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Cagan’s Paradox Revisited∗

Luca Benati

University of Bern†

Abstract

Data from 20 hyperinflations–from the French Revolution to Venezuela’s

2018 episode–provide nearly no evidence of a Laffer curve for seignorage.

Rather, in nearly all cases, the relationship between the inflation tax and in-

flation has been either positive at all inflation rates, or initially positive and

then flattening out towards the end of the hyperinflation. Consistent with this,

econometric evidence shows that the preferred money demand specification at

very high inflation rates is not Cagan’s (1956) ‘semi-log’, which automatically

imposes a Laffer curve upon the data: rather, it is either Meltzer’s (1963) ‘log-

log’–for which the inflation tax is monotonically increasing in inflation–or a

more general functional form making log real money balances a linear function

of the Box-Cox transformation of expected inflation (of which the ‘log-log’ is

a special case), which allows the inflation tax to flatten out at high inflation

rates. My results suggest that the paradox first highlighted by Cagan–of pol-

icymakers seemingly inflating in excess of the revenue-maximizing rate during

hyperinflations–is the product of the literature’s predominant focus on the

semi-log specification.

∗I wish to thank Harris Dellas, Giovanni Lombardo, and Francisco Ruge-Murcia for useful discus-

sions. Special thanks to Eugene White, Liuyan Zhao, Carlos Gustavo Machicado, and Zorica Mlade-

novic, for kindly providing data for the French Revolution’s, China’s, Bolivia’s and Yugoslavia’s

hyperinflations, respectively. Usual disclaimers apply.
†Department of Economics, University of Bern, Schanzeneckstrasse 1, CH-3001, Bern, Switzer-

land. Email: luca.benati@vwi.unibe.ch
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Figure 1 The logarithm of Sargent and Wallace’s (1973) measure of seignorage 
            plotted against the inflation rate from Cagan (1956) 
 



1 Introduction

In a classic paper, Phillip Cagan (1956) first documented the puzzling paradox of

policymakers seemingly inflating in excess of the revenue-maximizing rate during

hyperinflations. Since then, Cagan’s paradox has been broadly confirmed by several

subsequent studies, to the point that it has nearly achieved the status of a ‘stylized

fact’ in empirical macroeconomics.

In this paper I revisit Cagan’s paradox based on data from 20 hyperinflations,

from the French Revolution to Venezuela’s 2018 episode. I report two main findings:

(I) evidence of a Laffer curve for the inflation tax is nearly non-existent in the

raw data. Rather, in nearly all cases, the relationship between the inflation tax and

inflation has been either positive at all inflation rates, or initially positive and then

flattening out towards the end of the hyperinflation. As a simple illustration, Figure

1 shows the logarithm1 of Sargent and Wallace’s (1973) measure of the revenue from

money creation2 for the seven episodes in Cagan’s (1956) dataset, plotted against

the inflation rates from Cagan (1956).3 For the two most extreme episodes–Greece

and post-WWII Hungary–the relationship between the two series clearly appears

as monotonically increasing. The same appears to hold, at much lower inflation

rates, for Poland, whereas for Austria the relationship is initially steeply increasing,

and it then appears to flatten out at higher inflation rates, towards the end of the

hyperinflation. Evidence for post-WWI Hungary is not clear-cut but, at the very

least, it provides little to no support to the notion of a Laffer curve for seignorage.

Evidence for Germany is, at first sight, qualitatively in line with that for Greece and

post-WWII Hungary, but this crucially hinges on the very last observation: dropping

it, a Laffer curve would indeed appear from the data. Finally, evidence for Russia is

inconclusive.4 As I will discuss in Section 5.1.1, the visual evidence for the remaining

episodes in my dataset (which is reported in Figure 3) is qualitatively in line with

1I show the logarithm of Sargent and Wallace’s measure because the dramatic extent of variation

exhibited by the level towards the end of the hyperinflations would make it impossible to visually

identify its relationship with inflation.
2Sargent and Wallace’s (1973) measure is from their Table 6, page 345, and it had been computed

as (-−1)/[1/2(+−1)], where  and  are the nominal money stock and the price level

from Cagan (1956).
3The inflation rates are from Cagan’s (1956) Appendix B (‘Data and Sources’). Cagan measured

inflation as log10(/−1), and I converted it to natural logarithms.
4The evidence for Russia’s episode should be treated with some caution. E.g., Barro (1970) es-

chewed Russian data because (see his footnote 36) ‘the assumption of constant real income appeared

unreasonable and adequate income data was unavailable’. In what follows I will instead use Cagan’s

data for Russia, because since we are here dealing with hyper inflations, even an unaccounted-for

deep recession in output should reasonably thought of as only introducing a minor distortion in the

estimates. Barro (1970) also had reservations about Cagan’s money supply data for Greece (and in

fact he eschewed them), but, as I discuss in Section 4.1, these data produce, in fact, qualitatively the

same results as the money supply data from Agapitides (1945) and Delivanis and Cleveland (1949).

So, whatever the shortcomings in Cagan’s Greek money supply data might be, they do not seem to

have any material impact on my estimates.
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that shown in Figure 1.

(II) Consistent with (I), econometric evidence shows that the preferred money

demand specification at very high inflation rates is not Cagan’s (1956) ‘semi-log’,

which automatically imposes upon the data a Laffer curve for seignorage: rather, it is

either Allan Meltzer’s (1963) ‘log-log’5–for which the inflation tax is monotonically

increasing in inflation–or a more general functional form making log real money

balances a linear function of the Box-Cox transformation of expected inflation,6 which

allows for the inflation tax to flatten out at high inflation rates. In several cases

the data’s preference for the log-log specification is clearly apparent even to the

naked eye. A stark illustration is provided by Yugoslavia, for which the logarithm of

inflation tracks log real money balances remarkably closely,7 whereas its level exhibits

a scant connection with it. The same holds, e.g., for Greece, Germany, and post-WWII

Hungary, and to a slightly lesser extent for China and Zimbabwe.

My results therefore suggest that the findings of both () a Laffer curve for the

inflation tax, and () policymakers having near-uniformly inflated in excess of the

revenue-maximizing rate during hyperinflations, are the product of the literature’s

predominant focus on the semi-log functional form, which automatically imposes

upon the data a Laffer curve.

My overall conclusion is therefore that Cagan’s paradox is simply an illusion,

originating from the literature’s predominant focus on the semi-log specification for

the demand for real money balances, which automatically imposes upon the data

a Laffer curve for the inflation tax. On the other hand, the fact that, at very high

inflation rates, the preferred specification is Meltzer’s (1963) log-log (or a specification

very close to it), logically rules out the possibility of such paradox.

The paper is structured as follows. In the next section I briefly discuss how alter-

native functional forms for the demand for real money balances map into different

relationships between inflation and seignorage. Section 3 presents a brief overview of

the literature, whereas Section 4 discusses in detail the data and their sources. Section

5 presents and discusses the evidence, starting from the simplest–but, I will argue,

the most powerful one–i.e. the raw data, and then moving to econometric evidence.

Section 6 concludes, and outlines three possible directions for future research.

2 Theory

Figure 2 shows the logarithm8 of the revenue from money creation as a function of

inflation for alternative functional forms for the demand for real money balances. The

5To be precise, Meltzer’s (1963) study did not pertain to hyperinflations.
6As I discuss in Section 2, within this framework the semi-log and log-log specifications represent

‘corner solutions’, corresponding to the Box-Cox parameter taking the values of 1 and 0, respectively.
7Quite obviously, once appropriately rescaled.
8I show the logarithm of seignorage (rather than seignorage itself) in order to allow the reader a

direct visual comparison with the evidence shown in Figures 1 and 3.
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Figure 2  The logarithm of the revenue from money creation as a function of inflation, for alternative 
             values of the Box-Cox parameter in specification (2) for the demand for real money balances 
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positing a linear relationship between log real money balances and the Box-Cox trans-

formation of expected inflation,  , with 0 and the Box-Cox parameter  ∈[0, 1].

