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Abstract

In this paper I discuss the method of relative distribution analysis and present Stata
software implementing various elements of the methodology. The relative distribution
is the distribution of the relative ranks that the outcomes from one distribution take
on in another distribution. The methodology can be used, for example, to compare the
distribution of wages between men and women. Another example would be the analysis
of changes in the distribution of earnings over time. Of interest are the relative cumula-
tive distribution (relative CDF), the relative density (relative PDF), as well as summary
measures such as the median relative polarization (MRP). The presented software can
be used to estimate these quantities and also provides functionality such as location-
and-shape decompositions or covariate balancing. Statistical inference is implemented
in terms of influence functions and supports estimation for complex samples.

Keywords: Stata, reldist, relative distribution, relative density, median relative
polarization, divergence, reweighting, influence functions
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1 Introduction

Although earlier work on relative distributions and related approaches can be found in the
statistical literature (e.g., Cwik and Mielniczuk, 1989, 1993), the methodology has not been
popular in applied work before Mark S. Handcock, Martina Morris, and coauthors introduced
it to the social sciences in some influential applied (Morris et al., 1994; Bernhardt et al., 1995,
2001) and methodological contributions (Handcock and Morris, 1998, 1999; Handcock and
Janssen, 2002) in the mid 1990s and early 2000s. Even today, however, relative distribution
methods do not seem to experience widespread use, which might, in part, be due to lack of
statistical software supporting such analyses (although an R package does exist; see Handcock
and Aldrich, 2002; Handcock, 2016).

In this article I provide an introduction to relative distributions methods, discuss issues
that are relevant for estimation, and present software that makes the methodology available
in Stata. The software — called reldist — can be used to estimate and plot the relative
density function (relative PDF), a histogram of the relative distribution, or the relative dis-
tribution function (relative CDF). Furthermore, it computes relative polarization indices,
distributional divergence measures, as well as descriptive statistics of the relative data, and
supports the decomposition of the relative distribution by adjusting for location, scale, and
shape differences, or for differences in covariate distributions.

2 Theory

In this section I will briefly summarize the main statistical concepts that are relevant for
relative distribution analysis. For an in-depth treatment of the topic see Handcock and
Morris (1999). For a more recent introduction also see Chapter 5 in Hao and Naiman
(2010).

2.1 Distribution function and density

Let Y be a continuous outcome variable of interest. Y is assumed a random variable with
distribution function

Fy(y)=PY <y), yeR (1)

That is, for any value y, the distribution function provides the probability that Y will take
on a value that is smaller than or equal to y. The density function of Y is then defined as
the first derivative of the distribution function, that is,

Frlo) = Fiy) = T )




Hence, the integral of the density from —oo to y is equal to the value of the distribution
function at value y:

fwwz/yh@m (3)

Likewise, the integral of the density between values a and b provides the probability that Y
falls into interval (a, b]:

b
PW<Y§m=R@%%H@=/wa® (4)

Finally, let qy(p) = F} '(p) be the inverse of Fy, that is, the quantile function of Y, such
that

y = qv(Fy(y)) = Fy ' (Fy (y))

2.2 Relative ranks

Define
ry(y) = Fy(y) (5)

as the “relative rank” of outcome y in distribution Fy. Because Fy is a distribution function,
r lies between 0 and 1. Handcock and Morris (1999) call r the “relative data”, Cwik and
Mielniczuk (1989) speak of the “grade transformation”.

Relative ranks can themselves have a distribution which depends on the distribution
of the y values at which ry(y) is evaluated. For example, if the y values are distributed
according to Fy, then r has an even distribution.

2.3 The relative distribution function

Let Fx be a comparison distribution and Fy be a reference distribution. In relative dis-
tribution analysis we are interested in how F'x is distributed relative to Fy. The relative
distribution function (relative CDF) of Fx with respect to Fy is defined as the distribution
of the relative ranks that outcome values distributed according to F'x take on in distribution
Fy. That is, we are interested the distribution of ry (y) for y values distributed according to
Fx, which can be obtained by inverting r to y using Iy ! and then applying Fy. Hence, the
relative CDF is given as

G(r) = Fx(Fy'(r), r€[0,1] (6)

Stated differently, for each value of r = Fy(y) the relative CDF obtains the corresponding
value of Fx(y), keeping y fixed, which leads to the tuples

(Fx(y), Fy(y)), weR (7)

Plotted in a diagram with r (= Fy(y)) on the horizontal axis and G(r) (= Fx(y)) on the
vertical axis, all points will lie on the diagonal if the two distributions are identical (that
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is, G(r) = r in this case, as can easily be seen in equation 6).! If the outcome values
in the comparison distribution tend to be lower than the outcome values in the reference
distribution, the points will lie above the diagonal (and vice versa). The relative distribution
might also cross the diagonal, for example, if one of the distributions is more polarized than
the other. Figure 1 provides an illustration. On the left, three examples of the density
functions of two distributions are shown. In the middle panel, the corresponding relative
distribution functions are displayed.

2.4 The relative density function

Since G(r) is a distribution function, we can take the first derivative to obtain a density
function. That is, using the chain rule, the relative density function (relative PDF) of Fy
with respect to Fy can be derived as

GO fx (B )

dr fr(Fy ()
As can be seen, the relative density is equal to the ratio of the densities of the two distribu-
tions at a specific y value (i.e. g(r) is equal to the ratio of the two densities at the y value

equal to quantile r of Fy). Nonetheless, g(r) is a proper density function as it is positive
and integrates to 1.

g(r) r e 0,1] (8)

If the two compared distributions are identical, g(r) will be equal to 1 for all r, as is easy
to see in (8). If the comparison distribution tends to have lower values than the reference
distribution, the relative density will be larger than 1 at low values of r and smaller than
1 for large r (and vice versa). Likewise, assuming similar locations of the two distribution,
if the comparison distribution is more polarized than the reference distribution, the relative
density will be larger than 1 at small and large values of r, and below 1 in between (and vice
versa). An illustration of different situations is provided in the right panel of Figure 1.

2.5 Location and shape decomposition

Distributions can have different “locations”, meaning that they differ in their mean or me-
dian. If a large location difference exist, the relative CDF and PDF will be dominated by
this difference. In many application it may thus be informative to distinguish between a
“location effect” and the difference in distributional shape, net of location.

As shown by Handcock and Morris (1999), the overall relative density can be decomposed
into a “location effect” and a “shape effect” by constructing a location-adjusted distribution
and then using this counterfactual distribution in place of either Fx or Fy. For example, let

Y =Y - py + pix (9)

!The diagram of Fx by Fy is also known as “probability-probability plot” (PP plot; for a Stata imple-
mentation see Cox, 2004).
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Figure 1: Illustration of the relative distribution




be a location-adjusted variant of Y, where 1 is a location measure such as the median or the
mean. In general, if Y = ¢(Y'), the distribution of Y is equal to Fy(t~!(y)). That is,

Foly)=PY —py +ux <y)=PY <y+py —pux)=F(y+py —px)  (10)

is a location-adjusted reference distribution that has the same location as the comparison
distribution. The overall relative density can then be written as

Ix(B () _ fp(Byr) | fx (B ()
(B () fr(F(r) - fp(EFy ()

Vv
location effect shape effect

(11)

g(r) =

The first factor, the location effect, is equal to the ratio between the density of the location-
adjusted reference distribution and the unadjusted reference distribution, the second factor,
the shape effect, is the ratio between the density of the (unadjusted) comparison distribution
and the location-adjusted reference distribution. However, note that

fx(Fy(r))
fy(Fy ()’
is not a proper density because it is evaluated over y values distributed according to Fy

instead of Fy. It may therefore be more useful to characterize the shape effect by the
adjusted relative PDF

r e [0,1]

fx(FZH(r)
(r) — v 7 12
gXY(T) f?(F};l(T)) ( )
or the corresponding adjusted relative CDF
Gy (r) = Fx(F;'(r)) (13)

Instead of adjusting Fy-, the decomposition could also be defined by adjusting the comparison
distribution. That is, we could use

X=X —pux+py with F)?(y) :Fx<y+ux—ﬂy) (14)
such that
Ix(FyH(r) _ Ix(Fy'(r) fz(Fy'(r))
K0~ G 0) " )

location effect shape effect

g(r) = (15)

Similar as above, one of the components is not a proper density. To describe the location
effect we may thus prefer

QX)Z(T):% and Gy g(r) = Fx(Fg'(r)) (16)



instead of fx(Fy'(r))/fz(Fy'(r)). Results from (11) and (15) will generally not be the
same, although for some measures discussed below it does not matter whether we adjust Fix
or Fy.

So far, an additive location shift has been used to adjust the comparison or reference
distribution. For variables that can only be positive (e.g. wages) it may be more natural
to use a multiplicative shift and, hence, rescale the data proportionally. A multiplicative
location adjustment of the reference distribution is given by Y =Y - ux/uy and hence

Fy(y) = Fy(y - py/px) (17)

The comparison distribution could be adjusted analogously. Furthermore, besides the loca-
tion, we could also adjust the scale of the distributions. An (additive) location and scale ad-
justment of the reference distribution could be accomplished using Y = (Y —py)-sx/sy+ux
such that

Fy(y) = Fy((y — px) - sy/sx + py) (18)
where s is a scale measure such as the IQR (interquartile range) or the standard deviation. For
the multiplicative adjustment there is no natural way to take account of the scale. However,
we can implement a proportional location and scale adjustment on the logarithmic scale as
Y = exp((In(Y) — fun(yv)) - Sin(x)/Sm(y) + Hin(x)) such that

Fy(y) = Fy(exp((In(y) — fm(x)) * Sn(v)/Sm(x) + Hin(y))) (19)

2.6 Summary measures
2.6.1 Divergence

Handcock and Morris (1999) suggest the Pearson chi-squared divergence and the Kullback-
Leibler divergence (relative entropy) as measures for distributional divergence, that is, as
summary measures for the overall difference between the comparison distribution and the
reference distribution. The chi-squared divergence between Fx and Fy is defined as

S N (N 2 ) P AN
x—/_oo = dy—/0<g<> 124 (20)

The equality between the first and second expression follows from the substitution rule for
integrals, noting that y = Fy.'(r) and dFy ' (r)/dr = 1/ fy (Fy ' (r)). Likewise, the Kullback-
Leibler divergence, which has an 1nf0rmat10n—theoretic interpretation (negative entropy of
the relative density), is defined as

KL = /Z ln<];i((z))) fx(y)dy = /01 In(g(r)) g(r) dr (21)

For both measures, the divergence of F'x with respect to Fy is not, in general, equal to
the divergence of Fy with respect to F'x. That is, the direction from which we look at the

9



relative distribution matters. An example for a symmetric divergence measure? is the total
variation distance
fx(y) _

1
b= /_oo 2 fY(y)

which is equal to half the area between the relative density curve and the parity line. Besides
being symmetric, the TVD has an intuitive interpretation: it quantifies the proportion of data
mass that would have to be redistributed in one of the distributions to make it equal to the
other distribution. In case of categorical data the total variation distance is equal to the
dissimilarity index by Duncan and Davis (1953), which is often used in analyses of segregation
(for a Stata implementation see, e.g., Jann, 2004).

| s = [ 5l - 11 (22)

For all three measures, in a location and shape decomposition, the location-effect diver-
gence and the shape-effect divergence do not add up to the overall divergence. For example,
we could location-adjust the reference distribution as in (9) and then obtain the location-
effect divergence from gy, (r) and the shape-effect divergence from ¢, (r). Unfortunately
these two divergences do not add up to the overall divergence. For the Kullback-Leibler
divergence, however, as pointed out by Handcock and Morris (1999), the following equality
holds

KL = KLy 3y + KLy (23)

where KL, is a (negative) cross entropy defined as

gy = [ () fewn= [ oy ) st o )

This suggest that, in practice, it may make sense to identify the location-effect divergence as
the difference between the overall divergence and the shape-effect divergence. An advantage
of such an approach is also that results will not depend on whether we adjust the reference
distribution or the comparison distribution.

2.6.2 Polarization

To compare the degree of inequality between the comparison distribution and the reference
distribution, Handcock and Morris (1999) suggest the median relative polarization index
(MRP). The index is positive if the comparison distribution is more unequal than the reference
distribution; if the reference distribution is more unequal than the comparison distribution,
the index will be negative. The MRP is defined as

MRP =4 - Ex(|ry(y) —0.5]) — 1 MRP € [—1,1] (25)

2That is, the comparison and reference distribution can be swapped without changing the measure. The
equality holds in theory; in an empirical application the agreement will only be approximate due to the
smoothing involved in density estimation.

10



where Ex is the expectation over the comparison distribution and 74 (y) is the relative rank
of y in the location-adjusted reference distribution (using the median as location measure).
The justification for the MRP is that the median of the location-adjusted relative ranks is
0.5 and that the location-adjusted relative ranks will have a uniform distribution if the two
distributions have the same shape. In this case, Ex(|ry(y) — 0.5]) is equal to 1/4, such that
MRP is 0. In the extreme case that all data mass of the comparison distribution is located in
regions below and above the range of the location-adjusted reference distribution, 7 (y) will
be zero or one for all y with positive density in Fx, such that Ex(|ry(y) — 0.5]) = .5 and,
hence, MRP = 1. In the opposite extreme, ry(y) will always be .5, leading to an MRP of —1.

The MRP can be decomposed into a lower (LRP) and upper polarization index (URP) that
quantify the relative polarization in the lower or upper half of the distribution, respectively:

LRP =4 - Ex(abs(ry(y) — 0.5)|ry(y) <0.5) —1 (26)
URP = 4 - Ex(abs(ry(y) — 0.5)|ry(y) > 0.5) — 1 (27)

Since the conditional expectations in the definitions of LRP and URP each cover half of the
distribution of the location-adjusted relative ranks, the total polarization index is equal to
the average of the lower and upper indices, that is

MRP = 0.5-LRP + 0.5 - URP

2.7 Covariate balancing
2.7.1 Integrating over conditional distributions

Handcock and Morris (1999) discuss covariate adjustment in terms of conditional distribu-
tions integrated over covariates. I will slightly change notation for the following exposition.
Let D € {0,1} be an indicator distinguishing between a comparison group (D = 1) and a
reference group (D = 0) and let Y be an outcome variable available in both groups. The
comparison distribution is Fy|p—, that is, the distribution of ¥ in group D = 1; the refer-
ence distribution is Fy|p—o. Furthermore, let Z be a continuous covariate. Our goal is to
obtain the relative distribution of Fy p—; with respect to Fy|p—o while adjusting for possible
differences in the distribution of Z between the two groups.

