM compared to the SLIM, and the responsiveness is more

volatile.

Overall, the analysis of the responsiveness index is in line with the above discussion on the

impulse responses in figure 12. On the one hand, the variability of utilization affects not only

the average response upon impact but also its variation over the business cycle. On the other

hand, the impact of variable utilization is similar in the lumpy and the frictionless model.

Thus, there is no evidence for substantial macroeconomic effects of the magnified investment

lumpiness due to reserve capacity building.

6 Conclusion

The lumpiness of investment at the plant level is well established. The macroeconomic rele-

vance of lumpy investment, however, has been subject to debate. Previous lumpy investment

models have assumed that firms constantly utilize their capital. However, this assumption is

delicate because it attenuates the core incentive for lumpy investment, which consists in firms

trying to avoid frequent fixed cost payments by investing more rarely, but larger amounts.

Constant utilization makes investments which exceed the frictionless ideal increasingly costly

because firms will have to fully utilize their new, “too large” capital stock. In contrast, with

variable utilization, firms can undertake large investments to save on fixed cost payments
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(h) Employment, frictionless models

Figure 13: Responsiveness index RIt,X for different variables X: Target capital, investment, output, and
employment. The index is depicted for various models: VULIM (gray solid lines), SLIM (black solid lines),
VUFM (gray dashed lines), and SFM (black dashed lines).
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(d) Fraction of adjusting firms

Figure 14: Responsiveness index RIt,X for different variables X: Consumption, utilization, and the fraction
of adjusting firms. The index is depicted for various models: VULIM (gray solid lines), SLIM (black solid
lines), VUFM (gray dashed lines), and SFM (black dashed line).
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while at the same time achieve the optimal amount of capital services by adjusting utilization

accordingly. Thus, investment and utilization decisions are inherently interrelated. Firm-level

investment lumpiness is enhanced by the possibility to build up reserve capacity that is not

necessarily entirely utilized in the short run.

This paper empirically demonstrates the importance of capacity utilization for firms’ in-

vestment decisions. Utilization has a positive effect on the probability of investment and a

negative impact on the probability of disinvestment. Moreover, there are significant interac-

tion effects with GDP growth. Thus, the rate of capacity utilization also influences how the

investment probability responds to GDP. An aggregation exercise suggests that if utilization

is restricted to be constant, the fraction of investing firms is underpredicted in booms and

overpredicted in recessions.

Regarding the theoretical contribution, this paper is the first to analyze (i) optimal firm-

level decisions in an environment with fixed capital adjustment costs and variable utilization

and (ii) the macroeconomic consequences thereof. To this end, I extend a lumpy investment

dynamic stochastic general equilibrium model by variable utilization. The model features fixed

costs of capital adjustment, firm heterogeneity in capital, and aggregate productivity shocks.

The firms’ decision problem is complex: They need to make a discrete decision on investment

and to choose labor, utilization, and next period’s capital stock (if they invest). The utilization

decision is intratemporal for investing firms and intertemporal for non-investing firms. Thus,

firms not paying the fixed capital adjustment costs still have a limited intertemporal choice,

a feature whose absence in many previous studies has been criticized. The model is solved

using numerical methods.

The findings show that variable utilization manyfold affects firms’ optimal decision rules.

First, the results provide evidence for amplified lumpiness: While fewer firms invest on aver-

age, the adjusting firms invest a considerably larger amount. The increase in the kurtosis of

firm-level investment rates is also indicative of enhanced lumpiness in the variable utilization

model. Second, the findings suggest that reserve capacity building is important: Firms with a

large capital stock choose a utilization rate substantially below the feasible maximum. Third,

variable utilization affects firms’ decisions on labor and utilization. Compared to the stan-

dard lumpy investment model, high capital firms feature smaller utilization and labor demand

whereas low capital firms rely more extensively on these two production factors. Fourth, vari-

ability of utilization alters the cyclical properties of firms’ optimal decisions. Both the target
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capital level of investing firms and the fraction of those firms fluctuates to a greater extent

across the cycle when utilization is variable. Finally, the findings indicate that non-investing

firms tend to choose a considerably lower utilization rate than investing firms.

