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Abstract

Based on either Monte Carlo simulations, or several examples based on ac-

tual data, I show that the ability of Johansen’s tests to detect a cointegration

relationship significantly deteriorates under two empirically plausible circum-

stances: (i) when, in addition to a cointegration relationship, a system features

one or more ‘nuisance’ series–i.e., series driven by permanent shocks different

from those driving the cointegration relationship; and (ii) when a system fea-

turesmultiple cointegration relationships driven by different permanent shocks,

as implied (e.g.) by the Classical Dichotomy (this being a special case of (i)).

These results suggest that performing Johansen’s tests based on systems

featuring both real and nominal series automatically biases the tests against

rejecting the null. The substantive implication for applied research is that,

when searching for cointegration based on Johansen’s tests, a cointegration

relationship should be tested based on the smallest system for which economic

theory suggests cointegration should hold. I provide several illustrations of how

failure to do so results in cointegration not being detected between (e.g.) either

M 1 velocity and a short-term rate; real house prices and real rents; GDP and

consumption; or short- and long-term interest rates.

Keywords: Unit roots; cointegration; Classical Dichotomy.
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1 Introduction

Economic theory suggests that, in several instances, alternative cointegration rela-

tionships should involve different permanent shocks. The Classical Dichotomy, for

example, postulates that, in the very long run, the real and nominal sides of the econ-

omy should evolve independently,1 with the former being driven by real forces such

as permanent neutral and investment-specific technology shocks, and the latter de-

pending instead on nominal forces such as permanent shocks to monetary aggregates

(or their rates of growth).

In this paper I document and explore, both based on actual data, and via Monte

Carlo simulations, a problem pertaining to Johansen’s tests which arises systemat-

ically within this context. To the very best of my knowledge, the problem has not

been identified and discussed before.

1.1 The problem

Specifically, I show that augmenting a cointegrated systemwith ‘nuisance’ I(1) series–

i.e., series driven by other permanent shocks2 (e.g., because they have been randomly

generated in MATLAB)–makes it more and more difficult, in small samples of the

size normally used in applied work, to detect cointegration based on Johansen’s tests.3

A particular case, which is especially relevant for practical purposes, pertains to

systems containingmultiple cointegration relationships driven by different permanent

shocks, as implied (e.g.) by the Classical Dichotomy. Within this context, either of

the series pertaining to an individual cointegration relationship ends up playing the

role of ‘nuisance’ series for the other cointegration relationships, thus decreasing the

chances of detecting cointegration, sometimes dramatically so. E.g., I provide a simple

example in which two cointegration relationships (between GDP and consumption,

and a short- and a long-term rate, respectively) which are robustly identified based

on the respective bivariate systems disappear when cointegration tests are performed

based on the joint four-variable system, so that no cointegration relationship is iden-

tified. The problem is quite dramatic when working at the annual frequency–for

which, even based on the entire post-WWI sample,4 only (at most) about a hundred

1Benati (2015a) provides evidence compatible with this position. As he stresses, however, the

extent of uncertainty is uniformly substantial, so that, strictly based on empirical evidence, it is not

possible to make strong statements on this issue.
2So, to be clear, the ‘nuisance’ series are driven by at least another permanent shock unrelated

to the original cointegration relationship.
3In a previous version of the paper I also reported Monte Carlo results showing that this problem

does not materially distort results from Shin’s (1994) tests of the null of cointegration. Ultimately,

I decided to take these results out because they are not especially interesting. They are however

available upon request.
4When working with nominal series, pre-WWI data cannot be ‘lumped’ together with data

from subsequent years because of the radically different nature of the pre-WWI monetary regime,

which makes the Lucas critique an especially relevant concern. E.g., Barsky (1987) and Benati
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observations are available–but it is still often quite severe even based on quarterly

post-WWII data, for which typical samples feature about 200-250 observations. In

fact, I provide a simple example based on monthly data since 1963 in which cointe-

gration between real house prices and real rents, which is robustly identified based

on the bivariate system, once again disappears when the system is augmented with

either real wages in the construction sector, or loans to real estate.

My results suggest that–assuming, as it seems reasonable, that the Classical

Dichotomy holds–performing Johansen’s tests based on systems featuring both real

and nominal series automatically biases the tests against rejecting the null.

1.2 Implications for applied research

The substantive implication for applied research is therefore that, when searching for

cointegration based on Johansen’s tests, a specific cointegration relationship should be

explored based on the smallest system for which economic theory suggests cointegra-

tion should hold. I provide several illustrations of how failure to follow this approach

results in cointegration not being detected between either GDP and consumption;

short- and long-term interest rates; 1 velocity and a short-term rate; real house

prices and real rents; labor productivity and real GDP per capita; or the multiplier

of 2-1 and a short-term nominal rate.

The paper is organized as follows. The next section discusses the methodology

for bootstrapping critical and p-values for Johansen’s tests I will use throughout the

paper. Section 3 presents evidence from Monte Carlo simulations. Section 4 provides

several illustrations of this problem based on actual data. Section 5 concludes.

2 Methodology

2.1 Bootstrapping Johansen’s test statistics

Throughout the entire paper, I bootstrap critical and p-values for Johansen’s trace

and maximum eigenvalue tests5 via the procedure proposed by Cavaliere et al. (2012,

henceforth CRT). For either the trace test of the null hypothesis of no cointegration

against the alternative of h0 cointegration vectors, or the maximum eigenvalue test

of zero versus one cointegration vectors, the process to be bootstrapped is a simple

(i.e., non-cointegrated) VAR in differences. On the other hand, for the maximum

eigenvalue tests of h versus h+1 cointegrating vectors, with h0, the model to be

(2008) document dramatic differences between the stochastic properties of inflation between metallic

standards and the post-WWI monetary regimes.
5The rationale for bootstrapping critical and p-values for Johansen’s tests was provided by Jo-

hansen (2002) himself, who showed how, in small samples, trace and maximum eigenvalue tests

based on asymptotic critical values typically tend to perform poorly.
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bootstrapped is the VECM estimated under the null of h cointegrating vectors. All

of the technical details can be found in CRT (2012), which the reader is referred to.

I select the VAR lag order as the maximum6 between the lag orders chosen by

the Schwartz and the Hannan-Quinn criteria7 for the VAR in levels, with an allowed

maximum number of lags equal to 12 when working at the monthly frequency; 4 when

working at the quarterly frequency; and 2 when working at the annual frequency.