The marginal distribution of Y in group d can be written as
Fyip=q(y) = / J21p=d(2) Fy|p=a,z(y|2) dz (28)

where f7(z) is the density of Z and Fy|z(y|z) is the conditional distribution of Y given Z.
A counterfactual distribution can now be constructed by replacing one of the components.
For example,

FEpey(y) = / " Faipar(2) Fripoo.z(y]2) dz (20)

11



is the marginal distribution of Y that we would expect in the reference group if it had the
same covariate distribution as the comparison group. That is, we can obtain the counter-
factual distribution by integrating the conditional distribution of Y in the reference group
over the covariate distribution of the comparison group. The covariate-adjusted relative
distribution can then be obtained by comparing Fy|p—; with Fgl Do’

The approach can be generalized to multiple covariates by integrating over the joint
distribution of all covariates or to discrete covariates by taking weighted sums instead of
integrals. In any case, constructing counterfactual distributions in this way assumes that
the conditional distribution of Y is “stable”, that is, that the covariate distribution can be
modified without changing the conditional distribution. However, even if such an exogeneity
assumption is unrealistic in a given application, the “as if” scenarios based on counterfactual
distributions can still be informative.

2.7.2 Reweighting

An equivalent but more attactive approach from an applied perspective is to conceptualize
covariate-adjustment as reweighting in the spirit of DiNardo et al. (1996). Define

P(D=1|Z=2)=1-P(D=0|Z = z) (30)

as the conditional probability of belonging to the comparison group given Z, where Z is a
vector of covariates. Furthermore, define

_ P(D=1|Z=2)/P(D=1)

=1
U(z) = 31
C) =B =0z=2/PD=0) (31)
We can then write the counterfactual distribution of Y in the reference group as
Fipeot) = | fapmale)Fripmozlul2)¥() dz 32

This indicates that the counterfactual distribution can be estimated by simply reweighting
the data by an estimate of ¥(z).* Mathematically, (32) is equivalent to (29) because

P =1Z=2)/P(D=1) PO=UZ=2)-3525  f,,.(2)
YO = PD=0Z=2/P(D=0)  PD=0Z=2) B Sl

3Naturally, we might as well adjust the comparison distribution and then compare the covariate-adjusted
comparison distribution with the reference distribution. The two perspectives address the same question
(i.e., how the relative distribution of Y would look like if the two groups had the same distribution of Z) but
give somewhat different answers. In the decomposition literature this is discussed as the “index problem”
(see, e.g., Jann, 2008).

4To reweight the comparison group, we would use factor 1/¥(z) instead of ¥(z).
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(using Bayes’ theorem in the last step). The practical advantage of reweighting over inte-
grating is that Pr(D = 1|Z = z) and, therefore, WU(z) is relatively easy to estimate using
binary choice models (e.g. logistic regression).

Note that reweighting can also be used as an alternative approach to identify location and
shape effects, by modeling ¥ as a function of Y (instead of applying location adjustments
as described in section 2.5).

3 Estimation

For the following discussion, assume that there is a random sample of size n for which we
observe two variables, X and Y. Furthermore, there is information on sampling weights w
as well as a (possibly empty) vector of covariates Z. The complete data is (Y;, X;, w;, Z;),
1=1,...,n. Set w; = 1 for all 7 in case there are no sampling weights.

We intend to analyze the relative distribution of X with respect to Y between two
subsamples. Let D be an indicator for the comparison subsample (D; = 1 if observation i
belongs to the comparison subsample, 0 else) and let D = {i|D; = 1} be the set of indices
for which D; = 1. Likewise, let R be an indicator for the reference subsample (R; = 1 if
observation i belongs to the reference subsample, 0 else) and let R = {i|R; = 1} be the set
of indices for which R; = 1. That is, we want to compare the distribution of X in subsample
D with the distribution of Y in subsample R.

We will use F'x|p to denote the former, that is, the conditional distribution of X given
D =1, and Fy|r to denote the latter. In general, we will use letter “D” for quantities
related to D and letter “R” for quantities related to R. For example, W = > D;w; and
Wgr = > Ryw; will be the sum of weights in the comparison sample and the reference sample,
respectively. Furthermore, define W = > w; as the total sum of weights.

Note that ¥ and X may be the same and that D and R do not have to be distinct
nor exhaustive. I use such a general setup to cover all possible cases. For example, if the
subsamples are distinct and Y = X, then we are in a setting in which a single variable is
compared between two subsamples (e.g., a comparison of wages from a sample of females to
wages from a sample of males). Likewise, if D = R and Y # X, we compare two variables
within the same sample (e.g., a comparison of data on wages for the same individuals between
two time points). Furthermore, if X = Y and D is included in R, then we compare the
distribution of a variable in a subsample with the pooled distribution of the variable. Finally,
if the union of D and R does not cover the whole sample (that is, if there are observations
for which D = R = 0), we are in a subpopulation estimation setting. Taking account of the
observations that do not belong to the subpopulation may be important for standard error
estimation.

5In their description of the implementation of relative distribution methods in R, Handcock and Aldrich
(2002) conduct covariate-adjustment by resampling observations based on relative frequencies of covariate
values. This is equivalent, in expectation, to reweighting the data by ¥(z).
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3.1 The relative distribution function

To obtain an estimate for the relative CDF
G(r) = Fxip(Fyly(r), r€[0.1] (34)

one can compute the relative rank of X; in distribution Fy g for each i € D and then take
the value of the empirical CDF of these relative ranks at value r. That is, first compute

1
= STwji{y; <X;} forallieD (35)

jER
where 1{a} is the indicator function (1 if @ is true, 0 else). Then obtain the CDF as

~

G(r) = WLD > will{r < r} (36)

1€D

An issue with this simple computation is that it leads to a step function with jumps at distinct
values of 7. Let (i) refer to observations in D ordered by 7 such that 71y < 7g) < -+ < 7).

If ;) <1 < 741, that is, if evaluation point 7 falls between two values of 7, then @(T) will
be equal to the CDF corresponding to the lower value of 7. In the context of the relative
distribution it makes more sense to use linear interpolation® between the two points and,
hence, determine G(r) as

o~ T — f(zl)
i - G i’ ) -~ ~ 37
(#'+1) @) Pt — (37)

)
=
!
o)
+
/N

)

with |
G = 3= 2 wil{fs < i}

jED
where i’ is selected such that 7uy < 7 < 7yq) (with 7y = @(0) = 0 if 7y > 0 and
Tnp+1) = Gmp+1) = 1if 7,y < 1). For values of r that have an exact match in 74, i € D,
this leads to the same result as (36). For r values without exact match, (37) is equivalent to

picking the result from a linear segmented curve connecting the points given by (G, 7)),
1= 1, ...,Np.

Equation (37) improves on (36) in that it uses interpolation in regions where (36) is
flat. It does not, however, take into account that flat regions in (36) may include outcome
values that only exist in Fy g, nor does it take into account that there might be regions
where the true G(r) is upright due to outcome values that only occur in Fyp. To handle
these issues and obtain an estimate that exactly traces the observed data pattern, we can
compute the empirical CDF for Fy|p and Fy|r at each observed value in the data and then

SInterpolation is equivalent to breaking ties proportionally between the comparison distribution and the
reference distribution.
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use linear interpolation to obtain CAJ(T) Let YV = {y@),.--,yw} be the ordered set of all
distinct outcome values observed for Fxp and Fy|g. We then compute

7“(] Zwﬂl{X <yy ) and T(j Zwﬂl{Y <y} (38)
ZED ZG'R
forall y =1,...,J, add origin f{%) = f{g) = 0, and obtain the relative CDF as
( ~D : —
TG ifr=20
R 0 ifr=1
G(r) = 0.5 (f@r) + 72([})> if r = r for any j (39)
70+ (780 = 78) 7 i W T
L () @+ G0 )

where j, and j" denote the smallest and largest value of j, respectively, for which fg) =,

and where j’ is chosen such that f@ y <1< 7"( For graphical display we may also directly

J'+1)”
plot fg) against fg) and linearly connect the points. All estimates for G(r) obtained using
(39) will lie on that curve.

If all values in ) exist in both distributions, (39) will lead to the same results as (37).
Furthermore, for continuous data, at least if the dataset is not very small, results from the

two approaches will be very similar. Equation (39), however, leads to more appropriate
results than (37) if the data is discrete.

3.2 Computing relative ranks

Relative density estimation and the estimation of summary measures of the relative distribu-
tion are typically implemented by analyzing the relative ranks of X;, ¢ € D, in distribution
Fy|g. A naive approach is to compute the relative ranks using the values of the empirical
CDF of Fy|g, that is

7 = T ;wjﬂ{y < X;} (40)

A problem with this approach is that the empirical CDF is a step function. This is particularly
troublesome if there is heaping in the data such that there are large steps in the CDF, as is
often the case with discrete data. One improvement is to use the so-called mid-distribution
function instead of the regular ¢DF (Parzen, 2004) that deducts half a step size from the
ranks in regions where the CDF is upright. Let

Pr(Y = ng I{Y; =y} (41)

jER
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be the relative frequency of outcome y in Fy | (i.e. the step size in the CDF at value y). The
relative ranks computed according to the mid-distribution function then are
1

. 15

Note that (42) differs from (40) only for observations that have ties in Fy|p (i.e. observations

that hit a step). For all other observations ﬁR is 0 and hence the two computations lead to
the same result. The relative mid-ranks are preferable over the naive relative ranks because
their average is exactly 0.5 if the two empirical distributions are identical. For the naive
relative ranks this does not hold; their average will be larger than 0.5 in this situation. The
naive relative ranks have an upward bias. The size of the bias depends on how much heaping
there is in the data. The more heaping, the larger the bias.

Using the mid-rank adjustment removes the bias in the relative ranks. Heaping, however,
will still lead to undesirable results such as arbitrary spikes in the relative density estimate.
A solution to this second issue is to break ties randomly and, hence, smooth out the step
sizes of the CDF across tied observations. These broken relative ranks (including mid-rank
adjustment) can be written as

~

Pp(X = X;)

1 5
o= i 2t S X Pl = X)

(43)

where ﬁD(X = y) is the relative frequency of outcome y in Fx|p and d; is the relative rank
of X; among all ties of X; in Fx|p when ties are broken randomly. Let w@, . ,wg be
the randomly ordered set of weights from the observations in Fx|p that are equal to X
(including observation i), where K; is the size of the set (the order is kept stable across
observations, that is, w,(:) = w,(cj ) if X; = Xj). Let k; be the position of observation 7 in this
set. The expression for §; then is

ki

5= >l (44)

T K (4)
Dk wl(c) k=1
which simplifies to §; = k;/K; if the weights are constant.

Due to the random ordering, repeated computation of (43) will lead to slightly different
results for the relative density and other estimates unless the weights are constant (or unless
there are on ties). One (arbitrary) solution to enforce stable results is to sort the observations
within ties in (ascending or descending) order of the weights.

To obtain broken relative ranks without mid-rank adjustment, set 0.5w; in (43) to zero.
Whereas the mid-rank adjustment can have a strong effect on results if relative ranks are
computed without breaking ties (equation 40 vs. equation 42), the adjustment is only of
minor importance in (43), because breaking ties makes the individual step sizes small (unless
there is large variation in weights).
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For location-adjusted relative ranks, the same equations can be applied to appropriately
transformed input variables. For example, to compute the relative ranks based on a location-
adjusted reference distribution, use

Y =Y — yir + fixp

instead of Y in the above equations, where fiy|g is the median or mean of ¥ in subsample R
and fix|p is the median or mean of X in subsample D. Location-and-scale, multiplicative,
or logarithmic adjustments can be handled analogously.

In contrast, for shape adjustment, one of the distributions has to be swapped. For
example, to compute the relative ranks based on a shape-adjusted comparison distribution
(i.e., a comparison distribution that has the same shape as the reference distribution, but a
different location), use

X =Y — iy|r + fix|p

instead of X and then set the comparison sample to D = R instead of D.

3.3 The relative density function
3.3.1 Kernel density estimation for continuous data

Estimation of the relative density function can be implemented by applying a univariate
density estimator to the relative ranks (preferably as defined in equation 43). Compared
to a standard density estimation problem, there are two specific complications that should
to be taken into account. First, the support of the relative density is bounded at 0 and
1. Standard density estimators, however, are designed such that they smoothly approach 0
outside the support of the observed data, which leads to an underestimation of the density at
the boundaries. Second, automatic bandwidth selection should be adapted to take account
of the specific nature of relative data.

Given an evaluation point r € [0, 1], a kernel density estimate of the relative density can
be written as

g(r) = W w; K (r, 7, h) (45)

where K.(r,7;,h) is a boundary-corrected kernel function with bandwidth h. For example,
the renormalization technique uses

r_f (1=r)/h -
K.(r, 71, h) = %K( . ) c(rh)  with (k) = < /( K(z) dx) (46)

0—r)/h

where K(z) is a standard kernel function such as the Gaussian kernel. The logic of the
procedure is to rescale the density estimate by the inverse of the area of the kernel function
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that lies within the support of r. For some alternative boundary-correction techniques see

Jann (2007).

The bandwidth h that determines the degree of smoothing (larger values for h lead to a
smoother density function) can either be set manually or be determined automatically from
the data. Various suggestions for automatic bandwidth selectors exist in the literature, some
based on crude rules-of-thumb, some employing more sophisticated procedures (see Jann,
2007 for an overview of some of the suggestions). For relative density estimation, these
standard bandwidth selectors should be adapted to take account of the specific nature of
relative data. Suggestions for appropriate modifications are given by Cwik and Mielniczuk
(1993). The reldist command below supports several automatic bandwidth selectors, but
we refrain from discussing their details here.”

3.3.2 Histogram density estimation

A complement to kernel density estimation is to obtain a histogram of the relative density.
Let (a,b] be an interval on the domain of . The histogram density estimate for that interval
can then be obtained as

Pp(a <r<b) 1 Z I{a <7; < b}
T Sl

lab) — _ Z
9(a,b) b—a Wp b—a

(47)

1€D

(with a modification in case of @ = 0 such that the interval includes the lower bound). A
convenient setup is to split the domain of r into K evenly sized bins defining the inter-
vals [0, 4], (£, 2],..., (B2, £,..., (£22,1], such that each bin covers +th of the reference
distribution.

The histogram density has an intuitive interpretation. For example, a value of 2 means
that the fraction of the comparison distribution that falls into the bin is twice as large
as the fraction of the reference distribution. In other words, the comparison distribution
is overrepresented in the bin by a factor of 2. A value of 0.5 means that the proportion
of the comparison distribution is only half the proportion of the reference distribution. A
kernel density estimate of the relative ranks has, in principle, the same meaning (it shows
the relative over- or underrepresentation multiplier at each level of r), but the binning may
make the histogram more easy to interpret.

