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SUMMARY

Adaptation to different pollinators is an important driver of speciation in the angiosperms. Genetic

approaches such as QTL mapping have been successfully used to identify the underlying speciation genes.

However, these methods are often limited by widespread suppression of recombination due to divergence

between species. While the mutations that caused the interspecific differences in floral color and scent have

been elucidated in a variety of plant genera, the genes that are responsible for morphological differences

remain mostly unknown. Differences in floral organ length determine the pollination efficiency of hawk-

moths and hummingbirds, and therefore the genes that control these differences are potential speciation

genes. Identifying such genes is challenging, especially in non-model species and when studying complex

traits for which little prior genetic and biochemical knowledge is available. Here we combine transcrip-

tomics with detailed growth analysis to identify candidate transcription factors underlying interspecific vari-

ation in the styles of Petunia flowers. Starting from a set of 2284 genes, stepwise filtering for expression in

styles, differential expression between species, correlation with growth-related traits, allele-specific expres-

sion in interspecific hybrids, and/or high-impact polymorphisms resulted in a set of 43 candidate speciation

genes. Validation by virus-induced gene silencing identified two MYB transcription factors, EOBI and EOBII,

that were previously shown to regulate floral scent emission, a trait associated with pollination by hawk-

moths.

Keywords: speciation genes, Petunia, transcription factors, MYB, style, floral morphology, transcriptomics,
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INTRODUCTION

A key innovation in the angiosperms is the recruitment

of animal pollinators to enhance reproductive success

(Stebbins, 1970; Thomson and Wilson, 2008; Armbruster

and Muchhala, 2009). The remarkable differences in floral

color, scent, and morphology, even between closely

related species, are thought to have evolved in response

to selective pressure imposed by corresponding classes

of pollinators to form so-called pollination syndromes

(Fenster et al., 2004). Visitation by different pollinators is

likely to promote reproductive isolation and eventually

lead to speciation. Consequently, the genes that caused

the differences between these floral pollination syn-

dromes can be classified as ‘speciation genes’ and the

identification of such genes is a major goal of evolution-

ary genetics.

Substantial progress has been made regarding the

genes underlying floral attraction traits, such as color and

scent, for example (Hoballah et al., 2007; Wessinger and

Rausher, 2012; Amrad et al., 2016; Peng et al., 2017), but

far less is known about the molecular-genetic basis of dif-

ferences in floral morphology. The specific morphology of

a flower serves to attract specific guilds of pollinators and

ensure efficient pollination (Alexandersson and Johnson,

2002; Fenster et al., 2004; Cronk and Ojeda, 2008). Bees

tend to visit short and wide flowers that provide a landing

platform for the animal (Whitney et al., 2009), whereas

hawkmoths and hummingbirds hover in front of the flower

© 2020 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License,
which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial
and no modifications or adaptations are made.

1

The Plant Journal (2020) doi: 10.1111/tpj.14962

https://orcid.org/0000-0001-7643-1059
https://orcid.org/0000-0001-7643-1059
https://orcid.org/0000-0001-7643-1059
https://orcid.org/0000-0003-2440-5937
https://orcid.org/0000-0003-2440-5937
https://orcid.org/0000-0003-2440-5937
mailto:cris.kuhlemeier@ips.unibe.ch
http://creativecommons.org/licenses/by-nc-nd/4.0/


while feeding on the nectar (Raguso and Willis, 2002; Sapir

and Dudley, 2013). The long and narrow corolla tubes limit

access to bees and other visitors. Further elongation of all

the floral organs will restrict effective pollination to hawk-

moths with a longer proboscis, which is expected to

increase specificity but may compromise reproductive

assurance (Alexandersson and Johnson, 2002). Differential

exsertion of the reproductive organs is likely to reduce self-

ing and may also optimize pollen transfer and/or deter visi-

tation by hawkmoths (Alexandersson and Johnson, 2002;

Fenster et al., 2004; Cronk and Ojeda, 2008).

To study the genetic basis of the differences in reproduc-

tive organ morphology, we used three closely related spe-

cies in the South American genus Petunia (Figure 1a). The

hawkmoth-pollinated Petunia axillaris and Petunia parodii

have a white, UV-absorbing corolla, emit a complex blend

of phenylpropanoid volatiles, and have a slightly inserted

style. Tube, style, and stamens are significantly longer in

P. parodii (7 cm versus 4 cm in P. axillaris), which may

attract hawkmoths with a long enough proboscis, increas-

ing the specificity of pollen transfer but also reducing

reproductive assurance (Venail et al., 2010). The humming-

bird-pollinated Petunia exserta has a deep red, UV-reflective

corolla, with reflexed lobes, and is odorless. The style pro-

trudes above the rim of the corolla and most often also

above the anthers.

QTL analysis has identified three or four loci responsible

for the difference in Petunia style length (Venail et al.,

2010; Hermann et al., 2015). In a P. axillaris x P. parodii F2
population, there was co-segregation of tube, style, and

stamen length, suggesting that the genetic loci involved

have a general effect on floral elongation. Crosses between

P. axillaris and P. exserta indicate potentially independent

effects on style and stamen length. However, these results

should be interpreted with caution, as the QTL intervals

are quite large and might fragment upon further fine map-

ping. For instance, a style length QTL is located within a

genomic region of severely suppressed recombination on

chromosome II (Hermann et al., 2013) and it is conceivable

that such a QTL contains multiple genes with separate

effects on individual traits. Suppression of recombination

appears to be a common feature of interspecific crosses

(Jia et al., 2012; Ostberg et al., 2013; Ren et al., 2018). This

makes further fine mapping problematic and therefore,

alternative methods for identifying speciation genes are

clearly needed.

