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1.1 Introduction

Policy makers are often interested in the causal effect of a binary treatment D
on an outcome variable Y . This effect is frequently summarized by the average
treatment effect E [Y1]−E [Y0], where Y1 and Y0 are the treatment and control
potential outcomes that were introduced by Neyman (1923) and popularized
by Rubin (1974). This single measure, however, gives only a partial view over
the effects of the treatment. The treatment may not affect the mean of the
outcome distribution but may increase its variance or change its shape. From
a policy perspective, an intervention that helps to raise the lower tail of an
income distribution is often more appreciated than an intervention that shifts
the median, even if the average treatment effects of both interventions are
identical. In another application. In clinical trials, a drug may increase the
long-term survival probability without affecting short-term survival.

We naturally have more information about the treatment effect if we know
the whole distributions of the potential outcomes, FY0 (y) and FY1 (y), or
equivalently their inverse, the quantile functions QY0 (τ) and QY1 (τ), where
τ ∈ (0, 1) denotes the quantile index. An intuitive way to summarize the
treatment effect consists in reporting the quantile treatment effect (QTE)
function

∆ (τ) = QY1
(τ)−QY0

(τ) .

QTEs allow for assessing numerous interesting hypotheses. For instance, if the
treatment has a pure location shift effect, then QTEs will be constant as a
function of the quantile. The location scale shift model implies a monotone
QTE function. If the distribution of Y1 has first-order stochastic dominance
over the distribution of Y0, then the QTE function will be above the zero line.
Thus, the QTE function represents an intuitive way to report the effect of a
treatment on the marginal distribution of the outcome variable.

It would be even more informative to know the whole joint distribution
of Y1 and Y0. Heckman et al. (1997) discuss several of the additional evalua-
tion questions that could be analyzed if we knew this joint distribution. For
instance, we could calculate the distribution of the individual treatment ef-
fects, FY1−Y0

(y), and in particular recover the proportion of units who benefit
from the treatment. Alas, this joint distribution is not identified even in the
ideal situation where the treatment has been randomized. Without further
assumptions we can only bound the joint distribution based on the classi-
cal inequalities by Hoeffding and Fréchet and the resulting identified sets are
almost always very wide.

Rank preservation is a common assumption that allows for recovering the
joint distribution from the marginals. If we assume that each individual main-
tains its rank in the distribution of the outcome regardless of his treatment
status, then the τ QTE is the treatment effect for individuals at the τ quantile
of the potential outcome distributions. Doksum (1974) and Lehmann (1975)



Local quantile treatment effects 5

were the first to suggest this measure of the treatment effect and to discuss its
properties. The idea is that each subject possesses an underlying “proneness”
or ability – depending on the application proneness to die early, to learn fast,
to grow taller – which does not change with the treatment. In some applica-
tions, rank preservation is natural because it seems unlikely that the treatment
makes weak subjects robust and strong subjects weak. On the opposite, if we
consider an application where the outcome is the wage and the treatment is
the sector of employment, it is implausible that the best professors of philos-
ophy are also the best bricklayers. The methods reviewed in this chapter do
not rely on the rank invariance assumption. We therefore interpret QTE as
the difference between the same quantile of two distributions. However, the
rank preservation assumption can always be added on the top to enrich the
interpretation of the results.

In a randomized control trial with perfect compliance, the sample quantiles
in the treated and control groups are consistent for QY1 (τ) and QY0 (τ) and,
consequently, their difference is consistent for ∆ (τ). In practice, ∆ (τ) can
be estimated using a simple quantile regression of Y on D and a constant.
However, it is often impossible to impose perfect compliance: some subjects
may be assigned randomly to the treatment but they may refuse to take it,
other may be assigned to the control group but may find a way to get the
treatment anyway. As a result, the observed treatment variable is self-selected
and its endogeneity renders standard quantile regression inconsistent just as it
is the case for least squares methods. On the other hand, since the assignment
has been randomized, it is still possible to identify the causal effect of the
assignment on the outcome distribution. In the context of clinical trial, this
is called the intention-to-treat (ITT) effect. While the ITT effect might be
an interesting parameter, especially when the only possible intervention is
to assign the treatment, the ITT effect does not provide an estimate of the
treatment effect.

Instrumental variable methods provide a powerful tool to address this
problem. There are several approaches to instrumental variable identification
and estimation of QTE. In this chapter, we focus on models that achieve identi-
fication through a monotonicity assumption in the treatment choice equation
and do not rely on rank preservation or other similar assumptions. This is
in sharp contrast to the instrumental variable approach reviewed by Cher-
nozhukov et al. (2016). We compare both approaches in Section 1.5. We also
limit our survey to models for binary endogenous variables because almost no
results have been obtained for multi-valued or continuous treatments within
the framework that we consider.

In the simplest set-up, both the treatment and the assignment (instrument)
are binary. With imperfect compliance, there are some individuals who do not
react to a change in the assignment; either they always refuse the treatment
or they always find a way to get the treatment. Since we allow the treatment
effect to be arbitrarily heterogeneous, we cannot identify the treatment effects
for these units. There is no information in the data for them about one of



Local quantile treatment effects 6

both potential outcomes. This implies that it is also impossible to identify the
treatment effect for the whole population (QTE) or, if some units are always
treated independently of the assignment, for the treated sub-population (QTE
on the treated). We are only able to identify effects for the individuals that
responds to a change in the value of the instrument. These individuals are
called compliers because they comply with the assignment.

Our main estimand is, therefore, the QTE for the compliers, which we
call the local quantile treatment effect (LQTE) because it corresponds to the
QTE for a subpopulation. This terminology is in analogy to the local average
treatment effect (LATE) of Imbens and Angrist (1994) and is not related to
nonparametric methods that are local with respect to the covariates. Whether
or not the subpopulation of compliers is of interest depends heavily on the
empirical context; see, for instance, the controversial discussion in Imbens
(2010), Deaton (2010), and Heckman and Urzúa (2010). While other popula-
tions would naturally be of interest, we would like to emphasize again that
there is no information in the data about their treatment effects. The LQTE
is the QTE for the the largest population for which the effect is identified. As
will be obvious in Section 1.5, the approaches that recover treatment effects
for larger populations achieve identification by means of extrapolation from
the compliers.