"Estimator 45 uses a global bandwidth that is constant across observations. A popular alternative is
the adaptive estimator based on a varying bandwidth depending on the local density of the data. For the
adaptive estimator, replace h by h; = h-+/g%/g%(#;) where §°(7;) is an initial (constant-bandwidth) density
estimate and ¢° is the geometric mean of §°(#;) over all observations in D. The procedure may be iterated
several times (each time using the density estimate from the last step to determine the new h;), but typically
additional iterations do not change the estimate much. The adaptive estimator is attractive for regular
density estimation because there is a one-to-one relation between the density and the local sample size. For
the relative density, however, the local sample size is constant for one of the groups (the reference group),
such that the adaptive estimator appears less convincing.
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3.3.3 Discrete relative density for categorical data

For categorical data, the relative density can be computed directly from the relative prob-
abilities across the levels of the data. Without loss of generality, let k = 1,..., K be these
levels. The relative density for level k is then estimated as

Pp(X =k
with
Pp(X =k) = —sz]l{X =k} and Pr(Y = szﬂ{Y =k}
zG'D ZER

Discrete relative density g is well defined only for levels k£ that exist in the reference distri-
bution.

When plotting the relative density for categorical data, g, can be plotted against ISR(Y <
k) using a step function, including an additional point at coordinate (g;,0) for the first
step. Alternatively, the density can be plotted using a histogram with bar widths equal to
Pr(Y = k) and bar midpoints equal to Pr(Y < k) — Pr(Y = k)/2.

3.4 Divergence
3.4.1 Continuous data

To estimate the y2, Kullback-Leibler, and dissimilarity measures, obtain an estimate of the
relative density over a grid of evaluation points and then “integrate” the result. For example,
let r, = k/K —1/(2K), k = 1,..., K, be a regular grid of evaluation points spanning the
range of r from 1/(2K) to 1 — 1/(2K). The divergence measures can then be estimated as
1 — 1 —
X = e Z(Q(Tk) -1 KL= e Z@(Tk) In(g(rs)) Z| i) — 1| (49)
k=1 k=1
where §(ry) be the density estimate at evaluation point r; (that is, the 1ntegra1 is approx-
imated by using a rectangle of width 1/K around each evaluation point). The size of the
evaluation grid should not matter too much for the results, as long as it is sufficiently dense.
However, results may strongly depend on the bandwidth used for density estimation. Diver-
gence measures will typically increase with a decrease in the bandwidth. Stated differently,
more smoothing leads to lower divergence. In general, TVD is less sensitive in this regard
than the other two measures.

An alternative is to obtain the divergence measures from a histogram of the relative
density. Assuming K evenly sized bins covering the whole range of r, the histogram-based
estimates of the divergence measures can be obtained using (49) with ¢(r,) replaced by the
histogram estimate of the relative density in bin k. Results may strongly depend on the
number of bins.
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3.4.2 Categorical data

Divergence measures for categorical data can be defined in terms of the categorical relative
density as introduced above. Let k = 1,..., K be the levels of the data. The divergence
estimates then are

K (D R\2 K D K
~ (pk _pk) —~ D Dy Sh 1
=D e KL—;pk m(ﬁf) TVD—Z2

“R
k=1 Dy,

where pP = Pp(X = k) and pf = Pp(Y = k)

3.5 Median relative polarization

For the polarization indices first compute location-adjusted relative ranks using one of the
above methods, where the median is used as location measure. Let 7; be these location-
adjusted ranks. Whether we transform the reference data or the comparison data does not
matter. An estimate for MRP can then be obtained as

NP — (WiZwi

D 1€D

ﬂ—0q>—1 (51)

Furthermore, using

.g__o5‘1{ﬂ<:5}> —1 (52)
URP = (Wizwz

P> .

%—oﬂﬂ{
D ep

=0
t
——
v
|

—_
—~

ot

w
SN—

as estimates for LRP and URP ensures that

__ LRP+ URP
MRP:T

Note that, in theory, the MRP of Fxp with respect to Fy|gr is equal to —MRP of Fy g
with respect to F'x|p. In practice, however, heaping in the data may cause the median of
the location-adjusted relative ranks to differ from 0.5 and, hence, cause this relation to be
violated. Applying mid-distribution correction and breaking ties when computing the ranks
typically reduces the discrepancy, but may not entirely remove it.

3.6 Covariate balancing

Assume that D and R are distinct and exhaustive, such that D is an indicator for the
comparison group (D = 1) versus the reference group (D = 0). A simple approach for
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covariate-adjustment by reweighting is to run a logistic regression of D on Z and obtain
predictions p; = P(D = 1|Z = Z;) from the model. To reweight the reference group, define
adjusted weights

(54)

w; =

~ W; léiﬁ_CR ifieR
w; else
where cp = Wr/ Y icr wif—"ﬁ is a scaling factor ensuring that the group size (that is, its

sum of weights) remains constant, and use these weights in all computations instead of the
original weights. Likewise, to reweight the comparison group, define the adjusted weights as

(55)

w; =
w; else

_ {wilﬁficD ifieD

with cp = Wp/ > .cp wilgf' . The described procedure is equivalent to what is known as
“Inverse probability weighing” (1Pw) in the causal inference literature (see [TE| teffects
ipw). Any other approach to obtain balancing weights may do as well. See, for example,
kmatch (Jann, 2017) for techniques such as entropy balancing or matching.

3.7 Standard errors
3.7.1 Variance estimation by means of influence functions

Influence functions provide a convenient approach to estimate the sampling variances of the
different statistics discussed above. Intuitively, an influence function is an approximation of
how a functional of a distribution changes once some data mass is added at a specific point
in the distribution. Random sampling can be seen as a process that modifies the distribution
in such a way and, hence, leads to variation in statistics computed from the distribution. It
can be shown that, asymptotically, this variation (i.e., the sampling variance) is equal to the
expectation of the square of the influence function divided by the sample size. Therefore,
to obtain an estimate of the sampling variance from a given sample, we can evaluate the
influence function at each observation in the data and then compute the sampling variance of
the mean of these values using textbook formulas.® More generally, once influence functions
are available for a set of statistics, the variance matrix of these statistics can be obtained
by taking a mean estimate (using [rR] mean) of the influence functions (or a total estimate
using [r] total, depending on the scaling of the influence functions). Sampling weights or
other complex survey characteristics do not change the form of the influence function and
can be taken into account when computing the mean (or total) estimate. This makes the
influence function approach very general.”

8Since the mean of an influence function is zero by definition, the expectation of the squared influence
function is equal to the variance of the influence function.
9 Also see Rios-Avila (2020) for an overview of (recentered) influence functions for a variety of statistics.
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One-parameter setting There is a close connection between influence functions and the
method of moments (see Jann, 2020). Let h¢ be the moment condition for estimating 6 in a
simple one-parameter setting, such that 6 satisfies

]. i Ae
0= Z:; w;h! (56)

where ﬁf denotes h? with 0 set to 0. Observation 4’s value of the empirical influence function
of # can then be obtained as

A~ 1 0
17, () = = h? (57)
where .
~y 1~ Oh
W 90 |,_s
is an estimate of the expectation of the derivative of h? at point 6 = 6. Consider the mean
estimator
L1

Since

~ 1 = onY 1 —
AV = — e - (—1) = —1
sz 0y 7=y W;w( )

=1

the influence function simplifies to
1F;(y) =Y —y (59)
The sampling variance of i can then be estimated as

V00) = ) 2 v ) (60)

This is equivalent to the textbook formula for the variance of the mean, as can easily be
seen if 1F;(j) is replaced by its definition. The general point is that we can use the same
variance formula also in other situations. That is, the variance of a statistic can be obtained
by applying the above formula (or a variant if it depending on survey design) to its influence

function, whatever that influence function might be.
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Multiple-parameter setting Deriving the influence function becomes more involved if a
statistic involves auxiliary parameters that are estimated from the data. Think of a system
of equations with moment conditions h%, h% ... h% where #; may depend on 0s,...,0,
(that is, all 6; appear as arguments in the moment condition for ¢;). The influence function
for 6; can then be written as

2 — 1 A01 - A91 N

IFZ-(Ol) = _301 (hz + ;AQJIF@‘(OJ') (61)

where h?* denotes the value of h?* with § = (6;,...,6,) set to 6 = (6y,...,6,) and
~ " ot

A91 _

0 — Z 90,
is an estimate of the expectation of the partial derivative of h* by 6; at point §. If parameters
0, 7 > 2, themselves depend on further parameters, their influence functions will have an

analogous form. That is, multiple-parameter problems can be solved recursively by applying
equation (61) repeatedly.

(62)

0=0

One implication of (61) is that, if v = #(#), where ¢(0) is a simple transformation function
of § = (04,...,0,) that does not involve the data (i.e. a linear or nonlinear combination of
the elements in @), the influence function for 4 can be written as

ot(0) ~ ot(0) A
IF;(y) = ——= 1F;(01) 4+ -+ —— 1F;(0
( ) 8(91 gzé ( ) aep gzé ( p)
This means that the influence function of a statistic that is defined as an aggregate of other
statistics can be obtained as an aggregate of the influence functions of these statistics.

(63)

Subpopulation estimation Because the relative size of a subsample is subject to sam-
pling error, influence functions should always be evaluated for all observations in the data,
also when only a subpopulation is analyzed (although for some statistics this may not change
the results). Furthermore, the relative distribution is typically computed using data from
two subsamples, so that the influence functions bellow will inherently contain multiple com-
ponents based on different observations. Using a full-sample approach is thus inevitable.
Subpopulation influence functions defined in terms of all observations can be obtained by
including appropriate subpopulation indicators in the relevant moment conditions.

Consider the influence function for subpopulation mean

yg——ZwSY

where S; is an indicator for whether observation ¢ belongs to subsample & and Wy is the
sum of weights in the subsample. The full-sample moment condition for s can be written
as

hYs = Si(Y; — §s)
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Since

the influence function for yg becomes

R %74
g
The influence function will be zero for observations outside subsample S. However, taking
the standard error of the mean of this influence function across all observations will provide
a consistent standard error for ¥g.

In practice it may be convenient to omit the global W from the definition of the influence
function and only divide by the relevant subpopulation size. In this case, the appropriate
standard error is provided by the standard error of the total of the influence function. An
advantage of defining influence functions in this way is that they can be computed from the
subsample data alone, without knowing the total sum of weights.

Overview of influence functions for various statistics Using the methods above,
we can obtain influence functions for various statistics that are relevant in the context of
relative distribution analysis. Table 1 provides an overview. The influence functions have
been derived for statistics that are conditional on S = 1, where S is an indicator for whether
an observation belongs to subsample §. For unconditional statistics, set S to 1 for all
observations.

The variance is an example of a multi-parameter statistic, but it is a special case because
the influence function for the auxiliary parameter drops out of the equation. Furthermore,
note that a quantile can be defined as the value ¢y (p) that solves

= WO S ()} - ) (63

so that fy (gy(p)) provides an estimate of the expectation of the derivative of the relevant
moment condition.

3.7.2 Influence function for the relative CDF

Using notation as introduced at the start of this chapter, the empirical CDF of the relative
ranks can be written as

~

G(r) = Fxin(dr szn{x <) (66)

ZED
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Table 1: Influence functions for various statistics

Statistic (conditional on S = 1)

Empirical influence function

Mean
7 i,
zES
Empirical CDF

szn{y <y}

’LES

FY|S

Kernel PDF (assumlng h fixed)

()

Fris(y)

Histogram PDF

5 1 I{a <Y; < b}
fY|S(aab) T We szﬁ
1€S
Quantile
QY|S( ) Y\S( )
Median

Us = Gy|s(0.5)

Variance
1 R
) A \9
57 'ng ies

Standard deviation

Oyls = vV (3‘2/|s
Interquartile range
IQRy|s = Gy|5(0.75) — Gy|5(0.25)

;= (Y~ §is)
s
W ~
Q. < _
¥ = Sl(ll{Yl <y} FY\S(?J))
w 1 (y—Y ;
< R
K&(ﬂ{a <Yi<h fY|S<avb)>
—11Y; <
IF; = W&( { sty )}>
W, Fris(dyis(p))
IF; W S; o l s ys}
s fy|s Js)
IF; = Sz c -0 =T
( Y\S) 17%
wo (e (Yi—ys)* =634 1
IF; = —S; = y C= 1
Wy 20y|s s

1F; = 1F;(qy|5(0.75)) — 17;(Gy5(0.25))
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where ¢, is shorthand notation for gy r(r) = F _ﬁ%(r). The moment conditions for G(r) and
q, are

h = Di(1{X; < ¢} — G(r)) (67)
hi = Ri(1{Y; < ¢} — ) (68)

Working through (61) yields
t0,(G(r) = b + Frin (@) (69)

Since, according to table 1,

~ W r—= H{Y; S er}
ildr) = R; = 7
1F; (G ) W ( (TS ) (70)

equation (69) can be written as

() = WL (X < 4} - G0+ W P gy

D WE fy ()

The density ratio in the second term is equal to the relative density by definition, so we
could replace it by g(r). Both variants should yield a consistent standard error estimate.

Location and scale adjustment For the relative CDF based on location (and, possibly,
scale) adjusted data, replace g, by ¢. = t(g,, ) in the above formulas, where (y, 0) is a scalar
transformation function depending on a set of location and scale parameters 6 = (6, ..., 0k).
More specifically, if tp(y, @) is the transformation function applied to the comparison data
and tg(y, 0) is the transformation function applied to the reference data, we have

gr = t(Qra 9) = t51 (tR(QT: 9)7 9) (72)

The adjusted relative CDF then becomes

G(r) = Fo(@,) = 70— Y wil{ X < 4.} (73)

with ¢, = (G, é) and ¢, = ﬁ;‘lR(r), such that the influence function can then be written as

tr(Gr) = b+ Fan(@w() (7
with B N
K = DX < 3}~ G(r) (73
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and

K
1R () = 74,17 (Gr) + Z 79, 1F; (0, (76)
k=1
where
— M and T, = M (77)
" Oar | g,=4,,0-0 ' OOk g,=4,.0-0

For example, in case of an additive location adjustment (of either the reference distribution
or the comparison distribution) we have t(qg,,0) = ¢, — py|r + px|p such that

IF;(q,) = 1F;(q,) — IF;(fiy|r) + IF; (fix|p) (78)

where expressions for the three influence functions included in 1F;(g,) can be found in table 1
(u is either the median or the mean). Likewise, in case of a multiplicative adjustment, we
have t(q,,0) = ¢» - px|p/ by |r, such that

- XD __ . qr X Grflxip .
1F;(G,) = ——1F;(q,) + ——1IF; — ———1IF; 79
() fivim (gr) fivin (NX\D) (MYlR)Q (MY\R) (79)

In case of additive location and scale adjustment, we have t(¢,,0) = (¢, — iy |r) - Sx|p/Sv|R +
fx|p, such that

A~ A A

2y SX|D SX|D

1F;(¢y) = ——1Fi(G,) — ——1F;(fly|r) + ——1Fi(5x|D) (80)
SY|R SY|R SY|R
(Gr — fov|r)SX|D

- = IF;(Sy|r) + IF; (fix|p
v’ (3v|r) (fix|p)
where s is either the IQR or the standard deviation. Finally, for a logarithmic location and

scale adjustment we have t(q,,0) = exp((Ing, — fnv)|r) - Sin(x)|D/Sm(v)|R + Hin(x)D), Such
that

2 2 SIn(X)|D A SIn(X)|D N thfr—ﬂlnYR N
17,(g,) = T(%Im(qr)—A(—)IF@-(uln(Y)R)Jr O (Bxp)  (81)
drSin(Y)|R Sin(Y)|R SIn(Y)|R

In ¢, — fiimy)|R)Sm(x)|D A 7
_( s M) >2 ()] IF; (81m(v)|R) + IFi(fun(x)|D)
(Sm(v)|R)

In case of a shape adjustment, one of the two distributions is replaced by a location (and,
possibly, shape) adjusted variant of the other distribution. The same formulas as above
can be applied after choosing the appropriate transformation function and replacing some
of the components. For example, if the comparison distribution is shape-and-scale adjusted
(and the reference distribution remains unchanged), the relevant transformation functions
are tp(y,0) = y — uxir + px|p and tr(y,0) = y such that t(¢.,0) = ¢ — px;p + px|r-
The main moment condition will be conditional on subsample R instead of D, meaning
that D; and X; in (75) have to be replaced by R; and Y;. This further implies that Wp
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in the first term of (74) has to be replaced by Wx and that the density in the second
term is fy‘ R(cfr) instead of fX| D({}}). If the reference distribution is shape-and-scale adjusted
(and the comparison distribution remains unchanged), the transformation function again is
t(¢r,0) = ¢» — pxp + px|r, but ¢, is now based on the comparison distribution, that is,

G = F §|1D(7"), such that the definition of 1F;(§,) in (76) changes.