As style length can be easily measured and shows lit-

tle environmental variation, we focused our research on

this character. Mechanistically, the final length of the

style depends on cell wall properties and cell division

rate, as well as growth rate and duration, with each of

these processes being potential targets of speciation

(Lockhart, 1965; Beemster and Baskin, 1998; Czesnick and

Lenhard, 2015; Peaucelle et al., 2015; Braybrook and

J€onsson, 2016). Therefore, we decided to perform a

detailed analysis of style growth and searched for corre-

lations between growth properties and gene expression

profiles at different developmental time points. We

focused our analysis on transcription factors on the

assumption that these are overrepresented among the

genes underlying the evolution of plant development

(Doebley and Lukens, 1998) and this may apply for genes

underlying shifts in pollination syndromes as well. It has

even been suggested that one class of transcription fac-

tors, the MYBs, may be preferred targets of pollination

syndrome evolution, analogous to the predominance of

MADS box transcription factors in specifying floral whorl

identity (Yuan et al., 2013).

Figure 1. Workflow for the identification of candidate speciation genes in Petunia species with differences in reproductive organ morphology.

(a) P. axillaris, P. parodii, and P. exserta with corolla partly removed to show the reproductive organs.

(b) The initial dataset is filtered stepwise based on expression in styles and correlation with the growth traits of interest. The reduced dataset is then analyzed

for differential and allele-specific expression (ASE) as well as coding sequence differences between the studied species. The numbers in the brackets represent

the number of genes remaining after each step.
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Here we present a workflow for the identification of can-

didate speciation genes affecting Petunia style growth (Fig-

ure 1b). Starting from the set of all Petunia transcription

factors we applied different filters: (i) expression in the

style in at least one species; (ii) correlation of transcript

levels with growth-associated traits; (iii) allele-specific

expression (ASE) in interspecific F1 plants; and (iv) func-

tional variants in the coding region. This hierarchical filter-

ing led to a set of 43 candidate genes enriched for MYB

transcription factors (14 genes). Virus-induced gene silenc-

ing (VIGS) provided functional validation of two MYB tran-

scription factors that were previously shown to regulate

floral volatile emission in P. hybrida (Spitzer-Rimon et al.,

2010; Van Moerkercke et al., 2011; Spitzer-Rimon et al.,

2012).

RESULTS

Petunia floral organs of different species have different

growth-associated trait profiles

To understand how Petunia floral reproductive organs

attain different final lengths, measurements of the grow-

ing buds were taken from less than 1 cm long until

1–2 days after flower opening. As flower opening is a

reliable and easily measurable time point, all data were

expressed as hours until opening. The length of the buds

at the time of opening is significantly different between

the three species (Figure 2a). The growth curves of the

buds of all species show a characteristic sigmoidal type

growth: with initial slow growth followed by fast elonga-

tion and then slowing again around the time of opening

(Figure 2b).

As the pistil develops inside the bud, we dissected buds

at different stages of growth and determined the relation-

ship between bud length and pistil length (Figure 2c). Pistil

length correlates linearly with bud length, and therefore,

bud growth can be used as a proxy for pistil growth. The

early growth is highest in P. exserta, while P. parodii elon-

gates the fastest during the steep part of the exponential

growth curve (Figure 2d).

To determine what might cause the difference in style

length between the three Petunia species, we analyzed key

growth parameters, namely growth rate, cell wall elasticity,

and cell division rate (Figure 3). We defined four develop-

mental stages: the small stage (S) is the early stage when

the buds are less than 1 cm in length; the medium-1 stage

(M1) is when the pistils are growing rapidly; the medium-2

stage (M2) is when the growth rate is most different

between the three species; and the long stage (L) is when

the flowers have been open for less than 1 day. The

growth rate is highest in the M1 stage (Figure 3a). Only

P. parodii, which has the highest growth rate, maintains a

similar level in the M2 stage, while the growth rate of

P. axillaris and P. exserta decreases after the M1 stage. We

approximated the elasticity of the cell walls of the styles by

measuring the relative change in length, known as strain,

when the same amount of force was applied to them (see

Experimental procedures). In all species the cell walls were

more elastic at the S stage, and then became stiffer with

developmental time (Figure 3b), until the L stage, when

they could not be extended at all. More specifically,

P. exserta styles exhibited significantly more strain during

the mechanical tests, suggesting they are more elastic than

the two other species in the M1 stage. The measured strain

Figure 2. Bud and pistil growth in P. axillaris (Axs),

P. exserta (Exs), and P. parodii (Par).

(a) Total length of buds at the time of opening.

Bars show means � SD. P. axillaris, mean = 6.2 �
0.27 cm, n = 31 buds; P. exserta, mean = 6.9 �
0.33 cm, n = 30 buds; P. parodii, mean = 9.0 � 0.39

cm, n = 27 buds. Bars with different letters are sig-

nificantly different (P < 2.9 e�11, Welch t-test).

(b) Bud growth curves on the basis of time to

flower opening.

(c) Relationship between bud and pistil length

(P. axillaris, n = 23; P. exserta, n = 16; P. parodii,

n = 16).

