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Benchmarking Heterogeneous Distribution System Operators:
Evidence from Norway

George Elias∗

Abstract

Regulatory authorities in the European electricity sector use benchmarking techniques to

determine the cost-efficient production level for an incentive regulation of distribution system

operators (DSOs). With nearly 900 DSOs operating in the German electricity sector, of which

200 subject to incentive regulation, the issue of heterogeneity of DSOs has to be addressed.

Using publicly available data of 133 Norwegian DSOs and replicating the model employed by

the German regulator (who refuses access to the data), I show its assumption of homogeneous

technology cannot be maintained. Quantile regressions (QR) across the cost distribution

reveal heterogeneity in the coefficients of the explanatory variables, resulting in biased

efficiency scores derived from stochastic frontier analysis. To correct for this heterogeneity in

coefficients, I propose a Bayesian estimation of a more flexible SFA with latent classes for

selected parameters that reflect variation in technologies. This estimation has better goodness

of fit, reduced variance of all coefficients, and higher efficiency scores for nearly all DSOs,

compared to the conventional alternative.
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JEL: C11, C21, D24, L94

∗ Corresponding author: George Elias, Phone: +41 (0)78 873 83 90, E-mail: george.elias@polynomics.ch



1 Introduction

Regulatory authorities in the electricity sector across many European countries employ bench-

marking techniques to determine the cost-e�cient production levels of distribution system oper-

ators (DSOs) in a quest to increase e�ciency. The ensuing cost or pro�t reduction targets have

direct and often severe consequences for the regulated DSOs. In Germany, benchmarking of

DSOs for both electricity and gas started in 2008, using revenue caps and individual e�ciency

scores. The cost-weighted average e�ciency score of the DSOs in the �rst regulatory period

amount to 96 (electricity) and 90 (gas) percent, respectively, suggesting excess network costs

of hundreds of million of Euros to be cut within two regulatory periods (ten and nine years,

respectively). The magnitude of this regulatory impact calls for an inquiry into the benchmark-

ing methods used to determine individual e�ciency scores. In fact, stochastic frontier analysis

(SFA) used by the German authorities requires strong assumptions with respect to stochastic

in�uences as well as technological homogeneity.

Manski (2007) proposes the law of decreasing credibility stating that the credibility of inference

decreases with the restrictiveness of the assumptions on which is is based. According to him,

the problem is researchers' �xation on the identi�cation of parameters for point estimation,

causing them to impose assumptions that su�ce to obtain an exact value. He further notes

that conventional parametric methods are strong on identifying power but weak on substantive

foundations, especially when it comes to missing data.

In benchmarking, the problem usually is not that of identi�cation because of missing data, since

the regulatory authority requests all �rms to supply complete data sets. This results in a full

sample of national �rms that are comparable with respect to technological and legal character-

istics, permitting to focus on the methodological assumptions made rather than on coping with

missing data. While this paper is motivated by the German regulation of electricity DSOs, it

analyses publicly available Norwegian data. The German regulatory authority (�Bundesnetza-

gentur�, BNetzA) refuses to provide �rm-speci�c data on the ground of privacy concerns. As

according to energy experts of PricewaterhouseCoopers, not even aggregate cost statistics of the

regulated German DSOs are available, it is not directly possible to compare Norwegian and Ger-

man DSOs w.r.t. cost ratios. However, evidence from Norway should be relevant for Germany

for at least two reasons. First, the only statistic published by the BNetzA, electricity prices for

household customers, are very similar for Germany and Norway at around 0.15 US$ per kWh
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at 2005 exchange rates1. Second, the de�nitions of the relevant cost and structural parameters

to be used in the benchmarking process are comparable as stipulated by the Norwegian and

German regulatory authority.

Quantile regressions (QR) are used to check for technological heterogeneity of Norwegian DSOs.

A Bayesian SFA framework with parameter-speci�c latent classes of DSOs is then proposed that

allows for variation in coe�cients.

Section 2 explains the problem of heterogeneity in benchmarking methods. Section 3 presents

the data and the model speci�cation used in the analysis. Section 4 expands conventional latent

class SFA, and quantile regression. In Section 5, results are presented and discussed. Section 6

concludes.

2 The problem of heterogeneity in benchmarking electricity and

gas utilities

Non-observable heterogeneity in the data can in�uence e�ciency scores in a benchmarking in two

ways. First, there may be separable heterogeneity. This does not bias estimated coe�cients of the

minimum cost function and can be captured through the speci�cation of a stochastic component.

Second, non-separable heterogeneity does a�ect the coe�cients (see e.g. Cullmann et al. (2009)).