3.7.3 Influence function for the relative histogram

For the influence function of a histogram estimate of the relative density, note that for each
bin, the histogram density is equal to the difference between two points on the relative CDF,
divided by the bin width. That is

G(b) - G(a)

g(a,b) = 82
The influence function for g(a,b) can thus be obtained as
R IF; G(b)) — IF; Gla
iri(3(a, 1)) = T I (53)
—a

3.7.4 Influence function for the relative PDF
The relative density estimate for continuous data can be written as

1 ~

D iep

where K.() is a boundary-corrected kernel function as described in section 3.3.1. Note that
each individual 7;, 7 € D, has its own moment condition:

hi = Di(Kc(r,ri, h) — g(r)) (85)
hy = Ry(1{Y; < X;} —r;) for each j € D (86)

1

This leads to

¥ (g(r)) v (ibfﬂLZﬁ?jIFi(f‘j)) (87)

=7
b jeD

| % R; .
=W, (h? T D5 ({Y; < X} - Tj))

jeD

with ﬁij = §;/W and §; = w,; K.(r,7;, h), where K/(r,7;, h) is the derivative of K.(r,7;,h)
with respect to r; at point 7#;. The sum in the second part of the equation looks computa-
tionally burdensome (complexity O(ngnp) once we evaluate the I1F for all observations), but
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it can be simplified. Let
/\Z:Z(EIL{Y,SX]} and A:Z(ijj
jeD jeD

such that

W (. R;
1F(g(r)) = — (R + —(\, — A
O G
Term J; is equivalent to a “reverse” (summation from the top) and non-normalized CDF of
X weighted by d; and can be obtained for all observations in a single run across the data.'”

Location and scale adjustment For the relative PDF based on location (and, possibly,
scale) adjusted data, define 7; = t~'(X;,0) and replace r; by 7; = Fy|r(Z;) in the above
formulas. Function ¢(z,#) is as defined in section 3.7.2; if tp(z,6) is the transformation
function applied to the comparison data and tg(x,#) is the transformation function applied
to the reference data, then

t~H(x,0) = t5' (tp(z,0),0) (88)
The adjusted relative PDF can thus be written as
A 1 A N ~ A N A
g(r) = T w;K.(r,7i,h)  with 7, = Fyp(z;) and 2; = t7'(X;,0) (89)
D “

such that the influence function becomes

) = 1L <B§ 5> z:zjm@) )

b jED
with
hi = Di(K.(r,73,h) = §(r)) (91)
3% = 5J/W with (Sj = ijé(T’, ﬁj, h) (92)
A W N N ~
IF;(r) = W (h/ + AéIFi(fﬂj)) (93)
= Ry(1{Y; < &} — 7) (94)
~i  Wgr,
A7 = WRfHR(CUj) (95)
K
s . ot—1(X;,0
IFi(:fj) = ZTjkIFi(gk) with Tik = % (96)
k=1 k 0=0

OFor the adaptive kernel (see footnote 7) a complication arises because the local bandwidth depends on
preliminary density estimates. This should only be of secondary importance for the variance estimate so
that applying the above equation with h replaced by the relevant local bandwidth (i.e., treating the local
bandwidth as fixed) should produce acceptable results in practice.
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Similar to above, computational complexity can be reduced by rewriting the influence func-
tion as

W R; -
IFZ'Q’I“ = — iL‘f—F - AN —A)+ /{IFié 97
(9(r)) o ( WR( ) ; kIFs ( k)) (97)
with
2 2 1 A S
M=) GI{Yi <&}, A=) 6, k= W > 0 fvir(E)Tin (98)
j€D Jj€D Jj€D

In case of a shape adjustment, the same formulas can be used, but various components have
to be replaced to take account of the switch in subsamples.

3.7.5 Influence function for the discrete relative density

The categorical relative density is defined as
" = [ (99)
with moment conditions
WD = DU(1{X, = k} — pP) and K% = R,(1{Y; = k} — pF) (100)
where pP = Pp(X = k) and pf = Pr(Y = k). The influence function can thus be written as

. 1 . Py .
17:(§") = —=1F:(p))) — 5 1F: (D)) (101)

Py, (pk )

with

IFi(py) = g/v (X =k} =) and 1Fi(py) = - Ri(U{Y: =k} —py)  (102)

Wr
3.7.6 Influence functions for divergence measures

Divergence measures are obtained as aggregates of relative density estimates. Hence, their
influence functions can be written as aggregates of the influence functions of the density
estimates. Assuming the divergence measures are computed form a kernel density estimate
on a regular grid or from a histogram density with K evenly sized bins, as described in
section 3.4.1, we get

(8 = = 36— Die () (103

() = 2 30 (14 (00 (00 (104)
k=

1F;(TVD) 21 sign(gr — 1)1F;(gx) (105)
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where g, is the kernel density estimate at evaluation point 7, or the histogram estimate
for bin k. For divergence measures computed from categorical data (see section 3.4.2), the
influence functions can be written as

1F, (V) = f2 (Z ) iaf) + (1 - (pi)) e, (1) (106)

e, (D) = i (1 +1(p—§)) i 9F) ~ D ) (107)

1F;(TVD) Zs1gn — i) (F:(py) — () (108)

where 1F;(pP) and 17;(p¥) are as defined in section 3.7.5.

3.7.7 Influence functions for polarization indices

The MRP can be written as

MRP = —— Zwl Alf; =05 = 1) with 7 = Fyjp(;) and &; = t71(X,,6)  (109)
ZED

where t7!(x,0) is as defined in (88). We see that the MRP has the same structure as an
estimate of the relative PDF based on location (and, possibly, scale) adjusted data. We can
thus obtain the influence function using (97) with hY replaced by

W™ = D;((4]7; — 0.5| — 1) — MRP) (110)

and ¢; set to R

Likewise, the influence function for the LRP can be obtained by using
h;"" = D;((8|r; — 0.5|1{r; < .5} — 1) — LRP) (112)

and R R
§; = w; 8sign(F; — 0.5)1{r; < .5} (113)

Note that 1{7; < .5} always selects half of the comparison data because the data has been
median adjusted. Assuming it fixed should not introduce significant bias into the variance
estimates. The influence function for the URP can be derived analogously.
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3.7.8 Influence functions for descriptive statistics

Like the MRP, summary statistics of the relative ranks such as the mean or the standard
deviation have a structure that is very similar to the relative PDF. For the mean [i of the
(possibly adjusted) relative ranks, the influence function can be obtained by replacing AY in
equation (97) by
W = Dyl — 1) (114)
and setting 9d; to
d; = w; (115)

Likewise, for the variance 6% of the relative ranks we can use
W =Di((Fi—p)’ —0®)  and &= 2w;(; — ) (116)

The influence function for the standard deviation & is given as:
17;(6) = —17;(6?) (117)

For quantile 4(p) of the relative ranks it is easier to follow a different approach. Note that
the quantile can be written as

a(p) = G7'(p) = Fyir(Fxp(p)) (118)

That is, a quantile of the relative ranks of F'x|p with respect to Fy g is equivalent to a point
on the relative CDF of Fy g with respect to Fiy|p. We can thus obtain the influence function
as in section 3.7.2, but with swapped distributions. Finally, the influence function for the
interquartile range is given as:

IF; (IQR) = 1F;(3(0.75)) — 1F;((0.25)) (119)

3.7.9 Influence functions in case of covariate balancing

If covariates are balanced using the reweighting approach, the influence functions need to
be adjusted to take account of the fact that the balancing weights have been estimated. I
will discuss two reweighting methods below: 1PW based on logistic regression and entropy
balancing. Deriving the influence functions is relatively easy in these cases as the weights are
obtained from a parametric model. Non-parametric reweighting methods such as matching
are more challenging; I leave it to future research to work out the details for such methods.

IPW and entropy balancing both estimate a vector of parameters [ from which the bal-
ancing weights are computed. To adjust the influence functions we may apply equation (61)
to each relative distribution parameter 6 that depends on the balancing weights. That is,
for each 6, obtain Ag and then include A%IFz(ﬁA) as an additional component in the influence

function, where 1F;(/3) is the influence function of .
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To keep notation simple, assume that D and R are distinct and exhaustive. Furthermore,
let T' be an indicator for the “treatment” group. If the reference group is reweighted, then
T = D; if the comparison group is reweighted, then T" = R. In case of logistic regression
1PW the balancing weights are obtained as

ﬁ. (1_Ti) eZiB
L —p; 1+ e%if

where Z; is a vector of covariates (typically including a constant) and B is a coefficient vector
estimated by logistic regression (c is a scaling factor ensuring that the sum of weights remains
constant; it is irrelevant for the derivation of the influence functions). As discussed in Jann
(2020), the logistic regression moment conditions for 5 can be written as

h = Z(T;, - p:) (121)
such that

1
“AS

N
. . 1
1IF(B3) = ZI(T; — p;) with AP = T § w; Zipi(1 — ;) Z; (122)
=1

For entropy balancing, the weights can be written as
.\ (1-T3)
@, = w; <ez"6+c> (123)

where Z; is a vector of covariates without a constant. The estimation of [ involves a vector
of auxiliary parameters p, the means of Z in the treatment group. Based on Jann (2020)
the entropy balancing moment conditions can be written as

h = (1= T,)e%%4e(Z] — p)
hi =T(Z; — )

such that . .
3= (0 APy 124
() = —; (A + Al (124
with
) 1N 1 &
AP = — Rz o — w; (1 —THZ! — 0)Z; 12
W;wzhz v W;wz( Z)( i H) 7 ( 5)
Since
N
N 1 —Wr
A = — - zl-rz:
W; v W
N N 774
. 1 e 1 ~ —Wir
Al=gp 2w =T = g 3 0 (1= T) = 5



the influence function simplifies to

A L
- (AW = _”-M 126
17 () X ( C T ) (126)

We can now start integrating IF(B) into the various relative distribution influence functions
discussed above. The required adjustments will always have the same form. Let hY be
the moment condition for relative distribution parameter 6 in the non-reweighted case. If
reweighting is applied, the moment condition becomes

h hg (127)

(2

7

For both 1Pw and entropy balancing the vector of partial derivatives of he by [ can be
written as -
oh? ~ W;
L=(1-T)h!Z; = —(1 - T)h! Z; 128
55 = (=T Z = 21 = T (128)
The respective adjustment to be made to the relative distribution influence function is thus
given by addend

N

~ ~ ~ 1 ~

A%r;(B)  with A% = T > @1 - Tz, (129)
=1

For parameters # that do not depend on the reweighting, that is, for parameters that are
computed based on observations for which 7; = 1, the addend is zero and drops out of the
equation.

Consider the influence function for the relative CDF in a situation in which the comparison
group is subject to reweighting (that is, 7' = R). In this case

h{ = —h$ = SLD,(1{X: < ¢,} - G(r)) (130)
he = Ri(1{Y; < ¢,} — 1) (131)

such that

17, (G(r)) = WKD (

where fX‘ 5(qr) is the density of ¢, in the reweighted comparison group. Likewise, if the

gihiGJngIFi(ﬁ)) + fx5(@)1w(Gr) (132)

reference group is reweighted (7' = D) we have
hi = Di(1{X; < ¢,} — G(r)) (133)

)

B = =thi = ~R,(1{Y, < ¢} — ) (134)
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such that

tR(G) = b+ Fan(d)F () (135)
ith
" 1F;(G,) = S <@B§ + A%IFi(B>> (136)
_WRfy@(ér) Wi

If reweighting is combined with location and scale adjustment, similar addends have to be
integrated into the influence functions of the location and scale measures computed from the
reweighted group.

The adjustments for the influence function of the relative PDF and related statistics
such as the MRP or the mean of the relative ranks are straightforward if the comparison
distribution is reweighted (similar to the adjustments for the relative ¢CDF above). Things
are somewhat more involved if reweighting is applied to the reference distribution. In general,
the moment conditions of such a statistic # can be written as

h{ = Di(v(r:) — 6) (137)
B = %h? - %Ri(]l{Yi < X;}—r;) foreachjeD (138)

where v(r;) is a function depending on the definition of the statistic. The influence function
can then be written as

17;(0) = WK <h§’ +) B‘jﬁi@)) (139)

b jeD
with 5 5
ﬁfj = Wj’ d; = w, I(;E:]) for each j € D (140)
and o raan
(A w; 7Ty ATj 3
IF;(7) = W <Eh’ + A4 IFi(ﬂ)> (141)
with
N A 1oL
i=1 i=1

The problem with these expressions is that they are computationally burdensome: for each
1 € R we have to evaluate a sum over D, which itself contains another sum over R. The
first part of the second component in (139) can be written as

5j W wiAT, Rl @Z A Rz ﬁ}/z
———h’ = — oY, < X} — 07 | = — (N —A 143
WWR w; 7 WRwi (JEZD J { — ]} Z ]r]> WR wz( ) ( )

jED

jJED
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where \; and A are as defined above and allow efficient computation. The second part can
be rewritten as

Z I(/SVIII/I// AG1E,(B) = —IF Z ;A% (144)
R

Jj€D Jj€D
with

Z(SjA 25—2”% (H{Y; < X} —75)Z;

j€D Jj€D

_ %ZwR (Z 5,(1{Y; < X} — @)) Z

Jj€D
1 N
= S @R\ — N2 (145)
=1

Expression (145) can be computed upfront using a single run across the data once \; is
available.