A key feature of (2) is that while it nests both Cagan’s (1956) semi-log specification
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and Meltzer’s (1963) log-log one
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as special cases–specifically, ‘corner solutions’ corresponding to  taking the value

of either 1 or 0, respectively–it also allows for a continuum of intermediate cases.

In particular, starting from =1–for which the Laffer curve for the inflation tax

associated with Cagan’s semi-log is clearly apparent–smaller and smaller values of 

cause the right hand-side portion of the Laffer curve to become progressively flatter.

For values of  significantly smaller than 0.5–corresponding to which the Laffer

curve becomes, asymptotically, exactly flat–the relationship becomes monotonically

increasing, exactly as we saw in Figure 1 for Greece and post-WWII Hungary.

In Section 5 I will estimate  via maximum likelihood for each individual episode.

To anticipate, in the vast majority of cases the distribution of the MLE estimates

generated via Random-Walk Metropolis (RWM) is clustered towards 0. Only in

one case, Russia, =1 is a plausible estimate, whereas in nearly all other cases it is

very highly implausible based on the distribution produced by RWM. Further, with

the single exception of Russia, the implied distributions of the relationship between

inflation and the inflation tax provide virtually no evidence of a hump-shaped, Laffer-

type relationship.

I now turn to a brief overview of the literature.

4



3 Related Literature

Cagan’s (1956) paper spawned an enormous literature. In this section I provide a

brief overview, by narrowly focusing on two groups of studies: (1) classic papers,

such as those of Sargent and Wallace (1973) and Sargent (1977), and (2) the very

few studies containing results in line with this paper’s position. Before delving into

this, however, I start by providing a brief summary of Cagan’s discussion of the most

appropriate functional form for the demand for real money balances.

3.1 Cagan (1956) on the functional form for the demand for

real money balances

Cagan (1956) did not derive the semi-log specification (3) within a micro-founded

framework, but rather postulated it.9 In reaction to the empirical shortcoming of the

postulated specification for the latests stages of hyperinflations–for which the esti-

mated models’ fit had typically been worse than for the initial stages10–he speculated,

however, that an alternative functional form may be needed in order to meaningfully

characterize the dynamics of the data. In particular, he entertained the possibility11

‘[...] that the function that determines the demand for real cash balances

does not conform to [the semi-log specification]. To be consistent with the data,

this hypothesis requires that all observations that lie to the right of the linear

regression shall fall in order along some curved regression function [...].’

In practice, this means that the alternative functional form Cagan was speculating

about should have been either a log-log, or a specification close to it. In the end,

Cagan’s solution12 was neither to use a log-log, nor a specification such as (2), but

rather to simply exclude the latest stages of the hyperinflations from the empirical

analysis:

‘The periods covered by the statistical analysis exclude some of the ob-

servations near the end of the hyperinflations. The excluded observations are

9See Cagan (1956, p. 35, equation 2). In fact, both the semi-log and the log-log specifications can

be derived within either a generalized Baumol (1952)-Tobin (1956) framework (see Benati, Lucas,

Nicolini, and Weber, 2018), or Sidrauski’s (1967, 1968) ‘money-in-the-utility-function’ framework

(see Belongia and Ireland, 2018).
10This problem has been repeatedly documented by several authors. E.g., for Yugoslavia’s episode,

see Petrovic and Mladenovic (2000).
11To be precise, Cagan (1956, p. 55) also discussed an alternative possible explanation, based on

the notion that, towards the latest stages of hyperinflations, agents may come to expect a currency

reform. Although, in principle, perfectly plausible, this alternative explanation suffers from the

crucial limitation that it appears as implausible that expectations of a currency reform should have

been such as to make the historical paths for inflation and real money balances to so clearly conform

to those implied by a log-log specification.
12See Cagan (1956, Section IV.3, ‘Observations that do not fit the regression’, p. 55).
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from the German, Greek, and second Hungarian hyperinflations [...]. All the

excluded observations lie considerably to the right of the regression lines, and

their inclusion in the statistical analysis would improperly alter the estimates

of  and  derived from the earlier observations of the hyperinflation.’

Even this solution, however, was less than satisfactory, as the residuals in Cagan’s

estimated equations were, in fact, strongly serially correlated.

I now turn to briefly discuss the two previously mentioned groups of studies. An

important point to stress is that all of the four classic studies discussed in the next

sub-section, as well as the overwhelming majority of existing studies of the demand

for money during hyperinflations, have been based on Cagan’s semi-log specification.

3.2 Classic studies

Sargent and Wallace (1973) pointed out that Cagan’s (1956) estimator of the semi-

elasticity of money demand was inconsistent under rational expectations, and doc-

umented how, in Cagan’s dataset, inflation Granger-caused money growth, whereas

money growth failed to Granger-cause inflation.

Sargent (1977) showed how, under rational expectations, the semi-elasticity of

money demand could in fact be identified by assuming that shocks to money demand

and money supply be contemporaneously uncorrelated. A key result he obtained was

that estimates of the semi-elasticity of money demand based on Cagan’s dataset were

characterized by a very large uncertainty. In particular,

‘[t]he estimates are so loose that confidence bands of two standard errors on each side

of them include values that would imply that the creators of money were inflating at rates

that maximized their command over real resources, thus maybe resolving [Cagan’s] paradox

[...].’

Salemi and Sargent (1979) postulated a vector autoregressive (VAR) represen-

tation for the joint dynamics of inflation and money growth, and estimated it 

maximum likelihood conditional on the rational expectations restrictions implied by

Cagan’s semi-log functional form. Consistent with Sargent (1977), a main finding

was that the extent of econometric uncertainty surrounding the point estimates of

the semi-elasticity of money demand was much more substantial than for Cagan’s

(1956) estimates, which, once again, could be taken to provide a possible explanation

for Cagan’s paradox.

Taylor (1991) introduced cointegration methods to the study of the demand for

real money balances during hyperinflations. As he first pointed out, if both inflation

and real money balances are I(1), and under the minimal assumption that the forecast

errors are I(0), cointegration allows to test for the presence of a demand for real money

balances–rather than postulating it, as it was done in the previous literature–

and to estimate it via maximum likelihood. Following Taylor (1991), several papers

have applied cointegration techniques to the study of the demand for money during

hyperinflations. As I discuss in Section 5.2.1, a key limitations of these studies is that,
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to the very best of my knowledge, they have all been based on asymptotic critical

values, which, in small samples, have been shown to be essentially unreliable13 (in

the next sub-section I discuss a specific example, Zhao’s 2018 study of the Chinese

hyperinflation).

3.3 Papers conceptually in line with the present work

Barro (1970), still working within a pre-rational expectations framework, developed

a sophisticated model for the demand for real money balances which produced a

markedly better fit than Cagan’s (1956) semi-log specification.14 For the present

purposes, the crucial point is that Barros’ empirical specification–see his equations

(74)-(75)–boiled down to a linear relationship between log real money balances and

the logarithm of the sum of expected inflation and the real interest rate (plus addi-

tional terms). The superior fit of Barro’s specification, compared to Cagan’s (1956),

is therefore compatible with the present paper’s results.

Zhao (2017) is, to the very best of my knowledge, the paper which is closest–in

terms of its main objective–to the present work. Based on data for China’s hyperin-

flation, it uses cointegration techniques in order to address the issue of which, among

the semi-log and the log-log functional forms, provides a a better characterization of

the data. Taken at face value, his results are in line with mine: whereas he detects

cointegration between log real money balances and the logarithm of inflation, he does

not detect it between log real balances and inflation’s level. A limitation of Zhao’s

results is that his cointegration tests are based on asymptotic critical values, which,

as mentioned in the previous sub-section, should be regarded as unreliable because

of the short sample length. In fact, performing the same Johansen’s tests reported in

Zhao’s (2017) Table 6, but bootstrapping them as in Cavaliere, Rahbek, and Taylor

(2012), I obtain p-values for the trace and maximum eigenvalue test statistics equal

to 0.245 and 0.156, respectively, based on the logarithm of inflation, and equal to

0.514 and 0.617 based on its level. This suggests that although, from the perspective

of the present work, Zhao (2017) did obtain the correct result, in fact he produced it

based on an unreliable procedure.