(d) The data on bud length against time to flower

opening (b) were combined with the data on pistil

length against bud length (c) to produce an esti-

mate of pistil length against time. Time is

expressed as hours before opening.
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was significantly lower for P. axillaris in the M2 stage, sug-

gesting it is less elastic than the other samples at this

stage. The number of cells increases with time, with the

most division occurring between the S and the M1 stages

in all the species (Figure 3c,d). P. parodii and P. exserta

show the highest and the lowest division rates at this early

stage of style development, respectively. However, this is

likely due to the high number of cells already present in

the S stage of P. exserta, suggesting that cell division

occurred even earlier in this species. Overall, the three spe-

cies show similar trends in their development but there are

also some notable differences.

A workflow for speciation gene identification

Figure 1(b) summarizes the workflow to identify potential

speciation genes, starting from the complete set of 2284

Petunia genes encoding transcription factors. These puta-

tive transcription factors were identified by comparing

publicly available Petunia protein sequences with domain

signatures of known plant transcription factors. BLAST

searches were also performed to identify Arabidopsis

homologs in Petunia and vice versa. The steps of this

workflow are sequentially described in details below.

1) Expression in the style in at least one species. We con-

ducted an RNAseq experiment to determine which of

these putative Petunia transcription factors were

expressed in the style. RNA was extracted from styles of

the three parental species at the four developmental

stages described above. Clustering analysis of gene

expression showed that samples are more similar accord-

ing to the developmental stage than the species (Fig-

ure S1). The MS and SS expression vectors each have

homogeneous clusters which are more closely related to

each other than they are to either the MS2 or the LS

stage. The clusters of the MS2 and LS samples are not

homogenous and cluster together. We also observed that

the transcriptome of the S stage stands apart from the

other stages consistent with what was observed for

growth rate, cell number, and cell division rate. The

genes were filtered to remove pollen genes that contami-

nated the late-stage style samples (see Experimental pro-

cedures for details). Genes showing no or very low

expression were removed using the R package HTSfilter

(Rau et al., 2013). From 2284 putative Petunia transcrip-

tion factors initially identified, 1411 were expressed in

styles according to these criteria.

Figure 3. Growth rate, wall elasticity (strain), and cell division rate of the styles change throughout development.

(a) The relative growth rate of the pistils was extracted for each species at each stage from the growth curves shown in Figure 2(d).

(b) The mechanical properties of the styles were analyzed by applying an oscillating force and measuring the strain. The strain is significantly different between

P. exserta and the other two species at the M1 stage (n ≥ 4 per species, P < 0.05) and between P. axillaris and the other two species at the M2 stage (n ≥ 4 per

species, P < 0.05).

(c) Cell number in the different species. The number of cells in the styles at the different stages was estimated. Four style sections from each species from each

stage were imaged. At least 10 cell lengths were measured. The average cell number was calculated by dividing the length of the style by the average cell

length.

(d) The relative change in cell number from one stage to the next was computed to obtain the cell division rate. Note: the method resulted in a slight reduction

in the number of cells in P. exserta in the L stage versus M2. Since there is no evidence of cell death or cells sliding relative to each other, we assume the cell

division rate to be zero. Error bars show the SD.

© 2020 The Authors.
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2) Correlation of transcript levels with growth-associated

traits. Our analysis showed that Petunia styles grow by a

mixture of cell division in early stages and cell elongation

in the later stages. To identify genes that might regulate

one of the growth-related traits, we performed a correla-

tion analysis between each normalized gene expression

profile and total pistil length, cell wall elasticity, cell divi-

sion rate, and growth rate. The expression of genes across

all species and all stages was correlated with the growth-

associated trait values. Considering a Pearson’s correlation

coefficient (PCC) ≥ 0.75 by the absolute value (further

referred to as strongly correlating), the expression of

752 genes correlated with at least one of the four

measured traits.

3) Allele-specific expression (ASE) in interspecific F1s. Dif-

ferences in gene expression may be caused in cis, that is,

by differences within the gene and its regulatory

sequences, or in trans, that is, by the differential activity of

a non-linked transcription factor. To check whether the

observed differential expression is due to differences in cis

or in trans, an analysis of ASE in interspecific F1 hybrids

was performed (Pastinen, 2010; Wittkopp and Kalay, 2012).

RNAseq was carried out using RNA from the F1 hybrids

between each of the wild-type parents at growth stages

M1 to L. Out of 752 genes strongly correlating with

growth-associated traits, 38 displayed strong ASE in at

least one interspecific F1 hybrid (ASE > 0.75). At this stage,

sequences of these 38 genes and the annotations they are

based on were manually inspected. After the inspection,

one of them was discarded as likely not encoding a tran-

scription factor, creating a set of 37 genes of interest

(Table 1).

4) Functional variants in the coding region. In addition to

the differences detected by ASE we evaluated the impact

of potential divergence in protein function. The coding

sequences of the 752 transcription factors whose expres-

sion correlated with growth-associated traits were com-

pared between the Petunia species. The RNAseq readmaps

were processed to detect and predict the impact of SNPs.

SNPs from the ‘high-impact’ category (e.g., frameshifts,

loss and gain of start/stop codons, rare amino acid vari-

ants, and exon splice site mutations) were considered for

further analysis. To further validate the existence of target

genes and SNPs, comparison of genomic sequences of

genes of interest from different species was performed

using BLAST+. However, whole genome sequences were

available only for P. axillaris and P. exserta. Therefore, we

assembled a de novo draft genome for P. parodii using

high-coverage short-read sequencing (Table 2). In total,

we found six genes with amino acid variation of potential

functional significance using homologous sequences

between Petunia species (Table 3). This brings the total

dataset of candidate speciation genes to 43 (Tables 1, S2,

and S3).

