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Abstract: Background: The nucleotide excision repair (NER) pathway participates in platinum-induced
DNA damage repair. Single nucleotide polymorphisms (SNPs) in miRNA-binding sites in the NER
genes RPA2 and GTF2H1 are associated with the risk of colorectal cancer (CRC). Here, we analyzed
whether RPA2 and GTF2H1 SNPs predict the efficacy of oxaliplatin in metastatic CRC (mCRC) patients.
Patients and methods: Genomic DNA was extracted from blood samples from 457 patients with mCRC
enrolled in the TRIBE trial, which compared first-line FOLFOXIRI plus bevacizumab (BEV) (n = 230,
discovery cohort) and first-line FOLFIRI plus BEV (n = 227, control cohort). SNPs were analyzed by
PCR-based direct sequencing. Results: In the FOLFOXIRI + BEV-treated cohort expressing wild-type
KRAS, progression-free survival (PFS) was shorter for the RPA2 rs7356 C/C variant subgroup than the
any T allele subgroup in univariate analysis (9.1 versus 13.3 months respectively, hazard ratio (HR)
2.32, 95% confidence interval (CI): 1.07–5.03, p = 0.020) and this remained significant in multivariable
analysis (HR 2.97, 95%CI: 1.27–6.94, p = 0.012). A similar trend was observed for overall survival. In
contrast, patients expressing mutant RAS and RPA2 rs7356 C/C variant had longer PFS with FOLFOXIRI
+ BEV than with FOLFIRI + BEV (12.1 versus 7.6 months, HR 0.23, 95%CI: 0.09–0.62, p = 0.002) but no
superiority of FOLFOXIRI + BEV was observed for the RAS mutant, RPA2 rs7356 any T variant subgroup
(11.7 versus 9.6 months, HR 0.77, 95%CI: 0.56–1.07, p = 0.12) or the RAS wild-type, RPA2 rs7356 C/C
variant subgroup. Conclusion: RPA2 SNPs may serve as predictive and prognostic markers of oxaliplatin
responsiveness in a RAS status-dependent manner in mCRC patients receiving FOLFOXIRI + BEV.
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1. Introduction

Nucleotide excision repair (NER) is an important component of the cellular DNA damage response
(DDR) that removes toxic platinum–DNA adducts induced by oxaliplatin treatment [1]. NER-mediated
removal of damaged DNA occurs through multiple steps: (i) recognition of DNA damage, (ii) assembly
of protein complexes at the site of damage, (iii) excision of DNA, and (iv) synthesis and ligation of
DNA for gap filling [2]. During NER, transcription factor IIH (TFIIH) and replication protein A (RPA)
bind sequentially to damaged DNA to enable single-stranded DNA stabilization, and subunits of
TFIIH, xeroderma pigmentosum, and complementation group B (XPB) and group D (XPD) helicases
then unwind the DNA double helix at the damaged site. The endonuclease XPG and XPF-excision
repair cross-complementing group 1 (ERCC1) complex then performs dual DNA incision followed
by excision of the single-stranded DNA fragment. DNA ligase I then synthesizes DNA to fill the gap
(Figure S1).

MicroRNAs (miRNA) are small, single-stranded, non-coding RNA molecules that interact with
the 3′-untranslated region (3′UTR) of target mRNAs to regulate their stability and/or degradation.
Such post-transcriptional regulation of gene expression by miRNAs plays crucial roles in controlling
many physiological cellular processes as well as pathological events such as carcinogenesis [3,4].
A hospital-based case-control study by Landi et al. first identified significant associations between
genetic polymorphisms in miRNA-binding sites in mRNAs and the risk of colorectal cancer (CRC) [5].
More recently, polymorphisms in the miRNA-binding sites RPA2 and general transcription factor IIH
subunit 1 (GTF2H1) mRNAs, both of which are involved in the NER pathway, have also been shown to
correlate with CRC risk [6]. Many miRNAs are thought to affect the growth and chemotherapeutic
response of cancer, as well as clinical outcomes, and are under investigation as potential targets for
cancer therapy. However, whether polymorphisms in NER pathway-related genes affect the efficacy of
oxaliplatin-based chemotherapies is still unclear.