4 The reldist command

Stata command reldist implements the methods discussed above. The moremata (Jann,
2005) package is required. For installation, type

. ssc install reldist, replace
. ssc install moremata, replace

or

. net from https://raw.githubusercontent.com/benjann/reldist/master/
. net install reldist, replace

. net from https://raw.githubusercontent.com/benjann/moremata/master/
. net install moremata, replace

The versions at GitHub might be updated more frequently than the versions at the SSC
Archive.

4.1 Syntax
Estimation Command reldist has two syntaxes. Use Syntax 1 if you want to analyze

the relative distribution of a single variable between two groups or subpopulations. Syntax
2 is for comparing two variables within a single sample.

Syntax 1 (two-sample relative distribution):
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reldist subcmd varname [zf} [m} [weight], by (groupvar) [ options ]

where groupvar identifies two groups to be compared.

Syntax 2 (paired relative distribution):

reldist subcmd varname refvar [zf} [m} [wez‘ght} [, options }

where varname and refvar specify two variables to be compared.

In both cases, subcmd can be

pdf estimate the density function of the relative distribution, possibly including
a histogram of the relative density

histogram estimate a histogram of the relative density

cdf estimate the relative distribution function (equivalent to a so-called
probability-probability plot)

divergence estimate the Kullback-Leibler divergence (entropy), the Chi-squared diver-
gence, or the dissimilarity index (total variation distance) of the relative
distribution

mrp estimate the median relative polarization index (MRP), as well as its de-
composition into a lower and and upper polarization index (LRP and URP)

summarize  estimate summary statistics such as the mean or the median of the relative
ranks and, optionally, store the relative ranks in a new variable

and fweights, pweights, and iweights are allowed; see [u] 11.1.6 weight.
Creating a graph after estimation After applying reldist pdf, reldist hist, or

reldist cdf, command reldist graph can be used to draw a graph of the results. The
syntax is

reldist graph [, graph_options }

An alternative is generate the graph directly using option graph() with reldist pdf,
reldist hist, or reldist cdf.

Storing influence functions after estimation Command predict can be applied after
reldist to generate the influence functions of the estimated parameters (one variable per
parameter). The syntax is:

predict {stub* | newvarlist} [zf] [m] [, scores density,options}
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where stub specifies a common prefix for the names of the generated variables or, alterna-
tively, newvarlist specifies an explicit list of variable names to be used. Option scores is
allowed for compatibility reasons; it does not do anything. density_options can be used to
modify how auxiliary densities are estimated during the computation of the influence func-
tions; see page 41 for a description of available density_options (option boundary () will have
no effect, as unbounded domain is assumed for auxiliary densities).

Command total (see [r] total) can be applied to the stored influence functions to repli-
cate the standard errors reported by reldist.

4.2 Options for reldist

Main options

by (groupvar) specifies a binary variable that identifies the two groups to be compared. By
default, the group with the lower value will be used as the reference group. by() is
required in Syntax 1 and not allowed in Syntax 2.

swap reverses the order of the groups identified by by (). swap is only allowed in Syntax 1.

pooled uses the pooled distribution across both groups as reference distribution. pooled is
only allowed in Syntax 1.

balance(spec) balances covariate distributions between the comparison group and the ref-
erence group using reweighting. balance() is only allowed in Syntax 1. The syntax of
spec is

[method:} varlist [, optz'ons]

where method is either ipw for inverse probability weighting based on logistic regres-
sion (the default) or eb for entropy balancing (using mm_ebal() from moremata), varlist
specifies the list of covariates to be balanced, and options are as follows:

reference reweights the reference group. The default is to reweight the comparison
group. Option pooled is not allowed with balance(, reference).

contrast compares the balanced distribution to the unbalanced distribution. Use this
option to see how the balancing changes the distribution. If contrast is specified
together with reference, the balanced reference distribution will be used as the
comparison distribution. If contrast is specified without reference, the balanced
comparison distribution will be used as the reference distribution.

logit_options are options to be passed through to [r] logit. logit_options are only allowed
if method is ipw.

btolerance(#), with # > 0, specifies the tolerance for the entropy balancing algorithm.
The default is btolerance(le-5). A warning message is displayed if a balancing
solution is not within the specified tolerance. btolerance () is only allowed if method
is eb.
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noisily displays the output of the balancing procedure.

generate (newvar) stores the balancing weights in variable newvar. This is useful if you
want to check whether covariates have been successfully balanced.

adjust (spec) applies location, scale, and shape adjustments to the comparison and reference
distributions. adjust() is not allowed with reldist mrp. The syntax of spec is

adjust [, options}

where adjust specifies the desired adjustments. adjust may contain any combination of
at most two of the following keywords:

location adjust location
scale adjust scale
shape adjust shape

By default, the specified adjustments are applied to the comparison distribution. How-
ever, a colon may be included in adjust to distinguish between distributions: Keywords
before the colon affect the comparison distribution; keywords after the colon affect the ref-
erence distribution. For example, type adjust(location scale) to adjust the location
and scale of the comparison distribution. Likewise, you could type adjust(:location
scale) to adjust the reference distribution. Furthermore, adjust(location : shape)
would adjust the location of the comparison distribution and the shape of the reference
distribution. options are as follows:

mean uses the mean for the location adjustment. The default is to use the median.

sd uses the standard deviation for the scale adjustment. The default is to use the IQR
(interquartile range).

multiplicative uses a multiplicative adjustment instead of an additive adjustment.
adjust may only contain one keyword in this case, either location or shape. Error
will be returned if the location ratio between the comparison distribution and the
reference distribution is not strictly positive.

logarithmic performs the adjustments on logarithmically transformed data. Error will
be returned if the data is not strictly positive.

ranks_options specify the details about the computation of relative ranks. These options are
irrelevant for reldist histogram, reldist cdf, reldist divergence unless option
pdf is specified, and reldist pdf if discrete or categorical is specified. The options
are as follows:

nobreak changes how the relative ranks are computed in case of ties. By default, reldist
breaks ties randomly for comparison values that have ties in the reference distribution
(in ascending order of weights, if weights have been specified). This leads to improved
results if there is heaping in the data. Specify nobreak to omit breaking ties.

nomid changes how the relative ranks are computed in case of ties. By default, reldist
uses midpoints of the steps in the cumulative distribution for comparison values that
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have ties in the reference distribution. This ensures that the average relative rank is
equal to 0.5 if the comparison and reference distributions are identical. Specify nomid
to assign relative ranks based on full steps in the CDF.

descending sorts tied observations in descending order of weights. The default is to use
ascending sort order. Option descending has no effect if nobreak is specified or if
there are no weights.

nostable breaks ties randomly (within unique values of weights). The default is to
break the ties in the sort order of the data (within unique values of weights). Option
nostable has no effect on the results reported by reldist. It may, however, affect
the ranks stored by option generate() or the influence functions stored by predict
(unless option nobreak is specified).

replace allows replacing existing variables. This is relevant for generate() with reldist
summarize and generate() in balance().

Additional options for reldist pdf

n(#) sets the number of evaluation points for which the PDF is to be computed. A regular
grid of # evaluation points between 0 and 1 will be used. The default is n(101) (unless
option discrete or categorical is specified, in which case n() has no default). Only
one of n(), at(), and atx() is allowed.

at ({numlist | matname}) specifies a custom grid of evaluation points between 0 and 1, either
by providing a numlist (see [v] 11.1.8 numlist) or the name of a matrix containing the
values (the values will be taken from the first row or the first column of the matrix,
depending on which is larger). Only one of n(), at (), and atx() is allowed.

atx[({comparison | reference | numlist | matname})], specified without argument, causes
the relative PDF to be evaluated at each distinct outcome value that exists in the data
(possibly after applying adjust()), instead of using a regular evaluation grid on the
probability scale. All outcome values across both distributions will be considered. To
restrict the evaluation points to outcome values from the comparison distribution or from
the reference distribution, specify atx(comparison) or atx(reference), respectively.
Alternatively, specify a grid of custom values, either by providing a numlist (see [u] 11.1.8
numlist) or the name of a matrix containing the values (the values will be taken from
the first row or the first column of the matrix, depending on which is larger). Only one
of n(), at (), and atx() is allowed.

discrete causes the data to be treated as discrete. The relative PDF will then be evaluated
at each level of the data as the ratio of the level’s frequency between the comparison
distribution and the reference distribution instead of using kernel density estimation,
and the result will be displayed as a step function. If option n() or at() is specified,
the step function will be evaluated at the points of the corresponding probability grid
instead of returning the relative density for each outcome level. Options nobreak, nomid,
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descending, and density_options have no effect if discrete is specified. Furthermore,
options histogram() and adjust() are not allowed.

categorical like discrete, but additionally requests that the data only contains positive
integers. Factor-variable notation will be used to label the coefficient in the output table.

histogram[(#)]| computes a histogram in addition to the PDF, where # is the number of
bins. If # is omitted, 10 bins will be used.

alt uses an alternative estimation method for the histogram. See the histogram options
below.

density_options set the details of kernel density estimation. The options are as follows:

bwidth({# | method |, nord]|}) determines the bandwidth of the kernel, the halfwidth
of the estimation window around each evaluation point. Use bwidth(#), # > 0,
to set the bandwidth to a specific value. Alternatively, type bwidth(method) to
choose an automatic bandwidth selection method. Choices are silverman (optimal
of Silverman), normalscale (normal scale rule), oversmoothed (oversmoothed rule),
sjpi (Sheather-Jones solve-the-equation plug-in), dpi[(#)] (Sheather-Jones direct
plug-in estimate, where # specifies the number of stages of functional estimation;
default is 2), or isj (diffusion estimator bandwidth). The default is bw(sjpi). See
Jann (2007) for information on silverman, normalscale, oversmoothed, sjpi, and
dpi. For isj, see Botev et al. (2010).

By default, if estimating the density of the relative data, all bandwidth selectors
include a correction for relative data based on Cwik and Mielniczuk (1993). Specify
suboption nord to omit the correction.

bwadjust (#) multiplies the bandwidth by #, where # > 0. Default is bwadjust(1).

boundary (method) sets the type of boundary correction method. Choices are renorm
(renormalization method), reflect (reflection method), or lc (linear combination
technique). See Jann (2007) for details on boundary correction methods.

adaptive(#) specifies the number of iterations used by the adaptive kernel density
estimator. The default is adaptive(0) (non-adaptive density estimator).

kernel (kernel) specifies the kernel function to be used. kernel may be epanechnikov
(Epanechnikov kernel function), epan2 (alternative Epanechnikov kernel function),
biweight (biweight kernel function), triweight (triweight kernel function), cosine
(cosine trace), gaussian (Gaussian kernel function), parzen (Parzen kernel function),
rectangle (rectangle kernel function) or triangle (triangle kernel function). The
default is kernel (gaussian).

napprox(#) specifies the grid size used by the binned approximation density estimator
(and by the data-driven bandwidth selectors). The default is napprox(512).
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exact causes the exact kernel density estimator to be used instead of the binned approx-
imation estimator. The exact estimator can be slow in large datasets, if the density
is to be evaluated at many points.

Eaph[( graph_options)| displays the results in a graph. The coefficients table will be sup-
pressed in this case (unless option table is specified). Alternatively, use command
reldist graph to display the graph after estimation.

ogrid(#) sets the size of the approximation grid for outcome labels. The default is
ogrid(401). The grid is stored in e (ogrid) and will be used by graph option olabel ()
to determine the positions of outcome labels. Type noogrid to omit the computation
of the grid (no outcome labels will then be available for the graph). Option ogrid() is
only allowed if the relative density is computed with respect an evaluation grid on the
probability scale. If the relative density is evaluated with respect to specific outcome val-
ues (e.g. if atx() is specified), the outcome labels will be obtained from the information
stored in e(at).

Additional options for reldist histogram

n(#) specifies the number of histogram bars. The reference distribution will be divided into
# bins of equal width. That is, each bin will cover 1/#th of the reference distribution.
The default is n(10).

alt uses an alternative estimation method. The default method obtains the relative his-
togram by computing the empirical CDF of both distributions at all values that exist in
the data (across both distributions). The alternative method obtains the relative his-
togram based on the empirical CDF of the relative ranks. In both cases, if necessary,
linear interpolation will be used to map the relative CDF to the evaluation points.

discrete causes the data to be treated as discrete. The relative density will then be eval-
uated at each level of the data as the ratio of the level’s frequency between the two
distributions and the width of bars will be proportional to the reference distribution.
Option alt has no effect and options n() and adjust() are not allowed if discrete is
specified.

categorical like discrete, but additionally requests that the data only contains positive
integers. Factor-variable notation will be used to label the coefficient in the output table.

gaph[( graph_options)| displays the results in a graph. The coefficients table will be sup-
pressed in this case (unless option table is specified). Alternatively, use command
reldist graph to display the graph after estimation.

ogrid(#) sets the size of the approximation grid for outcome labels. The default is
ogrid(401). The grid is stored in e (ogrid) and will be used by graph option olabel ()
to determine the positions of outcome labels. Type noogrid to omit the computation of
the grid (no outcome labels will then be available for the graph). ogrid() is not allowed
together with discrete or categorical.
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Additional options for reldist cdf

n(#) sets the number of evaluation points for which the CDF is to be computed. A regular
grid of # evaluation points between 0 and 1 will be used. The default is n(101) (unless
option discrete or categorical is specified, in which case n() has no default). Only
one of n(), at(), and atx() is allowed.

at ({numlist | matname}) specifies a custom grid of evaluation points between 0 and 1, either
by providing a numlist (see [v] 11.1.8 numlist) or the name of a matrix containing the
values (the values will be taken from the first row or the first column of the matrix,
depending on which is larger). Only one of n(), at (), and atx() is allowed.

atx[({comparison | reference | numlist | matname})], specified without argument, causes
the relative CDF to be evaluated at each distinct outcome value that exists in the data
(possibly after applying adjust()), instead of using a regular evaluation grid on the
probability scale. All outcome values across both distributions will be considered. To
restrict the evaluation points to outcome values from the comparison distribution or from
the reference distribution, specify atx(comparison) or atx(reference), respectively.
Alternatively, specify a grid of custom values, either by providing a numlist (see [u] 11.1.8
numlist) or the name of a matrix containing the values (the values will be taken from
the first row or the first column of the matrix, depending on which is larger). Only one
of n(), at (), and atx() is allowed.

alt uses an alternative estimation method. The default method obtains the relative CDF
by computing the empirical CDF of both distributions at all values that exist in the data
(across both distributions). The alternative method obtains the relative ¢DF based on
the empirical CDF of the relative ranks. In both cases, if necessary, linear interpolation
will be used to map the relative CDF to the evaluation points.

discrete causes the data to be treated as discrete. The relative CDF will then be evaluated
at each observed outcome value instead of using an evaluation grid on the probability
scale. Option discrete leads to the same result as specifying atx. Option adjust() is
not allowed if discrete is specified.

categorical like discrete, but additionally requests that the data only contains positive
integers. Factor-variable notation will be used to label the coefficient in the output table.

graph[(graph_options)| displays the results in a graph. The coefficients table will be sup-
pressed in this case (unless option table is specified). Alternatively, use command
reldist graph to display the graph after estimation.

ogrid(#) sets the size of the approximation grid for outcome labels. The default is
ogrid(401). The grid is stored in e(ogrid) and will be used by graph option olabel ()
to determine the positions of outcome labels. Type noogrid to omit the computation
of the grid (no outcome labels will then be available for the graph). Option ogrid()
is only allowed if the relative CDF is computed with respect an evaluation grid on the
probability scale. If the relative CDF is evaluated with respect to specific outcome values
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(e.g. if atx() is specified), the outcome labels will be obtained from the information
stored in e(at).