Four models are compared to assess the macroeconomic implications of lumpy investment

when utilization is variable: models with or without variable utilization and with or without

fixed capital adjustment costs. Simulation results suggest that the fraction of adjusting firms

is lower and that aggregate capital, the investment of adjusting firms and the target capital

level are larger in this paper’s VULIM. For the other macroeconomic quantities, the means are

similar across the four models. The differences are more pronounced for standard deviations

and correlations. The crucial question, however, is whether a model featuring both lumpy

investment and variable utilization shows properties beyond what could be expected from

the models with only one of those features. After all, the firm-level evidence has revealed an

additional channel for lumpiness through reserve capacity building. However, the standard

deviations and correlations of aggregate quantities change in a similar way when variable

utilization is introduced in a lumpy or in a frictionless model.

A similar finding holds for the impulse response functions to aggregate technology shocks.

The initial responses of output, consumption, investment, and employment are similar in this

paper’s VULIM and the VUFM. Pronounced differences pertain to the initial response of

aggregate utilization (which is smaller in the VULIM) and the responses of aggregate capital,

investing firms’ target capital and the fraction of adjusting firms (which are larger in the

VULIM).

Several reasons may explain why the amplified lumpiness at the firm level does not trans-

late more clearly to the macroeconomic level. Of course, aggregation and general equilibrium

price movements act as a smoothing device. In addition, there is a reason specifically per-

taining to the variable utilization model: While large investments in reserve capacity lead to

a jump in (firm-level) capital, they do not cause a correspondingly large increase in output

and labor demand because part of the capital is left idle. Thus, even at the firm-level, the

magnified lumpiness of investment and capital does not necessarily spread to capital services.

Hence, while reserve capacity building enhances lumpiness at the firm level, it may at the same

time serve as a potential explanation for the small macroeconomic impact of this magnified

lumpiness.

Overall, the findings of this paper are broadly in line with the previous literature. I
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find a somewhat larger macroeconomic role of investment lumpiness than Thomas (2002)

and Khan and Thomas (2003, 2008), possibly because the fixed capital adjustment costs are

substantially larger in my model. Yet, my finding that, despite the larger fixed costs, the

amplified lumpiness is of minor macroeconomic relevance is consistent with their results.

This study complements previous research on macroeconomic effects of lumpy investment.

It extends the basic lumpy investment model by variable utilization while other studies have

for instance considered additional aggregate shocks or firm heterogeneity in productivity.

Combining such model properties with variable utilization would be a straightforward exten-

sion of this paper, although computational possibilities might still restrict the complexity of

the model to be solvable. Computational feasibility also limits the number of state variables

that can be used to replace cross-sectional distributions in the state vector, a limitation which

this paper shares with other studies. Finally, this paper has not re-calibrated the lumpy

investment model including variable utilization, but relied mostly on the calibration of Bach-

mann and Bayer (2014) due to the lack of a better dataset. In particular, I am not aware

of an extensive firm-level dataset including quantitative data on both investment and utiliza-

tion. Thus, further data collection would be valuable to improve both the calibration of the

theoretical model and the empirical analysis of firms’ interrelated decisions on utilization and

investment.

In summary, this study has taken a step in the direction of understanding the role of

reserve capacity for lumpy investment and its macroeconomic consequences. Building up

reserve capacity provides both an explanation for enhanced lumpiness at the microeconomic

level and a potential reason for its low macroeconomic relevance: Even if the adjustment of

capital is lumpy due to fixed costs, the firm-level usage of this production factor may in fact