Analysis of the potential speciation genes

Of the 43 genes identified, 32 genes had expression levels

strongly correlated with either cell wall properties or cell

division (Figure 4). Most genes with expression levels that

correlated with cell wall elasticity also correlated with style

length (12/17). This reflects the strong correlation between

cell wall properties and total length that accompanies the

progression through the developmental stages (see also

Figures 3b and 2d). The majority of genes correlating with

style length show a positive correlation with the trait, while

the opposite is observed for cell wall elasticity (Figure 5).

Comparably few genes (5/43) displayed expression profiles

that correlated with the growth rate. This suggests that the

observed growth rate is more likely a result of cell elonga-

tion and cell division and that these traits are regulated

independently by different sets of genes.

Interestingly, MYB transcription factors were overrepre-

sented with 14 genes out of 43 belonging to this family,

which is highly unlikely by chance (Table S4). An addi-

tional point of interest is that three of these MYBs are

known regulators of the phenylpropanoid pathway in

Petunia: scent-related factors ODO1, EOBI, and PhMYB4

(Colquhoun et al., 2011a); (Van Moerkercke et al., 2011);

(Spitzer-Rimon et al., 2012). Moreover, all three genes

show a strong positive correlation with style length and a

negative correlation with cell wall elasticity. Such a correla-

tion is seen in nine out of the 14 MYB genes. We also

noticed Petunia genes similar to Arabidopsis genes known

to affect plant organ morphology, such as ARF2, SHR, and

BPE in the final dataset (Tables 1 and S2).

Candidate gene validation

To determine whether the final list of candidate genes identi-

fied have a role in controlling floral morphology, functional

validation was performed using VIGS for a subset of genes

based on an additional literature review. The homeobox

gene ATHB13 is involved in the elongation of inflorescence

stems and the HLH gene BIGPETAL regulates petal size in

Arabidopsis thaliana (Ribone et al., 2015); (Sz�ecsi et al.,

2006). For the MYB genes, we selected PhMYB4, EOBI, and

ODO1 together with EOBII, which were shown to regulate

scent production in P. hybrida (Verdonk et al., 2005; Spitzer-

Rimon et al., 2010; Colquhoun et al., 2011a; Spitzer-Rimon

et al., 2012). ODO1/EOBI/EOBII and their homologs have

pleiotropic effects on flower development in Petunia, Nico-

tiana, and Arabidopsis (Colquhoun et al., 2011b; Liu and

Thornburg, 2012; Battat et al., 2019). EOBII, a close homolog

of EOBI, does not appear in Table 1 because the lack of SNPs

between the transcripts precluded ASE analysis. Because of

its relationships with EOBI and ODO1, we added it to our

VIGS analysis. The expression patterns of the selected genes

© 2020 The Authors.
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are shown in Figure 6(a). Based on stringent criteria for sig-

nificance (see Experimental procedures), pistil length was

reduced by the VIGS construct targeting EOBI in P. axillaris,

and by the VIGS construct targeting EOBII in both P. axillaris

and P. exserta (Figure 6b).

DISCUSSION

Wild Petunia species are adapted to pollination by bees,

hawkmoths, or hummingbirds and thus offer the opportu-

nity to study pollinator-driven speciation. Our interest is

the molecular basis of pollinator-mediated speciation,

which presents some unique challenges. First, genetic and

Table 1 Growth-related transcription factors with allele-specific expression

Gene ID Correlated trait Predicted TF family Most similar to Arabidopsis

Peaxi162Scf00005g00506 L (�), CWE (+) AP2 TOE1
Peaxi162Scf00074g00101 CDR (�) AP2
Peaxi162Scf00332g00746 CDR (�) AP2 SHN1
Peaxi162Scf01168g00016 CWE (+) AUX/IAA ARF2
Peaxi162Scf00418g00083 L (+), CWE (�) bZIP BZIP11
Peaxi162Scf01290g00246 CDR (+) bZIP
Peaxi162Scf00017g02335 CWE (+) E2F/DP E2FE
Peaxi162Scf00548g00063 L (�), CWE (+) GRAS SHR
Peaxi162Scf00209g00932 GR (+), CDR (�) bHLH BPE
Peaxi162Scf00827g00055 CDR (�) Histone-like (CBF/NF-Y) L1L
Peaxi162Scf00026g00296 GR (�) Homeobox ATHB13
Peaxi162Scf00129g00319 L (+), CDR (�) Homeobox HB3
Peaxi162Scf00740g00325 L (+), CWE (�) LIM
Peaxi162Scf00002g00037 (ODO1) L (+), CWE (�) MYB MYB42
Peaxi162Scf00016g00729 L (+) MYB RL6
Peaxi162Scf00042g02519 L (+), CWE (�) MYB MYB4
Peaxi162Scf00048g01417 CDR (+) MYB RVE1
Peaxi162Scf00064g00423 GR (+) MYB MEE3
Peaxi162Scf00102g01226 (ODO1-like) L (+), CWE (�) MYB MYB42
Peaxi162Scf00129g01231 (EOBI) L (+), CWE (�) MYB MYB21
Peaxi162Scf00185g01625 CWE (�) MYB
Peaxi162Scf00266g00512 L (+) MYB MYBD
Peaxi162Scf00366g00316 CDR (�) MYB RL6
Peaxi162Scf00401g00025 L (+), CWE (�) MYB DIV1
Peaxi162Scf01221g00042 (PhMYB4) L (+), CWE (�) MYB MYB4
Peaxi162Scf00074g00543 CDR (+) MYC/MYB (NIN-like) NLP7
Peaxi162Scf00045g00127 L (+), CWE (�) PLATZ
Peaxi162Scf00031g01525 L (�), CWE (+) SBP SPL3
Peaxi162Scf00656g00007 L (�) SHI-like STY1
Peaxi162Scf00013g00725 CDR (+) SRF-type (MADS) APETALA1
Peaxi162Scf00483g00315 L (+) TAZ zinc finger BT3
Peaxi162Scf00317g00117 GR (+), CDR (�) tify JAZ8
Peaxi162Scf00332g00071 L (+), CDR (�) Tubby C2
Peaxi162Scf00007g00315 L (+), CWE (�) WRKY WRKY6
Peaxi162Scf00459g00841 CDR (+) WRKY WRKY11
Peaxi162Scf00016g00288 L (+), CWE (�) Zinc finger, C2H2 type ZAT10
Peaxi162Scf00029g02912 CDR (�) Zinc finger, C2H2 type WIP2