Additional options for reldist divergence
over (overvar) computes results for each subpopulation defined by the values of overvar.

entropy or k1 computes the Kullback-Leibler divergence (entropy) of the relative distribu-
tion. This is the default.

chi2 or chisquared computes the Chi-squared divergence of the relative distribution.

tvd or dissimilarity computes the dissimilarity index (total variation distance) of the
relative distribution.

all computes all supported divergence measures. all is equivalent to entropy chi2 tvd.

n(#) specifies the number of histogram bars or, if option pdf is specified, the number of
kernel density evaluation points used to estimate the relative distribution. The default
is n(20) or, if option pdf is specified, n(100).

alt uses an alternative estimation method for the histogram. See the histogram options
above.

pdf computes the divergence measures based on a kernel density estimate instead of a his-
togram estimate.

density_options set the details of the the kernel density estimation. This is only relevant if
option pdf is specified. See page 41 for available options.

discrete causes the data to be treated as discrete. The relative density will then be evalu-
ated at each level of the data as the ratio of the level’s frequency between the two distri-
butions and the width of bars will be proportional to the reference distribution. Option
alt has no effect and options n(), pdf, and adjust() are not allowed if discrete is
specified.

categorical like discrete, but additionally requests that the data only contains positive
integers.

compare|(options) | estimates divergence measures for two models of the relative distribution,
a main model and an alternative model, and also reports the difference between the
two variants. options are balance() and adjust() as described above. balance()
and adjust () specified as main options are applied to the main model; balance() and
adjust () specified within compare () are applied to the alternative model.

Additional options for reldist mrp
over (overvar) computes results for each subpopulation defined by the values of overvar.

multiplicative applies multiplicative location adjustment. The default is to use additive
adjustment. Only one of logarithmic and multiplicative is allowed.
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logarithmic causes the location (and, optionally, scale) adjustment to be performed on the
logarithmic scale. Only one of logarithmic and multiplicative is allowed.

scale[(sd)] adjusts the scale of the data before computing the polarization indices. If scale
is specified without argument, the IQR (interquartile range) is used; that is, the scale of
the data will be adjusted such that the IQR is the same in both distributions. Specify
scale(sd) to use the standard deviation instead of the IQR. scale() is not allowed if

multiplicative is specified.

Additional options for reldist summarize
over (overvar) computes results for each subpopulation defined by the values of overvar.

statistics(statnames) specifies a space separated list of summary statistics to be reported.
The default is statistics(mean). The following summary statistics are supported:

mean mean
variance variance

sd standard deviation

median median; equivalent to p50

p# #th percentile, where # is an integer between 1 and 99
iqr interquartile range (p75 — p25)

generate (newvar) stores the relative ranks (based on adjusted data) in variable newvar.
Depending on adjust (), different observations may be filled in.

Variance estimation options

level (#) specifies the confidence level, as a percentage, for confidence intervals. The default
is level(95) or as set by set level (see [r] level).

vce (vcetype) determines how standard errors and confidence intervals are computed. wvcetype
may be:

analytic [, densz’ty,optz'ons]

cluster clustvar [, densz’ty,options]

SVYy [svy,vcetype} [, svy_options density,optz'ons]
bootstrap [, bootstmp,options]

jackknife [, jackk:m‘fe,options}

The default is vce(analytic), which computes the standard errors based on influence
functions. Likewise, vce(cluster clustvar) computes influence-function based standard
errors allowing for intragroup correlation, where clustvar specifies to which group each
observation belongs. In both cases, density_options specify how auxiliary densities are
estimated during the computation of the influence functions (see page 41 for details;
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option boundary() will have no effect, as unbounded support is assumed for auxiliary
densities).

vce(svy) computes standard errors taking the survey design as set by [svy] svyset into
account. The syntax is equivalent the syntax of the svy prefix command (see [svy] svy);
that is, vce(svy) is reldist’s way to support the svy prefix. If svy vcetype is set
to linearized, the standard errors are estimated based on influence functions; use
density_options to specify the details of auxiliary density estimation in this case. For
svy_vcetype other than linearized, density_options are not allowed.

vce(bootstrap) and vce(jackknife) compute standard errors using [r] bootstrap or
[r] jackknife, respectively; see [r] vce_option.

If a replication technique is used for standard error estimation (i.e. vce(bootstrap),
vce(jackknife), vce(svy) with svy_vcetype other than linearized), the bandwidth
used by reldist pdf will be held fixed across replications (that is, if relevant, the band-
width will be determined upfront and then held constant). If you want to repeat band-
width search in each replication, use bootstrap, jackknife, or svy as a prefix command.

Simulation results suggest that the influence-function based standard errors work well in
most situations. They may be severely biased, however, if there is heaping in the data.
Replication-based techniques may yield more valid results in this case.

nose prevents reldist from computing standard errors. This saves computer time.

Reporting options

citransform reports transformed confidence intervals depending on the type of the re-
ported statistic (log transform for PDF and histogram density, logit transform for ¢DF
and descriptive statistics, inverse hyperbolic tangent transform for polarization indices).
citransform only has an effect in Stata 15 or newer.

noheader suppress the output header.

notable suppresses the output table containing the estimated coefficients. table enforces
displaying the table if option graph() has been specified.

display_options are standard reporting options such as cformat() or coeflegend; see the
reporting options in [r] Estimation options.

4.3 Options for reldist graph

Main graph options

refline(line_options) specifies options to affect the rendition of the parity line. See help
[c] line_options.

norefline suppresses the parity line.
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Additional options after reldist pdf
cline_options affect the rendition of the PDF line. See help [c] cline_options.

histopts (options) specifies options to affect the rendition of the histogram bars (if a his-
togram was computed) and the corresponding confidence spikes. options are as follows:

barlook_options affect the rendition of the histogram bars. See help [c] help bar-
look_options.

ciopts (rcap-options) specifies options to affect the rendition of the confidence spikes of
the histogram bars. See help [c| rcap_options.

noci omits the confidence spikes of the histogram bars.

nohistogram omits the histogram bars.

Additional options after reldist histogram

barlook_options affect the rendition of the histogram bars. See help [c] help bar-
look_options.

Additional options after reldist cdf

noorigin prevents adding a (0,0) coordinate to the plotted line. If the first X coordinate
of the CDF is larger than zero and the range of the CDF has not been restricted by at ()
or atx(), reldist graph will automatically add a (0,0) coordinate to the plot. Type
noorigin to override this behavior.

cline_options affect the rendition of the CDF line. See help [c] cline_options.

Confidence intervals
level (#) specifies the confidence level, as a percentage, for confidence intervals.

citransform plots transformed confidence intervals depending on the type of the reported
statistic (log transform for PDF and histogram density, logit transform for CDF).

ci(name) obtains the confidence intervals from e (name) instead of computing them from
e(V). e(name) must contain two rows and the same number of columns as e(b). For
example, after bootstrap estimation, you could use ci(ci_percentile) to plot percentile
confidence intervals. ci() and level() are not both allowed.

ciopts(options) specifies options to affect the rendition of the confidence intervals. See
help [c] area_options or, after, reldist histogram help [c| rcap_options. Use op-
tion recast () to change the plot type used for confidence intervals. For example, type
ciopts(recast(rline)) to use two lines instead of an area.

noci omits the confidence intervals.
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Outcome labels

[ylolabel[(spec)| adds outcome labels on a secondary axis. olabel() adds outcome la-
bels for the reference distribution; yolabel () adds outcome labels for the comparison
distribution (only allowed after reldist cdf). The syntax of spec is

[## | numlist] [, {noprune|prune(mindist) } at format(%fmt) suboptions |

## requests that (approximately) # outcome labels be added at (approximately) evenly-
spaced positions; the default is #6. Alternatively, specify numlist to generate labels
for given outcome values.

prune (mindist) requests that an outcome label (but not its tick) is to be omitted if its
distance to the preceding label is less than mindist (an exception are labels that have
the same position; in such a case the largest label will be printed). The default is
prune (0.1); type prune (0) or noprune to print labels at all positions. The difference
between prune (0) and noprune is that prune (0) will only print one label per position
whereas noprune prints all labels, including labels that have the same position.

at causes numlist to interpreted as a list of probabilities for which outcome labels are to
be determined. Labels obtained this way will not be pruned.

format (%fmt) specifies the display format for the outcome labels.  Default is
format (%6.0g). See [p] format for available formats.

suboptions are as described in [c| axis_label_options.

Option [y]olabel() may be repeated. Use suboptions add and custom to generate mul-
tiple sets of labels with different rendering; see [c] axis_label_options.

[ylotick(spec) adds outcome ticks on a secondary axis. otick() adds outcome ticks for
the reference distribution; yotick() adds outcome ticks for the comparison distribution
(only allowed after reldist cdf). The syntax of spec is

numlist [, suboptions}

where numlist specifies the outcome values for which ticks be generated and suboptions
are as described in [¢] axis_label_options. Option [ylotick() may be repeated. Use
suboptions add and custom to generate multiple sets of ticks with different rendering;
see [a] axis_label_options.

[yloline (spec) draws added lines at the positions of the specified outcome values on a
secondary axis. oline() adds outcome lines for the reference distribution; yoline()
adds outcome lines for the comparison distribution (only allowed after reldist cdf).
The syntax of spec is

numlist [, suboptions}

where numlist specifies the outcome values for which added lines be generated and subop-
tions are as described in [c] added_line_options. Option [yJoline() may be repeated
to draw multiple sets of lines with different rendering.
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[y]otitle (tinfo) provides a title for the outcome scale axis; see [c] title_options. otitle ()
is for the reference distribution; yotitle() is for the comparison distribution (only al-
lowed after reldist cdf).

o Technical note

The positions of the outcome labels, ticks, or lines are computed from information stored
by reldist in e(), either from the quantiles stored in e (ogrid) or from the values stored in
e(at), depending on context. There is an undocumented command called reldist olabel
that can be used to compute the positions after the relative distribution has been estimated.
Use this command, for example, if you want to draw a custom graph from the stored results
without applying reldist graph. The syntax is as follows:

reldist olabel [## | numlist] [, {noprune|prune(mmdist)} at format (%fmt)

tick(numlist) line(numlist) y }

where ## or numlist specifies the (number of)) values for which labels be generated, prune ()
determines the pruning (see above), at changes the meaning of the main numlist, format ()
specifies the display format for the labels, tick () specifies values for which ticks be generated,
line() specifies values for which added lines be generated, and y request outcome labels for
the Y axis of the relative CDF (only allowed after reldist cdf). The command returns the
following macros in r():

r(label) label specification for use in an xlabel() option
r(label x) expanded and sorted numlist

r(tick) tick specification for use in an xtick() option
r(tick x) expanded and sorted numlist from tick ()
r(line) line specification for use in an xline() option

r(line_x) expanded and sorted numlist from line ()

General graph options

addplot (plot) provides a way to add other plots to the generated graph. See help [c] ad-
dplot_option.

twoway_options are any options other than by () documented in help [¢] twoway_options.

4.4 Saved results

reldist stores its results in e (), similar to official Stata’s estimation commands. See the
online documentation of reldist for details.
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5 Examples

5.1 Wage mobility in two eras

I illustrate some of the features of reldist by replicating an analysis of permanent wage
growth from Handcock and Morris (1999, chapter8). The data covers wages of white males
from two cohorts of the National Longitudinal Survey, an “original” cohort started in 1966
and a “recent” cohort started in 1979. The variable of interest is the estimated growth in
permanent wages between age 16 and age 34 (see Appendix C in Handcock and Morris,
1999). The data further contains information on the achieved educational level and there is
a variable providing sampling weights.!*

. use nls

(NSL data from Handcock and Morris (1999))

. describe

Contains data from nls.dta

obs: 3,937 NSL data from Handcock and

Morris (1999)

vars: 4 11 Sep 2020 15:46

(_dta has notes)
storage display value

variable name  type format label variable label

cohort byte %15.0g cohort Cohort

chpermwage double %9.0g Estimated permanent log-wage gain
over 18-year period (age 16 to
34)

endeduc byte %9.0g Number of years of schooling
achieved in last wave

wgt double %9.0g Sampling weight

Sorted by:
. tabstat chpermwage [aw=wgt], by(cohort) stat(count mean sd med iqr) nototal

Summary for variables: chpermwage
by categories of: cohort (Cohort)

cohort N mean sd p50 iqr
original (1966) 1834 1.085075 .4831473 1.063587 .5812791
recent (1979) 2103 .8782476 .6182544 .8535296 .8001999

Wage growth has been somewhat larger in the original cohort than in the recent cohort. The
outcome variable is defined as the difference in (constant dollar) log hourly wages, so a value
of 1.085 for the original cohort corresponds to a real wage growth of exp(1.085) — 1) x 100 =
196 percent. For the recent cohort the average is only 0.878 (141 percent). We can also

1 The data has been obtained from http://www.stat.ucla.edu/~handcock/RelDist/Data/R/RDBnls.
RData.
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see that inequality in wage growth has been more pronounced in the recent cohort than in
the original cohort, as the standard deviation of log wage gains is larger. Looking at the
median and interquartile range (IQR) instead of the mean and standard deviation leads to
qualitatively similar findings.