The TRIBE trial (NCT00719797) compared the efficacy of FOLFOXIRI (5-fluorouracil (5-FU),
leucovorin, oxaliplatin, and irinotecan) plus bevacizumab (BEV) and FOLFIRI (5-FU, leucovorin,
and irinotecan) plus BEV in a first-line setting for patients with metastatic CRC (mCRC), and showed
that the addition of oxaliplatin conferred significant progression-free survival (PFS) and overall survival
(OS) benefits [7,8]. Given the previous findings showing a relationship between polymorphisms in
NER pathway genes and CRC risk, we hypothesized that single nucleotide polymorphisms (SNPs)
that affect miRNA binding to NER-related mRNAs may influence the repair of oxaliplatin-induced
DNA damage, and thus serve as predictive or prognostic markers of oxaliplatin efficacy. To this end,
we examined the relationship between SNPs in RPA2 and GTF2H1 in patients with mCRC in the TRIBE
trial and determined their ability to predict the efficacy of FOLFOXIRI + BEV compared with FOLFIRI
+ BEV regimens.

2. Materials and Methods

2.1. Study Design and Patients

Two patient cohorts from the randomized phase III TRIBE trial [7] were investigated in this study:
a discovery cohort (n = 230) treated with FOLFOXIRI + BEV and a control cohort (n = 227) treated
with FOLFIRI + BEV in the first-line setting. The TRIBE study was a phase 3, randomized, open-label,
multicenter trial conducted in 34 Italian centers with patients with unresectable mCRC who had not
received chemotherapy or biologic therapy for their metastatic disease. From 17 July 2008 through
31 May 2011, a total of 508 patients were enrolled in the study: 256 patients were randomly assigned to
FOLFIRI + BEV and 252 to FOLFOXIRI + BEV, and the primary endpoint of PFS was met [7]. In an
updated analysis, the secondary endpoint of OS in the main cohort and treatment efficacy in RAS and
BRAF molecular subgroups were assessed and FOLFOXIRI + BEV was confirmed as a valuable option
for first-line treatment of mCRC patients regardless of RAS and BRAF status [8]. FOLFIRI + BEV
(irinotecan 180 mg/m2, 5-FU bolus 400 mg/m2, 5-FU infusion 2400 mg/m2, leucovorin 200 mg/m2, BEV 5
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mg/kg) or FOLFOXIRI + BEV (oxaliplatin 85 mg/m2, irinotecan 165 mg/m2, 5-FU infusion 3200 mg/m2,
leucovorin 200 mg/m2, BEV 5 mg/kg) was administered every 2 weeks. Treatment was continued until
disease progression, unmanageable toxicity, or patient refusal occurred. This study was approved
by the Institutional Review Board of the University of Southern California for Medical Sciences.
The protocol for this study was approved by the Institutional Review Boards of each participating
site, and the molecular analyses were conducted at the University of Southern California/Norris
Comprehensive Cancer Center in accordance with Good Clinical Practice Guidelines. The study was
fully compliant with the Declaration of Helsinki and with the Reporting Recommendations for Tumor
Marker Prognostic Studies (REMARK) guidelines.

2.2. Selection of Candidate SNPs

Candidate SNPs were selected according to the following criteria: (i) SNPs with biological
significance according to the literature, (ii) tagging SNPs selected from HapMap genotype data
with a r2 threshold of 0.8 (http://snpinfo.niehs.nih.gov/snpinfo/snptag.html), or (iii) SNPs with a
minor allele frequency ≥ 10% in Caucasians according to the Ensembl Genome Browser (http:
//uswest.ensembl.org/index.html). Functional significance was predicted from the functional SNP
(F-SNP) database [9] (Table S1). Potential gene functions were identified from public databases
(https://www.ncbi.nlm.nih.gov, https://www.genecards.org/). In a comprehensive analysis of selected
SNPs in the 3′UTR of NER genes by previous report, only RPA2 rs7356 and GTF2H1 rs4596 were
associated with colorectal cancer risk when adjusted for the covariates, which contributed to our SNP
selection [6]. Finally, SNPs of rs4596 in GTF2H1 and rs7356 in RPA2 were selected based on their
previously reported association with CRC risk.