be smoother, thereby attenuating the macroeconomic impact of lumpiness.
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Figure 15: The fraction of investing firms when capacity utilization is fixed (gray dashed line) or variable
(black solid line). The estimation is based on column (2) in table 2.
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Figure 16: The fraction of firms with negative investment when capacity utilization is fixed (gray dashed line)
or variable (black solid line). The estimation is based on column (2) in table 3.
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Figure 17: Difference in the predicted fraction of investing firms when utilization is variable or fixed. The
difference is based on the FE model (column (2) in table 2).
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Figure 18: Difference in the predicted fraction of firms with negative investment when utilization is variable
or fixed. The difference is based on the FE model (column (2) in table 3).
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Figure 19: Utilization of the VULIM (gray lines) and the VUFM (black line). Dashed lines indicate investing
firms, the solid line non-investing firms. In the VUFM, all firms invest.

63



0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Capital

La
bo

r

Figure 20: Labor demand of the VULIM (gray lines) and the VUFM (black line). Dashed lines indicate
investing firms, the solid line non-investing firms. In the VUFM, all firms invest.
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Figure 21: Labor demand of the SLIM (gray line) and the SFM (black line). In the SLIM, the labor demand
of investing and non-investing firms is identical. In the SFM, all firms invest.
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B Tables

Table 12: Target capital as a function of aggregate productivity

Productivity VULIM SLIM VUFM SFM

z = 0.93 1.02 0.98 0.69 0.70
z = 0.95 1.10 1.00 0.70 0.71
z = 0.97 1.16 1.04 0.71 0.72
z = 0.98 1.23 1.09 0.73 0.73
z = 1.00 1.28 1.13 0.74 0.74
z = 1.02 1.34 1.17 0.75 0.75
z = 1.03 1.39 1.21 0.77 0.76
z = 1.05 1.44 1.24 0.78 0.77
z = 1.07 1.48 1.28 0.80 0.79

Table 13: Mean investment rate as a function of aggregate productivity

Productivity VULIM SLIM VUFM SFM

z = 0.93 0.16 0.16 0.08 0.09
z = 0.95 0.18 0.17 0.09 0.10
z = 0.97 0.18 0.17 0.10 0.10
z = 0.98 0.19 0.18 0.10 0.10
z = 1.00 0.20 0.18 0.11 0.11
z = 1.02 0.20 0.19 0.11 0.11
z = 1.03 0.21 0.19 0.12 0.12
z = 1.05 0.22 0.20 0.12 0.12
z = 1.07 0.22 0.20 0.13 0.12

Notes: Table entries are computed using the simulation
described in section 5.2.4.

C Uniqueness of Goods and Labor Market Equilibrium

The goods market equilibrium (32) requires that consumption plus investment equals output.

If production of the good is increasing and total demand for the good is decreasing in p, there

can be at most one equilibrium.37 Totally differentiating p = U1(C, 1 − Nh) and rewriting

yields:

dC

dp
=

1

U11(C, 1−Nh)
+
U12(C, 1−Nh)

U11(C, 1−Nh)

dNh

dp
. (49)

In the lumpy investment literature, utility is usually assumed to be additively separable in

consumption and leisure (i.e., U12 = 0). In this case, dC/dp < 0 immediately follows from

decreasing marginal utility of consumption (U11 < 0).
37More precisely, I need either production to be strictly increasing or demand to be strictly decreasing in

p while the other curve can be (weakly) decreasing or increasing.
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The analysis of aggregate investment and output’s dependence on p is more demanding.

Investment is decreasing in p if the following condition holds:38

∫
K

[(
γ
∂k∗

∂p
+ δu

∂uI
∂p

k

)
G (κ̄) + (γk∗ − (1− δ(uI)) k) g (κ̄)

∂κ̄

∂p

]
µ(dk) ≤ 0, (50)

where g (κ) = ∂G (κ) /∂κ. This expression captures both the intensive and extensive margin

of investment. The size of each firm’s capital adjustment depends on ∂k∗/∂p and ∂uI/∂p while

g (κ̄) ∂κ̄/∂p determines the change in the fraction of firms undertaking capital adjustments.