I now turn to discuss in detail the data.

4 The Data

Here follows a detailed description of the data and of their sources for the 20 episodes

of hyperinflation I consider herein, in chronological order.

13E.g. Johansen (2002), with reference to his trace and maximum eigenvalue tests, showed that

asymptotic critical values are essentially unreliable in small samples.
14As he pointed out (see p. 1257), ‘[i]n general, the average errors in Cagan’s form are about

twice as large as those [based on Barro’s specification], and the serial correlation of residuals is

substantially more pronounced’.
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Table 1 Maximum, mean, and median inflation during hyper-

inflationary episodes

Maximum Mean Median

France (January 1794-June 1796) 0.761 0.183 0.154

Based on Cagan’s (1956) data

Austria (January 1921-August 1922) 0.852 0.258 0.212

Germany (September 1920-November 1923) 5.885 0.616 0.157

Hungary (July 1922-February 1924) 0.683 0.248 0.215

Hungary (July 1945-July 1946) 33.670 4.909 1.677

Poland (April 1922-January 1924) 1.322 0.368 0.302

Russia (January 1922-February 1924) 1.142 0.451 0.420

Greece (January 1943-November 1944) 13.659 1.378 0.470

Based on Barro’s (1970) data

Austria (January 1921-December 1922) 0.852 0.220 0.149

Poland (January 1922-January 1924) 1.229 0.349 0.289

Germany (January 1921-August 1923) 2.931 0.339 0.136

Hungary (October 1921-February 1924) 0.683 0.191 0.152

Other datasets

Germany (June 1918-December 1923) 5.736 0.410 0.071

Greece (January 1941-October 1944) 4.325 0.470 0.249

Greece (January 1941-October 1944) 4.499 0.473 0.284

China (August 1945-May 1949) 4.446 0.552 0.240

Chile (January 1972-November 1974) 0.575 0.120 0.106

Bolivia (February 1983-August 1986) 1.039 0.220 0.155

Argentina (January 1987-April 1991) 0.992 0.185 0.135

Brazil (August 1988-March 1991) 0.592 0.235 0.199

Peru (January 1987-September 1991) 1.512 0.211 0.147

Yugoslavia (January 1991-January 1994) 11.290 1.386 0.496

Congo (May 1991-July 1995) 2.144 0.296 0.241

Angola (December 1995-January 1998) 0.610 0.167 0.061

Bulgaria (January 1996-February 1998) 1.230 0.128 0.039

Zimbabwe (April 2006-June 2008) 3.912 0.706 0.406

Venezuela (January 2017-November 2018) 0.999 0.411 0.355
 Inflation is computed as the monthly log-difference of the price level.
 Based on Graham’s (1930) data.  Based on Agapitides’ (1945) data.
 Based on Delivanis and Cleveland’s (1949) data.



4.1 Monthly data

Data for the French Revolution have been generously provided by Eugene White.

A monetary aggregate labelled as ‘Total assignats in circulation less demonetized

issues’,15 available for the period December 1789-August 1796, is from Table 9 of

White (1990). The corresponding price index, labelled as ‘French Treasury exchange

rate: market rate. French paper assignats per gold French livre’, is from Table 2 of

White (1991), and it represents the ‘conversion rate’ of paper assignats which had

been issued at a specific date into gold French livre, meaning that, in fact, this was an

assignats-specific price index. On the other hand, I ignore the other currency issued by

the Revolutionary government, the mandat, because between February 1796, when

the mandats were first issued, and June 1796, when my sample ends, the stock of

mandats consistently represented a tiny fraction of the stock of assignats (ranging

between 0.06 per cent in February, and 3.8 per cent in June).

Cagan’s (1956) data are from Tables B1-B14 in his Appendix B.16 The countries

and sample periods are the following: Austria (Jan. 1921-Aug. 1922), Germany (Sep.

1920-Nov. 1923), Hungary, post-WWI (Jul. 1922-Feb. 1924), Hungary post-WWII

(Jul. 1945-Jul. 1946), Poland (Apr. 1922-Jan. 1924), Russia (Jan. 1922-Feb. 1924),

and Greece (Jan. 1943-Nov. 1944). Barro (1970) eschewed Cagan’s data for Hungary’s

post-WWII episode because of the short sample length–just 13 observations. In what

follows I will also eschew these data, and I will perform the empirical analysis based

on Anderson et al.’s (1988) weekly data (described below in Section 4.2), featuring

28 observations. As for Greece, Barro (1970, footnote 36) pointed out that ‘[t]he

money-supply data for Greece was unreliable (Cagan, p. 106), and the variation in

real income during the war was apparently substantial (International Labor Review,

December 1945, p. 650).’ In what follows I will instead consider these data because ()

as previously discussed in footnote 4 with reference to Russia’s episode, since we are

here dealing with hyper inflations, even an unaccounted-for deep recession in output

should reasonably thought of as only introducing a minor distortion in the estimates;

and () as for the ‘unreliability’ of money-supply data, the alternative measures from

Agapitides (1945) and Delivanis and Cleveland (1949) (described below) produce, in

fact, qualitatively similar results. So, whatever the shortcomings in Cagan’s Greek

money supply data might be, they do not seem to have a material impact on the

empirical evidence.

Barro’s (1970) data are from Tables A1-A4 in the Appendix.17 The countries and

15To be clear, what this label means is that the stock was computed as the sum of the total

amount of assignats which had been issued by the Revolutionary government, minus the amount

which had been retired from circulation and destroyed (as it was periodically done).
16Cagan’s dataset features the logarithms in base 10 of (/) and of (/−1), where  and

 are the nominal money stock and the price level, respectively, for month . I converted the original

data to natural logarithms. Then, I computed the index of log prices as the cumulative sum of the

log-difference of the price level, and based on this, and the log of real money balances, I recovered

an index for log nominal money balances.
17Barro’s data feature the logarithm of real money balances and inflation, computed as the log-
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sample periods are the following: Austria (Jan. 1921-Dec. 1922), Germany (Jan. 1921-

Aug. 1923), Hungary, post-WWI (Oct. 1921-Feb. 1924), and Poland (Jan. 1922-Jan.

1924).

Graham’s data for Germany, available for the period Jun. 1918-Dec. 1923, are

from Table XII of Graham (1930), and they feature two indices of wholesale prices,

and of total monetary circulation, respectively.

Additional data for the Greek hyperinflation, for the period Jan. 1941-Oct. 1944,

are from the Appendix of Anderson et al. (1988), and they feature money supply

measures and price indices from either Agapitides (1945) or Delivanis and Cleveland

(1949).

The data for China, which were used in Zhao and Li (2015), have been kindly

provided by Liuyan Zhao. As detailed in Zhao and Li (2015), the data for currency

are from Wu (1958, p. 92 and p. 122), whereas the price index is from Wu (1958, pp.

160-163). The sample period is August 1945-May 1949.

For Chile, data for M1 and the CPI, available since December 1965 and January

1947, respectively, are both from the Banco Central do Chile.

For Bolivia, data for M1, available since January 1952, are from Bolivia’s central

bank, and they have been kindly provided by Carlos Gustavo Machicado, whereas

data for the consumer price index, available since January 1967, are from the Instituto

Nacional de Estadistica.

For Argentina, data for both M1 and the CPI, available since January 1941 and

January 1943, respectively, are from the Banco Central de la República Argentina.

For Brazil, a series for the CPI, available since January 1980, is from the Instituto

Brasileiro de Geografia e Estatística (IBGE), whereas a series for M1, available since

July 1988, is from the Banco Central do Brazil.

For Peru, a series for the CPI, available since January 1949, is from the Banco

Central de Reserva del Peru, whereas a monetary aggregate defined as ‘Money plus

quasi money’, available since January 1964, is from the International Monetary Fund’s

International Financial Statistics (henceforth, IMF and IFS, respectively).