2.3. DNA Extraction and Genotyping

Genomic DNA was extracted from peripheral whole blood samples using QIAmp Kits (Qiagen,
Valencia, CA, USA) according to the manufacturer’s protocol (www.qiagen.com). SNPs were analyzed
using PCR-based direct DNA sequence analysis with an ABI 3100A Capillary Genetic Analyzer and
Sequencing Scanner v1.0 (Applied Biosystems, Foster City, CA, USA). Forward and reverse primers
are listed in Table S1. For quality control, 10% of the samples were randomly selected for direct DNA
sequencing of the SNPs. The genotype concordance rate was ≥99%. The investigators who analyzed
the SNPs were blinded to the clinical data.

2.4. Statistical Analysis

The primary endpoint of the current study was PFS and the secondary endpoints were OS and
objective response rate (ORR). PFS was calculated from the date of randomization to the date of
confirmed disease progression or death. OS was calculated from the date of randomization to the
date of death from any cause. For surviving patients without disease progression, data were censored
at the date of last follow up. For patients who were lost to follow up, data were censored at the
date when the patient was last confirmed to be alive. The ORR was calculated as the proportion
of patients who achieved complete response and partial response according to RECIST v1.0 criteria.
Chi-square tests were used to examine the differences in baseline patient characteristics between two
cohorts, associations between SNPs and clinical response were examined using Fisher’s exact test,
and associations between SNPs and survival were estimated by the Kaplan–Meier method and log-rank
test. The predictive or prognostic value of clinical factors and SNPs was identified by univariate analysis
using codominant, dominant, or recessive genetic models as appropriate. Baseline characteristics
significantly associated (p < 0.1) with PFS or OS were generally included in multivariable analysis
using a Cox proportional hazards model. Subgroup analysis based on KRAS or RAS (KRAS/NRAS)
mutational status was also performed. All analyses were carried out with SAS 9.4 (SAS Institute, Cary,
NC, USA). All tests were 2-sided at a significance level of 0.050.

http://snpinfo.niehs.nih.gov/snpinfo/snptag.html
http://uswest.ensembl.org/index.html
http://uswest.ensembl.org/index.html
https://www.ncbi.nlm.nih.gov
https://www.genecards.org/
www.qiagen.com
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3. Results

3.1. Baseline Clinicopathological Characteristics of the Discovery and Control Cohorts

The median follow-up time, PFS, and OS were 46.6, 11.7, and 30.6 months respectively, for the
discovery cohort (n = 230) and 49.0, 9.7, and 26.1 months respectively, for the control cohort (n = 227).
The baseline clinicopathological characteristics of the patients are summarized in Table S2, and the
associations between baseline characteristics and clinical outcomes are summarized in Tables S3 and S4.

Resection of the primary tumor was significantly associated with shorter PFS and OS in the
discovery cohort, and higher ECOG, right-sided location, primary tumor resection, and mutant BRAF
were significantly associated with shorter PFS and OS in the control cohort.

The frequencies of the genetic variants of the GTF2H1 and RPA2 SNPs in both cohorts satisfied the
Hardy–Weinberg equilibrium (p > 0.01) using the exact test in Haploview software version 4.2.

3.2. Association between Clinical Outcome and SNPs in the Discovery Cohort

Table 1 shows the results of univariate and multivariate analyses of the associations between the
SNPs and outcomes for patients in the FOLFOXIRI + BEV-treated discovery cohort and FOLFIRI +

BEV-treated control cohort. Tumor response was not significantly associated with any specific GTF2H1
or RPA2 SNP variant in either cohort. Neither PFS or OS was significantly different among patient
subgroups expressing RPA2 rs7356 C/C or any T (T/T or T/C) allele. In contrast, patients with GTF2H1
rs4596 G/C or C/C variants had shorter PFS and OS than patients with the GTF2H1 G/G variant,
although the differences did not reach the level of statistical significance (PFS: 11.3 versus 13.2 months,
hazard ratio (HR) 1.32, 95% confidence interval (CI) 0.95–1.84, p = 0.087; OS: 28.6 versus 34.3 months,
HR 1.36, 95%CI 0.97–1.92, p = 0.076). The trends in PFS and OS in the GTF2H1 rs4596 G/G subgroup
remained in the multivariable analysis (PFS: HR 1.37, p = 0.085; OS: HR 1.42, p = 0.066) (Table 1,
Figure 1A,B).
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Figure 1. Single nucleotide polymorphisms (SNPs) and clinical outcomes. Progression-free survival
(PFS) and/or overall survival (OS) by GTF2H1 rs4596 variants, G/G (—) or any C (—) in the discovery
cohort (A,B), and by RPA2 rs7356 variant, C/C (—) or any T (—) in KRAS wild-type subgroup in the
discovery cohort (C,D).
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Table 1. Association between gene polymorphism and clinical outcome.