This table lists characteristics of the transcription factors (TFs) correlated with at least one growth-related trait and displaying allele-specific
expression. In the ‘correlated trait’ column, (+) and (�) mean that a given trait is correlated or anti-correlated with the expression of a given
gene. L, pistil length; CWE, cell wall elasticity; CDR, cell division rate; GR, pistil growth rate. For details of the analysis, see Tables S2 and
S3.

Table 2 Summary of the short-read P. parodii reference genome
assembly

Total size 0.9 Gb
Average read coverage 499
Mean insert size (nt) 523
Contig number 3006811
Mean contig size (nt) 314
Median contig size (nt) 147
Longest sequence (nt) 31531
N50 (nt) 526

N50 refers to the length of the shortest contig at 50% of the total
genome length. Genome statistics were estimated using samtools
v.1.6 (Li et al., 2009).

© 2020 The Authors.
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genomic resources in pollinator-driven speciation models

such as Mimulus, Aquilegia, and Phlox as well as our Petu-

nia system are still limited. Second, when searching for

genes involved in the natural variation of a given trait, the

comparison is by definition not between mutant and iso-

genic wild-type but instead between (nascent) species.

Thus, almost any gene in the genome will display

sequence polymorphisms, and causative mutations need

to be filtered out from a background of divergence caused

by genetic drift or associations with unrelated traits. Third,

interspecific sequence divergence also causes suppression

of recombination, leading to large stretches of DNA in

which genetic markers cluster. In fact, linkage can promote

the evolution of complex traits by preventing the breakup

of favorable gene combinations (Wu and Ting, 2004; Kirk-

patrick and Barton, 2006; Schwander et al., 2014). In Petu-

nia, five QTLs related to pollinator preference were

mapped to such a supergene on chromosome II (Hermann

et al., 2013). While this nicely conforms to theory, it makes

gene identification by fine mapping a tedious enterprise.

To identify potential speciation genes without a priori

knowledge of the pathways involved, we devised an

approach that combines state-of-the-art transcriptomics

with careful characterization of the developmental process

as well as publicly available information about comparable

developmental processes. Starting from the global tran-

scription factor pool of predicted Petunia protein

sequences, we applied the workflow shown in Figure 1(b).

The amount of candidate genes was strongly reduced in

the process, the most stringent steps being ASE-based fil-

tering and functional SNP analysis. As a result, we arrived

at a set of 43 candidate genes that were all correlated with

at least one of the studied growth traits and were either

differentially expressed in cis or had a high-impact SNP in

their coding region. Most of the genes identified were pref-

erentially expressed at an early stage and correlated with

cell division or were expressed at a later stage and corre-

lated negatively with cell wall elasticity with almost no

overlap between these gene sets (Figure 5). The negative

correlation with cell wall elasticity suggests that this set of

genes is stiffening the cell wall and thus regulating growth

arrest. Together, this suggests that style length is regulated

independently at two distinct stages and targeting different

processes. These data support a view where final style

length is a product of early cell division and later cell wall

stiffening to trigger growth arrest. The genes that regulate

these processes are potential causative agents for the

interspecific differences in style morphology.

Prominently absent from our dataset is the homolog of

LO2 (PRE1 in Arabidopsis), an HLH-encoding gene previ-

ously shown to be responsible for the style length reduc-

tion that occurred during tomato domestication (Chen

et al., 2007). However, we identified a candidate HLH pro-

tein, BIGPETAL (BPE), known to regulate Arabidopsis petal

size through its effect on cell expansion (Sz�ecsi et al.,

2006). For functional validation, we performed VIGS on six

candidate genes. Four of them, including BPE, showed no

differences. In contrast, inactivation of EOBI and EOBII had

a significant effect on style length, which makes these

genes prime candidates for further functional analyses,

such as stable overexpression and CRISPR/CAS9. Ulti-

mately, it will be necessary to demonstrate an association

between gene expression/gene function and the trait in

natural populations.

MYB transcription factors comprise 14 out of the 43

members of the final dataset and are the only enriched

Table 3 Growth-related transcription factors with potential loss of
function-inducing polymorphisms between studied species

Gene ID
Predicted
mutation

Predicted
TF family

Arabidopsis
homolog

Peaxi162Scf00071g00035 Loss of
stop
codon
(Exs)

bHLH AIF4

Peaxi162Scf00171g00419 Frameshift
(Exs)

MYB RVE1

Peaxi162Scf00330g00619 Frameshift
(Par)

Homeobox

Peaxi162Scf00390g00336 Frameshift
(Axs)

MYB TRFL5

Peaxi162Scf00548g00014 Frameshift
(Exs)

bZIP bZIP6

Peaxi162Scf01294g00031 Frameshift
(Axs and
Exs)

AP2 ERF110

For each gene in the final dataset (Gene ID column), the nature of
the high-impact mutation, the predicted transcription factor fam-
ily, and the closest Arabidopsis homolog gene symbol are listed.