For aggregate output to be increasing in p, the following condition needs to hold:

∫
K

[
∂yN
∂p

(1−G (κ̄)) +
∂yI
∂p

G (κ̄) + (yI − yN ) g (κ̄)
∂κ̄

∂p

]
µ(dk) ≥ 0, (51)

where yN = zF
(
kuN , n

f
N

)
and yI = zF

(
kuI , n

f
I

)
. Thus, it is not sufficient to show that

both investing and non-investing firms increase their production when p rises. In addition,

one needs to consider that firms may switch from investing to non-investing and vice versa,

which involves a jump in production. This is captured by the term (yI − yN ) g (κ̄) ∂κ̄/∂p.

Conditional on p, which is determined in the goods market, I analyze the uniqueness of the

labor market equilibrium. I present conditions under which labor supply Nh is non-decreasing

and aggregate labor demand is decreasing in the real wage w, in which case there is at most

one equilibrium in the labor market.

Totally differentiating w = U2(C, 1−Nh)/p and rewriting yields:

dNh

dw
=
U21(C, 1−Nh)

U22(C, 1−Nh)

dC

dw
− p

U22(C, 1−Nh)
. (52)

Assuming additive separability (i.e., U21 = 0), U22 ≤ 0 implies that labor supply is non-

deceasing in w.

For aggregate labor demand to be decreasing in w, the following condition needs to hold:

∫
K

[
∂nfN
∂w

(1−G (κ̄)) +
∂nfI
∂w

G (κ̄) +
(
nfI − n

f
N

)
g (κ̄)

∂κ̄

∂w

+κ̄G(dκ̄)
∂κ̄

∂w

]
µ(dk) < 0. (53)

38The dependencies on (k; z, µ) are suppressed for readability.
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∂nfN/∂w < 0 and ∂nfI /∂w < 0 follows from (22), (23), (25), (26), and the assumptions F11 <

0, F22 < 0 and F12 ≥ 0. However, to assure that (53) is satisfied, one needs to additionally

consider the difference in the labor demand of firms switching their binary investment decision,

which is captured by the term
(
nfI − n

f
N

)
g (κ̄) ∂κ̄/∂w, and the change in aggregate fixed costs

(which are denominated in hours of labor) resulting from firms which change their capital

adjustment decision.

In summary, if household utility is additively separable and if conditions (50), (51) and

(53) hold, then there is at most one equilibrium in the goods and labor market. A proof

of these conditions, however, is beyond the scope of this paper. Nevertheless, I can present

numerical evidence for uniqueness of the goods and labor market equilibrium for this paper’s

model specification and calibration.

Figure 22 shows aggregate demand (consisting of consumption and investment) and aggre-

gate production in the steady state of this paper’s model. The equilibrium is clearly unique

as demand is strictly decreasing and output strictly increasing. A more detailed analysis re-

veals that both consumption and investment are strictly decreasing, the latter being far from

linear. The desired capital stock k∗ also decreases in p, while the fraction of firms adjusting

their capital stock first declines and then rises. Figure 23 shows the labor market equilibrium

conditional on the equilibrium p. As for the goods market, there is no evidence of multiplicity

of equilibria.
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Figure 22: Consumption and investment demand (black line) and production (gray line) as a function of p in
the steady state.

Uniqueness does not only hold in the steady state. A simulation of the model over 5200

periods, starting from the steady state, reveals a unique equilibrium in the goods and labor

market in each period. In particular, both consumption and aggregate investment are strictly
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Figure 23: Labor demand (black line) and supply (gray line) as a function of w (conditional on equilibrium
p) in the steady state.

decreasing in p, aggregate output is strictly increasing in p, and aggregate labor demand is

strictly declining in w (for a given p).39 Thus, for the model specification and calibration in

this paper, multiplicity of equilibria should not be an issue.

39Labor supply is perfectly elastic for the specification of household utility used in this paper. Thus, labor
supply determines w conditional on p, and the strictly decreasing labor demand uniquely determines the
aggregate amount of labor.
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