The relative CDF The relative CDF of log wage gains between the recent cohort and the
original cohort can be obtained as follows:

. reldist cdf chpermwage [pw = wgt], by(cohort) notable

Cumulative relative distribution Number of obs = 3,937
F1: cohort = recent (1979) Comparison obs = 2,103
FO: cohort = original (1966) Reference obs = 1,834

reldist graph, ciopts(fcolor(%50) lcolor(%0)) ///
xlabel(0(.1)1, grid) xtitle(Proportion of original cohort) ///
ylabel(0(.1)1, grid angle(0)) ytitle(Proportion of recent cohort) ///
olabel(-.5(.5)3) olabel(.2, at add custom tstyle(minor)) ///
yolabel(-.5(.5)3, angle(0))
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The horizontal axis of the graph corresponds to cumulative proportions of the original cohort,
the vertical axis to cumulative proportions of the recent cohort, both ordered by the size
of wage growth. Each point on the curve maps quantiles of the two distributions. For
example, the value of the 20% quantile in the original cohort is equal to the 40% quantile in
the recent cohort since the curve crosses point (0.2,0.4). The 20% quantile in the original
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cohort corresponds to a log wage growth of 0.7118, that is, a wage growth of about 104
percent. In the original cohort, 20% experienced a wage growth of at most 104 percent; in
the recent cohort, this proportion increased to 40%. That is, relative to the original cohort,
wage growth of 104 percent or less is overrepresented by factor 2 in the recent cohort.

a Technical note

Option notable has been applied to reldist cdf to suppress the output table containing
the CDF estimate. By default, the CDF is evaluated at 101 points, so that the table would
fill a whole page. Here is an example of how the table looks like using a reduced set of
evaluation points; option at(.1(.1).9) requests 9 evaluation points located at original
cohort cumulative proportions 0.1, 0.2, ..., 0.9:

. reldist cdf chpermwage [pw = wgt], by(cohort) at(.1(.1).9)

Cumulative relative distribution Number of obs = 3,937
F1: cohort = recent (1979) Comparison obs = 2,103
FO: cohort = original (1966) Reference obs = 1,834
chpermwage Coef. Std. Err. [95% Conf. Intervall

pl .2692422 .0152101 .2394219 .2990626
p2 .40432 .01508 .3747547 .4338853
p3 .4973859 .0144863 .4689846 .5257871
p4 .5624279 .0140866 .5348102 .5900456
p5 .6321856 .0138188 .605093 .6592782
p6 .7017939 .0133607 .6755994 . 7279883
p7 .769657 .0122928 .7455562 . 7937579
p8 .8339943 .0112497 .8119385 .8560501
P9 .9139871 .0086089 .8971088 .9308653

(evaluation grid stored in e(at))

Coefficient p2 corresponds to cumulative proportion 0.2; as already discussed, the value of
the relative CDF is about 0.4 at this point.

Furthermore, the graph has been produced by first estimating the CDF using reldist
cdf and then plotting the result using reldist graph. We could also have drawn the
graph in a single step by including option graph() in the call to reldist cdf (see examples
further down). Options olabel() and yolabel() have been applied to reldist graph
so that additional labels are included in the graph indicating the approximate positions
of specific outcome values. Labels are only printed if they are not too close together; the
suppressed labels are indicated by additional ticks (this can be changed; see the description
of the olabel () option above). By default, the values provided in olabel () and yolabel ()
are interpreted as outcome values to be included in the graph. However, if suboption at is
specified, the provided values are interpreted as cumulative proportions; in this case, reldist
graph will include labels for the corresponding quantiles in the graph. A second olabel()
option has been used in this way in the command above to print the outcome value of the
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20% quantile of the original cohort.'? Finally, option ciopts() has been added to make the
confidence area transparent. The options specified within ciopts() are standard options for
area plots; see [c] area_options.

2

The relative PDF Relative over- and underrepresentation of the recent cohort with re-
spect to the distribution of wage growth in the original cohort can be seen more directly in
the relative PDF. The relative PDF can be obtained as follows:

. reldist pdf chpermwage [pw = wgt], by(cohort) histogram notable

Relative density Number of obs = 3,937
F1: cohort = recent (1979) Comparison obs = 2,103
FO: cohort = original (1966) Reference obs = 1,834

Bandwidth = .02710796

. reldist graph, ciopts(fcolor(%50) lcolor(%0)) ///

> olabel(-.5(.5)3, grid) olabel(.2, at add custom tstyle(minor)) ///

> x1abel(0(.1)1) xtitle(Proportion of original cohort) ///

> ylabel(0(.5)5, angle(0) grid) ytitle(Relative density)
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12Guboption add has been specified in the second olabel() option so that the labels from both
olabel () options are printed, custom has been specified to apply custom styling to the second set of
labels, and suboption tstyle(minor) selects the style. These are standard axis labelling suboptions; see
[G] axis_label_options.
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A relative density larger than one means that the recent cohort is overrepresented at the
corresponding level of wage gains, values lower than one mean that the recent cohort is
underrepresented relative to the original cohort. We can now directly see that the largest
distributional differences are at the bottom of the distribution. The recent cohort has a much
larger density than the original cohort in regions below the 10% quantile of the original cohort
(overrepresentation factor of 1.5 to 4) and generally a larger density below about the 20%
quantile. At quantiles above that, the recent cohort is underrepresented, although there
is some evidence for a reduced discrepancy at the top of the distribution (above the 80%
quantile) or even a reversal at the very top (above, say, the 97% quantile; although the
confidence interval includes the parity line in this region, which means that the relative
density is not significantly different from 1).

Location and shape decomposition The difference in the distribution of wage gains
between the original cohort and the recent cohort may have various reasons. As indicated
above, wage gains have been larger on average in the original cohort than in the recent cohort,
which may be due to a general difference in economic growth between the two areas that
affected all population members in a similar way. In such a case, the distribution of wage
gains in the recent cohort would differ from the distribution in the original cohort only in its
location. However, also the structure of wage gains might have changed, for example due to
rising returns on education, leading to more polarization of wage gains in the recent cohort.
In this case, also the shape of the two distributions would be different. To separate location
effects from effects of distributional differences net of location, so-called location-and-shape
decompositions can be useful. reldist does not perform such decompositions directly, but
it offers an option to obtain the relative distribution based on data that has been location
or shape adjusted.

The following commands produce a graph containing three panels.'® The first panel
shows the overall (unadjusted) relative density (same as above). The second panel shows
how the relative density looks like if we only allow a difference in location but keep the dis-
tributional shape fixed. This is achieved by applying option adjust(:shape scale). The
option instructs reldist to adjust the original cohort distribution in a way such that it has
the same shape and scale as the recent cohort distribution, but keeps its location (techni-
cally, this is implemented by applying a location shift to the recent cohort distribution and
then replacing the original cohort distribution by this counterfactual distribution; specifying
scale is necessary because, conceptually, reldist treats the scale as a separate element of a
distribution that can be adjusted). The third panel shows the relative density if the location
difference between the two distributions is removed but the distributional shapes are allowed
to be different. The corresponding option is adjust(location), which shifts the recent

13Confidence intervals for the relative density curve have been omitted using graph option noci, so that
the plots are less busy.

o4



cohort distribution such that it has the same location as the original cohort distribution, but
keeps its shape and scale.'

. local gropts olabel(-.5(.5)3, grid) histopts(color(%50)) /*
> */ xlabel(0(.2)1) xtitle(Proportion of original cohort) /*
*/ ylabel(0(.5)4, angle(0) grid) ytitle("") noci

\4

. reldist pdf chpermwage [pw = wgt], by(cohort) histogram ///
> graph( gropts” title("Overall RD") name(a, replace) nodraw)

(output omitted )

. reldist pdf chpermwage [pw = wgt], by(cohort) histogram ///
> adjust (:shape scale) ///
> graph(“gropts” title("Location shift") name(b, replace) nodraw)

(output omitted )

. reldist pdf chpermwage [pw = wgt], by(cohort) histogram ///
> adjust(location) ///
> graph(“gropts” title("Shape shift") name(c, replace) nodraw)

(output omitted )

. graph combine a b ¢, rows(l) imargin(zero)

Overall RD Location shift Shape shift
-5.5 1 15 2 -5 5 1 15 2 -5.5 1 1.5 2
1 1 1 1 1 11 1 1 1 11 1 1 1 1 1
ad 4 4
3.5 3.5+ 3.51
3 31 3
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0 2 4 .6 .8 1 0 .2 4 .6 .8 1 0 2 4 6 .8 1
Proportion of original cohort Proportion of original cohort Proportion of original cohort

The results indicate that the difference between the recent cohort distribution and the orig-
inal cohort distribution is not only a matter of location, but that there is also a substantial

“Handcock and Morris (1999) do the decomposition the other way round, equivalent to specifying
adjust (shape scale) and adjust(:location).
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difference in distributional shape. In particular, the recent cohort distribution appears more
polarized than the original cohort (also see below).

Distributional divergence To determine the relative contributions of location and shape
differences to the overall distributional divergence between the two cohorts, Handcock and
Morris (1999) suggest comparing the entropy (Kullback-Leibler divergence) of the unad-
justed and adjusted relative distributions. Such an analysis can be obtained by reldist
divergence:!®

. reldist divergence chpermwage [pw = wgt], by(cohort) ///

> compare(adjust(location))

Relative distribution divergence Number of obs = 3,937
F1: cohort = recent (1979) Comparison obs = 2,103
FO: cohort = original (1966) Reference obs = 1,834
Adjustment (alternate model) Histogram bins = 20

F1: location Statsistic = entropy
FO: (none)
chpermwage Coef. Std. Err. [95% Conf. Intervall
main .1726182 .021244 .1309679 .2142686
alternate .0670518 .0126801 .0421917 .091912
difference .1055664 .0179497 .0703748 .140758

Three divergence values are reported in the above output: the divergence of the unad-
justed relative distribution (labelled as main), the divergence of the relative distribution
after location-adjusting the recent cohort (labelled as alternate), as well as the difference
between these two measures. The first value is the overall divergence, the second value quan-
tifies the divergence due to differences in distributional shape, and the third value quantifies
the contribution of the difference in location.!® We can use [r] nlcom to compute the
percentage contributions of the location and shape effects to the overall divergence:

. nlcom (loc:_b[difference]/_b[main]*100) (shape:_b[alternate]/_b[main]*100)

loc: _b[difference]/_b[main]*100
shape: _b[alternate]/_b[main]*100

chpermwage Coef.  Std. Err. z P>|z| [95% Conf. Intervall]
loc 61.15599 6.246685 9.79 0.000 48.91271 73.39927
shape 38.84401 6.246685 6.22 0.000 26.60073 51.08729

15 Alternative measures offered by reldist divergence are the Chi-squared divergence and the dissimi-
larity index (total variation distance).

16 As discussed above, the last value has a cross-entropy interpretation. Note that reldist divergence
could also be used to compute alternative decompositions, for example, between the overall relative dis-
tribution and a shape-adjusted relative distribution, treating the location effect as a cross-entropy (as in
Handcock and Morris, 1999).
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We see that in this example the difference in location appears to be more relevant (60%)
than the difference in shape (40%). Qualitatively, the results are similar to the ones reported
by Handcock and Morris (1999), but note that the precise values are different. On the
one hand, Handcock and Morris (1999) performed a slightly different decomposition (see
Footnote 16). More importantly, however, the Kullback-Leibler divergence is quite sensitive
to the details of the computation of the underlying relative density. By default, reldist
divergence obtains the divergence from a 20-bin histogram; changing the number of bins
may change the results substantially. Furthermore, the divergence measures could also be
obtained from a kernel density estimate of the relative density (see option pdf), which would
yield yet another set of results (substantially depending on the bandwidth).

Polarization analysis As stated above, the recent cohort distribution appears more po-
larized than the original cohort distribution. A measure to quantify the polarization is the
MRP computed by reldist mrp:

. reldist mrp chpermwage [pw = wgt], by(cohort)

Median relative polarization Number of obs = 3,937
F1: cohort = recent (1979) Comparison obs = 2,103
FO: cohort = original (1966) Reference obs = 1,834
Adjustment: location
chpermwage Coef.  Std. Err. t P>t [95% Conf. Intervall

MRP .1832597 .0191808 9.55 0.000 .1456544 .220865
LRP .190353 .0303527 6.27 0.000 .1308445 .2498615
URP .1761664 .0291428 6.04 0.000 .11903 .2333029

The results indicate that the recent cohort distribution is indeed more polarized, as the
value of the MRP is positive, of substantial magnitude (the possible range of the MRP is
between —1 and 1), and significantly different from zero. Furthermore, the breakup into
polarization of the lower half (LRP) and the upper half of the distribution (URP) suggests
that the degree of polarization is similar in both tails.

Covariate balancing Education may be on important determinant of the wage distri-
bution as well as the distribution of wage gains over an occupational career. Hence, if the
educational distribution changed between the original cohort and the recent cohort, we may
be comparing apples with oranges. That is, one reason for the difference in the distribution
of wage gains in the two cohorts may be that the cohorts have a different educational com-
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position. This indeed seems to be the case, if we look at the relative density of educational
levels between the cohorts:'”

. replace endeduc = 8 if endeduc<8
(34 real changes made)

. reldist pdf endeduc [pw = wgt], by(cohort) categorical

Relative demnsity Number of obs = 3,937
F1: cohort = recent (1979) Comparison obs = 2,103
FO: cohort = original (1966) Reference obs = 1,834

endeduc Coef.  Std. Err. [95% Conf. Intervall

endeduc
8 .9383436 .220892 .50527 1.371417
9 1.485883  .3551772 .7895346 2.182232
10 1.59819 .3734487 .8660189 2.330361
11 .9276922 .1673159 .5996581 1.255726
12 1.41295 .0657943 1.283956 1.541945
13 1.012919 .1136963 .7900094 1.235828
14 .7208455 .0737943 .5761668 .8655241
15 .6660931  .0984461 .473083 .8591032
16 .8683801 .0644533 . 7420152 .994745
17 .5069374 .0751882 .3595259 .6543489
18 .7644302  .0823954 .6028885 .9259719

(evaluation grid stored in e(at))

. reldist graph, noci olabel(8(1)18, prune(.05)) ///
> xlabel(0(.1)1) xtitle(Proportion of original cohort) ///
> ylabel(0(.2)1.6, angle(0) grid) ytitle(Relative density)

17Option categorical instructs reldist to treat endeduc as a factor variable and to compute the relative
density as the ratio of relative frequencies between the two cohorts at each level. Confidence intervals have
been suppressed in the graph using option noci.
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Lower educational levels appear to be more frequent in the recent cohort than in the
original cohort (relative density mostly larger than one), higher educational levels appear
to be less frequent (relative density below one). Looking at the table we see that in many
cases the confidence interval does not include one, meaning that these differences between
the cohorts are statistically significant.

As suggested by Handcock and Morris (1999), the graph above uses a step function with
the steps located at the values of the cumulative distribution in the original cohort. An
alternative would be to display the categorical relative density as a histogram in which the
width of each bar is proportional to the relative frequency of the corresponding level in the
original cohort:

. reldist hist endeduc [pw = wgt], by(cohort) categorical ///

> graph(noci olabel(8(1)18, prune(.05)) color(%50) ///

> xlabel(0(.1)1) xtitle(Proportion of original cohort) ///

> ylabel(0(.2)1.6, angle(0) grid) ytitle(Relative density))

Relative histogram Number of obs = 3,937
F1: cohort = recent (1979) Comparison obs = 2,103
FO: cohort = original (1966) Reference obs = 1,834

(coefficients table suppressed)
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Numerically, both approaches lead to the exact same results (including standard errors
and confidence intervals), but a different style is used for graphical display.