The data for Yugoslavia, available for the period Dec. 1990-Jan. 1994, are from

Petrovic and Mladenovic (2000), and they were kindly provided by Zorica Mladen-

ovic.18 The dataset features series for retail prices, M1, and the black market exchange

rate of the Yugoslav dinar vis-à-vis the Deutsche Mark. As extensively discussed by

Petrovic and Mladenovic (2000),19 however, several observations of the retail prices

index are unreliable, and in what follows I will therefore exclusively work with the

black market exchange rate of the dinar, which, as pointed out by the authors in

footnote 10, was collected directly by them from daily newspapers.

The data for Congo are from the IMF’s IFS. A series for ‘Money’ is available since

difference of the relevant price index.
18The data’s original sources are discussed in detail in footnote 10 of Petrovic and Mladenovic

(2000).
19See p. 787, and especially footnote 4.
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May 1969, wherea a series for the exchange rate vis-à-vis the U.S. dollar is available

since September 1983.

The data for Angola are from the IMF’s IFS. A series for the CPI is available

since Jan. 1993, whereas a series for the central bank’s ‘Reserve Money’ is available

since Dec. 1995.

The data for Bulgaria are from the IMF’s IFS. A series for the CPI is available

since Jan. 1991, whereas a series for M1 is available since Dec. 1995.

The sources of the data for Zimbabwe are as follows. A series for ‘Reserve Money’,

available for the period Jan. 1979-Jun. 2008, is from the IMF’s IFS. A series for the

black-market exchange rate of Zimbabwe’s dollar vis-à-vis the U.S. dollar, which was

used in McIndoe-Calder (2018), is from Table 4 of McIndoe-Calder (2011), and it is

available for the period Apr. 2006-Apr. 2009. As discussed by McIndoe-Calder (2018,

Section III, pp. 1661-1663) the official CPI series (which is available from the IMF’s

IFS) is unreliable, especially for the latest stages of the hyperinflation. Exactly as

for Yugoslavia, in what follows I will therefore exclusively focus on the black-market

exchange rate.

For Venezuela, data for M1, available since January 2013, are from the Banco

Central de Venezuela. As for the price index, since the government stopped publishing

official CPI figures in December 2015, I was compelled, once again, to resort to the

black-market exchange rate–in the present case, for the Bolivàr vis-à-vis the U.S.

dollar, which is available at the daily frequency at the website https://dolartoday.com.

The original data for Argentina, Chile, and Peru were seasonally unadjusted, and

I have therefore seasonally adjusted them via ARIMA X-12.

4.2 Weekly data

As for Germany, a weekly series for the money stock (labelled as ‘Notenumlauf’, i.e.

‘Banknotes in circulation’), available from December 14, 1918 to November 15, 1923,

is from Flood and Garber’s (1980) Table B.1 in Appendix B until the end of December

1922–with the original source of the data beingWirtschaft und Statistik20–and it is

from Wirtschaft und Statistik after that. Since the original series contains a periodic

pattern at the monthly frequency (so that in the last day of the month the series

temporarily increases compared to adjacent observations), I removed it via ARIMA

X-12. A daily series for the spot exchange rate of the German Reichsmark vis-à-

vis the British Pound is available almost without interruptions from September 7,

1922 to November 15, 1923 from Wirtschaft und Statistik.21 An important point to

stress is that since, with a couple of exceptions, this series is available for each single

business day during this period, I can exactly match the dates in which the monetary

aggregate had been released with the dates for the exchange rate. A weekly price

20See at: https://www.destatis.de/GPStatistik/receive/DESerie_serie_00000012?list=all
21See at: https://www.destatis.de/GPStatistik/receive/DESerie_serie_00000012?list=all The

table is labelled as ‘Bewegung der Wechselkurse: Wechselkurset Berlin auf’.
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series (labelled as ‘Großhandelindexziffer’, i.e. ‘Wholesale price index’), available

from August 7, 1922 to November 15, 1923, is from Wirtschaft und Statistik.22 A

limitation of this series, compared to the series for the Reichsmark/Pound exchange

rate, is that it had been released at the weekly frequency on dates which often did not

match the release dates for the monetary aggregates. As a result, a dataset comprising

this series and the ‘Notenumlauf’ monetary aggregate suffers from the shortcoming

that the two series are not exactly matched on a day-by-day basis. Because of this,

in what follows I will almost exclusively focus on the results based on the exchange

rate, and I will largely eschew those based on the wholesale price index.

Two series for a monetary aggregate (labelled as ‘Notes’) and a price index for

Hungary’s post-WWII episode, available from December 31, 1945 to July 23, 1946,

are from the appendix of Anderson, Bomberger, and Makinen (1988).

I now turn to the evidence.

5 Evidence

‘Good empirical evidence tells its story regardless of the precise way in which it is

analyzed. In large part, it is its simplicity that makes it persuasive. [...] No single

test is held out as decisive. Many different types of data are examined. Mayer

(1972) counts 16 different types of evidence adduced by Friedman in support of

the permanent income hypothesis. No single episode in A Monetary History was

held out as decisive. No single test reported in Fama’s survey proved or disproved

anything but a persuasive pattern emerged from the totality.’

–Lawrence Summers (1991)

In building up my argument that

(I) available data for hyperinflationary episodes show no evidence of a Laffer curve

for the revenue from money creation, and

(II) the data, especially at very high inflation rates, show a clear preference for

Meltzer’s log-log functional form (or a specification very close to it), rather than the

semi-log proposed by Cagan (1956),

I start from the simplest kind of evidence–the raw data–and I then move to max-

imum likelihood estimation of the Box-Cox parameter in equation (2) at the level of

individual countries. In doing so I am motivated by the conviction–forcefully artic-

ulated, e.g., by Summers (1991) in the above quotation–that the most convincing

type of empirical evidence is the simplest.

5.1 A look at the raw data

Table 1 reports, for each individual episode, the maximum, mean, and median monthly

inflation rate, computed as the log-difference (in natural logarithms) of the relevant

22See at: https://www.destatis.de/GPStatistik/receive/DESerie_serie_00000012?list=all
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Figure 3  Inflation and the logarithm of the inflation tax for the 
             hyperinflation episodes in the dataset (monthly data) 
 



price index. Whenever possible, I follow Cagan (1956), and I set the end of the hy-

perinflationary episode at 12 months after inflation had last exceeded the threshold

he proposed, of 50 per cent per month.23 The dataset features a significant extent

of variation in inflationary experiences, ranging from post-WWII Hungary’s peak of

33.67;24 to the second and third most extreme episodes, Greece and Yugoslavia, with

peak inflation rates of 13.66 and 11.29, respectively; down to the least extreme, Chile,

with a maximum inflation rate of 0.575. Exactly two thirds of the episodes had infla-

tion rates in excess of 1, whereas 18.5 and 11.1 per cent had rates in excess of 5 and

10, respectively.

5.1.1 Inflation and the revenue from money creation during hyperinfla-

tions

Figure 3 shows, for the 20 episodes in my dataset, the logarithm of the revenue

from money creation plotted against the inflation rate.25 Following Drazen (1985),26

I compute the revenue from money creation as () in (1), which, based on

end-of-period discrete-time observations, I approximate as



∙
1

2

µ
−1
−1

+




¶¸
(5)

where  ≡ (-−1)−1, and  and  are the end-of-period figures for nominal

money balances and the price level, respectively. As before, the inflation rate is

computed as the log-difference (in natural logarithms) of the relevant price index.