SNPs Patients Tumor Response Progression-Free Survival Overall Survival

Variants N CR + PR SD + PD p Value *
Median,
Months
(95%CI)

HR (95%CI) † p Value * HR (95%CI) ‡ p Value *
Median,
Months
(95%CI)

HR (95%CI) † p Value * HR (95%CI) ‡ p Value *

Discovery cohort

GTF2H1
rs4596 0.21 0.21 0.18 0.20 0.15

G/G 77 56(73.7%) 20(26.3%) 13.2(9.9,17.2) Reference Reference 34.3(25.8,51.8) Reference Reference
G/C 117 74(66.7%) 37(33.3%) 1.3(10.1,12.2) 1.30(0.92,1.83) 1.32(0.90,1.93) 30.2(24.0,33.4) 1.38(0.97,1.97) 1.37(0.93,2.04)
C/C 36 20(57.1%) 15(42.9%) 12.4(9.7,13.7) 1.41(0.87,2.28) 1.54(0.93,2.56) 26.7(17.9,39.1) 1.30(0.80,2.10) 1.59(0.95,2.66)

0.16 0.087 0.085 0.076 0.066
G/G 77 56(73.7%) 20(26.3%) 13.2(9.9,17.2) Reference Reference 34.3(25.8,51.8) Reference Reference

AnyC 153 94(64.4%) 52(35.6%) 11.3(10.3,12.5) 1.32(0.95,1.84) 1.37(0.96,1.96) 28.6(23.4,33.4) 1.36(0.97,1.92) 1.42(0.98,2.07)

RPA
rs7356 0.25 0.47 0.31 0.60 0.92

T/T 87 60(71.4%) 24(28.6%) 11.2(9.9,14.1) Reference Reference 28.4(21.5,34.7) Reference Reference
T/C 111 66(62.3%) 40(37.7%) 12.5(10.9,13.7) 1.22(0.87,1.72) 1.29(0.90,1.84) 33.4(25.2,37.1) 1.18(0.84,1.66) 1.08(0.76,1.53)
C/C 32 24(75.0%) 8(25.0%) 10.3(9.1,21.6) 1.20(0.72,1.98) 1.37(0.80,2.34) 30.9(19.3,36.8) 1.05(0.64,1.74) 1.03(0.61,1.73)

0.33 0.76 0.48 0.83 0.96
AnyT 198 126(66.3%) 64(33.7%) 12.0(10.8,13.2) Reference Reference 30.2(25.9,34.4) Reference Reference
C/C 32 24(75.0%) 8(25.0%) 10.3(9.1,21.6) 1.07(0.68,1.70) 1.20(0.73,1.96) 30.9(19.3,36.8) 0.95(0.60,1.51) 0.99(0.61,1.60)

Control cohort

GTF2H1
rs4596 0.90 0.59 0.27 0.60 0.077

G/G 67 38(56.7%) 29(43.3%) 10.4(9.0,12.6) Reference Reference 26.3(20.5,36.1) Reference Reference
G/C 110 64(59.8%) 43(40.2%) 9.7(8.6,10.8) 1.17(0.83,1.66) 1.34(0.93,1.94) 25.6(20.8,30.8) 1.07(0.76,1.52) 1.39(0.97,2.01)
C/C 48 25(56.8%) 19(43.2%) 9.4(7.9,11.2) 1.21(0.79,1.85) 1.31(0.82,2.11) 24.3(17.8,31.6) 1.24(0.81,1.89) 1.67(1.05,2.66)

0.76 0.31 0.11 0.50 0.038
G/G 67 38(56.7%) 29(43.3%) 10.4(9.0,12.6) Reference Reference 26.3(20.5,36.1) Reference Reference