2.2 Monte Carlo evidence on the performance of the boot-

strapping procedures

Either CRT (2012, Table I), Benati (2015, Table 1), or Benati, Lucas, Nicolini, and

Weber (2016, Table 1; henceforth, BLNW) provide extensive Monte Carlo evidence

on the excellent performance of CRT’s bootstrapping procedure for Johansen’s tests

conditional on DGPs featuring no cointegration. In particular, either of the three

papers shows that, essentially irrespective of the sample length, CRT’s procedure

produces correctly-sized tests, with empirical rejection frequencies (ERFs) very close

to the test’s nominal size.8 If, however, the true DGP features cointegration, BLNW

(2016) show that Johansen’s tests, even bootstrapped as in CRT, perform well only

if the persistence of the cointegration residual is sufficiently low, and/or the sample

size is sufficiently large. On the other hand, if the cointegration residual is persistent,

and/or the sample size is small, the tests fails to detect cointegration a non-negligible

fraction of the times.9 This is conceptually in line with some of the evidence reported

by Engle and Granger (1987), and it has a straightforward explanation: As the coin-

tegration residual becomes more and more persistent, it gets closer and closer to a

random walk (in which case there would be no cointegration), and the procedure

needs therefore larger and larger samples to detect the truth (i.e.: that the residual

is highly persistent, but ultimately stationary).

I now turn to the Monte Carlo evidence for the problem discussed in the present

work.

6I consider the maximum between the lag orders chosen by the SIC and HQ criteria because the

risk associated with selecting a lag order smaller than the true one (model mis-specification) is more

serious than the one resulting from choosing a lag order greater than the true one (over-fitting).
7On the other hand, I do not consider the Akaike Information Criterion since, as discussed (e.g.)

by Luetkepohl (1991), for systems featuring I(1) series the AIC is an inconsistent lag selection

criterion, in the sense of not choosing the correct lag order asymptotically.
8E.g., in BLNW’s Table 1, with sample lengths ranging from T=50 to T=1000, the ERFs at the

10 per cent level range between 0.098 and 0.119.
9For example, with  = 100, cointegration will be detected, at the 10 per cent level, 43.3 per cent

of the times if  = 0.75, and just 12.0 per cent of the times if  = 0.95, with  being the persistence

of the cointegration residual.
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3 Exploring the Problem via Monte Carlo Simu-

lations

Tables 1 and 2 report results from the following Monte Carlo experiments.

3.1 The Monte Carlo experiment

I stochastically simulate the process

 = −1 + , with  ∼  (0 1) (1)

 =  +  (2)

 = −1 + , with 0 ≤   1,  ∼  (0 1) (3)

As for , I consider three possible values, corresponding to alternative extents of

persistence of the cointegration residual between  and , that is,  = 0.25, 0.75,

0.95. I simulate the system (1)-(3) 1,000 times for three alternative sample lengths,

 = 50, 100, 200. Based on each simulation, I then perform Johansen’s trace and

maximum eigenvalue tests of the null of no cointegration, bootstrapping the critical

and p-values based on CRT’s (2012) procedure. Bootstrapping is performed based on

1,000 replications.

I then perform the same simulations, and, based on the simulated data, the same

cointegration tests, but this time augmenting the system (1)-(3) with either

(1)  additional random walks orthogonal to (1)-(3)–which I generate as in (1)–

with  = 1, 2, 3, 4; or

(2)  additional series cointegrated with –which I generate as in (2)-(3)–with

 = 1, 2, 3, 4.

These simulations are designed to explore how the performance of Johansen’s tests

depends on

(I) the sample length;

(II) the persistence of the cointegration residual;

(III) the fact that the original cointegrated system [, ]
0 is augmented with

either ()  random walks orthogonal to the two original series, or ()  additional

processes cointegrated to  and ; and

(IV) the number of additional random walks or cointegrated processes, .

3.2 Evidence

The results are reported in Tables 1-2. The following main findings emerge from the

tables:

first, in line with the Monte Carlo evidence reported in BLNW’s (2016) Table 1,

based on the simple bivariate cointegrated system [, ]
0, Johansen’s tests perform

well–in the sense of detecting cointegration–if and only if the sample period is

5



Table 1 Monte Carlo evidence on the performance of Johansen’s tests: Fractions of replications

for which no cointegration is rejected at the 10 per cent level with k additional random walks

I: Based on the trace test

Persistence of the 0 additional random walks 1 additional random walk 2 additional random walks

cointegration residual: T = 50 T = 100 T = 200 T = 50 T = 100 T = 200 T = 50 T = 100 T = 200

 = 0.25 0.852 1.000 1.000 0.589 0.992 1.000 0.388 0.928 1.000

 = 0.75 0.289 0.711 0.998 0.172 0.393 0.940 0.125 0.276 0.781

 = 0.95 0.141 0.164 0.273 0.106 0.101 0.142 0.102 0.107 0.128

3 additional random walks 4 additional random walks

T = 50 T = 100 T = 200 T = 50 T = 100 T = 200

 = 0.25 0.246 0.798 1.000 0.186 0.617 0.997

 = 0.75 0.116 0.200 0.589 0.103 0.176 0.448

 = 0.95 0.111 0.102 0.112 0.116 0.099 0.108

II: Based on the maximum eigenvalue test

Persistence of the 0 additional random walks 1 additional random walk 2 additional random walks

cointegration residual: T = 50 T = 100 T = 200 T = 50 T = 100 T = 200 T = 50 T = 100 T = 200

 = 0.25 0.870 1.000 1.000 0.630 0.999 1.000 0.434 0.977 1.000

 = 0.75 0.267 0.711 0.998 0.148 0.412 0.976 0.112 0.270 0.891

 = 0.95 0.127 0.144 0.218 0.088 0.089 0.133 0.097 0.104 0.130

3 additional random walks 4 additional random walks

T = 50 T = 100 T = 200 T = 50 T = 100 T = 200

 = 0.25 0.251 0.888 1.000 0.182 0.760 1.000

 = 0.75 0.121 0.185 0.688 0.102 0.160 0.512

 = 0.95 0.120 0.103 0.103 0.104 0.099 0.101
 Based on 1,000 Monte Carlo replications, and, for each of them, on 1,000 bootstrap replications.