For the seven episodes in Cagan’s dataset, the evidence in Figure 3 is qualitatively

the same as that shown in Figure 1 based on Sargent and Wallace’s (1973) measure

of seignorage. As for the remaining episodes and datasets, the crucial point to stress

is that, once again, there is essentially no evidence of a Laffer curve for the inflation

tax. Rather, two broad patterns appear to have characterized hyperinflation episodes:

23In fact, in several cases this was not possible due to either lack of, or discontinuities in one

or more series. E.g., for China and Yugoslavia the dataset ends in May 1949 and January 1994,

respectively, when the inflation rate had been equal to 4.44 and 8.35.
24Hungary’s peak of 33.67 was reached in July 1946. The data for Hungary shown in Figure 1

stop in June 1946 (for which the inflation rate was 11.34) because Sargent and Wallace’s (1973)

Table 6 does not report the seignorage figure for the month of July.
25Figure 3 only reports evidence based on monthly data. The corresponding evidence based on

weekly data for Germany, and for post-WWII Hungary, is in line with that in Figure 3, and it is

available upon request.
26To be precise, Drazen (1985) presents a measure of the revenue from money creation which is

conceptually correct across alternative models. Drazen’s measure–see his equation (5)–is equal

to (in my notation) the sum of () in my equation (1), and (-), where , , and

 are the real interest rate, population growth, and ‘the (per capita real) value of assets held by

government by virtue of people holding real balances’ (see Drazen, 1985, p. 328). Since (-) is

negligible compared to , and  is of the same order of magnitude of , it logically follows

that Drazen’s measure is, for all practical purposes, near-identical to ().
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Figure 4a  Germany, June 1921-November 1923: the weekly raw data for (log) exchange 
              rate depreciation and log real money balances (12-month rolling averages)
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Figure 4b  Selected monthly raw data for (log) inflation and log real money balances 
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Figure 4c  Monthly raw data for (log) inflation and log real money balances for Latin-American countries 
 
 



() in several instances–notably, post-WWII Hungary, Greece, Yugoslavia,27 Ger-

many, and Zimbabwe–the revenue from money creation appears to have been monoton-

ically increasing with inflation.

() In the remaining episodes–e.g., Austria, Poland, Bolivia, Argentina, and

Bulgaria–the inflation tax appears to have flattened out at comparatively high in-

flation rates (i.e., towards the latest stages of the hyperinflation).

The implication is that, as long as we are willing to restrict our attention to the

family of specifications encoded in equation (2), hyperinflation data are best described

by values of  between 0 and about 0.5.

5.1.2 The dynamics of real money balances and inflation during hyper-

inflations

Figures 4-4 provide additional evidence on this, by showing, for some selected

episodes, the logarithm of real money balances together with either the level of infla-

tion (on the left-hand side panel in Figure 4, and in the top row in Figures 4-4),

or its logarithm28 (on the right-hand side panel in Figure 4, and in the bottom row

in Figures 4-4). The evidence in the two groups of panels therefore corresponds to

a semi-log and, respectively, a log-log specification for the demand for real money

balances, relating log real balances to either the level, or the logarithm, of inflation.

In several instances the log-log specification provides a manifestly more plausible

description of the joint dynamics of real money balances and inflation, in the specific

sense that log real balances track the logarithm of inflation much more closely than

its level.29 This is especially clear for Germany based on the weekly data for the

Pound/Mark exchange rate (see Figure 4), and for Yugoslavia, Germany, Greece,

and post-WWII Hungary, whereas evidence for China and Zimbabwe is slightly weaker

(see Figure 4). On the other hand, evidence for other countries is, most of the times,

not clear-cut, which calls for econometric methods in order to be able to discriminate

between alternative functional forms.

27An important point to stress is that Hungary’s 1946 episode, Greece, and Yugoslavia are the

three most extreme cases of hyperinflation in recorded history (see Table 1). The fact that, as

documented in Figure 3, for any of these episodes the relationship between inflation and the inflation

tax had consistently been positive at all inflation rates represents therefore a stark refutation of the

notion that when inflation crosses a certain threshold, further increases lead to a fall in seigniorage.
28Because of the very high-frequency of the data, even if we are here dealing with hyperinflationary

episodes, in a few instances the price level had decreased from one month to the next, so that the

inflation rate turned out to be negative. E.g., for Germany this was the case (based on Cagan’s

data) not only at the very beginning of the hyperinflation, for all months between December 1920

and May 1921, but also in March 1923, well into the most virulent phase of the hyperinflation. In

all of these cases, the corresponding observations for log inflation are plotted as missing.
29Up to a scale factor, which in the figures is accounted for by allowing the right hand-side and

the left hand-side scales to differ.
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Figure 5a  Long-run data for M1 velocity and a short-term nominal interest rate for high-inflation countries 
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Figure 5b  Sum of squared residuals from cointegration-based estimates of long-run money demand  
               specifications, for alternative values of the Box-Cox parameter for the short rate 
 



5.1.3 Long-run evidence on money velocity and nominal interest rates

Figures 5-5 provide additional evidence along these lines based on long-run data for

M1 velocity30 and a short-term nominal interest rate for five high-inflation countries

from Benati, Lucas, Nicolini, and Weber’s (2018) dataset.31 Specifically, the figure

shows the logarithm of M1 velocity together with either the level of a short-term

rate (in the top row), or its logarithm (in the bottom row). The evidence in the

top and bottom rows therefore corresponds to a semi-log and, respectively, a log-log

specification for the demand for real money balances with unitary income elasticity,

relating log velocity to either the level, or the logarithm, of a short-term rate.

The evidence in the figure speaks for itself: whereas fluctuations in log M1 velocity

bear a uniformly scant connection to movements in the level of the short-term rate,

they are typically strongly correlated with its logarithm. This is starkly apparent for

both Israel and Bolivia, for which the logarithms of M1 velocity and of the short-term

rate have very closely co-moved over the entire sample periods; it is just slightly less so

for Argentina, which had exhibited some temporary deviations between the two series

around 1950, and following the disinflation of the end of the 1980s; it is apparent for

Brazil during the entire course of the XX century, whereas the two series have been

moving out of synch since the start of the new millennium; and it is very apparent for

Chile with the single exception of the early 1970s, a period of exceptional economic

and social turmoil which culminated in Augusto Pinochet’s military coup of 1973.

The reason why this evidence is so stark is straightforward. Historically, hyperin-

flations have uniformly been short-lived episodes, lasting at most a few years. Over

such short periods of time it may therefore be difficult to discriminate between al-

ternative functional forms for the demand for real money balances (although, as my

econometric results will show, most of the times this is in fact not the case) The longer

the sample period, however, the more extreme the range of inflationary experiences–

from hyperinflation to (near) price stability–typically becomes, with the result that

the inferiority of the semi-log specification becomes manifestly apparent even to the

naked eye.

An important counter-argument to this is that, as the economy approaches, and

then enters a full-blown hyperinflation, the functional form of the demand for real bal-

ances may change in fundamental ways, as phenomena such as currency sustitution–

which are either negligible, or second-order, at lower inflation rates–become more

and more relevant, thus causing a progressive increase in the elasticity of money

30I focus on velocity (defined as the ratio between nominal GDP and nominal M1), rather than

real money balances, because of the sizeable increases in GDP which have taken place over such

long sample periods. On the other hand, following Cagan (1956), in the literature on hyperinflation

real GDP is typically assumed to be costant. Since, historically, hyperinflations have consistently

been short-lived episodes, this assumption is, for the purpose of these studies, innocuous. When

considering longer sample periods, however, changes in real GDP cannot be ignored, and the most

appropriate variable becomes velocity.
31The sources of the data are described in detail in Appendix B of Benati et al. (2018).
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demand. Under these circumstances the log-log specification, with its constant elas-

ticity of the demand for real balances, might provide a less accurate characterization

of the data than the semi-log, for which the elasticity is increasing (in absolute value)

with the opportunity cost of money. Under this interpretation, the evidence in Figure

4 should be regarded as uninformative, and only data pertaining to hyperinflation

episodes would be relevant for the issue of discriminating between alternative func-

tional forms for the demand for money during hyperinflations. As already mentioned,

however–and as we will see in Section 5.2.4–even when narrowly focusing on hyper-

inflation episodes, empirical evidence near-uniformly suggests that the most plausible

characterization of the data is provided by Meltzer’s log-log (or a specification close

to it), rather than by Cagan’s semi-log. This means that even if the previously men-

tioned objection to the evidence reported in Figure 5 is correct in principle, in fact

it appears to be incorrect in practice.