Heterogeneity therefore calls for care in the design and implementation of benchmarking if DSOs

are numerous and variable in size, as is the case in Norway (see Table 1) and in Germany.

The problem is exacerbated by the fact that there is no general agreement as to the choice of

method in the estimation of the e�cient frontier. Accordingly, regulatory authorities use di�erent

approaches ranging from data envelopment analysis (DEA) and variations of ordinary least

squares (corrected, COLS; modi�ed, MOLS) to stochastic frontier analysis (SFA). Additionally,

the variables potentially characterized by heterogeneity need to be selected carefully in order

to separate ine�ciency from exogenous heterogeneity. By assumption the DSOs can in�uence

cost for network construction and maintenance. Given technology and factor prices, failure to

minimize cost re�ects ine�ciency. By way of contrast, the technology used by the DSO can

be (at least in the short run), be regarded as exogenous, a view adopted e.g. in the German

ordinance on incentive regulation for energy distribution (Bundesregierung (2012) � 13). That

1 Eurostat (2013)
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is, the parameters of the cost function re�ect the structure of the network operated by the DSO,

subject to long-term path dependence. Failure to account for technological heterogeneity may

therefore cause misrepresentation of a DSO's cost e�ciency. However, coe�cient heterogeneity

might still re�ect ine�ciency because a DSO is slow to adopt a least-cost technology. Therefore,

certain parameters could be �xed on values re�ecting e�cient provision. Finally, heterogeneity

in both energy output and input variables may be the consequence of ine�ciency. On the output

side, some DSOs may be lagging behind in their implementation of structural change that is

desirable from the regulator's perspective (e.g., a shift from peak load to base load provision).

On the input side, the regulator might prefer an increased use of renewables such as wind or

solar energy. Other input or control variables such as the population in the service area arguably

amounts to exogenous heterogeneity; for them, there is no benchmark value associated with cost

e�ciency.

There is a vast empirical literature on the technological heterogeneity in DSOs (see e.g. Greene

(2005)). However, it presupposes the availability of panel data which permit tracking a DSO

over several periods of time. In the case of Norway, and several other regulated countries, panel

data for longer time periods are simply not available. Moreover, the structure of the DSO tends

to undergo changes over the years through network mergers or remunicipalisations. Due to these

problems with panel data, benchmarking methods based on panel data are currently to my

knowledge not applied by European regulatory authorities. Finally, cost drivers often cannot be

determined by statistical methods but do have a political or ecological dimension.2 Therefore,

the analysis needs to detect exogenous heterogeneity even if only cross sectional data is available.

3 Model speci�cation and data

Starting in late 2013, the regulatory regime for German DSOs will be modi�ed. The parameters

for the benchmarking model of the second regulatory period are not yet know. Cost adjusters

mandatorily required by the German ordinance on incentive regulation for energy distribution

(Bundesregierung (2012) � 13) include network length, volume of peak load, number of connec-

tion points, geographical characteristics of the service area. The formula �nally used in the �rst

regulatory period (starting in 2008) contained network length by means of �ve categories, high

2 For instance, the government may impose a number of connection points that is currently excessive but
facilitates accommodation of an increased network load. Ecological concerns may call for too much decen-
tralization of power generation in the interest of minimizing the need for transmission lines.
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and medium voltage, each weighted by length of lines and cables, and the sum of low-voltage

line length. Furthermore, peak load volume was split into its high/medium and medium/low

components. Additionally, the load contribution of renewables and the number of transformer

stations were included, resulting in a model with 11 independent variables. Experience from the

already ongoing second regulatory period (starting in 2012) in the gas sector shows that the

BNetzA changed the formula considerably compared to the one applied in the �rst regulatory

period, building again on the mandatory cost parameters. As a substitute to the German data, I

use Norwegian ones. In Norway, incentive regulation with a price cap was introduced in 1997 for

electricity DSOs. It is revised every �ve years. Individual e�ciency scores were derived from a

DEA benchmarking, with dimensions of output being network length, number of transformers,

energy supplied, and number of customers. Clearly, with its four cost drivers the Norwegian

benchmarking formula is much simpler that its German counterpart of the �rst regulatory pe-

riod with 11 cost drivers. Therefore, chance are great to discover heterogeneity in the data. The

German formula, by way of contrast, controls for many sources of heterogeneity, leaving little

scope for discovering hidden heterogeneity. The associated problems thus are likely overstated

for the case of Germany. Still, the analysis of the Norwegian data is worthwhile because the

relative importance of the di�erent types of heterogeneity (see Section 2 again) is likely to be

comparable between the two countries. Further, the German formula is likely to be changed in

the second regulatory period, requiring a speci�cation based on the four mandatory parameters.