The methods surveyed in this chapter have already been applied numer-
ous times in very different setups. For instance, Abadie et al. (2002) estimate
the effect of JTPA training programs on the earnings distribution of previ-
ously unemployed individuals. Eren and Ozbeklik (2014) similarly study the
effects of the Job Corps programs. They both identify the causal effects of the
programs by exploiting a randomized experiment with imperfect compliance.
The methods are, however, not limited to the analysis of experimental data.
Many variables of interest cannot be randomized in economics and other so-
cial sciences. For this reason, researchers use ‘natural experiments’ to identify
treatment effects. Ananat and Michaels (2008) note that the probability of a
divorce is higher when the first-born child is a female. Using this source of
variation, they find that a divorce has little effect on women’s mean houshold
income but it increases womens odds of having very high or very low income.
Cawley and Meyerhoefer (2012) estimate the impact of obesity on the distribu-
tion of medical costs, instrumenting the respondents weight with the weight of
a biological relative. Frölich and Melly (2013) use twin birth as an instrument
for having several children and estimate its effect on the houshold income.

The basic framework was already developed in the 90s; Angrist and Pischke
(2008), Imbens et al. (2014) and Imbens and Rubin (2015) provide interest-
ing surveys of this approach to instrumental variables. In Section 1.2, after
briefly summarizing the basics, we focus on the particularities of the quan-
tile estimands and their implications for the identification of the effects in
setups without and with covariates. Section 1.3 briefly reviews the literature
on estimation and inference. In Section 1.4 we consider two extensions within
the same framework – nonbinary instruments and the regression discontinuity
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design – as well as the testability of the identifying assumptions. Section 1.5
compares the model in this chapter to the instrumental variable quantile re-
gression model introduced by Chernozhukov and Hansen (2005) and reviewed
in Chernozhukov et al. (2016). Finally, Section 1.6 briefly summarizes the
findings and highlights two important open problems in this literature.

1.2 Framework, estimands and identification

1.2.1 Without covariates

We develop our presentation in the context of a randomized trial with non-
compliance. The units of observation are assigned to a treatment but this
assignment cannot be perfectly enforced. We consider the simplest case where
both the assignment Z as well as the treatment D are binary. In many appli-
cations it is reasonable to assume that there is no interference between units.
This assumption, first introduced by Cox (1958), is called the Stable Unit of
Treatment Assignment (SUTVA) by Rubin (1980).

Assumption 1 SUTVA: For any unit the value of the treatment when ex-
posed to the assignment z and of the outcome when exposed to the assignment
z and the treatment d is the same regardless of the treatments and assignments
that other units receive.

SUTVA excludes any kind of interaction between units. A classical vio-
lation of this assumption is a setting where the treatment is a vaccine that
immunizes the unit against a contagious disease. The effect of this vaccine
will necessarily be a function of the number of persons who have already been
vaccinated. Peer effects and general equilibrium effects are also excluded; e.g.
SUTVA is violated if the wage effect of getting a college degree depends on
the proportion of the labor force having the same degree. Thus, as all partial
equilibrium approaches, it is well suited only for small-scale interventions.

We use the potential outcomes notation. Dz denotes the potential treat-
ment status when the assignment is set exogenously to z ∈ {0, 1}. The ob-
served treatment is related to the potential treatments as D = D1Z +D0(1−
Z). In the case of perfect compliance, Dz = z such that D = Z and the
treatment itself has been randomized. With imperfect compliance this equal-
ity breaks down and we have to take into account the fact that the treatment
has been self-selected and is, therefore, endogenous. Similarly, we define four
potential outcomes Yzd for each combination of z and d ∈ {0, 1}. Note that
without Assumption (1) the potential outcomes of each unit would depend on
the assignments and treatments of all units in the population. It is impossi-
ble to identify any treatment effect without imposing some restriction on the
dependence between units.
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With a randomized assignment it is easy to identify the average causal
effect of the assignment on the outcome, E [Y1D1

− Y0D0
], as well as its effect

on the distribution and quantile functions of the outcome. In the context of
clinical trial, this is called the intention-to-treat (ITT) effect. While the ITT
effect might be an interesting estimate, especially when the only possible in-
tervention is to assign the treatment, the ITT effect does not take into account
the information about the treatment. If compliance is low, it will underesti-
mate the absolute value of the effect of the treatment. In the following, we
will take the extent of non-compliance into account in order to estimate the
effect of the treatment.

With D and Z being binary, we can partition the population into four
types T defined by D1 and D0:

D1 D0 Type
1 1 Always-takers (T = a)
1 0 Compliers (T = c)
0 1 Defiers (T = d)
0 0 Never-takers (T = n)

The never-takers and the always-takers do not react to the assignment and
do not contribute to the ITT effect. We have no source of random variation for
these types and we will not be able to identify any treatment effects for them.
Both the compliers and the defiers react to a change in the assignment but they
do so in opposite directions. Therefore, the ITT effect is a weighted average
of the individual treatment effects with positive weights for the compliers,
negative weights for the defiers and zero weights for both other types (e.g.,
Angrist et al., 1996). Given that we observe each unit only in one state of the
world, we are unable to determine the type of each unit to separate compliers
from defiers. There are at least two ways to solve this mixture problem: either
we restrict the outcome to be the same for the compliers and the defiers
(homogeneity assumption for the treatment effect) or we assume that there are
no defiers (homogeneity assumption for the assignment effect). The approach
to instrumental variables that we review in this chapter follows the second
way. De Chaisemartin (2014) shows that these two types of assumptions can
be combined and would lead to a similar interpretation of the same estimators.