AnyC 158 89(58.9%) 62(41.1%) 9.5(8.7,10.8) 1.18(0.85,1.64) 1.33(0.94,1.89) 25.1(21.1,29.1) 1.12(0.81,1.55) 1.45(1.02,2.07)

RPA
rs7356 0.45 0.38 0.61 0.55 0.77

T/T 89 49(57.0%) 37(43.0%) 10.3(9.2,11.6) Reference Reference 26.3(22.0,34.4) Reference Reference
T/C 113 67(61.5%) 42(38.5%) 9.5(8.7,11.1) 1.18(0.86,1.64) 1.18(0.84,1.66) 26.2(21.1,32.5) 0.97(0.71,1.33) 1.01(0.72,1.40)
C/C 25 12(48.0%) 13(52.0%) 8.8(7.5,10.8) 1.36(0.83,2.23) 1.16(0.70,1.95) 18.8(14.4,27.9) 1.26(0.77,2.08) 1.20(0.71,2.02)

0.27 0.35 0.80 0.28 0.47
AnyT 202 116(59.5%) 79(40.5%) 9.7(9.3,11.0) Reference Reference 26.3(23.0,31.3) Reference Reference
C/C 25 12(48.0%) 13(52.0%) 8.8(7.5,10.8) 1.24(0.78,1.96) 1.06(0.66,1.71) 18.8(14.4,27.9) 1.29(0.81,2.06) 1.20(0.73,1.95)

CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease. p values < 0.05 were shown in bold. * p-value was based on the Fisher’s exact test for response,
log-rank test in the univariate analysis (†) and Wald test in the multivariable analysis within Cox regression model (‡) adjusted for sex, age, ECOG performance status, primary tumor site,
number of metastases, primary tumor resected, adjuvant chemotherapy, RAS status, and BRAF status.
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Table 2 shows the associations between the SNPs and outcomes for patients expressing wild-type
KRAS (n = 90) and wild-type RAS (n = 62) in the discovery cohort. Among the patients harboring
wild-type KRAS, the RPA2 rs7356 C/C variant was significantly associated with shorter PFS than
the T/T or T/C variant (any T allele) subgroup (9.1 versus 13.3 months, HR 2.32, 95%CI 1.07–5.03,
p = 0.020) and a similar trend, albeit not significant, was observed for OS (20.8 versus 37.1 months,
HR 1.94, 95%CI 0.94–3.99, p = 0.059). In the KRAS wild-type subgroup, GTF2H1 rs4596 any C variant
was associated with shorter PFS than the G/G variant (10.8 versus 13.3 months, HR 1.64, 95%CI:
0.95–2.81, p = 0.045). In multivariable analysis, the detrimental effect of RPA2 rs7356 C/C variant
expression was significant for both PFS (HR 2.97, 95%CI 1.27–6.94, p = 0.012) and OS (HR 2.58, 95%CI
1.19–5.58, p = 0.016) (Figure 1C,D). Among patients harboring wild-type RAS, there were no significant
differences in outcomes among patients expressing GTF2H1 rs4596 variant alleles. However, the PFS
was significantly shorter for patients with the RPA2 rs7356 C/C variant compared with any T variant
(HR 5.96, 95%CI 1.84–19.29, p = 0.003). In the discovery cohort, patients expressing mutant KRAS or
RAS exhibited no significant SNP-associated differences in tumor progression or survival outcomes
(Table 2 and Table S5).

3.3. Association between Clinical Outcome and SNPs in the Control Cohort

In the FOLFIRI + BEV-treated control cohort, there were no significant associations between the
GTF2H1 or RPA2 SNPs and clinical outcomes in univariate analysis (Table 1). OS was significantly
shorter in the GTF2H1 rs4596 any C subgroup in multivariable (p = 0.038) but not univariate (p = 0.50)
analysis. However, analysis of the RAS mutant subgroup of the control cohort (n = 115) showed that
patients with the RPA2 rs7356 C/C variant had significantly shorter PFS than those with any T allele in
both univariate and multivariable analysis (7.6 versus 9.6 months, HR 1.95, 95%CI 1.03–3.72, p = 0.032
and HR 2.15, 95%CI 1.03–4.46, p = 0.040, respectively). In contrast, there were no significant RPA2
or GTF2H1 SNP allele-associated differences in outcomes among patients harboring wild-type RAS
(Table S6).