Table 2 Monte Carlo evidence on the performance of Johansen’s tests: Fractions of replications for which

no cointegration is rejected at the 10 per cent level with k with additional cointegrated series

I: Based on the trace test

0 additional 1 additional 2 additional

Persistence of the cointegrated series cointegrated series cointegrated series

cointegration residual: T = 50 T = 100 T = 200 T = 50 T = 100 T = 200 T = 50 T = 100 T = 200

 = 0.25 0.852 1.000 1.000 0.967 1.000 1.000 0.977 1.000 1.000

 = 0.75 0.289 0.711 0.998 0.327 0.858 1.000 0.283 0.884 1.000

 = 0.95 0.141 0.164 0.273 0.124 0.155 0.306 0.108 0.139 0.298

3 additional 4 additional

cointegrated series cointegrated series

T = 50 T = 100 T = 200 T = 50 T = 100 T = 200

 = 0.25 0.953 1.000 1.000 0.930 1.000 1.000

 = 0.75 0.244 0.856 1.000 0.157 0.804 1.000

 = 0.95 0.122 0.111 0.227 0.116 0.094 0.184

II: Based on the maximum eigenvalue test

0 additional 1 additional 2 additional

Persistence of the cointegrated series cointegrated series cointegrated series

cointegration residual: T = 50 T = 100 T = 200 T = 50 T = 100 T = 200 T = 50 T = 100 T = 200

 = 0.25 0.870 1.000 1.000 0.845 1.000 1.000 0.690 1.000 1.000

 = 0.75 0.267 0.711 0.998 0.204 0.613 0.999 0.170 0.511 0.993

 = 0.95 0.127 0.144 0.218 0.101 0.131 0.179 0.097 0.112 0.149

3 additional 4 additional

cointegrated series cointegrated series

T = 50 T = 100 T = 200 T = 50 T = 100 T = 200

 = 0.25 0.557 1.000 1.000 0.445 0.999 1.000

 = 0.75 0.150 0.374 0.990 0.116 0.322 0.958

 = 0.95 0.109 0.093 0.131 0.105 0.108 0.127
 Based on 1,000 Monte Carlo replications, and, for each of them, on 1,000 bootstrap replications.



sufficiently long, and the persistence of the cointegration residual is sufficiently low.

If, on the other hand, either  is small, or  is large, Johansen’s tests fail to correctly

reject the null of cointegration a non-negligble, and sometimes large fraction of the

times.

Second, in line with this paper’s main theme about the impact of ‘nuisance’ I(1)

series on the performance of Johansen’s tests, for each single combination of values

of  and  , the more orthogonal random walks are added to the original cointegrated

system [, ]
0, the worse the performance of the trace and maximum eigenvalues

tests becomes. E.g., focusing, for purely illustrative purposes, on the combination 

= 100 and  = 0.75, the fraction of Monte Carlo simulations for which the trace test

rejects the null of no cointegration is equal to 0.711 based on the bivariate system [,

]
0, but it falls to 0.393 with the addition of a single random walk. With two random

walks the fraction of rejections further decreases to 0.276, whereas with three and

four random walks it falls to 0.200 and 0.176, respectively. These results provide a

straightforward explanation for what we will see in Section 4: A key point to stress

here is that, based on the results reported in Table 1, the ‘greatest damage’ (so

to speak) is inflicted by the first additional random walk. Further augmenting the

system with additional random walks produces smaller and smaller deteriorations of

the performance of Johansen’s tests. This explains results such as those of Table 4,

where the addition of log GDP to the bivariate system featuring1 velocity and the

short rate causes the previously identified cointegration relationship between these

two series to ‘disappear’.

Third, augmenting the original bivariate system [, ]
0 with additional cointe-

grated processes produces mixed results. Specifically, starting with the trace test, its

ability to detect cointegration first improves, and then somehow worsens, if the per-

sistence of the cointegration residual is low. For example, with  = 50 and  = 0.25,

the fraction of Monte Carlo simulations for which the trace test rejects the null of

no cointegration is equal to 0.852 based on the bivariate system [, ]
0, it increases

to 0.977 with two additional cointegrated processes, and it falls to 0.930 with four

additional processes. By the same token, with  = 100 and  = 0.75, the fraction of

simulations for which no cointegration is rejected is equal to 0.711 based on the sys-

tem [, ]
0, it increases to 0.884 with two additional processes, and it falls to 0.804

with four additional processes. With  = 0.95, however, the fractions of rejections

are almost uniformly decreasing in the number of additional processes, although the

fractions are much smaller than those obtained with smaller values of . Turning to

the maximum eigenvalue test of 0 versus 1 cointegration vectors, its performance gets

uniformly worse the more additional cointegrated processes are added to the bivariate

system system [, ]
0. This result, however, can be easily rationalized simply by not-

ing that with  additional cointegrated processes, the test of 0 versus 1 cointegration

vectors is obviously not the most appropriate, and therefore the most powerful.
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4 Illustrations Based on Actual Data

I now turn to illustrations based on actual data. The recurring theme among these

examples is that a cointegration relationship which has been detected based on the

smallest system suggested by economic theory ‘disappears’ when the system is aug-

mented with series whose I(1) component, according to theory, should not be driven

by the permanent shock driving the original cointegration relationship (e.g., several

examples will involve the Classical Dichotomy).

All of the series I work with in this section are I(1) according to the unit root tests

of Elliot, Rothenberg, and Stock (1996). (I do not report this evidence for reasons of

space, but all of these results are available upon request.) All of the data are described

in detail in Appendix A.

4.1 Example I: Long-run money demand

In their investigation of long-run money demand since the mid-XIX century, BLNW

(2016) document the existence of a cointegration relationship between 1 velocity

and a short-term nominal interest rate (henceforth, 1 and , respectively) for

the United States since 1915, Canada since 1926, and many other countries over

the post-World War I period. Since this relationship involves permanent interest

rates shocks10–which, by the Classical Dichotomy, should not drive the unit root

component, of (e.g.) real consumption and GDP–based on the discussion in Section

3 we should expect that, once augmenting the system [1 ]
0 with series such as

GDP, it should become more difficult to detect the original cointegration relationship.

As I will now show, this is indeed the case, and starkly so. Specifically, I will show

that, for both the United States and Canada, augmenting the system [1 ]
0 with

log real GDP causes the original cointegration relationship to ‘disappear’.11 On the

other hand, augmenting [1 ]
0 with the long-term rate–i.e., with a series which,

according to both economic theory, and results from cointegration tests,12 is driven by

the very same permanent shocks driving the short rate–does not cause the original

cointegration relationship to ‘disappear’: Rather, a second cointegration relationship

is identified.

Table 3 reports results from Johansen’s trace and maximum eigenvalue tests for

the three alternative systems for the United States, for the periods 1915-2014 (based

on annual data) and 1959Q1-2012Q4 (based on quarterly data), and for Canada,

10I.e., by the Fisher effect, the permanent inflation shocks associated with the post-World War I

monetary regimes.
11The same holds if the system [1 ]

0 is augmented with log consumption. These results are
not reported here for reasons of space, but they are available upon request.
12For the United States, results from the trace and maximum eigenvalue tests are (bootstrapped

p-values in parentheses) 23.2 (0.01) and 20.9 (0.01), respectively based on annual data for the period

1915-2014, and 26.143 (0.006) and 24.091 (0.004), respectively based on quarterly data for the period

1959Q1-2012Q4. For Canada they are 36.3 (0.00) and 34.2 (0.00), respectively.
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Table 3 Results from Johansen’s cointegration tests for long-run money demand

Trace tests of the null of no cointegration against the

alternative of h or more cointegration vectors:

Tested system: United States (1915-2014) United States (1959Q1-2012Q4) Canada (1926-2006)

h = 1 h = 2 h = 1 h = 2 h = 1 h = 2

 = [1, ]
0 20.769 (0.039) — 18.012 (0.080) — 23.244 (0.015) —

 = [1, , ln()]
0 22.468 (0.444) — 28.504 (0.101) — 22.725 (0.526) —

 = [1, , ]
0 52.100 (0.001) 25.759 (0.000) 43.568 (0.011) 15.483 (0.022) 58.424 (0.000) 21.988 (0.002)

Maximum eigenvalue tests of h versus h+1 cointegration vectors:

United States (1915-2014) United States (1959Q1-2012Q4) Canada (1926-2006)

0 versus 1 1 versus 2 0 versus 1 1 versus 2 0 versus 1 1 versus 2

 = [1, ]
0 16.557 (0.050) — 17.283 (0.049) — 21.714 (0.007) —

 = [1, , ln()]
0 17.327 (0.269) — 17.929 (0.166) — 18.126 (0.284) —

 = [1, , ]
0 26.341 (0.023) 21.640 (0.008) 28.086 (0.018) 14.320 (0.088) 36.436 (0.001) 20.212 (0.013)

 Bootstrapped p-values (in parentheses) are based on 10,000 bootstrap replications. 1 = 1 velocity;  = short-term nomi-

nal rate.;   = real GDP;  = long-term nominal rate.



for the period 1926-2006 (based on annual data). Throughout all of Section 4, results

will be based on 10,000 bootstrap replications of CRT’s procedure. For either country,

three results stand out:

(I) in line with the results reported in BLNW (2016), evidence of cointegration

between 1 velocity and the short rate is uniformly very strong for either country.

(II) When the system [1 ]
0 is augmented with log real GDP, the cointegration

relationship originally identified in the bivariate system disappears.

(III) On the other hand, when the system [1 ]
0 is augmented with the long-

term nominal rate, not only the previously identified cointegration relationship does

not disappear, but rather–as we would expect based on economic theory–a second

cointegration relationship is identified.

In the light of the Monte Carlo evidence we saw in Section 3, the explanation

for such starkly contrasting results is straightforward: Whereas in example (II) the

original system is augmented with a nuisance series–i.e., a series which is not driven

by the same permanent shock driving [1 ]
0–in example (III) the additional series

is instead driven by the very same shock, and it does not therefore play the role of a

nuisance series.

When a researcher first encounters this kind of results, (s)he might be excused

for just shrugging them off, and interpreting them as possibly due to a combination

of small sample issues, and the ‘luck of the draw’:13 After all, precisely because we

are dealing with statistical tests, even under ideal conditions a certain number of

fluke results is to be expected. When one keeps systematically obtaining these results

within widely disparate contexts, however, a pattern starts to emerge. As I will show

in the rest of the paper, the pattern is indeed a very consistent one.

4.2 Example II: Real house prices and real rents

Table 4 reports results from Johansen’s cointegration tests for four alternative systems

featuring housing market variables, for the United States for the period January 1963-

December 2014. In line with previous evidence–see, in particular, Gallin (2008) and

Benati (2015b)–the null of no cointegration between log real house prices and log real

rents (henceforth,  and , respectively) is strongly rejected. In line with the pre-

vious discussion, however, augmenting the bivariate system [, ]
0 with I(1) series

which–according to either economic theory, or previous empirical evidence–should

not be expected to be driven by the same shock driving the permanent component

of house prices and rents, causes the previously identified cointegration relationship

to disappear. Specifically,

() augmenting the system [, ]
0 with log real wages in construction pro-

duces p-values for the trace and maximum eigenvalue tests equal to 0.358 and 0.149,

respectively.

13This was indeed my initial reaction when, a few years ago, I started noticing this kind of results.
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Table 4 United States, January 1963-December 2014: Results from Johansen’s cointegration

tests for the housing market

Trace tests of the null of no coin-

tegration against the alternative

of h or more cointegrating vectors:

h = 1 h = 2

Log real house price and log real rent 16.527 (0.041) —

Log real house price, log real rent, and log industrial production 27.899 (0.098)

Log real house price, log real rent, and log real wages in construction 21.858 (0.358)

Log real house price, log real rent, and log real loans to real estate per capita 26.633 (0.148) 5.430 (0.666)

Maximum eigenvalue tests of h

versus h+1 cointegrating vectors:

0 versus 1 1 versus 2

Log real house price and log real rent 14.499 (0.052)

Log real house price, log real rent, and log industrial production 18.209 (0.141)

Log real house price, log real rent, and log real wages in construction 18.112 (0.149)

Log real house price, log real rent, and log real loans to real estate per capita 21.203 (0.064) 3.651 (0.938)
 Bootstrapped p-values (in parentheses) are based on 10,000 bootstrap replications



Table 5 United States, 1953Q2-2016Q2: Results from Johansen’s cointegration tests for labor productivity

and GDP per capita

Trace tests of the null of no coin-

tegration against the alternative

of h or more cointegrating vectors:

h = 1 h = 2

Log labor productivity and log real GDP per capita 17.749 (0.030) —

Log labor productivity, log real GDP per capita, and 3-month Treasury bill rate 28.136 (0.132) —

Log labor productivity, log real GDP per capita, and 10-year government bond yield 26.303 (0.174) —

Logarithms of labor productivity, real GDP per capita, and real consumption per capita 48.898 (1.0×10−4) 22.274 (1.0×10−4)
Maximum eigenvalue tests of h

versus h+1 cointegrating vectors:

0 versus 1 1 versus 2

Log labor productivity and log real GDP per capita 14.543 (0.054) —

Log labor productivity, log real GDP per capita, and 3-month Treasury bill rate 18.437 (0.170) —

Log labor productivity, log real GDP per capita, and 10-year government bond yield 18.290 (0.166) —

Logarithms of labor productivity, real GDP per capita, and real consumption per capita 26.624 (0.013) 17.906 (0.017)
 Bootstrapped p-values (in parentheses) are based on 10,000 bootstrap replications



() Augmenting it with log industrial production produces marginally better re-

sults, with the p-values now being equal to 0.098 and 0.141, respectively.

() Finally, augmenting the system [, ]
0 with log real loans to real estate per

capita identifies one cointegration vector based on the maximum eigenvalue statistic,

whereas based on the trace tests it does not identify any cointegration relationship.

4.3 Example III: Labor productivity and GDP per capita

Table 5 reports results from Johansen’s tests for the logarithms of labor productiv-

ity and real GDP per capita for the United States for the period 1953Q2-2016Q2.14

As we should expect based on basic economic logic, tests performed based on the

bivariate system detect strong evidence of cointegration. When the bivariate system

is augmented with either the 3-month Treasury bill rate, or the 10-year government

bond yield–i.e., series whose I(1) component should be driven by permanent infla-

tion shocks, which, according to the Classical Dichotomy, should be orthogonal to

the permanent shocks driving labor productivity and GDP per capita–evidence of

cointegration however disappears, with p-values ranging between 0.132 and 0.174.