We impose the following assumptions:

Assumption 2 1. Independent instrument: (Y11, Y10, Y01, Y00, D1, D0)⊥⊥Z
2. Exclusion restriction: P (Y1d = Y0d) = 1 for d ∈ {0, 1}
3. Relevant instrument: Pr(T = c) > 0 and Pr (Z = 1) ∈ (0, 1)

4. Monotonicity: Pr(T = d) = 0

Assumption 2.1 is an unconfounded instrument restriction. It is mechani-
cally satisfied if the assignment has been randomized. Full independence is re-
quired for the identification of the whole LQTE process but a slighter weaker
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local quantile independence condition is enough to identify a single LQTE,
see Assumption 4 in Section 1.4.3. The exclusion restriction (Assumption 2.2)
requires that the assignment Z must have no direct effect on the potential
outcomes to be a valid instrumental variable. It is important to note that this
exclusion restriction is unrelated to – and, in particular, not implied by – the
randomization of the instrument (Assumption 2.1). In medical studies it is
well-known that there is an psychological effect of being assigned to a treat-
ment. For this reason, even the control group receives a placebo treatment and
the exclusion restriction is then likely to be satisfied. There are cases where it
is more difficult to find a placebo treatment. For instance, if unemployed indi-
viduals receive an invitation to attend a CV-writing course, they may decide
not to attend the course but start reading books to improve their application
documents. This would violate the exclusion restriction. Under Assumptions 1
and 2.2 we can define potential outcomes in terms of D alone: Y0 = Y00 = Y10

and Y1 = Y01 = Y11. Assumption 2.3 requires that at least some individuals
react to changes in the value of the instrument. The strength of the instrument
can be measured by Pr(T = c). These first three assumptions are common
to all instrumental variable models. Assumption 2.4, which is often referred
to as monotonicity, is specific to the approach we review in this chapter. It
requires that Dz weakly increases with z for all individuals. Note that it is
mechanically satisfied if there is perfect one-sided compliance, which is quite
common. If those assigned to receive the control treatment can be denied ac-
cess to the active treatment, then there are no defiers and no always-takers.
In addition to automatically satisfying the monotonicity assumption this also
implies that the treated are all compliers such that the LQTE is equal to the
QTET.

Imbens and Angrist (1994) show that, under Assumptions 1 and 2, the
Wald (1940) estimator is consistent for the average treatment effect for the
compliers, usually referred to as the LATE:

E (Y1 − Y0|T = c) =
E [Y |Z = 1]− E [Y |Z = 0]

E [D|Z = 1]− E [D|Z = 0]
.

The result for the average of the dependent variable naturally also apply to
transformations of the dependent variable such as the distribution function
(FY (y) = E [1 (Y ≤ y)]). This directly provides results for the distributional
treatment effect for the compliers – FY1 (y|T = c) − FY0 (y|T = c). Unfortu-
nately, this approach does not yield quantile treatment effects for the compli-
ers, QY1

(τ |T = c) − QY0
(τ |T = c), because FY1

(y|T = c) and FY0
(y|T = c)

must be obtained separately such that one can invert them to obtain quantile
functions. Obtaining the effect on the distribution is enough to test some hy-
potheses such as the absence of any effect or first order stochastic dominance,
but it is not enough to recover important information about the treatment
effects. The quantiles and LQTEs have an intuitive and straightforward inter-
pretation. Their unit of measurement is the same as the unit of the outcome
itself. This allows, for example, to test the hypothesis that the treatment effect
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exerts a pure location shift or a location-scale shift of the distribution of the
outcome. With distributional treatment effects we may find that the effect is
positive over a part of the support of Y and negative over another part, but we
cannot identify how relevant these two parts are without knowing separately
the distributions of Y1 and Y0. For instance, it may be that the treatment
effect is positive over 99% of the quantiles and negative only over 1%; or it
may be the opposite.

Imbens and Rubin (1997) show that the distributions of Y1 and Y0 are
identified for the compliers by working directly with the densities. Abadie
(2002) gives more convenient representations for the cumulative distribution
functions (cdf):

FY1 (y|T = c) =
E [1 (Y ≤ y)D|Z = 1]− E [1 (Y ≤ y)D|Z = 0]

E [D|Z = 1]− E [D|Z = 0]
(1.1)

The reason is that E [1 (Y ≤ y)D|Z = 1] = FY1
(y|T = a) Pr (T = a) +

FY1
(y|T = c) Pr (T = c) and E [1 (Y ≤ y)D|Z = 0] = FY1

(y|T = a) Pr (T = a),
such that the numerator simplifies to FY1 (y|T = c) Pr (T = c). Similarly, the
denominator simplifies to Pr (T = c). A similar reasoning can be used to iden-
tify the distribution of the control potential outcome:

FY0
(y|T = c) =

E [1 (Y ≤ y) (1−D) |Z = 1]− E [1 (Y ≤ y) (1−D) |Z = 0]

E [1−D|Z = 1]− E [1−D|Z = 0]
.

(1.2)

These two distributions can then be inverted to obtain the quantile functions:

QY1
(τ |T = c) = inf {y : FY1

(y|T = c) ≥ τ}

and
QY0

(τ |T = c) = inf {y : FY0
(y|T = c) ≥ τ} .

Consequently, the LQTEs are identified as

∆ (τ |T = c) = QY1
(τ |T = c)−QY0

(τ |T = c) .

1.2.2 In the presence of covariates: conditional LQTE

In almost all applications we also observe a vector of covariates X. We may
want to include them in the estimation for two reasons. First, the validity
of the independence assumption 2.1 may be plausible only after conditioning
on covariates. This is the case for stratified randomized experiment when the
assignment probabilities are different across the strata. This is also the case
in observational studies when the instrument has not been randomized. For
instance, Frölich and Melly (2013) use twin birth as an instrument for having
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several children. Since it is well known that the probability of a twin birth is
a function of the race of the parents and increases with the age of the mother,
they control for these characteristics to satisfy the exclusion restriction. Even
if this assumption is valid unconditionally, e.g. because the instrument has
been unconditionally randomized, we will see in Section 1.3 that we may
wish to include covariates in the estimation for efficiency reasons. Therefore,
we consider the case where the instrument is valid after conditioning on the
covariates, which also covers randomized instruments as a special case,

Assumption 3 For all x ∈ supp(X)

1. Independent instrument: (Y11, Y10, Y01, Y00, D1, D0)⊥⊥Z|X = x

2. Exclusion restriction: P (Y1d = Y0d|X = x) = 1 for d ∈ {0, 1}
3. Relevant instrument: Pr(T = c|X = x) > 0 and

Pr (Z = 1|X = x) ∈ (0, 1)

4. Monotonicity: Pr(T = d|X = x) = 0

Assumption 3 is simply the conditional version of Assumption 2. Note that
Assumption 3.3 requires the support of X to be identical in the Z = 0 and
the Z = 1 subpopulations. If the support condition is not met initially, we
need to define the parameters relative to the common support.