3.4. Clinical Significance of RPA2 SNP Alleles and RAS Mutational Status in the FOLFOXIRI + BEV and
FOLFIRI + BEV Cohorts

Within the RAS mutant subgroup, patients expressing the C/C variant of RPA2 rs7356 had a
significantly longer PFS in response to FOLFOXIRI + BEV compared with FOLFIRI + BEV (12.1 versus
7.6 months, HR 0.23, 95%CI 0.09–0.62, p = 0.002, Figure 2A), whereas no significant treatment effect
was detected for patients expressing RPA2 rs7356 any T allele (11.7 versus 9.6 months, HR 0.77, 95%CI:
0.56–1.07, p = 0.12, Figure 2B). In contrast, patients expressing wild-type RAS and the RPA2 rs7356
C/C variant had shorter PFS in response to FOLFOXIRI + BEV than FOLFIRI + BEV (9.3 versus 13.1
months, HR 5.01, 95%CI: 0.92–27.01, p = 0.043, Figure 2C), whereas the opposite was true for patients
expressing wild-type RAS and RPA2 rs7356 any T allele (13.3 versus 10.8 months, HR 0.52, 95%CI:
0.32–0.85, p = 0.008, Figure 2D). Thus, the beneficial effect of oxaliplatin is influenced by both the RAS
mutational status and the specific RPA2 rs7356 allele.
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Table 2. Subgroup analysis of KRAS wild-type and RAS wild-type in the discovery cohort.

SNPs Patients Tumor Response Progression-Free Survival Overall Survival

Variants N CR + PR SD + PD p Value *
Median,
Months
(95%CI)

HR (95%CI) † p Value * HR (95%CI) ‡ p Value *
Median,
Months
(95%CI)

HR (95%CI) † p Value * HR (95%CI) ‡ p Value *

KRAS wild-type

GTF2H1
rs4596 0.95 0.13 0.30 0.56 0.88

G/G 32 21(67.7%) 10(32.3%) 13.3(9.3,24.2) Reference Reference 37.1(19.7,NE) Reference Reference
G/C 47 30(65.2%) 16(34.8%) 10.7(9.5,14.1) 1.60(0.91,2.82) 1.69(0.85,3.36) 33.8(21.0,40.9) 1.34(0.76,2.34) 1.15(0.62,2.17)
C/C 11 7(70.0%) 3(30.0%) 13.7(3.7,18.4) 1.77(0.79,3.99) 1.60(0.66,3.89) 23.3(6.4,NE) 1.36(0.60,3.11) 1.20(0.49,2.94)

0.87 0.045 0.12 0.28 0.63
G/G 32 21(67.7%) 10(32.3%) 13.3(9.3,24.2) Reference Reference 37.1(19.7,NE) Reference Reference

AnyC 58 37(66.1%) 19(33.9%) 10.8(9.7,14.1) 1.64(0.95,2.81) 1.66(0.87,3.17) 28.5(21.0,40.9) 1.34(0.78,2.30) 1.16(0.63,2.13)
RPA

rs7356 0.48 0.061 0.042 0.13 0.056

T/T 38 26(72.2%) 10(27.8%) 11.2(10.1,18.2) Reference Reference 28.1(21.2,NE) Reference Reference
T/C 41 24(60.0%) 16(40.0%) 13.7(9.6,16.9) 1.12(0.66,1.92) 0.93(0.50,1.71) 38.0(24.1,42.5) 1.24(0.72,2.14) 0.99(0.54,1.82)
C/C 11 8(72.7%) 3(27.3%) 9.1(4.6,10.1) 2.47(1.08,5.65) 2.85(1.16,7.03) 20.8(7.9,24.0) 2.19(1.00,4.80) 2.56(1.13,5.82)

0.65 0.020 0.012 0.059 0.016
AnyT 79 50(65.8%) 26(34.2%) 13.3(10.2,16.9) Reference Reference 37.1(25.9,42.0) Reference 37.1(25.9,42.0)
C/C 11 8(72.7%) 3(27.3%) 9.1(4.6,10.1) 2.32(1.07,5.03) 2.97(1.27,6.94) 20.8(7.9,24.0) 1.94(0.94,3.99) 20.8(7.9,24.0)