Figure 4. Transcriptome analysis shows greater correlation with cell wall

elasticity and style length. Venn plot showing the overlap of the growth-re-

lated traits correlated with transcription factors displaying allele-specific

expression and/or high-impact polymorphism in their coding sequence. Full

details regarding the coefficient values can be found in Table S2.
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class of genes. This is in line with the thought-provoking

suggestion that MYBs may be preferred targets of pollina-

tion syndrome evolution (Yuan et al., 2013). MYB factors

AN2 and MYB-FL and their homologs in Mimulus (and

probably many other plant species) are key regulators of

the biosynthesis of floral anthocyanins and UV-absorbing

flavonols, respectively (Quattrocchio et al., 1999; Yuan

et al., 2013; Sheehan et al., 2016). Their action at the late

steps in these pathways is thought to reduce pleiotropy

and make them hotspots for evolutionary change.

Three of the MYBs identified here, ODO1, EOBI, and

PhMYB4, were previously identified as the regulators of

floral scent emission (Van Moerkercke et al., 2011; Colqu-

houn et al., 2011a; Spitzer-Rimon et al., 2012). A further

Figure 5. Expression of the majority of genes of interest correlates strongly positively with style length or negatively with cell wall elasticity. Over the growth

stages (S, M1, M2, L), feature-scaled values of traits (solid black line) and correlating gene expression (red if positive, blue if negative) are shown. The dashed

black line shows an opposite to the trait trend, the trait itself is labeled on the left. For cell division rate, the fold change in cell number was calculated and com-

pared to the log2 fold change of gene expression between adjacent stages of the experiment.

© 2020 The Authors.
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scent-related MYB factor, EOBII, is differentially expressed

and shows a correlation with growth traits. Unlike the late-

acting AN2 and MYB-FL, ODO1, as well as EOBI and EOBII,

regulates the shikimate pathway, which leads to the syn-

thesis of the aromatic amino acid phenylalanine (Phe). Phe

is the precursor for the entire flavonoid/phenylpropanoid

pathway, whose products are not only floral pigments and

volatiles but also a plethora of compounds with roles in

growth, development, and interactions with the biotic and

abiotic environment (Liu et al., 2015). Although no signifi-

cant difference was observed in plants infected with the

ODO1 VIGS construct (Figure 6b), our results suggest that

these genes involved in the regulation of scent in Petunia

might also be responsible for interspecific variation of style

length between wild Petunia species. A previous study

supports this hypothesis, with EOBII having been shown to

inhibit flower opening (Colquhoun et al., 2011b). Specula-

tions that ‘one pathway rules them all’ might gain

credence from further flavonoid/phenylpropanoid pathway

analysis.

Identified candidate speciation genes are prime targets

for future research. Our results can be used as a starting

point for subsequent analyses, ultimately helping to under-

stand the origins of Petunia species. Importantly, the

employed strategy can be adapted to gene identification

for most traits in most non-model organisms. This pipeline

also has the potential to contribute to our understanding

of the evolution of organ size and shape, a major open

question in developmental biology.

EXPERIMENTAL PROCEDURES

Growth conditions and growth rate estimates

Three species of Petunia were used: P. axillaris (Axs), P. exserta
(Exs), and P. parodii (Par). Petunia plants were grown in a green-
house with 16-h light and daytime temperatures of 22–26°C and

Figure 6. Functional validation of selected candidate genes.

(a) Expression pattern of the candidate genes selected for functional analysis. Barplots represent mean normalized count levels, error bars show mean

counts � SD.

(b) Validation by virus-induced gene silencing (VIGS). Boxplots representing pistil length distribution from P. axillaris (left panel) and P. exserta plants (right

panel) that are not infected, infected with the empty VIGS vector, or infected with the VIGS vector containing a target sequence of each of the candidate genes.

Letters on each boxplot represent significance groups as determined by the Tukey HSD test.
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night temperatures of 16–18°C. F1s were generated for each pair
of species, Axs x Exs; Axs x Par; Exs x Par. Bud lengths were mea-
sured every few hours and the time of flower opening was
recorded for 88 parental buds and 61 F1 buds (Figure S2). The
length is plotted against time until opening. Local polynomial
regression fitting was used to predict bud length from time. To
relate style length to bud length, 55 buds were dissected and the
bud length and style length relationship was defined using local
polynomial regression fitting. By combining these two predic-
tions, style length was then expressed in terms of time until
flower opening.

Characterizing mechanical properties

The mechanical properties of the styles were characterized using
a modified automated micro-extensometer coupled to a light
microscope (Robinson et al., 2017). To eliminate the influence of
turgor pressure, samples were frozen, then thawed prior to the
experiment. The ends of the style were removed and the cell con-
tents and water were removed by squashing the sample. The sam-
ple was mounted between two horizontal plates. One of the plates
is motorized with a nanopositioner and applies deformation to the
sample by varying the distance between the plates. The other
plate is passively attached to a force sensor, which reports force
acting on the sample. The moving plate performs precisely con-
trolled movements while the sensing plate measures the force.
The samples were subjected to cyclic loading at a force of 10 mN
for at least three rounds of oscillations. Two dots were added to
the style, and images were collected every 2 sec. The ACME
tracker was used to automatically follow these two dots in the suc-
cessive images. The coordinates of the dots were used to com-
pute the strain on the samples. Stars indicate values that are
significantly different from the other values of the other species.