The sample contains data on 133 Norwegian DSOs, averaged over the available years from 2004

to 2006 in order reduce the sensitivity to extreme values in one year. This data has been used

in the actual benchmarking process by the Norwegian regulatory authority. Outlier detection

using Cook's distance on an OLS regression (see Cook (1979)) and separate treatment of two

DSOs with special characteristics led to the exclusion of �ve outliers. This choice seems to be the

same as the one by the Norwegian regulator for benchmarking electric DSOs. The dependent

variable is total cost in TNOK, which depends on energy delivered in MWh, the number of

customers, the length of lines in km and the number of transformers. As the energy delivered

highly correlated with the number of customers causing multicollinearity, only the number of

customers is used.

Table 1 o�ers descriptive statistics for both the dependent and explanatory variables. The data

suggest that the Norwegian power distributors are characterized by a great degree of heterogene-
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ity. Network cost (total expenditures, totex, i.e. operating and capital costs) di�er by a factor

of 2,330 in Norway between the minimum and maximum value; the number of customers by a

factor of 1,860.3

Table 1: Descriptive Statistics, Norwegian power distributors1)

Variable De�nition Mean Std. dev. Min Max

c Network cost (Totex), in thousands of US$4) 12,231 25,188 88 203,140

nl Network length in km 747 1,277 31 8,242
tr Transformers 937 1,800 29 13,245

fc Final customers2)3) 18,612 52,790 275 510,038

1) 128 observations after exclusion of outliers, average values of 2004 to 2006
2) Excluding secondary houses
3) Used as standardisation variable
4) 1 NOK (Norwegian Crown) = 0.15 US$ at 2005 exchange rates; 1 Euro = 1.3 US$ at 2005 exchange
rates
Source: Norwegian Water Resources and Energy Directorate

The cost function to be estimated reads,

ci = α ∗ fci + β1 ∗ nli + β2 ∗ tri, (1)

with subscript i = 1, ..., N representing DSOs. All terms are divided by the number of �nal

customers, fci, making ci the average cost per �nal customer (fci). Although average cost

might well depend on fci, this variable is dropped from the equation in order to re�ect the

standardization applied by the German regulatory authority.4 Note that equation (1) does not

qualify as a minimum cost function because it does not contain relative factor prices. However,

capital user cost do not enter the income statements of either Norwegian and German DSOs,

while the wage rate is practically the same within a given country.

3 It can be assumed that the German electricity distribution sector with its roughly 800 DSO is characterised
by a similar degree of heterogeneity.

4 This approach is not beyond controversy, as the alternative of a double-log function is more established for
accounting di�erences in the size of organizations.
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4 Stochastic Frontier Analysis, the Latent Class Extension, and

Quantile Regressions

4.1 Stochastic Frontier Analysis (SFA)

The parametric benchmarking model used by the Germany regulatory authority is stochastic

frontier analysis.5 The cost frontier is calculated using a maximum likelihood estimation (MLE)

and can be written (dropping the time subscript, since only a cross section is used) as

ci = α+ β′Xi +

εi︷ ︸︸ ︷
ui + vi, with ui = N+(0, σ2u) and vi = N(0, σ2v). (2)

For Bayesian inference (the preferred approach of this paper), the crucial property of ci is that

it is normally distributed,

ci ∼ N(α+ β′Xi + ui, σ
2), (3)

where N(µ, σ2) denotes a normal distribution with mean µ and variance σ2. The error term εi

in (2) is divided into two additive components, random noise vi and cost ine�ciency ui. Random

noise captures separable heterogeneity; It is normally distributed vi
iid∼ N [0, σ2v ] with mean zero

and variance σ2v . DSO-speci�c ine�ciency ui is assumed to follow a half-normal distribution

with support [0,∞], with larger values indicating higher cost ine�ciency.6 The compound error

term εi has to have positive skewness to indicate the existence of ine�ciency.7

In theory, panel data models8 can capture some unobserved heterogeneity by tracking ine�ciency

over time. However, they require assumptions regarding the change of ine�ciency. For instance,

if the industry under consideration is a regulated monopoly, part of the ine�ciency may be

time invariant but another part arguably is time variant since incentives to minimize costs are

weakened (see e. g. Kopsakangas-Savolainen and Svento (2011)). Moreover, panel data estimation

5 Kumbhakar and Lovell (2000) o�er an introduction to stochastic frontier models.
6 Other possible distributions for the ine�ciency term are truncated-normal, exponential or gamma. Expo-

nential distributions were assumed in the model of the second regulatory period of gas DSOs in Germany,
whereas half-normal distributions were used in the �rst regulatory periods of both electricity and gas.