RAS wild-type

GTF2H1
rs4596 0.89 0.32 0.26 0.39 0.62

G/G 22 14(66.7%) 7(33.3%) 14.8(8.9,24.2) Reference Reference 37.1(19.4,NE) Reference Reference
G/C 34 20(60.6%) 13(39.4%) 10.8(8.6,18.2) 1.50(0.77,2.95) 1.87(0.77,4.57) 34.3(21.0,42.5) 1.39(0.71,2.73) 1.12(0.50,2.48)
C/C 6 4(66.7%) 2(33.3%) 13.7(3.7,19.8) 1.86(0.60,5.79) 2.44(0.66,8.97) 44.6(6.4,NE) 0.71(0.20,2.47) 0.58(0.15,2.25)

0.69 0.15 0.11 0.49 0.97
G/G 22 14(66.7%) 7(33.3%) 14.8(8.9,24.2) Reference 14.8(8.9,24.2) 37.1(19.4,NE) Reference Reference

AnyC 40 24(61.5%) 15(38.5%) 10.8(9.3,15.0) 1.55(0.81,2.98) 10.8(9.3,15.0) 35.9(21.0,42.6) 1.26(0.65,2.44) 0.98(0.46,2.11)
RPA

rs7356 0.59 0.015 0.008 0.18 0.22

T/T 25 16(66.7%) 8(33.3%) 10.8(8.9,20.0) Reference Reference 41.7(21.2,NE) Reference Reference
T/C 29 16(57.1%) 12(42.9%) 13.7(9.6,24.2) 1.09(0.56,2.12) 0.62(0.25,1.53) 38.0(24.1,43.2) 1.40(0.70,2.78) 0.85(0.39,1.85)
C/C 8 6(75.0%) 2(25.0%) 9.3(2.4,10.1) 3.70(1.18,11.56) 4.63(1.33,16.14) 20.6(7.9,23.6) 2.44(0.91,6.54) 2.16(0.73,6.35)

0.46 0.004 0.003 0.10 0.090
AnyT 54 32(61.5%) 20(38.5%) 13.3(10.3,18.2) Reference Reference 38.0(26.1,43.2) Reference Reference
C/C 8 6(75.0%) 2(25.0%) 9.3(2.4,10.1) 3.51(1.20,10.29) 5.96(1.84,19.29) 20.6(7.9,23.6) 2.01(0.83,4.88) 2.36(0.88,6.39)

CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease. p-values < 0.05 are shown in bold. * p-value was based on the Fisher’s exact test for response,
log-rank test in the univariate analysis (†) and Wald test in the multivariable analysis within Cox regression model (‡) adjusted for sex, age, ECOG performance status, primary tumor site,
number of metastases, primary tumor resected, adjuvant chemotherapy, RAS status, and BRAF status. NE: estimates were not reached yet.
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4. Discussion

To our knowledge, our results represent the first evidence that SNPs in genes involved in NER
of platinum-induced DNA damage are associated with the superior efficacy of FOLFOXIRI + BEV
compared with FOLFIRI + BEV for patients with mCRC [7].

As one of the main DDR pathways for oxaliplatin-induced DNA damage, NER has been
explored as a potential mechanism of resistance for oxaliplatin-based treatments [10]. Excision repair
cross-complementing 1 (ERCC1) has also been implicated in oxaliplatin resistance [11–13] and intratumoral
ERCC1 mRNA levels may be a potential marker of oxaliplatin-based chemotherapy resistance [11].
An in vitro study of two KRAS wild-type and two KRAS mutant CRC cell lines showed that ERCC1
was induced by oxaliplatin only in the KRAS wild-type cells, despite equivalent basal ERCC1 levels in
all four cell lines. These data suggested that ERCC1 induction may contribute to oxaliplatin resistance
in a KRAS status-dependent manner [12]. TFIIH and RPA2 are also important factors in NER [2,14],
although whether their activity is influenced by KRAS status is unknown. Components of the NER process
are known to physically and functionally interact with each other; for example, XPF–ERCC1 complexes
can interact with XPA–RPA complexes and TFIIH [15,16]. Thus, it is likely that multiple components of
the NER could be involved in the mechanism of oxaliplatin resistance.