The conditional distributions for the compliers are identified using the
same approach as above, e.g. for Y1,

FY1
(y|X = x, T = c)

=
E [1 (Y ≤ y)D|X = x, Z = 1]− E [1 (Y ≤ y)D|X = x, Z = 0]

E [D|X = x, Z = 1]− E [D|X = x, Z = 0]
. (1.3)

The nonparametric estimation of these conditional distributions will naturally
suffer from the curse of dimensionality. For this reason, Abadie et al. (2002)
impose a linear restriction for the compliers

QY0
(τ |X = x, T = c) = X ′β (τ)

and

QY1
(τ |X = x, T = c) = X ′β (τ) + ∆ (τ |T = c) .

The particular form of conditional quantile functions does not matter for
what follows. In particular, we can easily introduce interactions between the
treatment and the covariates, which allows for heterogeneous treatment effects
with respect to the observables.

Equation (1.3) shows that ∆ (τ |T = c) and β (τ) are identified but does
not suggest a convenient parametric estimator. Abadie et al. (2002), apply-
ing a result in Abadie (2003), give the following weighted quantile regression
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representation

(β (τ) ,∆ (τ |T = c)) = arg min
β̃,∆̃

E
[
WAAI · ρτ

(
Y −Xβ̃ −D∆̃

)]
(1.4)

WAAI = 1− D (1− Z)

1− E (Z|X)
− (1−D)Z

E (Z|X)
. (1.5)

The proof follows from the fact that

E
[
WAAI |Y,X, T = a

]
= 1− 1− E [Z|Y,X,D0 = D1 = 1]

1− E (Z|X)
= 0,

E
[
WAAI |Y,X, T = n

]
= 1− E [Z|Y,X,D0 = D1 = 0]

E (Z|X)
= 0,

E
[
WAAI |Y,X, T = c

]
= 1.

In other words, on average, the weights WAAI find the conditional compliers
and annihilate the always- and never-takers. This suggests a weighted quan-
tile regression estimator. However, the sample analog of (1.4) is not globally
convex because the weights are positive and negative. We discuss the solution
suggested by Abadie et al. (2002) below in Section 1.3.

1.2.3 In the presence of covariates: unconditional LQTE

In Section 1.2.2 we have discussed conditional quantile treatment effects, i.e.
the quantile is defined within the population with the same X. For instance,
Abadie et al. (2002) are interested in the effect of a training program on
earnings. Assuming rank invariance, the conditional LQTE for τ = 0.1 is the
effect for the individuals who are at the 0.1 quantile of the earnings distribu-
tion given their age, education level, race, etc. This includes white workers in
their peak earnings years with a college degree who earn well above the median
of the whole population. This is not necessarily the estimand that the policy
maker is interested in: she may be interested in the effects for unconditionally
poor households. Similarly, in other applications, she may be interested in un-
conditionally low-birthweight, or unconditionally low achieving students. This
distinction does not really play a role for averages because the unconditional
mean is simply the average of the conditional means, but it matters for quan-
tiles because the law of iterated expectation does not apply. While we may be
interested in unconditional LQTE, we may need to include control variables
in order to satisfy Assumption 3, in particular the (conditional) independence
assumption, or we may wish to add other covariates for efficiency reasons. In
other words, the set of covariates that we wish to include depends on both
the estimand that we are interested in and on the exclusion restriction that
we have to satisfy. There may be a tension between these objectives.

It is possible to separate the definition of the estimand from the assump-
tions needed for a causal interpretation. A first representation of the uncon-
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ditional cdf of the potential outcomes for the compliers is given by

FY1 (y|T = c) =

∫
FY1(y|X = x, T = c)dFX (x|T = c)

=

∫
FY1(y|X = x, T = c)

Pr(T = c|X = x)

Pr(T = c)
dFX (x)

=

∫
(E [1 (Y ≤ y)D|X = x, Z = 1]− E [1 (Y ≤ y)D|X = x, Z = 0]) dFX (x)∫

(E [D|X = x, Z = 1]− E [D|X = x, Z = 0]) dFX (x)
(1.6)

where the first equality holds by the law of total expectation, the second by
Bayes’ law and the third by the representation of the conditional distribu-
tion in (1.3) and the fact that Pr(T = c|X = x) = E [D|X = x, Z = 1] −
E [D|X = x, Z = 0] as seen above. A similar result applies to FY0 (y|T = c).

Parts (b) and (c) of Theorem 3.1 in Abadie (2003) applied to the cdf
provide a weighted representation of FY1

(y|T = c) and FY0
(y|T = c) (see

Frölich and Melly, 2013):

FY1 (y|T = c) =
E
[
1 (Y < y)DWFM

]
E [DWFM ]

FY0
(y|T = c) =

E
[
1 (Y < y) (1−D)WFM

]
E [DWFM ]

, (1.7)

where

WFM =
Z − Pr (Z = 1|X)

Pr (Z = 1|X) (1− Pr (Z = 1|X))
(2D − 1) .