Cell division rate estimates

Style tissue from the different stages and species were harvested,
flash-frozen in liquid nitrogen, and stored at �80°C. The cells in the
long stage styles were lignified and could be observed due to aut-
ofluorescence of the lignin without any need for staining. The other
styles were cut in half to aid penetration of the stain and stained
with calcofluor and KOH buffer or propidium iodide. The samples
were left for a few hours until the tissue was completely stained.
The method of visualizing the cells was different for the different
species and stages as they have different lengths, cross-sections,
and wall properties. Sections of style tissue were imaged using
confocal microscopy and cell lengths were measured in ImageJ.
The length of each style was measured and divided by the average
cell length to determine an estimate of the number of cells.

The workflow

1) Identification of transcription factors expressed in the

style.

Global transcription factor assay—In order to identify putative
transcription factors in the Petunia genome, publicly available
sequences of Petunia proteins (ftp://ftp.solgenomics.net/genomes/
Petunia_axillaris/annotation/) were scanned against 57 Pfam (Finn
et al., 2013) domain signatures of known plant transcription fac-
tors, using the list from (Rushton et al., 2008) as a reference with
an E-value of the hit of <0.01 as a filtering threshold. Additionally,
as some of the discovered factors do not have a domain signature
yet, a simple scan using BLAST+ v2.6.0 (Camacho et al., 2009) was

performed for a number of such sequences to identify their homo-
logs. The final transcription factor dataset contains 2284 protein
IDs. In order to find the closest homolog in Arabidopsis, post-fil-
tering transcription factors were BLAST-scanned against Ara-
bidopsis proteins, and then the best hit was back-scanned to the
Petunia sequence set.

RNA extraction and sequencing—Plants were grown as for
the growth measurements. Styles were harvested at 6 p.m., flash-
frozen in liquid nitrogen, and then stored at �80°C. RNA was
extracted using the Qiagen RNA easy kit according to the manu-
facturer’s instructions. RNA was quantified with a Nanodrop ND-
1000 (Thermo Fisher, Waltham, MA, USA) and checked on a Bio-
analyzer 2100 (Agilent Technologies, Santa Clara, CA, USA). At
least three replicas were performed per stage, per species or
hybrid. For the small stage, 20 styles were used, for the other
stages at least five styles were pooled per replica. The replicas are
independent biological replicas from different plants. Libraries
were prepared using Illumina TruSeq PE Cluster Kit v3 and RNA
material was sequenced in the Lausanne Genomic Technologies
Facility (Lausanne, Switzerland) on an Illumina HiSeq 2500 plat-
form (Illumina, Foster City, CA, USA) in a single-end mode with a
read length of 100 bp. All raw sequencing data were submitted as
BioProject PRJNA533335 to NCBI.

RNAseq data analysis—Raw read data were quality-checked
using FastQC software v. 0.11.2 with a subsequent filtering of the
reads based on the final length (at least 60 bp) and the quality
score of the bases in the read (at least Q25), along with removing
the Illumina adaptor sequences, performed by the fastq-mcf tool,
which is a part of the ea-utils package v. 1.1.2 (Aronesty, 2013). Fil-
tered reads were then mapped to the P. axillaris reference draft
genome v. 1.6.2 using STAR v. 2.5.0b (Dobin et al., 2013) in a basic
two-pass mode with a custom edit of the P. axillaris annotation
(original accessible at https://solgenomics.net/organism/Petunia_a
xillaris/genome) as a reference for splice junctions with --
sjdbOverhang 99 and ignoring reads that map more than 20 times
in total. The resulting readmaps along with the same custom
annotation served as a base for read counting performed by the
htseq-count tool v. 0.6. (Anders et al., 2015). The calculations were
performed on UBELIX (http://www.id.unibe.ch/hpc), the HPC clus-
ter at the University of Bern. The count data obtained from htseq-
count were processed using the DESeq2 v. 1.12.4 (Love et al.,
2014) package in the R v. 3.3.2 computing environment (R Devel-
opment Core Team, 2016). In order to exclude non- and lowly
expressed genes from the analysis, after running the DESeq nor-
malization process the data were filtered with the HTSfilter
(v. 1.12.0) (Rau et al., 2013) package (resulting s = 27.9).

Samples were clustered using the R PoiClaClu package v. 1.0.2
(Witten, 2011). During the data preparation step a measure against
possible pollen contamination of the long stage samples was
included – a group of genes annotated as pollen-specific was
found exhibiting a highly similar pattern of expression (average
correlation coefficient per gene within the group from 0.95 to 0.98)
with counts above filtering threshold present only at the latest
stage of the experiment in all studied species. A decision to
remove all genes correlating with any of the members of the ini-
tial group with a positive coefficient of at least 0.95 was made,
excluding 488 genes from the analysis (22 005 genes remaining in
the analysis). Counts were normalized using an rlog-transform in
DESeq2 and for each gene mean counts were computed over the
sample replicates. These averaged and normalized counts were
used in the correlation analyses.
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2) Correlation of transcript levels with growth-associated

traits. The values for various growth and mechanical properties
of each experiment stage were correlated against the filtered
mean normalized expression data to obtain PCCs. For final pistil
length, growth rate, and cell division rate, the expression of genes
across all species and hybrids together was correlated with the
trait values. The correlation was performed for each trait individu-
ally but using all of the available gene expression for all of the
stages, species, and hybrids together. For cell wall elasticity, only
gene expression of the parental species was used for coefficient
calculation. To compare the general linear correlation tendency of
transcripts and traits, a permutation test was performed as
described in (Baute et al., 2016), but with analyzing the top 5% by
the absolute value of correlation instead of q0.01 and q0.99 for the
purpose of this analysis. Resulting permutation mean values were
significantly lower than the threshold of 0.75 chosen for this anal-
ysis, with values being: for style length 0.341, for style growth rate
0.346, for cell division rate 0.408, and for cell wall elasticity 0.466.