Previous studies have demonstrated associations between polymorphisms in miRNA-binding
sites of mRNAs involved in NER and the risk of mCRC [5,6], which prompted our focus in the present
study on SNPs in the miRNA-binding sites of GTF2H1 and RPA2 mRNAs. The most interesting findings
were that GTF2H1 rs4596 and RPA2 rs7356 variants significantly influenced PFS only in FOLFOXIRI +

BEV-treated patients expressing wild-type KRAS, and not in FOLFOXIRI + BEV-treated patients with
mutant KRAS or FOLFIRI + BEV-treated patients, regardless of KRAS status. In both earlier studies of
SNPs as biomarkers of CRC risk [5,6], variations in thermodynamic measures (Gibbs free energy) were
used to assess SNP effects on miRNA–mRNA binding. GTF2H1 rs4596 variant G, which is associated
with a decreased risk of CRC, was predicted to reduce binding of miR-518a-5p and miR-527, leading to
elevated GTF2H1 expression and NER pathway activity. In contrast, miR-3149 and miR-1183 were
predicted to show increased binding to RPA2 rs7356 variant G, thereby decreasing RPA2 expression
and increasing the risk of CRC. The authors of these studies concluded that the SNP variants influenced
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miRNA-mediated regulation of GTF2H1 and RPA2 mRNA levels and thus DNA repair activity and the
cancer risk [6].

In our study, the G/G variant in GTF2H1 rs4596 correlated with a trend towards longer PFS and
OS in both cohorts, suggesting that the potential role of GTF2H1 rs4596 in DDR was unaffected by the
addition of oxaliplatin to the regimen. In contrast, RPA2 rs7356 appeared to have no prognostic or
predictive value for the whole study population; however, its clinical significance varied when KRAS
and RAS mutant versus wild-type subgroups were assessed. We assumed that patients expressing the
RPA2 rs7356 G (C) allele would benefit more from the addition of oxaliplatin than those expressing
the A (T) allele due to reduced expression of RPA2 [6]. Nevertheless, we found that FOLFOXIRI +

BEV was beneficial for mutant RAS-expressing patients with either RPA2 rs7356 allele, but the C/C
variant was associated with a significantly shorter PFS than any T allele in response to FOLFIRI + BEV.
This suggests that RPA2 rs7356 is prognostic for FOLFIRI + BEV but not predictive for FOLFOXIRI
plus BEV. In patients expressing wild-type RAS, however, the outcomes of patients with the RPA2
rs7356 C/C variant were comparable to those of patients expressing with any T allele in the control
cohort. Furthermore, compared with patients receiving FOLFIRI + BEV, the beneficial effect of adding
oxaliplatin was evident in the patients expressing any T allele, but the opposite pattern was observed
for the C/C variant. This suggests that RPA2 rs7356 is predictive for FOLFOXIRI + BEV. Several proteins
in the NER pathway have been known to interact directly [17–20]; for example, XPA is known to weakly
interact with the ERCC1–XPF complex. Our results suggest that, in patients harboring wild-type RAS,
the RPA2 rs7356 C/C variant may interact with ERCC1 via XPA to promote its activity, resulting in
resistance to oxaliplatin [12].

The strengths of the present study include the use of discovery and control cohorts from a
randomized phase III trial to identify the predictive and prognostic value of oxaliplatin in mCRC
patients. There are also several limitations to this study. Ideally, SNPs within all NER genes should
be tested; however, we selected two candidate SNPs within two genes that showed a strong impact
on colorectal cancer risk in a previous report [6] due to limited samples and cost. Further validation
studies and preclinical investigations will be necessary to determine how SNPs in NER genes affect
protein–protein interactions in the repair pathways of oxaliplatin-induced DNA damage.

5. Conclusions

In conclusion, the results of this study suggest that SNPs in the miRNA-binding sites of NER gene
transcripts may affect the DDR to oxaliplatin-containing therapies. While GTF2H1 rs4596 expression
correlates with prognosis, RPA2 rs7356 may serve as a RAS status-dependent prognostic and predictive
marker of FOLFOXIRI + BEV sensitivity in mCRC patients. Further comprehensive analysis of SNPs
within NER genes is warranted using another cohort receiving oxaliplatin-based chemotherapy.
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KRAS and RAS status in the control cohort.
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