This result can be obtained from (1.6) via iterated expectations arguments.
These weights are different from the WAAI weights defined in Section 2.3.
They find the conditional compliers in the following sense

E
[
WFM |X,Y, T = a

]
= E

[
WFM |X,Y, T = n

]
= 0

E
[
WFM |X,Y, T = c

]
= 2

but, in addition, they also balance covariates between treated compliers and
non-treated compliers in the following sense

E
[
WFM |X,Y, T = c,D = 1

]
=

1

Pr (Z = 1|X)

=
1

Pr (Z = 1|X, T = c)

=
1

Pr (D = 1|X, T = c)

E
[
WFM |X,Y, T = c,D = 0

]
=

1

1− Pr (Z = 1|X)

=
1

1− Pr (D = 1|X, T = c)
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This means that the weights WFM not only find the conditional compliers but
also reweight them such that the treated and control compliers have the same
covariates distributions. They share the first property with the weights WAAI

of Abadie et al. (2002) and the second property with the inverse probability
weights used when the treatment is exogenous conditional on the covariates.
WFM indeed nests inverse probability weights as a strict special case when the
treatment is used as its own instrument, which is justified under exogeneity.
Firpo (2007) discusses the estimation of unconditional QTEs following this
approach.

Frölich and Melly (2013) suggest to consider unconditional quantile treat-
ment effects

∆ (τ |T = c) = QY1 (τ |T = c)−QY0 (τ |T = c)

while keeping Assumption 3 (i.e. we need covariates for the identification).
Both unconditional quantile functions can be obtained by inverting the un-
conditional cdfs obtained in (1.6) or (1.7). Instead, it is also possible to directly
obtain the LQTE by a weighted quantile regression

(QY0
(τ |T = c) ,∆ (τ |T = c)) = arg min

Q̃Y0
,∆̃

E
[
WFM · ρτ (Y − Q̃Y0

− ∆̃D)
]

.

(1.8)

1.3 Estimation and inference

In the absence of covariates, the sample analogs of (1.1) and (1.2) provide
natural estimators of the cdfs of the potential outcomes. The estimated cdfs
will necessarily be non-monotone but they can be monotonized for instance
using the re-arrangement method of Chernozhukov et al. (2010). This allows
to invert the cdfs and to obtain the quantile functions and subsequently the
LQTEs.

In the presence of covariates, Abadie et al. (2002) suggest to estimate
conditional LQTE based on the weighted quantile regression representation
(1.4). Estimation based on (1.4) may be a difficult task because the weights
(1.5) are positive and negative, implying that the objective function has many
local minima. Therefore, Abadie et al. (2002) suggest to replace the weights
(1.5) with their projection on (Y,D,X), which can be shown to be always
positive. Their estimation strategy consists in three steps: (i) estimation of
the instrument propensity score E (Z|X) using nonparametric power series,
(ii) estimation of the positive weights using nonparametric power series of the
estimated weights on (Y,D,X), and (iii) weighted quantile regression using
the estimated positive weights. The resulting estimator is

√
n consistent and

asymptotically normal. However, Hong and Nekipelov (2010) show that the
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estimator suggested in Abadie et al. (2002) does not attain the semiparametric
efficiency bound. The alternative and efficient estimator that they suggest uses
density weighting for the compliers, which is similar to the efficient weighted
least squares estimator in the presence of heteroscedasticity. This approach
is nevertheless not popular because (i) it requires estimating the conditional
density of Y for the compliers, and (ii) the weighted estimator is more difficult
to interpret if the conditional model is misspecified.

For unconditional effects, analog estimators based on all three representa-
tions (1.6), (1.7), and (1.8) have been suggested. While parametric restrictions
(e.g. linearity) are necessary to achieve the

√
n consistency of the conditional

LQTE estimators, unconditional LQTE can be estimated at the
√
n rate with-

out any parametric restrictions because the unconditional distributions are
averages of conditional distributions.

Belloni et al. (2013) provide estimators based on (1.6) for environments
with many control variables, either because many variables are available in the
raw dataset or because we want to include interactions and other transforma-
tions of the control variables. They suggest Lasso-type methods that automat-
ically select the relevant ones. Assuming that reduced form relationships are
approximately sparse, they show that valid inference can be performed after
data-driven selection of control variables. Moreover, they derive the limiting
laws of the estimators of the whole quantile treatment effect process. This al-
lows to construct confidence band for the LQTE function over a continuum of
quantile, to test functional hypotheses and for dominance relations between
the potential outcomes. Hsu et al. (2015) suggest a weighted cdf estimator
based on (1.7) and derive the asymptotic distribution for the whole LQTE pro-
cess. Finally, Frölich and Melly (2013) analyze a weighted quantile regression
estimator based on (1.8). Their estimator is

√
n-consistent, asymptotically

normal, and achieves the the semiparametric efficiency bound. In addition,
Frölich and Melly (2013) show that adding covariates increases the precision
of the estimator of the unconditional effect if these additional covariates (i) do
not affect the instrument propensity score and (ii) affect the outcome. These
conditions are often satisfied, for instance, when the instrument has been ran-
domized. On the other hand, including covariates that affect the instrument
propensity score and do not affect the outcome will increase the variance of
the estimator. Note that such a comparison of variances does not make sense
for the conditional LQTE because the definition of the estimand is a function
of the covariates included.

Note that all the asymptotic results mentioned in this section rely on the
continuity of the dependent variable. This assumption is not an identifying
condition. On the contrary, the LQTE framework accommodates discrete out-
comes and outcomes with mass points very naturally. It is also possible to show
that the analog estimators of the cdfs of the potential outcomes are asymp-
totically normally distributed even for discrete outcomes. On the other hand,
continuity of the dependent variable is a condition for obtaining well-behaved
asymptotic distributions for the quantiles and LQTE estimators.
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1.4 Extensions: regression discontinuity design, nonbi-
nary instruments and testing

1.4.1 Regression discontinuity design

A fuzzy regression discontinuity design (RDD) exploits a discontinuity in the
probability of treatment when a running variable R exceeds a threshold r0.
This section also covers the sharp RDD as a special case where the probability
jumps from 0 to 1 at the threshold. If the distribution of the potential out-
comes is continuous in R, then the discontinuity becomes a valid instrumental
variable for the treatment. In this context, compliers are the units that switch
their treatment status at the discontinuity and monotonicity means that all
units that switch treatment at the discontinuity do it in the same direction.
This design fits in the framework outlined in Section 1.2 with the exception
that the identification is local at R = r0, which requires nonparametric esti-
mation.