Figure 5 provides evidence on the comparative plausibility of alternative values

of  in specification

ln (1) ≡ ln
µ



1

¶
= +


 − 1


 (6)

for the logarithm of M1 velocity, 1, as a function of the Box-Cox transformation

of the nominal interest rate, , with  and  being parameters to be estimated.

Specifically, the figure shows, for alternative values of  between 0 and 1, the sum

of the squared residuals from estimates of equation (6).32 In line with the previous

discussion of the visual evidence in Figure 5, the evidence in Figure 5 uniformly

points towards the specification preferred by the data (in the sense of being associated

with the smallest sum of squared residuals) being either the log-log–for Brazil, Israel,

and Argentina, i.e., the countries with the highest nominal rates–or a specification

very close to it for the two countries with comparatively lower interest rates.

Overall, the evidence in Figures 5-5 points towards Meltzer’s log-log functional

form, or a specification very close to it, as providing the most plausible characteri-

zation of the joint dynamics of M1 velocity and nominal interest rates. Sure enough,

this is based on just five high-inflation countries. In the spirit of Summers’ (1991)

previous quotation, however, my objective here is to pursue ‘simplicity’, to look at

‘different types of evidence’, in the hope that ‘a persuasive pattern emerge[s] from

the totality’. Under this respect, the evidence in Figures 5-5 is clearly valuable.

I now move to maximum likelihood estimation of the Box-Cox parameter in equa-

tion (2), by working within a rational expectations framework in the spirit of Salemi

and Sargent (1979).

32The results reported in Figure 4 are based on Stock and Watson’s (1993) ‘dynamic OLS’

estimator, but qualitatively the same evidence is produced by simple OLS estimation of equation

(6). This evidence is available upon request.
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5.2 Estimating the Box-Cox parameter

5.2.1 Methodological issues

Before describing the approach adopted in the present work, it is worth spending

a few words discussing why I have chosen to eschew cointegration methods, which,

following Taylor (1991), have been used in several subsequent studies of hyperin-

flations.33 At first sight, cointegration present crucial advantages compared to the

rational-expectations approach used by Sargent (1977), and especially by Salemi and

Sargent (1979). As discussed by Taylor (1991), if both inflation and real money bal-

ances are I(1), and under the minimal assumption that the forecast errors are I(0),

cointegration allows to test for the presence of a demand for real money balances–

rather than postulating it, as it was done in the previous literature–and to estimate

it via maximum likelihood. This advantage, however, has to be balanced against two

crucial shortcomings:

first, with the small samples which are typical of hyperinflationary episodes,34 the

reliability of cointegration methods is entirely open to question. For example, even

bootstrapping the test statistics35 as in Cavaliere et al. (2012), the Monte Carlo

evidence in Benati et al.’s (2018) Appendix E.3.1 suggests that Johansen’s tests will

not detect cointegration–if it is there–a large, or even very large fraction of the

times.36

Second, as mentioned in footnote 28, because of the very high-frequency of the

data inflation typically turns out to be negative for a few months (or weeks) in most

episodes.37 This implies that since cointegration methods use the actual inflation

rate–as opposed to the expected inflation rate which enters the theoretical functional

33See, e.g., Engsted (1994), Michael, Nobay, and Peel (1994), and Petrovic and Vujosevic (1996).
34E.g., based on Cagan’s dataset the number of observations is equal to 39 for Germany, 20 for

Austria, and just 13 for post-WWII Hungary.
35To the very best of my knowledge, all cointegration-based studies of hyperinflations have been

based on asymptotic critical values, which, as illustrated by Johansen (2002) with reference to his

trace and maximum eigenvalue tests, are essentially unreliable in small samples.
36So the argument is the same as in Engle and Granger (1987). For example, in spite of the

visual evidence of a strong correlation between log real money balances and log inflation for Greece

(see Figure 4) Johansen’s trace and maximum eigenvalue tests, bootstrapped as in Cavaliere et al.

(2012) do not detect cointegration between the two series (with -values equal to 0.469 and 0.535

respectively). The most likely explanation is the short sample period: with just 21 observations, by

Engle and Granger’s (1987) argument detecting cointegration is clearly problematic. By the same

token, Johansen’s tests do not detect cointegration between the two series for (e.g.) China, Poland,

and Brazil, in spite of the visual evidence of a strong correlation between them in Figures 4-4. On

the other hand, cointegration is strongly detected (e.g.) for Yugoslavia, with bootstrapped -values

for Johansen’s tests equal to 0.043 and 0.037, respectively.
37Based on monthly data, inflation has consistently been positive for Poland, post-WWII Hungary,

and Greece (starting from the third observation in the sample) based on Cagan’s data; for Poland

and Germany (starting from the sixth observation) based on Barro’s data; and for Yugoslavia,

Zimbabwe, Brazil, Peru, Chile, Argentina (except for the very last observation), and China (with

the exception of four months).
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form (2)–they can only be applied to the semi-log specification. This, however, is

unduly restrictive: precisely because we are dealing with hyperinflations, we can safely

assume that expected inflation had consistently been positive throughout the entire

episode even if the actual inflation rate had turned out negative in a few months or

weeks. Since expected inflation is unobserved, however, this assumption is ultimately

not operational, unless the dynamics of inflation expectations is explicitly modelled,

which is what I do in the next section.

5.2.2 An approach in the spirit of Salemi and Sargent (1979)

As discussed in Section 3.2, Salemi and Sargent (1979) postulated a VAR represen-

tation for the joint dynamics of inflation and money growth, and estimated it 

maximum likelihood conditional on the rational expectations restrictions implied by

Cagan’s semi-log functional form. In what follows I adopt an approach combining

Salemi and Sargent’s (1979) insight of postulating a time-series representation for the

series of interest, and imposing upon it the rational expectations restrictions implied

by a theoretical specification for the demand for real money balances, with elements

borrowed from Hamilton (1985), and from Burmeister and Wall (1982, 1987).

I define log real money balances and the Box-Cox transformation of expected

inflation as ̃ ≡ ln () and

̃ ≡
[+1|] − 1


(7)

respectively, with +1| being the rational expectation of inflation at time +1, con-

ditional on information at time . Being conditional on information at time , ̃ is,

by its very nature, a dated- object.

Based on this notation, the demand for real money balances is given by

̃ =  + ̃ +  (8)

where  is a money demand disturbance. Whereas Sargent (1977) and Salemi and

Sargent (1979) postulate that  is a random walk,38 in what follows I assume that

it evolves according to

 = −1 +  || ≤ 1 (9)

i.e. a specification nesting the random walk case, but also allowing for stationarity.

The key reason39 for doing so is the evidence in Figures 5-5, especially for coun-

tries such as (e.g.) Yugoslavia. A comparison between the two panels in the third

column of Figure 5 naturally suggests (at least) two possible interpretations of the

38As discussed in Section 3, theoretical models of seignorage in which the governments finances,

 the inflation tax, a constant fraction of GDP, produce a random-walk disturbance in the money

demand equation.
39Christiano (1987) produces some evidence against the random walk assumption based on Cagan’s

data for Germany’s episode.

17



joint dynamics of Yugoslavia’s log real money balances and expected inflation. One

possibility is that the true money demand specification is Cagan’s semi-log and that

the disturbance is very highly persistent, possibly a random walk, which is suggested

by the very persistent divergence between the two series in the top panel. An al-

ternative interpretation–which, as previously discussed, appears (at least, to me) as

distinctly more appealing–is that the true functional form is Meltzer’s log-log and

that the disturbance has very little persistence. This is suggested by the fact that

the logarithms of inflation40 and real money balances in the bottom panel track each

other very closely,41 to the point that, as mentioned in footnote 36, Johansen’s tests

detect cointegration between the two series at the 5 per cent level. Finally, by the

same token, simple logic suggests that for any value of  between 0 and 1 in (7), the

higher , the higher  ought to be (and vice versa) for specification (8)-(9) to provide

a plausible characterization of the relationship between expected inflation and real

money balances. This logically implies that imposing =1 automatically ‘stacks the

cards’ in favor of the semi-log, and against the log-log, so that estimates of  obtained

conditional on the assumption that  follows a random walk should not be regarded

as reliable. In what follows I will therefore assume that  evolves according to (9),

and I will estimate   maximum likelihood together with the other parameters of

the model.