On the other hand, when the bivariate system is augmented with the logarithm of

real consumption per capita, we strongly identify–as it should be–two cointegration

vectors, with p-values ranging between 1.0×10−4 and 0.017.

4.4 Example IV: GDP and consumption

Cointegration between real GDP and real consumption is one of the most robust and

best-known stylized facts in economics.15 And indeed–see Table 6–for both the

United States and Canada, for the periods 1915-2014 and 1926-2006, respectively,

Johansen’s tests reject the null of no cointegration between the two series at least

at the 10 per cent level. Conceptually in line with what we saw in the previous sub-

sections, however, augmenting the system [ln(), ln()]
0 with the short rate

causes the original cointegration relationship to disappear for the United States. As

for Canada, evidence of cointegration becomes markedly weaker, with the p-value

for the trace test being now equal to 0.136, and that for the maximum eigenvalue

test being instead equal to 0.051. Finally–and again, in line with what we saw in

the previous sub-sections–when the original system is instead augmented with an-

other series driven by the very same permanent shock (within the present context,

investment), for the United States two cointegration relationships are robustly iden-

tified based on either the trace or the maximum eigenvalue tests. As for Canada, the

14Both series are available (at least) since 1948Q1, but we work with the period 1953Q2-2016Q2

because one of the I(1) ‘nuisance’ series we will use is the 10-year government bond yield, which is

only available since April 1953.
15See, first and foremost, Cochrane (1994).
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Table 6 Results from Johansen’s cointegration tests for GDP and consumption

Trace tests of the null of no cointegration against the

alternative of h or more cointegration vectors:

Tested system: United States (1915-2014) Canada (1926-2006)

h = 1 h = 2 h = 1 h = 2

 = [ln(), ln()]
0 15.682 (0.081) — 30.510 (0.009) —

 = [ln(), ln(), ]
0 21.781 (0.472) — 30.510 (0.136) —

 = [ln(), ln(), ln()]
0 54.294 (0.001) 19.977 (0.001) 96.004 (0.000) 27.314 (0.007)

Maximum eigenvalue tests of h versus h+1 cointegration vectors:

United States (1915-2014) Canada (1926-2006)

0 versus 1 1 versus 2 0 versus 1 1 versus 2

 = [ln(), ln()]
0 14.984 (0.064) — 20.167 (0.055) —

 = [ln(), ln(), ]
0 17.259 (0.263) — 24.918 (0.051) —

 = [ln(), ln(), ln()]
0 34.316 (0.004) 19.269 (0.017) 68.690 (0.000) 17.883 (0.169)

 Bootstrapped p-values (in parentheses) are based on 10,000 bootstrap replications.   = real GDP;

 = real consumption;  = real investment.
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Figure 1  United States, 1959Q1-2012Q4: 3-month Treasury bill rate, and multiplier of M2-M1  
 



Table 7 United States, 1959Q1-2012Q4: Results from Johansen’s

cointegration tests for the multiplier of M 2-M 1, and the 3-month

Treasury bill rate

Trace tests of the null of no coin-

tegration against the alternative

of h or more cointegrating vectors:

h = 1 h = 2

 = [2−1, ]
0 18.970 (0.058) —

 = [2−1, , ln()]
0 27.210 (0.145) —

 = [2−1, , ]
0 45.982 (0.004) 13.886 (0.046)

Maximum eigenvalue tests of h

versus h+1 cointegrating vectors:

0 versus 1 1 versus 2

 = [2−1, ]
0 17.916 (0.033) —

 = [2−1, , ln()]
0 14.755 (0.365) —

 = [2−1, , ]
0 32.096 (0.006) 13.785 (0.092)

 Bootstrapped p-values (in parentheses) are based on 10,000 bootstrap replications.

2−1 = multiplier of M 2-M 1; R = 3-month Treasury bill rate; GDP  = real GDP

per capita; F  = Federal Funds rate.



trace tests robustly identify two cointegration relationships, whereas the maximum

eigenvalue tests identify one.

With the exception of this last, and comparatively minor difference, the results

in Table 6 are therefore uniformly in line with those discussed up until now, and

suggest that augmenting a cointegration relationship with nuisance I(1) series (as

previously defined) makes it more and more difficult to detect the originally identified

relationship based on Johansen’s tests.

4.5 Example V: The multiplier of M 2-M 1 and a short-term

rate

As documented by Benati and Ireland (2017), in the United States, over the entire

period since World War I, the multiplier of the monetary aggregate M 2-M 1 has ex-

hibited a very strong correlation with the 3-month Treasury bill rate, and, in fact,

has been cointegrated with it.16 Figure 1 plots the two series for the period 1959Q1-

2012Q4: The strong correlation between them is readily apparent. As stressed by Be-

nati and Ireland (2017), the obvious explanation for such a pattern has to do with the

permanent portfolio shifts out of non interest-bearing M 1, and into interest-bearing

M 2-M 1, caused by the permanent interest rate (i.e., inflation) shocks associated with

the post-WWI U.S. monetary regimes.

The first row of Table 7 reports results from Johansen’s cointegration tests between

the 3-month Treasury bill rate and the multiplier of M 2-M 1: With the p-values equal

to 0.058 and 0.033, respectively, both the trace and the maximum eigenvalue tests

confirm the visual impression from Figure 1 of a long-run equilibrium relationship

between the two series. The cointegration relationship ‘disappears’, however, once

the bivariate system is augmented with log real GDP per capita, i.e. a series which,

according to the Classical Dichotomy, should be thought of as orthogonal to inflation

in the infinite long run. Finally, once again in line with what we have seen up until now,

when instead the bivariate system is augmented with the Federal Funds rate–which

both theory, and results from cointegration tests,17 suggest should be cointegrated

with the 3-month Treasury bill rate–not only the original cointegration relationship

does not disappear, but a second cointegration vector is identified.