7 If the residuals are not skewed in the positive direction, the SFA model is reduced to an OLS regression,
implying zero ine�ciency (see Kumbhakar and Lovell (2000)).

8 Panel data models are for example applied by Farsi and Filippini (2004) to analyse heterogeneity in Swiss
DSOs.
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is complex and is based upon additional assumptions that often cannot be tested.9 Therefore,

an alternative suitable for dealing with cross-sectional data is pursued here.

4.2 Latent Class SFA

The latent class SFA extends (3) by

ci ∼ N(α+ β′jXi + ui|j , σ2), (4)

where now the uniform vector of parameters β is replaced by a set of vectors βj and ui by a

vector ui|j of ine�ciency terms conditional on latent classes. A particular DSO may be assigned

to a class with probability one (the classical case) or a probability between zero and one (the

generalized case). The latter case implies that no single technology is assumed to be appropriate

for all DSOs. Rather, it admits of a range of possible coe�cients and thus e�ciency scores for

a particular DSO.

Class membership probabilities p(i|j) can be parametrized by a multinomial logit model

p(i|j) =
exp(δ′jqi)∑J
j=1 exp(δ

′
jqi)

, (5)

where qi is a vector of �rm-speci�c variables and δj its corresponding coe�cients determining

class membership. A variant is not to specify any regressors qi, letting class membership be

determined by maximum likelihood only. This amounts to assuming a set of values for δj ,

calculating class probabilities as in (5) with qi = 1∀i, and estimating (4). This procedure results

in a set of e�ciency scores for each DSO. There are two ways to choose a score from this set.

One is to retain the one with the highest posterior membership probability. In the absence of

credible prior information, the uniform or Bernoulli distribution can be used as the prior,

p̂_(i|j) ∼ dbern(
1

j
), (6)

with p̂_(i|j) denoting prior probabilities. The other alternative is to estimate an expected value

of p(i|j) along with α and βj from (5).

9 See Shuttleworth (2005) for a general critique and Greene (2005) for applications of panel data models.
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This framework requires the number of classes to be determined a priori. In contrast to tra-

ditional latent class modeling, which is a panel data method, the availability of cross-sectional

data only calls for a more restrictive approach here. Heterogeneity will be admitted only in

those parameters where di�erences in the technology are suggested by a continuous quantile

regression and where di�erences in technology are acknowledged by the (German) regulator. To

my knowledge, this approach has not been applied before.

4.3 Quantile Regression

Koenker (1978) de�nes the quantile regression problem as follows

min
β∈<

 ∑
iε{i:ci>β′Xi}

θ|ci − β′Xi| +
∑

iε{i:ci<β′Xi}

(1− θ)|ci − β′Xi|

 , (7)

where θ symbolises the quantile to be estimated, with θε(0, 1). In particular, θ = 0.5 �ts a median

regression. Residuals are calculated as ui = ci− β′Xi. The method minimizes the weighted sum

of absolute residuals rather than the sum of the squared residuals as OLS. It is therefore less

sensitive to outliers. Estimation of (7) for a set of θ values allows the calculation of coe�cients

at di�erent points of the distribution of ci, facilitating testing for parameter homogeneity.

Similar to Christensen (2004), I calculate standard errors for β using bootstrapping10 to test

whether coe�cients di�er by quantile, which are de�ned by values for θ between .05 and .95

and a percentile grid. In this way, the cost distribution provides an indication of technological

heterogeneity.

5 Results

Figure 1 shows the values of two β coe�cients as a function of θ as de�ned below eq. (7). The

dark graph corresponds to the cost impact of the number of transformers per �nal customer

(tr), the light one to the cost impact of network length per �nal customer (nl).

The standard SFA method results in coe�cients for standardised transformers and network

length and of 46 and 21, respectively, indicated by the dark and light dashed horizontal lines

of �gure 1. Visual inspection already suggests that these uniform estimates fail to do justice to

10 More details on this can be found in Rogers (1993).
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Figure 1: Coe�cients of Transformers and Network Length (Standardized) at Di�erent Cost
Quantiles
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parameter heterogeneity likely re�ecting technological heterogeneity of DSOs. To test whether

the di�erences are signi�cant, I compare the respective coe�cients at the values θ = .10 (a

percentile commonly used for cost frontiers in quantile regressions) and θ = .50 (the median

regression). A Wald test rejects the hypothesis of pairwise equality with a two-sided p-value of

0.036. Therefore, in order to obtain unbiased coe�cients and hence e�ciency scores, it is crucial

to account for parameter heterogeneity, at least in the case of Norwegian DSOs.