Turning to the time-series characterization of the joint dynamics of ̃ and ̃,

conceptually in line with Hamilton (1985) and Burmeister and Wall (1982, 1987) I

postulate that it is described by∙
̃

̃

¸
=

∙
̄

̄

¸
+

∙
() ()

() ()

¸ ∙
̃−1
̃−1

¸
+

∙
̃

̃

¸
 +

∙
̃
̃

¸
(10)

where (), ..., () are polynomials in the lag operatior, ̄ and ̄, and ̃ and ̃,

are constants, and ̃ and ̃ are shocks.

In the spirit of Salemi and Sargent (1979), it can be easily shown that the rational

expectations hypothesis, together with equation (8), imposes the following restrictions

upon (10):

̄ =  + ̄ (11)

() = () (12)

() = () (13)

and

̃ = 1 + ̃ (14)

40Although the theoretical relationship in equation (7) is between log real money balances and

expected–rather than actual–inflation, by the rational expectation hypothesis the difference be-

tween them should be white noise. This logically implies that the fact that the logarithm of actual

inflation tracks log real money balances much more closely than its level should be taken as an

indication that the same holds for expected inflation.
41Obviously, once appropriately rescaled, which in Figures 5-5 is implicitly implemented by

allowing for different scales in the left- and right-hand side axes.
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In what follows I normalize ̃ to be equal to 1, which implies that ̃=0.

Finally, imposing equality between specification (8) for the demand for real money

balances, and the equation for ̃ in the VAR representation (10), produces the

following restriction for the error term for ̃ in (10):

̃ = ̃ (15)

By defining the state vector as  = [ ̃ ̃−1  ̃−+1]
0, where  is the lag order

in the lag polynomials (), ..., (),42 the model can be cast in state-space form,

with state equation⎡⎢⎢⎢⎢⎢⎢⎣

̃
̃−1
...

̃−+2
̃−+1

⎤⎥⎥⎥⎥⎥⎥⎦
| {z }



=

⎡⎢⎢⎢⎢⎢⎢⎣
0

̄

0

...

0

0

⎤⎥⎥⎥⎥⎥⎥⎦
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 0 0 ... 0
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with

 ≡ (
0
) =

⎡⎢⎢⎢⎢⎣
2 0 0 ... 0

0 2̃ 0 ... 0

0 0 0 ... 0

... ... ... ... ...

0 0 0 ... 0

⎤⎥⎥⎥⎥⎦ (17)

where (·) is the unconditional expectation operator.

As for the observation equations, the first is given by

 = |−1 +  = [̃−1 + 1]
1
 +  (18)

42As discussed by Salemi and Sargent (1979, p. 746), because of the short sample length which

is typical of nearly all hyperinflationary episodes, the lag order ought necessarily to be set to a

comparatively small value. I set it to =4 with weekly data, and to either 1 or 2 with monthly data

(in what follows I only present results based on =2, but the alternative set of results based on =1,

which is qualitatively the same, is available upon request).
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where  is a rational expectations forecast error, i.e. =-|−1, so that |−1=0,

and the second equality comes from the very definition of ̃ as the Box-Cox trans-

formation of +1|. I allow for  to be correlated with the disturbances in the state

equation, that is,

 ≡ (
0
) =

£
 ̃ 0 ... 0

¤
(19)

where  and ̃ are covariances which I estimate together with the other parameters

of the model. The key reason for this is that, from a general equilibrium perspective,

rational expectations forecast errors do originate from the shocks hitting the system,43

so that they ought to be allowed to be correlated to them.

As for the observation equation for ̃, there are two equivalent ways to proceed.

The first is to use the equation for ̃ in the VAR representation (10), whereas the

second is to simply use equation (8), which can be rewritten as

̃ =  + [1  0  0] (20)

Because of restriction (15), the two representations for ̃ are equivalent. In what

follows I will use equation (20).

The state-space model described by equations (16), (18), and (20) is linear with the

single exception of the observation equation for inflation, expression (18). Following

(e.g.) Harvey (1989), I therefore compute the log likelihood based on the ‘generalized

Kalman filter’. Specifically, I take a first-order Taylor expansion of (18) around |−1,
thus obtaining the following approximate expression for the observation equation for

inflation

 ' [̃−1|−1 + 1] 1 − ̃−1|−1[̃−1|−1 + 1]
1−
| {z }



+ [̃−1|−1 + 1]
1−
 ̃−1 +  =

=  + [̃−1|−1 + 1]
1−
 ̃−1 +  (21)

Replacing the original non-linear observation equation (18) with (21) results in a fully

linear system, which allows to compute the log-likelihood  the standard ‘prediction

error decomposition’ formula–see e.g. Harvey (1989), or Hamilton (1994).

5.2.3 Maximum likelihood estimation

I maximize the log-likelihood numerically via simulated annealing.44 Having found

the parameter vector which maximizes the likelihood, ̂, rather than relying on

43E.g., any solution method for linear rational expectations models, such as Sims’ (2000) produces

a linear mapping between the model’s structural shocks and the rational expectations forecast errors.
44Specifically, following Goffe et al. (1994), I implement simulated annealing via the algorithm

proposed by Corana et al. (1987), setting the key parameters to 0 =100,000,  = 0.9,  = 5,  =

20,  = 10−6, and  = 4, where 0 is the initial temperature,  is the temperature reduction factor,

 is the number of times the algorithm goes through the  loops before the temperature starts

being reduced,  is the number of times the algorithm goes through the function before adjusting

the step size,  is the convergence (tolerance) criterion, and  is the number of times convergence
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asymptotic formulas, I stochastically map the log-likelihood’s surface via Random-

Walk Metropolis (RWM). The only difference between the ‘standard’ RWM algorithm

which is routinely used for Bayesian estimation and what I am doing here is that the

‘jump’ to the new position in the Markov chain is accepted or rejected based on a

rule which does not involve any Bayesian priors, as it uniquely involves the likelihood

of the data.45 Specifically, the proposal draw for , ̃, is accepted with probability

min[1, (−1, ̃ |  )]–where  is the matrix of the data for ̃ and –and rejected

otherwise, where −1 is the current position in the Markov chain, and

(−1 ̃| ) = (̃ |  )
(−1 |  ) (22)

which uniquely involves the likelihood.46 All other estimation details are identical

to Benati (2008), to which the reader is referred to. I use 1,000,000 draws for the

burn-in period, and 1,000,000 draws for the ergodic distribution, which I ‘thin’ by

sampling every 1,000 draws in order to reduce the draws’ autocorrelation. For all

episodes and datasets, the fractions of accepted draws are uniformly very close to the

23 per cent ideal acceptance rate in high dimensions47, and the draws exhibit little

autocorrelation based on two alternative statistics, the first autocorrelation, and the

draws’ inefficiency factors.48

5.2.4 Evidence

Figure 6 shows, for each of the 20 episodes I consider, the distribution of the MLE

estimate of the Box-Cox parameter, , generated by RWM, whereas Figure 7 shows

scatterplots of the actual observations for the logarithm of the inflation tax against

inflation49 (the blue dots), together with the median, and the 16-84 and 5-95 per-

centiles of the distribution of the theoretical functional relationship between the two

is achieved before the algorithm stops. Finally, initial conditions were chosen stochastically by the

algorithm itself, whereas the maximum number of functions evaluations, set to 1,000,000, was never

achieved.
45So what I am doing can be interpreted as Bayesian estimation  RWM of model (20), (18),

and (16) with flat priors for all parameters.
46With Bayesian priors it would be

(−1 ̃| ) = (̃ |  ) (̃)
(−1 |  ) (−1)

where  (·) encodes the priors about .
47See Gelman, Carlin, Stern, and Rubin (1995).
48The inefficiency factors are defined as the inverse of the relative numerical efficiency measure of

Geweke (1992),  = (2)−1 1
(0)