4.6 Example VI: Short- and long-term nominal interest rates

Economic theory suggests that the permanent shocks impacting upon nominal interest

rates (i.e., permanent inflation shocks, and permanent shocks to the natural rate

of interest) should have an identical impact on nominal rates at all maturities, so

16As detailed in Appendix A, the multiplier of M 2-M 1 has been computed as the ratio between

M 2-M 1 and the monetary base.
17Results from trace and maximum eigenvalue tests (bootstrapped p-values in parentheses) are

35.209 (8.0×10−4) and 31.526 (4.0×10−4) respectively.
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Table 8 Results from Johansen’s cointegration tests for short- and long-term rates

Trace tests of the null of no cointegration against the

alternative of h or more cointegration vectors:

Tested system: United States (1915-2014) United Kingdom (1922-2014)

h = 1 h = 2 h = 1 h = 2

 = [, ]
0 23.220 (0.016) — 29.523 (0.002) —

 = [, , ln()]
0 26.368 (0.235) — 20.889 (0.535)

 = [, , 1]
0 52.100 (0.001) 25.759 (0.000) 42.564 (0.010) 15.400 (0.035)

Maximum eigenvalue tests of h versus h+1 cointegration vectors:

United States (1915-2014) United Kingdom (1922-2014)

0 versus 1 1 versus 2 0 versus 1 1 versus 2

 = [, ]
0 20.901 (0.010) — 28.253 (0.001) —

 = [, , ln()]
0 22.933 (0.068) — 16.527 (0.324) —

 = [, , 1]
0 26.341 (0.022) 21.640 (0.007) 27.164 (0.024) 14.332 (0.102)

 Bootstrapped p-values (in parentheses) are based on 10,000 bootstrap replications.

 = short-term nominal rate.;   = real GDP;  = long-term nominal rate.



that short- and long-term nominal rates should be cointegrated.18 Table 8 reports

evidenced from Johansen’s cointegration tests for the United States (1915-2014) and

the United Kingdom (1922-2014) for three alternative systems featuring short-term

() and long-term () nominal interest rates. Evidence is in line with what we have

seen up until now. Specifically,

() For both countries, evidence from either test strongly points towards cointe-

gration between short- and long-term nominal interest rates.

() Augmenting the system [, ]
0 with log real GDP causes the previously

identified cointegration relationship to disappear for the United Kingdom. As for the

United States evidence is ambiguous, with the maximum eigenvalue test detecting

one cointegration vector, and the trace test instead detecting none.

() Augmenting the system [, ]
0 with 1 velocity–i.e., with a series which,

as shown by BLNW (2016), is, for either country, cointegrated with the short-term

rate–leads to the identification of two cointegration vectors for the United States

(as it should be). As for Canada, the trace tests identify two cointegration vectors,

whereas the maximum eigenvalue tests identify one, with the p-value for the test of

1 versus 2 cointegration vectors, at 0.102, being just marginally insignificant.

I now turn to systems featuring multiple cointegration relationships driven by

different permanent shocks.

4.7 Example VII: Multiple cointegration relationship driven

by different permanent shocks

A stark illustration of the problem under investigation is provided by the results

reported in Table 9. As previously discussed, for the United States for the period

1915-2014 results from either the trace or the maximum eigenvalue tests strongly

point towards cointegration between either 1 velocity and the short-term rate (see

Table 3), or GDP and consumption (see Table 6). In contrast with these results,

neither the trace nor the maximum eigenvalue tests for the four-variables system

[1, , ln(), ln()]
0 identify any cointegration relationship, with the p-values

ranging between 0.226 and 0.555.

In the light of the previously discussed results, the most logical explanation for

this evidence is that, within the present context, the series pertaining to either of the

two cointegration relationships embedded in the system [1, , ln(), ln()]
0–

that is, 1 and , and ln() and ln(), respectively–end up playing the role

of ‘nuisance’ series for the other cointegration relationships (i.e., for the relationship

driven by the other permanent shock).

The results reported in Table 9 are especially stark not only because two cointe-

gration relationships disappear, but also because this example involves the Classical

Dichotomy, which most economists would likely regard as a bedrock of economics.

18Empirical evidence in support of this notion is provided by Benati (2016). In particular, Benati

(2016) shows that, in the post-WWII United States, all interest rates’ spreads are strongly stationary.
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Table 9 United States, 1915-2014: Results from Johansen’s cointegration

tests for GDP, consumption, M 1 velocity, and a short-term rate

Trace tests of the null of no coin-

tegration against the alternative

of h or more cointegrating vectors:

h = 1 h = 2

 = [ln(), ln(), 1, ]
0 42.527 (0.385) 22.359 (0.226)

Maximum eigenvalue tests of h

versus h+1 cointegrating vectors:

0 versus 1 1 versus 2

 = [ln(), ln(), 1, ]
0 20.168 (0.555) 16.791 (0.295)

 Bootstrapped p-values (in parentheses) are based on 10,000 bootstrap replications.

GDP  = real GDP; C  = real consumption; V 1 = M 1 velocity; R = short-term nominal rate.



Table 10 United States, 1959Q1-2012Q4: Results from Johansen’s cointegration tests for real GDP

and consumption per capita, labor productivity, the 3-month Treasury bill rate, the 10-year govern-

ment bond yield, and M 1 velocity


Trace tests of the null of no cointegration against

Tested system: the alternative of h or more cointegrating vectors:

h = 1 h = 2 h = 3 h = 4

 = [ln(), ln(), ln()]
0 40.647 (0.005) 15.899 (0.007) — —

 = [ln(), ln(), ln(), 1, , ]
0 117.700 (0.013) 82.458 (0.002) 49.030 (0.003) 23.166 (0.032)

Maximum eigenvalue tests of h versus h+1 cointegrating vectors:

0 versus 1 1 versus 2 2 versus 3 3 versus 4

 = [ln(), ln(), ln()]
0 24.748 (0.026) 13.821 (0.068) — —

 = [ln(), ln(), ln(), 1, , ]
0 35.241 (0.308) 33.428 (0.119) 25.864 (0.149) 14.695 (0.485)

 Bootstrapped p-values (in parentheses) are based on 10,000 bootstrap replications.

GDP , C  = real GDP and consumption per capita; PR = labor productivity; R = 3-month Treasury bill rate; r  = 10-

year government bond yield; M 1, = M 1 velocity.



Table 11 United States, 1953Q2-2016Q2: Results from Johansen’s cointegration tests for real GDP

and hours per capita, inflation, the 3-month Treasury bill rate, and the 3-, 5-, and 10-year govern-
ment bond yields

Trace tests of the null of no cointegration against

Tested system: the alternative of h or more cointegrating vectors:

h = 1 h = 2 h = 3 h = 4

 = [, , 
1
 , 

3
 , 

10
 ]

0 121.619 (0.000) 71.177 (0.000) 43.393 (0.000) 18.950 (0.000)

 = [ln(), ln(), , , 
3
 , 

5
 , 

10
 ]

0 196.049 (0.000) 139.896 (0.000) 84.899 (0.000) 55.603 (0.000)

Maximum eigenvalue tests of h versus h+1 cointegrating vectors:

0 versus 1 1 versus 2 2 versus 3 3 versus 4

 = [, , 
1
 , 

3
 , 

10
 ]

0 50.442 (8.0×10−4) 27.784 (0.061) 24.443 (0.021) 14.586 (0.065)

 = [ln(), ln(), , , 
3
 , 

5
 , 

10
 ]

0 56.152 (0.013) 54.997 (0.003) 29.296 (0.272) 23.760 (0.203)
 Bootstrapped p-values (in parentheses) are based on 10,000 bootstrap replications.