3) Allele-specific expression (ASE) in interspecific F1s. Al-
lelic coverage for variant positions in P. axillaris x P. exserta F1
and P. axillaris x P. parodii F1 (Axs x Exs F1 and Axs x Par F1) read
maps was detected with ASEReadCounter implemented in GATK
(DePristo et al., 2011; Castel et al., 2015). Variant positions were fil-
tered using hard thresholds with variants having any of the
DP < 10, QD < 2, MQ < 40, FS > 60, MQRankSum < �12.5, and
ReadPosRankSum < �8.0 removed from further analysis. Clus-
tered SNPs with more than three occurrences in a window of five
were also omitted.

Analysis of allelic imbalance was conducted in R software with
the package MBASED v.1.2.0 (Mayba et al., 2014) using rounded
read counts averaged over the biological replicates and one-sam-
ple mode, which identifies within-sample deviations using a null-
hypothesis of equal allele expression. A correction for potential
allele bias was implemented with the help of the package using
the single-SNP genes with more than 30 reads detected for both
alleles and low allelic disequilibrium (less than 1.4-fold difference
in read count, final rho estimated as 0.00308). The results of the
assay were controlled for the false discovery rate by applying the
Benjamini–Hochberg corrections procedure (Benjamini et al.,
2001). The R script used for RNAseq data processing, the ASE
data, and the gene annotations can be found in Data S2–S5.

4) Analysis of functionally relevant SNPs in the coding

region. In order to identify functional SNPs, variant maps
obtained for ASE analysis were scanned using SNPeff v.4.3T (Cin-
golani et al., 2012). Detected mutations from high-impact category
(e.g., frameshifts, loss and gain of stop/start codon, rare amino
acid variants, and exon splice site mutations) were considered for
further analysis. In order to minimize the number of false-positive
hits, a filtering method similar to that described in (Xu et al., 2019)
was used on the results. To further validate the existence of target
genes and SNPs, comparison of genomic sequences of genes of
interest from different species was performed using BLAST+. A
draft genome needed to be assembled for P. parodii de novo, as
none was available.

DNA extraction, sequencing, and assembly of P. parodii—
Petunia parodii S7 was kindly provided by R. Koes, University of
Amsterdam, and maintained locally by selfing. Plants were grown
axenically in tissue culture containers and used for DNA extraction
as described in (Bombarely et al., 2016). DNA material was
sequenced on an Illumina Hiseq3000 platform, producing 150 bp

paired-end reads with 400 bp library insert size. Reads were qual-
ity-controlled using trimmomatic v. 0.33 (Bolger et al., 2014); the
results were checked using FastQC software v. 0.11.2 (Leggett
et al., 2013). For the assembly, an optimal kmer value of 47 was
estimated with the help of jellyfish v. 2.1.0 (Zimin et al., 2013) with
the -m 21 parameter. Assembly of quality-controlled reads was
performed by SOAPdenovo2 v. 2.04.240 (Luo et al., 2012) with
parameters max_rd_len = 150, avg_ins = 400, reverse_seq = 0,
rd_len_cutoff = 150, rank = 1, pair_num_cutoff = 4, and map_len =
32. A summary of the assembled draft genome can be seen in
Table 2.

In order to estimate the gene content in the assembly, P. axil-
laris full cDNA was aligned to the draft genome using GMAP (ver-
sion of June 20, 2017) (Wu and Watanabe, 2005) with default
parameters, resulting in the detectable presence of approximately
30 000 genes in the assembly. Of these genes, 12,827 were pre-
sent in the genome with a length of at least 95% of the length of
the query sequence. All of the bash scripts used for data transfor-
mation and analysis can be found in Data S1.

Virus-induced gene silencing (VIGS)

We first selected coding region fragments in the targeted genes
that are the most specific to avoid off-targets. These fragments
were amplified by PCR from cDNA using forward and reverse
primers containing, respectively, BamHI and EcoRI restriction
sites for subsequent cloning in the pTRV2-MCS plasmid (ABRC
code: CD3-1040) and introduction into Agrobacterium tumefa-
ciens strain GV3101 (Table S5). Then, VIGS experiments were
performed as described previously (Spitzer-Rimon et al., 2013).
Briefly, pTRV1 (ABRC code: CD3-1039) and each pTRV2 deriva-
tive were prepared and mixed in a 1:1 ratio prior to infection of
Petunia plants (approximately 6-leave stage). The infection was
carried out by removing the shoot apex and applying a drop of
inoculum to the cut surface of the stem. The two branches clos-
est to the infection points were used for the pistil phenotyping
in 2 days post-anthesis flowers. We used two different controls,
that is, buffer control and plants infected with the empty vector
(pTRV2-MCS), and we observed that the latter control group dis-
played in general smaller pistil size (Figure 6). Although the
plants looked overall healthy, we attributed this difference to a
viral response since previous studies reported that infection with
the empty virus produced severe viral symptoms such as
lesions, stunting, and death in several Solanaceae species; see
for example Hartl et al., 2008; Wu et al., 2011; Broderick and
Jones, 2014. P. parodii was not used for the VIGS experiments
as this species is late-flowering and highly susceptible to the
empty vector.
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