R 
− (), where () is the spectral density of the sequence

of draws from RWM for the quantity of interest at the frequency . I estimate the spectral densities

as before, based on the FFT transform.
49So, to be clear, these data are the same as those shown in Figure 1. For Germany, Austria,

Poland, and post-WWI Hungary Figure 7 shows results based on Cagan’s data: the corresponding
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Figure 6 Maximum likelihood estimates: distributions of the Box-Cox  
            parameter’s draws generated via Random-Walk Metropolis 
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Figure 7  The estimated relationship between inflation and the logarithm of the inflation tax: median, 
             and 16-84 and 5-95 percentiles of the distributions generated via Random-Walk Metropolis 
 



series implied by the MLE estimates generated by RWM. The evidence in the two

figures points towards the following facts:

(I) between Cagan’s semi-log specification, and Meltzer’s log-log, the data near-

uniformly, and quite clearly prefer the latter, or a specification very close to it.50 This

is testified by the fact that in just a single case (Russia) the distribution of the MLE

estimate of  is clustered towards 1, whereas in all other cases51 it is clearly far away

from 1, sometimes starkly so.52 Further, in the overwhelming majority of cases, the

distribution of the MLE estimate of  is clustered towards 0. This is the case for

Germany based on either Cagan’s or Graham’s data; for Austria, Poland, and post-

WWII Hungary based on either Cagan’s or Barro’s data; for Greece based on either

Agapitides’, or Delivanis and Cleveland’s data, whereas evidence based on Barro’s

data is slightly weaker; for Yugoslavia, Bolivia, Argentina, Peru, Chile, Venezuela,

Angola, Bulgaria, and the French Revolution. For Brazil, and for post-WWII Hun-

gary based on weekly data,53 the distribution, although not clustered towards zero, is

nonetheless firmly below 0.5, which, based on the results in Figure 2, points towards

a uniformly slightly increasing functional relationship between inflation and seignor-

age. By the same token, for both China and Zimbabwe the bulk of the mass of the

distribution is below 0.5, with median estimates around 0.3-0.35. Finally, in one case

(Congo) the distribution is so spread out that it is essentially impossible to make any

statement about  with any degree of confidence.

(II) Consistent with (I), the evidence in Figure 7 points towards a single case–

once again, Russia–in which the relationship between inflation and the logarithm of

the inflation tax exhibits a Laffer curve for the latter. In all other cases the relation-

ship is monotonically increasing, either strongly so–as for, e.g., Germany, Bolivia,

Argentina, and Chile–or more gently, as in the case of, e.g., Venezuela. Additional

evidence in Figure A.1 (see the discussion in footnote 49) confirms the broad quali-

tative features of Figure 7, in terms of the absence of a Laffer curve for the revenue

from money creation for all the episodes and datasets reported therein.

My overall conclusion is therefore that Cagan’s paradox is simply an illusion, orig-

inating from the literature’s predominant focus on the semi-log specification for the

set of results based on Barro’s data are shown in Figure A.1 in the Appendix. For Germany, results

based on either Graham’s data, or weekly data for the nominal exchange rate, are also shown in

Figure A.1. For Greece I also show results based on Cagan’s data: the corresponding results based

on either Agapitides’, or Delivanis and Cleveland’s data, are shown in Figure A.1.
50In the sense of being associated with a value of  close to 0.
51With the partial, and weak exception of Congo.
52I do not provide numbers (i.e., specific percentiles of the distributions of  generated by RWM)

because the visual evidence is so stark, but they are available upon request.
53For post-WWII Hungary I estimate the model only based on weekly data because the monthly

sample (from Cagan’s dataset) features only 13 observations, with the result that estimation turned

out to be problematic. Both Sargent, 1977, and Salemi and Sargent, 1979 estimated via maximum

likelihood VARs encoding the restrictions imposed by Cagan’s semi-log specification, conditional on

=1. It appears however that, with just 13 observations, allowing  to be a free parameter to be

estimated is problematic.
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demand for real money balances, which automatically imposes upon the data a Laffer

curve for the inflation tax. On the other hand, the fact that, at very high inflation

rates, the preferred specification is Meltzer’s (1963) log-log–or a specification very

close to it–logically rules out the possibility of such paradox.

6 Conclusions, and Directions for Future Research

Since it was first documented by Cagan (1956), policymakers’ (alleged) tendency

to inflate in excess of the revenue-maximizing rate during hyperinflations has been

confirmed by several subsequent studies, to the point that it has nearly achieved

the status of a ‘stylized fact’ in empirical macroeconomics. In this paper I have

revisited Cagan’s paradox based on data from 20 hyperinflations–from the French

Revolution to Venezuela’s 2018 episode–reporting two main findings. First, in the

raw data there is nearly no evidence of a Laffer curve for the revenue from money

creation. Rather, in the vast majority of cases the relationship between inflation and

the inflation tax has been either positive at all inflation rates, or initially positive and

then flattening out towards the end of the hyperinflation. Second, consistent with this,

econometric evidence shows that the preferred money demand specification at very

high inflation rates is not Cagan’s (1956) ‘semi-log’, which automatically imposes

upon the data a Laffer curve for the inflation tax: rather, it is either Meltzer’s

(1963) ‘log-log’–for which seignorage is monotonically increasing in inflation–or a

more general functional form making log real money balances a linear function of

the Box-Cox transformation of expected inflation (of which the ‘log-log’ is a special

case), which allows for the inflation tax to flatten out at high inflation rates. My

results therefore suggest that the paradox first highlighted by Cagan–of policymakers

seemingly inflating in excess of the revenue-maximizing rate during hyperinflations–

is the product of the literature’s predominant focus on the semi-log functional form.

Evidence in favor of the log-log specification becomes overwhelming when considering

samples materially longer than the narrow window of time which has typically been

associated with hyperinflations. This is the case for countries such as Argentina,

Brazil, Bolivia, Chile, and Israel.

In terms of directions for future research, the dataset I have here assembled nat-

urally lends itself to (at least) three:

(I) an exploration of the issue of whether, during hyperinflations, the economy

may have been operating under indeterminacy, so that hyperinflatonary episodes may

have been influenced by sunspots. Sargent and Wallace (1987) developed a model of

monetary financing of the government budget deficit via the inflation tax allowing

for the possibility of indeterminate equilibria, but they did not take it to the data,

neither (to the very best of my knowledge) they did in subsequent work. Based on the

empirical evidence reported in the present work, the starting point should therefore

be to perform a theoretical analysis along the lines of Sargent and Wallace’s (1987),

but based on either a log-log specification for the demand for real money balances,

23



or functional form (2) in Section 2 of this paper, for values of  close to 0. The next

step would then be to estimate the model based on the dataset I have been using in

the present work, possibly expanded with additional series pertaining to government

finances. To my knowledge, such series are available at least for Germany’s episode

(from Wirtschaft und Statistik, the publication discussed in Section 4.2).

(II) A second natural direction for future research is to exploit this dataset to

reconsider the issue of whether hyperinflations may have been characterized by ex-

plosive behaviour.

(III) Finally, another issue to explore is the following. Both the evidence from

Sargent and Wallace’s (1973) measure of the revenue from money creation for the

episodes in Cagan’s (1956) dataset, and the broader evidence reported in Figure 3,

suggest that for at least some episodes–notably, Greece, and post-WWII Hungary–

the relationship between the logarithm of the inflation tax and inflation is essentially

linear, with little to no evidence of convexity. As Figure 2 shows, however, even

Meltzer’s ‘log-log’ specification does indeed feature a convex relationship between

the two series, which implies that, by working within the family of functional forms

characterized by (2), it is impossible to replicate the apparent lack of convexity found

for some episodes. It would therefore be interesting to explore alternative functional

forms for the demand for real money balances, which might be able to generate a

(near) linear relationship between inflation and the logarithm of the inflation tax at

very high inflation rates.
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Figure A.1 Additional results on the estimated relationship between inflation and 
               the logarithm of the inflation tax: median, and 16-84 and 5-95 percen- 
               tiles of the distributions generated via Random-Walk Metropolis 
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