GDP  = real GDP per capita; H  = hours per capita;  = inflation; R = 3-month Treasury bill rate; r
3
 , r

5
 , r

10
 = 3-, 5-,

and 10-year government bond yield.



If the real and nominal sides of the economy are indeed orthogonal in the infinite

long-run, the results discussed in this section suggest that testing for the null of no

cointegration based on multivariate systems featuring both real and nominal series

will automatically bias the tests’ results against rejecting the null even if cointegration

truly is there.

Table 10 reports a less dramatic, but more relevant set of results, being based not

on long-run annual data–which are comparatively less investigated in macroeconomics–

but rather on U.S. quarterly series for the period 1959Q1-2012Q4. As reported in

Table 3, for the trivariate system comprising M 1 velocity, the 3-month Treasury bill

rate, and the 10-year government bond yield, Johansen’s tests identified two cointe-

gration relationships. As Table 10 shows, for the trivariate system comprising the

logarithms of labor productivity, and of real GDP and real consumption per capita,

the tests also identify (as we would expect) two cointegration vectors. When the tests

are performed based on the joint six-variables system, however, things change quite

significantly: Whereas the trace tests do indeed identify the expected four cointegra-

tion vectors, the maximum eigenvalue tests identify none. In particular, none of the

p-values for either of the maximum eigenvalue tests, from 0 versus 1 up to 3 versus

4, is smaller than 10 per cent.

Table 11 reports similar evidence for a system featuring the logarithms of real

GDP and hours worked per capita, GDP deflator inflation, and four interest rates

series, estimated based on U.S. data for the period 1953Q2-2016Q2. As basic economic

logic would have it, both the trace and the maximum eigenvalue tests identify four

cointegration vectors in the five-variables sub-system featuring inflation and the four

nominal interest rates series, reflecting the impact on nominal rates of permanent

inflation shocks. In line with the results discussed in the previous paragraph, however,

based on the largest, seven variables system the trace tests still identify, as expected,

four cointegration vectors, whereas the maximum eigenvalue tests identify only two.19

4.8 Implications

I could go on providing several additional examples, but by now my point should be

clear: When you start with an I(1) system for which both economic theory, and results

from cointegration tests, suggest that there is a cointegration relationship driven by

a specific permanent shock, and you augment it with one or more I(1) series which,

according to theory, should be driven by a different permanent shock, there is a very

good chance that the original cointegration relationship will ‘disappear’.

19The results reported in Tables 10 and 11 would appear to suggest that, when facing the problem

discussed in the present work, the trace test is more robust than the maximum eigenvalue test: In

fact, in both instances, trace tests identified the correct number of cointegration vectors, whereas

the maximum eigenvalue tests fell short. Although these two examples would seem to point towards

this conclusion, some caution is in order, as the Monte Carlo results in Table 1 do not point towards

a clear superiority of trace tests compared to maximum eigenvalue tests.
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This has the following important implication: It is common practice, in macroeco-

nomics, to work with multivariate systems featuring both real and nominal I(1) series,

i.e., series which, according to the Classical Dichotomy, should be driven by different

permanent shocks. The previously discussed results suggest that, under these circum-

stances, performing Johansen’s tests based on the full system will automatically bias

the test results against rejecting the null. The starkest illustration of this problem

is the just-mentioned example in which, in the United States for the period 1915-

2014, two cointegration relationships just ‘vanish’. The example is an extreme one,

but it brings home, in the starkest possible way, the point that under these circum-

stances things can easily go very badly wrong, and inference based on cointegrated

(structural) VARs can turn out to be seriously distorted.

The logical implications for applied research is therefore that, when testing the

null of no cointegration, a specific cointegration relationship should be explored based

on the smallest system for which economic theory suggests cointegration should hold.

5 Conclusions

In this paper I have documented a specific problem with tests of the null of no coin-

tegration which, to the very best of my knowledge, had not been previously noticed

and analyzed. Specifically, I have shown–based on both several examples based on

actual data, and Monte Carlo simulations–that augmenting a cointegration relation-

ship with ‘nuisance’ I(1) series (i.e., series driven by other permanent shocks) makes

it more and more difficult, in small samples of the size typically used in applied work,

to detect such relationship based on Johansen’s tests. The substantive implication

for applied research is that, when testing the null of no cointegration, a cointegration

relationship should be tested based on the smallest system for which economic theory

suggests cointegration should hold. I provide several illustrations of how failure to

follow this approach results in cointegration not being detected between either GDP

and consumption; short- and long-term interest rates;1 velocity and the short-term

rate; or real house prices and real rents. A particular case, which is especially rel-

evant for practical purposes, pertains to systems containing multiple cointegration

relationships driven by different permanent shocks, as implied (e.g.) by the Classi-

cal Dichotomy. Within this context, either of the series pertaining to an individual

cointegration relationship ends up playing the role of ‘nuisance’ series for the other

cointegration relationships, thus decreasing the chances of detecting cointegration,

sometimes dramatically so.
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A The Dataset

Here follows a detailed description of the dataset. All of the annual series used in

Section 2 are from Benati, Lucas, Nicolini, and Weber (2016), and they have been

either updated ot extended when possible.

A.1 Canada

An annual series for nominal GDP, available since 1870, has been constructed by

linking the Urquhart series (available from Statistics Canada, which is Canada’s na-

tional statistical agency), for the period 1870-1924; series 0380-0515, v96392559 (1.1)

from Statistics Canada, for the period 1925-1980; and series 0384-0038, v62787311

(1.2.38) from Statistics Canada, for the period 1981-2013. A series for the official

discount rate, available since 1926, has been constructed as follows. Since 1934, when

the Bank of Canada was created, it is simply the official bank rate (‘Taux Officiel

d’Escompte’) from the Bank of Canada’s website. Before that, I use the Advance

Rate, which had been set by the Treasury Department for the discounting of bills,

from Table 6.1 of Shearer and Clark (1984). To be precise, Shearer and Clark (1984)

do not provide the actual time series for the Advance Rate, but rather the dates at

which the rate had been changed (starting from August 22, 1914), together with

the new value of the rate prevailing starting from that date. Based on this infor-

mation, I constructed a daily series for the rate starting on January 1, 1915 via a

straightforward MATLAB program, and I then converted the series to the annual

frequency by taking annual averages. A long-term interest rate available since 1919

(‘Government of Canada Marketable Bonds - Average Yields - Over 10 Years’) is

from the Bank of Canada. A monthly series for 1 starting in January 1872 is from

Metcalf, Redish, and Shearer (1996), and it has been extended as follows. We use

the series from Metcalf et al. (1996) until December 1952; after that, I link it via

splicing to the series labelled as ‘Currency and demand deposits, 1 (x 1,000,000),

v37213’ until November 1981 from Statistics Canada; finally, from December 1981

until December 2006, I use the series from Statistics Canada labelled as ‘1 (net)