To illustrate the importance of technological heterogeneity, I allow two latent classes for stan-

dardised transformers while allowing only one for standardised network length. For simplicity,

class membership is either 0 or 1 [that is, computed as in (6)]. To obtain posterior estimates,

Monte Carlo Markov Chain (MCMC) algorithms were run for 50,000 iterations, with the �rst

20,000 samples discarded as burn-in. Table 2 compares the coe�cients pertaining to the stan-

dard SFA and those pertaining to a SFA with two latent classes for the case of the standardised

number of transformers.
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Table 2: Comparison of SFA and Latent Class SFA

Variables SFA SFA latent class

Mean SD 2.5% 97.5% Mean SD 2.5% 97.5%

Constant 0.28 0.35 -0.43 0.97 0.81 0.30 0.19 1.41
network length (standardised) 20.73 6.22 8.54 33.59 23.50 5.23 13.09 33.88
transformers (standardised) 46.38 7.43 31.77 61.10 - - - -

transformers latent class no. 11) - - - - 32.92 6.53 20.05 45.53

transformers latent class no. 22) - - - - 52.18 6.56 39.03 64.12

E�ciency scores 81.96 8.22 87.15 5.13

DIC 393.9 343.8
Obs. 128 128

1) Latent class of 57 DSOs 2) Latent class of 71 DSOs

In the case of two latent classes, 57 DSOs are assigned to class no. 1 (low cost) and 71 DSO to

class no. 2 (high cost). The results are striking. While the constant lacks statistical signi�cance

in the conventional SFA, it is clearly signi�cant in the latent class alternative. This implies that

conventional SFA yields too low cost e�ciency scores to begin with. Next, standardized network

length has too low cost impact of 20.73 rather than 23.50 if estimated using conventional SFA;

the di�erence is again statistically signi�cant. This means that DSOs with customers far away

from generating sites are punished by low e�ciency scores if this technological peculiarity is not

taken into account in the cost function. Of course, the major di�erence is observed with regard

to the standardized number of transformers. According to the left-hand side of Table 2, their cost

impact amounts to NOK 46 per 1,000 units. However, admitting two latent classes results in an

estimate of only NOK 33 for the low-cost category but NOK 52 for the high-cost one. Since the

95% con�dence intervals of the two estimates overlap somewhat, this di�erence fails to reach

statistical signi�cance. Still, there are several indications to the e�ect that latent class SFA

estimation is preferable to the conventional one. First, standard deviations of all parameters

are smaller. This is to be expected because the model is permitted to �t the observed data

more closely. However, this gain is indeed signi�cant, as indicated by the deviance information

criterion (DIC), the Bayesian equivalent to AIC. A �nding of great importance is that the mean

e�ciency score is 82 percent under conventional SFA but increases by a full 5 percentage points

to 87 under SFA with just two latent classes for the number of transformers. As shown in �gure

2, it is the DSOs with e�ciency score below 90 if estimated by conventional SFA that bene�t

most, by up to 10 percentage points. Up to about 75 percent e�ciency, both the low-cost class

no. 1 and the high-cost class no. 2 experience this upward shift; beyond that value, all but the
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very high-ranked DSOs of class 1 continue to exhibit a somewhat reduced shift while those of

class 2 approach equality between the two types of scores. In the case of Germany, this would

correspond to an increase of allowed network costs in the range of millions of euros for bigger

German DSOs.

Figure 2: E�ciency scores of the SFA and latent class SFA with 2 classes
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6 Conclusion

Following the �rst regulatory period in Germany various regulated DSOs took court action to

appeal against their individual e�ciency score. Many of them argued that their speci�c structural

situation is not adequately accounted for within the benchmarking process. One possible solution

to account for heterogeneity in technologies is to apply panel data methods. However, due to

data limitation issues and political requirements towards model speci�cations, these methods

often are not feasible in a regulatory framework. I developed in this paper a �exible latent class

framework for cross-sectional data, which allows for a range of coe�cients in parameters where

heterogeneity has been detected or structural change is desired. Results from Norwegian data
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show the importance of accounting for heterogeneity. The model presented in the paper could

therefore o�er an approach towards increased credibility of the results. As the data used by the

German regulator is not publicly available, it is not clear if - but likely that - the problem of

heterogeneity also is present in Germany. An appropriate analysis should therefore be conducted.
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