The local version of (1.1) is given by

FY1 (y|T = c,R = r0) =

lim
ε→0

E [1 (Y ≤ y)D|r0 < R < r0 + ε]− E [1 (Y ≤ y)D|r0 − ε < R < r0]

E [D|r0 < R < r0 + ε]− E [D|r0 − ε < R < r0]
(1.9)

and similarly for the control potential outcome. Note that the distributions
are identified only for the local compliers, i.e. the compliers whose running
variable is arbitrarily close to r0. A natural estimand to consider is the QTE
for the local compliers:

∆(τ |T = c,R = r0) ≡ QY1(τ |T = c,R = r0)−QY0(τ |T = c,R = r0).

The representation of FY1
(y|T = c,R = r0) in (1.9) is a function of four

conditional means at boundary points (from the left and the right of r0).
Frandsen et al. (2012) use local linear techniques to estimate these means,
which is not subject to bias from ignoring the running variable and auto-
matically corrects for boundary effects. The cdfs are subsequently inverted to
obtain an estimator of ∆(τ |T = c,R = r0). They prove uniform consistency
and asymptotic Gaussianity of the estimators for the whole QTE process for
the local compliers. Of course, this nonparametric estimator only converges
at the one-dimensional nonparametric rate.

1.4.2 Multi-valued and continuous instruments

In the previous two sections we focused on the case with a binary instru-
ment. If the instrument is multi-valued (or there are several instruments),
then it is obviously possible to identify a LQTE with respect to any pair
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of distinct values of Z, satisfying Assumption 2. Instead of estimating many
pairwise effects, one may prefer to estimate the LQTE for the largest com-
plying sub-population. This is simply obtained by considering the value of Z
that minimizes the treatment probability and the value that maximizes the
treatment probability (given a monotonicity assumption defined with respect
to Pr (D = 1|Z)).

When the instrument is continuous, it is possible to identify a continuum
of treatment effects. Heckman and Vytlacil (2005) developed this approach
for average treatment effects and called the resulting parameters marginal
treatment effects. They show that the LATE can be represented as a weighted
average of marginal treatment effects. Inversely, the marginal treatment effects
can be considered as the limit form of the LATE parameter. Carneiro and
Lee (2009) extend these ideas to the estimation of the quantile analogs, the
marginal quantile treatment effects (MQTE). To simplify the notation we do
not incorporate covariates in this section. Suppose that individuals choose
their treatment status according to the following equation:

D = 1{Pr(D = 1|Z) ≥ η}, (1.10)

where η|Z ∼ U (0, 1) is a scalar error term. Z is a continuous instrument that
is independent of Y0 and Y1. For binary Z Vytlacil (2002) shows that (1.10)
is equivalent to the monotonicity Assumption 2.4. Hence, this model can be
seen as a generalization of the LQTE framework to general instruments. In
this model, the main estimands of interest are the MQTE

∆(τ |p) ≡ QY1(τ |η = p)−QY0(τ |η = p).

Carneiro and Lee (2009) show that ∆(τ |p) is identified if

p ∈ supp (Pr (D = 1|Z,D = 1)) ∩ supp (Pr(D = 1|Z,D = 0)) .

They note that

FY (y|Pr (D = 1|Z) = p,D = 1) · p = FY1
(y|Pr (D = 1|Z) = p,D = 1) · p

= FY1
(y|η ≤ p) · p

=

∫ p

0

FY1 (y|η = h) dh.

By taking the derivative with respect to p on both side, this implies that

FY1
(y|η = p) =FY (y|Pr (D = 1|Z) = p,D = 1)

+
∂FY (y|Pr (D = 1|Z) = p,D = 1)

∂p
.

A similar result applies to the cdf of Y0. Both cdfs can be inverted to obtain
the quantile functions.

Yu (2014) suggests semiparametric estimators of the marginal quantile
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treatment effects based on this representation. He allows for the presence of
control variables and considers both conditional and unconditional MQTE.
Finally, he derives the corresponding weak limits and shows the validity of
the bootstrap for inference.

1.4.3 Testing instrument validity

Assumption 2 imposes testable implications on the joint distribution of
(Y,D,Z). Under this set of asumptions, FY (y|D = 1, Z = 1) is a mixture of
FY1

(y|T = c) and FY1
(y|T = a) with identified mixing probabilities. One of

the mixing distributions is also separately identified because FY1
(y|T = a) =

FY (y|D = 1, Z = 0). Imbens and Rubin (1997) note that a violation of
Assumption 2 may lead the resulting density function for the compliers,
fY1 (y|T = c), to be negative. An equivalent result holds for the distribution
of the control outcome.

More formally, Assumption 2 implies that, for every Borel set B in
supp(Y ),

P (Y ∈ B,D = 1|Z = 1)− P (Y ∈ B,D = 1|Z = 0) = P (Y1 ∈ B,D1 > D0),

P (Y ∈ B,D = 0|Z = 0)− P (Y ∈ B,D = 0|Z = 1) = P (Y0 ∈ B,D1 > D0).

Because the right sides are nonnegative by the definition of probabilities, we
obtain the following testable restriction (Balke and Pearl (1997), Heckman
and Vytlacil (2005)):

P (Y ∈ B,D = 1|Z = 1)− P (Y ∈ B,D = 1|Z = 0) ≥ 0, (1.11)

P (Y ∈ B,D = 0|Z = 0)− P (Y ∈ B,D = 0|Z = 1) ≥ 0. (1.12)

Kitagawa (2015) shows that this testable restriction possesses two impor-
tant features. First, it is optimal in the sense that any other feature of the
observable data distribution cannot contribute to further screen out viola-
tions of Assumption 2 further. Second, validity of Assumption 2 is a refutable
but nonverifiable hypothesis. In particular, it is possible to contruct a joint
probability law (Y1, Y0, D1, D0, Z) that satisfies (1.11) and (1.12) but violates
Assumption 2. Consequently, accepting the null hypothesis never allows us to
confirm Assumption 2 no matter how large the sample is.