(currency outside banks, chartered bank demand deposits, adjustments to 1 (con-

tinuity adjustments and inter-bank demand deposits) (x 1,000,000), v37200’. An

important point to stress is that over the periods of overlapping, the three series are

near-identical (up to a scale factor), which justifies their linking. On the other hand,

for the period after December 2006 I was not able to find an 1 series which could

be reliably linked to the one I use for the period December 1981-December 2006 (over

the last several decades, Canada’s monetary aggregates have undergone a number of

redefinitions, which complicates the task of constructing consistent long-run series for

either of them). As a result, I decided to end the sample period in 2006. We convert

the monthly series to the annual frequency by taking simple annual averages. Series

for real GDP, real consumption, and real investment, available since 1926, are from
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CANSIM (Canada’s national statistical agency), and they have been constructed as

follows. As for GDP, I linked the series v96730304 (available for the period 1926-

1986) to the series v62471340 (available since 1981). Over the period of overlapping,

the two series’ rates of growth are very close, which justifies their linking. By the

same token, for consumption I linked the series v96730305 and v62471303, which are

available for the same periods as the corresponding GDP series.

A.2 United States

A.2.1 Annual data

The series for the 3-month Treasury Bill rate, nominal GDP, and the 1 aggregate

are from Benati et al. (2016). They were originally, from Lucas and Nicolini (2015),

and they have been updated based on either series’ updated original data sources.

The original source for the 3-month Treasury Bill rate is the Economic Report of

the President (henceforth, ERP), whereas the ones for nominal GDP are Kuznets

and Kendrick’s Table Ca184-191 before 1929, and Table 1.1.5 of the National Income

and Product Accounts (henceforth, NIPA) after that. The series for the long-term

rate is the yield on corporate bonds’ series from Balke and Gordon (1986) until

1918. Since 1919 it is Moody’s Seasoned Baa Corporate Bond Yield series, which

I downloaded from FRED II at the St. Louis FED’s website (Balke and Gordon

also used this series for the period since 1919). The series for real GDP is from

Table 1.1.6 of the NIPA since 1929. Before that, it is from Officer and Williamson’s

website, http://www.measuringworth.com/. The series for real personal consumption

expenditures and real gross private domestic investment are from Table 1.1.6 of the

NIPA since 1929. Before that, they are from Table A-IIa (’Gross National Product,

Commerce Concept, Derivation from Kuznets Estimates, 1869-1957’) of Kendrick

(1961).

A.2.2 Quarterly data

Seasonally adjusted series for real and nominal GDP (GDPC96 and GDP, respec-

tively) sre from the U.S. Department of Commerce, Bureau of Economic Analysis.

The seasonally adjusted series for real chain-weighted investment and real chain-

weighted consumption of non-durables and services have been computed based on the

data found in Tables 1.1.6, 1.1.6B, 1.1.6C, and 1.1.6D of the National Income and

Product Accounts. Whereas real consumption pertains to non-durables and services,

real investment has been computed by chain-weighting the relevant series pertaining

to durable goods; private investment in structures, equipment, and residential in-

vestment; Federal national defense and non-defense gross investment; and State and

local gross investment. A seasonally adjusted series for real output per hour of all

persons in the non-farm business sector (OPHNFB) is from the US. Bureau of Labor

Statistics. In line with Lucas and Nicolini (2015), a quarterly, seasonally adjustedM 1
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series is equal to M1SL from the St. Louis Fed’s website (converted to the quarterly

frequency by taking averages within the quarter) until 1983Q4, and it is equal to

M1SL plus Money Market Deposit Accounts since then.

The remaining variables are originally available at the monthly frequency, and they

have been converted to the quarterly frequency by taking averages within the quarter.

The Federal funds rate (FEDFUNDS) and the 3-month Treasury bill rate (TB3MS)

are taken from the St. Louis Fed’s website. Civilian non-institutional population

(CNP16OV) is from the U.S. Department of Labor, Bureau of Labor Statistics. The

St. Louis Adjusted Monetary Base (AMBSL) andM 2 (M2SL) are from the St. Louis

Fed’s website.

A.2.3 Monthly data

A monthly seasonally adjusted series for the core personal consumption expenditure

deflator (‘PCEPILFE: Personal Consumption Expenditures Excluding Food and En-

ergy, Chain-Type Price Index, Seasonally Adjusted, Monthly, Index 2009=100’) is

from the U.S. Department of Commerce: Bureau of Economic Analysis. A monthly

seasonally adjusted series for the core CPI (‘CPILFESL: Consumer Price Index for All

Urban Consumers: All Items Less Food & Energy, Seasonally Adjusted, Monthly, In-

dex 1982-84=100’) is from the U.S. Department of Labor: Bureau of Labor Statistics.

As for the rent series, the ideal one to use would be the owner’s equivalent rent compo-

nent of the CPI (‘CUSR0000SEHC: Consumer Price Index for All Urban Consumers:

Owners’ equivalent rent of residences, Seasonally Adjusted, Monthly, Index Decem-

ber 1982=100’). The problem with this series is that it is comparatively short, as it

starts in January 1983, thus limiting the analysis to just 32 years. In the paper I have

therefore used, as rent series, the shelter component of the CPI (‘CUSR0000SAH1:

Consumer Price Index for All Urban Consumers: Shelter, Consumer Price Index,

Seasonally Adjusted, Monthly, Index 1982-84=100’), which starts in January 1953,

and over the common sample period has been remarkably close to the owner’s equiv-

alent rent component (both series are from the U.S. Department of Labor: Bureau of

Labor Statistics). A monthly seasonally unadjusted series for the median sales price

of new homes sold in the United States is from the website of the Manufacturing and

Construction Division, Residential Construction Branch, of the U.S. Census Bureau

(http://www.census.gov/construction/nrs/historical_data/historic_releases.html). The

original seasonally unadjusted series has been seasonally adjusted via ARIMA X-12.

A.3 United Kingdom

All of the data for the United Kingdom are from version 2.3 of the Bank of England ’s

dataset of long-run historical statistics, which is available from the Bank of England ’s

website (the Excel spreadsheet is called threecenturies_v2.3.xlsx; henceforth, TC).

The first version of the dataset was discussed in detail in Hills and Dimsdale (2010).

Specifically, the following series are from the sheet ‘A1. Headline series’: nominal
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GDP at market prices (column L), real GDP at market prices, chained volume mea-

sure, 2013 prices (column B), the Bank of England ’s official discount rate (column

AE),1 (column AW), and a ‘10 year/medium-term government bond yield’ (column

AG).
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