To implement this testing idea, Kitagawa (2015) proposes a variance-
weighted Kolmogorov-Smirnov test statistic based on the empirical distribu-
tion and a bootstrap algorithm to obtain critial values. He also provides an
extension of the test to settings with conditioning covariates. Mourifié and
Wan (2014) show that an alternative formulation of (1.11) and (1.12) fits
into the intersection bounds framework of Chernozhukov et al. (2013), which
provides an alternative test of the model.

This test exploits the independence Assumption 2.1. Huber and Mellace
(2015) note that this independence assumption is too strong if one is only
interested in the average effect. Therefore, they propose an alternative test for
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a slightly weaker mean independence assumption. The fact that the observed
distribution FY (y|D = 1, Z = 1) is a mixture of the distributions of Y1 for
the always-takers and for the compliers allows bounding E [Y1|T = a] using
a result in Horowitz and Manski (1995): in one extreme scenario the always-
takers are all at the bottom of the distribution and in the other extreme
scenario they are all at the top of the distribution. The test suggested by
Huber and Mellace (2015) consists in checking that E [Y1|T = a], which is
point identified by E [Y |D = 1, Z = 0], lies within the bounds obtained from
the mixture. Similarly, E [Y1|T = n] must lie within its bounds.

The same line of reasoning applies to quantile effects. Full independence is
needed for the identification of the whole LQTE process. If one is interested
in a single LQTE, then Assumption 2.1 may be replaced by

Assumption 4 (D1, D0)⊥⊥Z and

FYd
(QYd

(τ |T =c) |T =t, Z = 0) = FYd
(QYd

(τ |T =c) |T =t, Z = 1) ,

for d ∈ {0, 1} and t ∈ {c, a, n}.

Compared with Assumption 2.1, full independence between the instrument
and the potential outcomes has been replaced by a local quantile independence
restriction. Chesher (2003), for instance, emphasizes that this local condition
is weaker than the global one. The proofs of the results in Section 2 clearly go
through with Assumption 4 replacing Assumption 2.1. Under this alternative
assumption, Kitagawa’s first testable restriction (1.11) is valid only for two
sets B, (−∞, QY1

(τ |T =c)] and (QY1
(τ |T =c) ,∞) and the second restriction

(1.12) only for two other sets, (−∞, QY0 (τ |T =c)] and (QY0 (τ |T =c) ,∞).
Interestingly, these four restrictions correspond to the moment inequali-
ties of Huber and Mellace (2015) but applied to 1 (Y1 ≤ QY1

(τ |T =c)) and
1 (Y0 ≤ QY0

(τ |T =c)) instead of Y1 and Y0.
To summarize, Assumption 4 is sufficient for the consistency of the LQTE

estimator at a single quantile, it is still testable but it is more difficult to
reject. Note, however, that the goal of an instrument validity test is not nec-
essarily to test the weakest set of assumptions under which the estimator is
consistent but may be to assess the plausibility of the model that motivates
the estimator. For instance, if an economic model delivers an exclusion restric-
tion or the instrument has been randomized, then it makes sense to test the
model that includes the full independence assumption. As discussed above,
even asymptotically it is difficult to reject an invalid instrument; it therefore
judicious to test all the implications of the model to increase the power of the
test.
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1.5 Comparison to the Instrumental Variable Quantile
Regression Model

In this section, we compare the framework reviewed in this chapter with an-
other popular approach to instrumental variable estimation that accommo-
dates binary treatments and binary instruments, the instrumental variable
quantile regression (IVQR) model introduced by Chernozhukov and Hansen
(2005) and reviewed in Chernozhukov et al. (2016).

It is instructive to depart from the potential outcomes notation and to
consider the following general two-equation structural model,

Y = q(D, ε), (1.13)

D = h(Z, η), (1.14)

where q(·) and h(·) are general nonseparable functions and ε and η are un-
observable components that can be scalars or vectors. We refer to equation
(1.13) as the outcome equation and to equation (1.14) as the selection equa-
tion. Note that this system of structural equations is recursive or triangular.
To simplify the exposition, we omit covariates throughout this section and
refer the interested reader to the original references for further details.

The equation-based model can be related to potential outcomes as

Yd = q(d, εd),

Dz = h(z, ηz).

This formulation plays a key role in understanding different approaches to
instrumental variables estimation. Vytlacil (2002) shows that Assumption 3
is equivalent to the following latent index selection model

Dz = 1{v(z) ≥ η}, (1.15)

where v(·) is a nontrivial function of Z and (Y1, Y0, η)⊥⊥Z. Thus, Assumption
2 restricts the unobserved heterogeneity in the selection equation to be scalar,
i.e., η1 = η0 = η, while leaving the heterogeneity in the outcome equation
unrestricted. As will be discussed below, restrictions on the dimensionality of
the unobservables play a key role in nonseparable IV models.

A natural alternative is to consider a model that restricts the unobservables
in the outcome equation, while leaving the selection equation unconstrained.
This leads to the IVQR model. By the Skorohod representation of random
variables, potential outcomes can be related to their structural quantile func-
tions as Yd = q(d, εd), where q(·) is the structural quantile function of Yd and
εd ∼ U (0, 1). εd can be interpreted as a rank variables because it determine
individual ranks in the distribution of Yd.

The key assumption underlying the IVQR model is the rank preservation
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assumption. Formally, rank preservation requires that conditional on Z, ε1 =
ε0. Given the interpretation of εd as a rank variable, this assumption thus
restricts the ranks to be invariant accross potential outcome distributions,
whence the name of this assumption. Chernozhukov and Hansen (2005) show
that rank preservation can be weakened to rank similarity. Formally, rank
similarity requires that conditional on Z and the disturbance in the selection
equation, ε1 and ε0 are identically distributed. Rank similarity thus allows
for random slippages from an individuals rank level ε. Chernozhukov and
Hansen (2005) show that under the aforementioned assumptions and a full
rank condition on the Jacobian of the moment condition (1.16), q(D, τ) is
identified for the whole population from the following conditional moment
restriction, for all τ ∈ (0, 1)

P (Y ≤ q(D, τ)|Z) = P (Y < q(D, τ)|Z) = τ (1.16)

It is interesting to compare the identification strategy of the IVQR model
to the instrumental variable framework reviewed in this chapter. Restricting
the dimensionality of unobservables in the outcome equation yields point iden-
tification of the effect for the whole population, while restricting the dimen-
sionality in the selection equation only point identifies QTEs for the compliers.
Intuitively, the reason is that the one-to-one mapping from the outcome to the
unobserved error term with continuous outcome variables is lost when there
are mass-points.

On the surface, the IVQR model does not seem to be connected to the
approach reviewed in this chapter – the two estimands differ (i.e., the QTE
and the LQTE respectively) and the underlying assumptions are non-nested,
non-contradictory, and concern different aspects of the models (i.e., the out-
come equation respectively the selection equation). For these reasons, Cher-
nozhukov and Hansen (2013) describe both model as complements and, for
example, Chernozhukov and Hansen (2004) use comparisons of both models
as specification checks for the underlying assumptions.

Wüthrich (2016) shows that there is actually a close connection between
the estimands of both models. Under Assumptions 1 and 3, the model model
captures LQTE at transformed quantile levels:

∆IV QR(τ) = ∆(τ ′|T = c) (1.17)

where

τ ′ = FY0
(q(0, τ)|T = c) = FY1

(q(1, τ)|T = c)

This result has interesting implications for the connection between both mod-
els: (i) if the LQTE estimands are constant across quantiles, the estimates of
both models converge to the same true effect, (ii) if the LQTEs are positive (or
negative) at all quantiles, then the sign of the quantile estimands will be the
same in both models, and (iii) monotonicity of the LQTE function (which is
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implied, for example, by a location scale shift model for the compliers) implies
monotonicity of the IVQR estimands.

It is important to note that (1.17) does not rely on the rank preservation
assumption and thus also provides a characterization of the IVQR estimands
absent the rank preservation assumption. To this end, (1.17) implies that the
IVQR estimands are quite robust: they preserve sign and monotonicity of
∆(τ |T = c) whenever these properties are invariant across quantiles. Further-
more, the results show that the estimates based on the IVQR model are not
arbitrary under misspecification but correspond to well-defined (functions of)
causal effects for the compliers.

The results in Wüthrich (2016) confirm that with unrestricted treatment
effect heterogeneity all the information about the treatment effects has to come
from the compliers. Moreover, they show how the IVQR model extrapolates
from the compliers to the whole population. This motivates the use of the
IVQR as an approach to extrapolation in the LQTE framework.

1.6 Conclusion and open problems

In this chapter we have reviewed instrumental variable methods to estimate
QTEs. In addition to the traditional exclusion and relevance conditions for the
instrument, the models considered impose that the treatment either weakly
increases or weakly decreases with the instrument for all units in the popu-
lation. This monotonicity assumption is sometimes satisfied by construction
(e.g. one-sided perfect compliance) but there are naturally also cases where it
is a strong assumption, see for instance the examples discussed by de Chaise-
martin (2014). If it can be made, the whole distribution of the control and
treated outcomes are identified for the units which react to the instrument
without imposing any restrictions on treatment effect heterogeneity. Estima-
tion and inference methods have been developed for the standard set-up with
a binary instrument, a binary treatment and a continuous outcome. Stata and
R codes are available for implementing most of these methods. For instance,
Frölich and Melly (2010) provide a Stata package for estimating conditional
and unconditional LQTEs based the approaches by Abadie et al. (2002) and
Frölich and Melly (2013) respectively. We have also summarized extensions to
multi-valued and continuous instruments, which are now well-understood.

From our point of view, the most pressing open research questions are
inference methods for discrete outcomes and identification of the effects of
nonbinary treatments. Since the monotonicity assumption does not restrict
the outcomes at all, identification follows for discrete outcomes in exactly the
same way as it does for continuous outcomes. The LQTE framework therefore
accommodates discrete outcomes and outcomes with mass points very natu-
rally. This is in sharp contrast to the instrumental variable quantile regression
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model (Chernozhukov and Hansen, 2005), where continuity is essential for
point identification. It is also possible to show that the analog estimators of the
cdfs of the potential outcomes are asymptotically normally distributed even
for discrete outcomes. However, the existing literature still assumes continuity
to provide inference tools based on the asymptotic Gaussianity of the quantile
estimators. Inference procedures that accommodate discrete outcomes would
be useful and should deserve closer attention by future research.

On the other hand, the LQTE framework does not easily extend to nonbi-
nary treatments. When an independent instrument is nonbinary, any binary
transformation of this instrument will also satisfy the independence assump-
tion and the results for binary instrument can be used. But when the endoge-
nous treatment is nonbinary, then the instrument does not necessarily satisfy
the exclusion restriction for any binary transformation of the treatment. In
addition, the number of types of compliers increases exponentially in the num-
ber of points in the support of the treatment. For average effects, Angrist and
Imbens (1995) show that a weighted average of local effects is identified. This
is unfortunately not the case for quantile effects. This raises new challenges
that have not yet been overcome.

Instead of restricting heterogeneity in the treatment choice equation, an
alternative literature reviewed by Chernozhukov et al. (2016) restricts hetero-
geneity in the outcome equation by imposing a stochastic rank preservation
condition. This assumption allows extrapolating the treatment effects from
the compliers (or, more generally, from the population for which the effects
are identified) to the whole population. This implies that there is a close con-
nection between these models in the sense that the QTEs identified by one
model corresponds to the treatment effect identified by the other model at
another quantile.

This relationship holds for the standard setup. Since the IVQR model im-
poses assumptions on the outcome equation but not on the selection equation,
which is the opposite of the LQTE model, it will accommodate well the op-
posite types of generalizations. For instance, it applies without modification
to multi-valued and continuous treatments if the instrument is rich enough
to identify all the parameters. Torgovitsky (2015) and D’Haultfoeuille and
Février (2015) show that combining the rank invariance and the monotonicity
assumption allows to suppress the large support condition for the instrument.
On the contrary, point identification breaks down when the outcome is not
continuous, see Chesher (2010). Intuitively, the one-to-one mapping from the
outcome to the unobserved error term is lost when there are mass-points.
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