The question now is whether these differences in educational composition affect the rel-
ative distribution of wage gains. Similar as above in the context of locaction and shape
effects, we can identify the contribution of compositional differences by comparing unad-
justed and adjusted relative distributions. The adjustment, however, is now accomplished
by reweighting one of the distributions in a way such that its educational composition be-
comes equal to the educational composition in the other cohort. Option balance() can
be used in reldist to apply such balancing. Here is an example that displays the overall
relative distribution (left panel), the relative distribution after the recent cohort has been
reweighted (right panel), as well as the relative distribution between the raw and reweighted
recent cohort (middle panel; the purpose of the middle panel is to show how reweighting
changes the distribution of the original cohort):

local gropts olabel(-.5(.5)3, grid) histopts(color(%50)) /*

VAR

*/ xlabel(0(.2)1) xtitle(Proportion of original cohort) /*
> */ ylabel(0(.5)4, angle(0) grid) ytitle("") noci
. reldist pdf chpermwage [pw = wgt], by(cohort) histogram ///
> graph( gropts” title("Overall RD") name(a, replace) nodraw)
(output omitted )
. reldist pdf chpermwage [pw = wgt], by(cohort) histogram ///
> balance(i.endeduc, contrast) ///
> graph(“gropts” title("Education effect") name(b, replace) nodraw)
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(output omitted )

. reldist pdf chpermwage [pw = wgt], by(cohort) histogram ///
> balance(i.endeduc) ///
> graph("gropts” title("Education-adjusted RD") name(c, replace) nodraw)

(output omitted )

. graph combine a b ¢, rows(l) imargin(zero)

Overall RD Education effect Education-adjusted RD
=D & 1 15 2 25 B 1 15 2 =B & 1 15 2
1 1 1 1 1 11 1 1 1 1l Il 1 1 1 1l
4] 44 44
354 3.5+ 3.5
3 3 31
254 2.54 2.5+
24 2 24
1.5 i' 1.59 1.5 g.
1 T J ] L - T T T 1 AN T%
At
54 .5 5
0 0 0
T T T T T T T T T T T T T T T T T T
0 2 4 6 8 1 0 2 4 6 8 1 0 2 4 6 8 1
Proportion of original cohort Proportion of original cohort Proportion of original cohort

Adjusting the educational composition does seem to make the distribution of wage gains
somewhat more equal between the two cohorts. The comparison between the raw recent
cohort and the reweighted recent cohort (middle panel) shows that low (high) wage gains
are more (less) frequent in the raw data than in the reweighted data. That is, as expected,
reweighting the recent cohort generally shifts the distribution of wage gains upwards, thus
making it more equal to the distribution of wage gains in the original cohort (the effect of the
reweighting is statistically significant, as can be inferred from the confidence intervals that
have been included for the histogram). Overall, however, the contribution of the difference
in educational composition only seems to be of minor importance: there is only a small
difference between the overall relative distribution (left panel) and the education-adjusted
relative distribution (right panel).

Location adjustment by means of covariate balancing Note that reweighting can
be used as an alternative method for location adjustments. The default method, provided
by option adjust (), implements the adjustments by transforming the outcome values. The
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same goal, however, can also be reached by altering the PDF of the data while leaving the
outcome values unchanged. This is what reweighting does if we include the outcome variable
in the balancing equation. Here is a replication of the location-and-shape decomposition from
above using balance () instead of adjust(). I use entropy balancing to obtain the weights,
which ensures that the means of the two distribution will be exactly the same:

. local gropts olabel(-.5(.5)3, grid) histopts(color(%50)) /*

>
>

vV V .

VAR

*/ xlabel(0(.2)1) xtitle(Proportion of original cohort) /*
*x/ ylabel(0(.5)4, angle(0) grid) ytitle("") noci

reldist pdf chpermwage [pw = wgtl], by(cohort) histogram ///
graph(“gropts” title("Overall RD") name(a, replace) nodraw)

(output omitted )

reldist pdf chpermwage [pw = wgt], by(cohort) histogram ///
balance(eb: chpermwage, contrast) ///
graph("gropts” title("Location shift") name(b, replace) nodraw)

(output omitted)

reldist pdf chpermwage [pw = wgt], by(cohort) histogram ///
balance(eb: chpermwage) ///
graph( gropts” title("Shape shift") name(c, replace) nodraw)

(output omitted )

. graph combine a b c, rows(l) imargin(zero)

Overall RD Location shift Shape shift
-5.5 1 156 2 -5 5 1 15 2 -5.5 1 156 2
1 1 1 1 1 11 1 1 1 11l I 1 1 1 1
N 4 4
a5 3.5 3.5
34 3 3
25 2.5 25
24 2 2
1.5 ] 1.5 i¥ 1.5+
\ = 1 il
1 s
1 T “/ 1 1 ab T
hi
.5 .5 .51
0+ 0+ 0+

T T T T T T

0 2 4 6 8 1

Proportion of original cohort

T T T T T
0 2 4 6 8
Proportion of original cohort
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The two approaches lead to qualitatively similar results.!® One advantage of the reweight-
ing approach, however, is that heaping in the data will have less adverse effects on the
results. !

5.2 Processing results from reldist

Post-estimation hypothesis testing reldist stores its results in e () just like any other
estimation command. Hence, we can use post-estimation commands such as [r] test to test
hypotheses or coefplot (Jann, 2014) to draw graphs.

I use the NLSW 1988 data shipped with Stata to analyze wages of unionized and non-
unionized workers. For example, we might be interested in relative wage polarization. An
obvious hypothesis is that wages are more polarized among non-unionized workers than
among the unionized, but the pattern may be different depending on education. Here are
the results for the MRP between non-unionized and unionized workers for different levels of
qualification:

. sysuse nlsw88, clear
(NLSW, 1988 extract)

. reldist mrp wage, by(union) swap over(collgrad) multiplicative

Median relative polarization Number of obs = 1,878
F1: union = nonunion Comparison obs = 1,417
FO: union = union Reference obs = 461

Adjustment: location (mult)

0: collgrad = not college grad
1: collgrad = college grad

wage Coef.  Std. Err. t P>t [95% Conf. Intervall
0

MRP .0654444 .0358179 1.83 0.068 -.0048027 .1356916

LRP -.0015699 .0572336 -0.03 0.978 -.113818 .1106783

URP . 1324587 .0571956 2.32 0.021 .020285 .2446324
1

MRP .1486059 .0591766 2.51 0.012 .032547 .2646647

LRP .1985118 .0818497 2.43 0.015 .0379858 .3590378

URP .0987 .0920773 1.07 0.284 -.0818847 .2792846

Option swap has been specified to flip the two groups, so that the non-unionized are the
comparison group and the unionized are the reference group. Option multiplicative has

18 Although note that adjust (), as used above, adjusts the medians of the distributions whereas balance ()
adjusts the means. For a more valid comparison suboption mean could be specified within adjust ().

19Note that reweighting could be used for location-and-scale adjustment by including the square of the
outcome variable as an additional covariate in the balancing equation.
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been specified because — based on economic theory — a proportional location shift makes
more sense for wages than an additive shift.

As hypothesized, the results suggest that wage polarization is generally more pronounced
among non-unionized workers, although the MRP is only marginally significant for respon-
dents without college degree. A follow-up question might thus be whether we can conclude
from the data that relative polarization between non-unionized and unionized workers is
stronger among college graduates than among workers without college degree. We can use
test to test the two MRP estimates against each other:

. test [OIMRP = [1]MRP
(1) [OIMRP - [1]MRP = 0

F( 1, 1877)
Prob > F

1.45
0.2294

The test is negative; that is, we cannot reject the null hypothesis that the two MRP estimates
are the same (p-value of 0.229). The same result can also be obtained using [r] lincom:

. lincom [1]MRP - [O]MRP
(1) - [OJMRP + [1]MRP = 0O

wage Coef.  Std. Err. t P>[t]| [95% Conf. Intervall

1 .0831615 .0691722 1.20 0.229 -.0525011 .218824

Creating graphs from multiple results When comparing wages between unionized
and non-unionized workers it may be relevant to make the two groups more comparable by
taking background characteristics into account. Possibly, some of the difference in the wage
distributions is due to differential composition with respect to these characteristics, and not
due to unionization status per se. Here is how you could plot the relative density curves
based on raw data and on balanced data in a single graph using [R] estimates store and
coefplot (Jann, 2014):

. reldist pdf wage, by(union) notable balance(grade i.race i.south tenure)
(output omitted )

. estimates store balanced

. reldist pdf wage if e(sample), by(union) notable
(output omitted )

. estimates store unbalanced

. coefplot balanced unbalanced, at recast(line) ///

> ciopts(recast(rarea) color(%50) lcolor(%0)) ///
> xtitle("Proportion of non-unionized workers") ///
> ytitle("Relative density") yline(1)
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We see that the wage distributions of unionized and non-unionized workers become more
similar once we control for background characteristics, especially in the upper part of the
distribution.

Working with influence functions The predict command can be used to store the
influence functions that reldist uses for standard error estimation. For example, we may
want to test whether relative polarization between non-unionized and unionized workers is
more pronounced for wages than for working hours. reldist does not support analyzing
two variables at the same time. However, we can store the influence functions and then use
them to test the MRP for wages against the MRP for working hours:

. reldist mrp wage if hours<., by(union) swap multiplicative

Median relative polarization Number of obs = 1,877
F1: union = nonunion Comparison obs = 1,416
FO: union = union Reference obs = 461

Adjustment: location (mult)

wage Coef.  Std. Err. t P>t [95% Conf. Intervall
MRP .123268  .0303101 4.07  0.000 .063823 .182713
LRP .0573649 .0494239 1.16  0.246 -.0395667 .1542964
URP .1891712 .0482137 3.92 0.000 .094613 .2837294

. predict MRPwage
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. replace MRPwage = MRPwage + _b[MRP] / e(N)
(1,877 real changes made)

. reldist mrp hours if wage<., by(union) swap

Median relative polarization Number of obs = 1,877
F1: union = nonunion Comparison obs = 1,416
FO: union = union Reference obs = 461
Adjustment: location

hours Coef.  Std. Err. t P>|t| [95% Conf. Intervall]
MRP .0712359 .0261141 2.73 0.006 .0200202 .1224516
LRP .1601944 .0644048 2.49 0.013 .0338818 .286507
URP -.0177227 .0421322 -0.42 0.674 -.1003535 .0649082

. predict MRPhours

. replace MRPhours = MRPhours + _b[MRP] / e(N)

(1,877 real changes made)

. total MRPwage MRPhours

Total estimation Number of obs = 1,877

Total Std. Err. [95% Conf. Interval]
MRPwage .123268 .0303101 .063823 .182713
MRPhours .0712359 .0261141 .0200202 .1224516
. lincom MRPwage - MRPhours
( 1) MRPwage - MRPhours = 0
Total Coef.  Std. Err. t P>[t]| [95% Conf. Intervall
D) .0520321 .0378415 1.38 0.169 -.0221838 .1262481

. drop MRPwage MRPhours

The MRP is higher for wages than for working hours, but the difference does not appear to
be statistically significant. In the example I first stored the influence functions and then
recenterd them by adding the point estimates back in (on the use of recentered influence
functions also see Firpo et al., 2009). The influence functions returned by reldist are
scaled such that [r] total can be used for estimation of standard errors (note how [r] total
reproduced the results from reldist in the example). This is why I divided the point
estimate by N before adding it back in. Alternatively, multiply the influence function by
N, add the point estimate as is, and then use [R] mean instead of [r] total. Furthermore,
note that weights are not incorporated into the influence functions. That is, if weights have
been applied to reldist, the weights will also have to be applied when calling [r] total or
[R] mean (the same is true for clustering).
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5.3 Survey estimation

reldist fully supports estimation for complex survey data, but the [svy] svy prefix command
cannot be used for technical reasons if the variance estimation method is set to linearized
(Taylor-linearized variance estimation). You can use option vce(svy) instead of the svy
prefix in this case. Example:

. webuse nmihs, clear
. svyset [pweight=finwgt], strata(stratan)

pweight: finwgt
VCE: linearized
Single unit: missing
Strata 1: stratan
SU 1: <observations>
FPC 1: <zero>

. reldist mrp birthwgt, by(childsex) vce(svy)
(running reldist_svyr on estimation sample)

Survey: Median relative polarization

Number of strata = 6 Number of obs = 9,946

Number of PSUs = 9,946 Population size = 3,895,562

Design df = 9,940

F1: childsex = 2 Comparison obs = 4,911

FO: childsex =1 Reference obs = 5,035
Linearized

birthwgt Coef.  Std. Err. t P>|t| [95% Conf. Interval]

MRP -.0349405 .0155133 -2.25 0.024 -.0653496 -.0045313

LRP .0024726 .0233231 0.11 0.916 -.0432454 .0481907

URP -.0723535 .0252147 -2.87 0.004 -.1217795 -.0229275

Results indicate that the birthweight distribution is somewhat less polarized for girls
(childsex = 2) than for boys (childsex = 1) and that this is due to a difference in dis-
tributional shape in the upper part of the distribution (overall polarization is driven by the
URP). Option vce(svy) also works with variance estimation methods other than linearized
(e.g. [svy] brr), although in these cases one could also apply svy as a prefix command.?

20 A fine distinction is that with vce (svy) the bandwidth for kernel density estimation (relevant for reldist
pdf and reldist divergence with option pdf) will only be estimated once and then held constant across
replications. With svy as prefix command, bandwidth estimation will be repeated in each replication.

67



6 Acknowledgements

I thank Eric Melse for valuable comments on earlier versions of the software that helped
improving the command. I thank Blaise Melly for a nudge on how to obtain the influence
functions for quantiles of relative ranks.

References

Bernhardt, A., M. Morris, and M. S. Handcock. 1995. Women’s Gains or Men’s Losses? A
Closer Look at the Shrinking Gender Gap in Earnings. American Journal of Sociology
101(2): 302-328.

Bernhardt, A., M. Morris, M. S. Handcock, and M. A. Scott. 2001. Divergent Paths. Eco-
nomic Mobility in the New American Labor Market. New York: Russel Sage Foundation.

Botev, Z. 1., J. F. Grotowski, and D. P. Kroese. 2010. Kernel density estimation via diffusion.
Annals of Statistics 38(5): 2916-2957.

Cox, N. J. 2004. PPPLOT: Stata module for P-P plots. Statistical Software Com-
ponents S438002, Boston College Department of Economics. Available from https:
//ideas.repec.org/c/boc/bocode/s438002.html.

Cwik, J., and J. Mielniczuk. 1989. Estimating density ratio with application to discriminant
analysis. Communications in Statistics — Theory and Methods 18(8): 3057-3069.

. 1993. Data-dependent bandwidth choice for a grade density kernel estimate. Statis-
tics & Probability Letters 16: 397-405.

DiNardo, J. E.; N. Fortin, and T. Lemieux. 1996. Labour Market Institutions and the
Distribution of Wages, 1973-1992: A Semiparametric Approach. FEconometrica 64(5):
1001-1046.

Duncan, O. D., and B. Davis. 1953. An Alternative to Ecological Correlation. American
Sociological Review 18(6): 665—666.

Firpo, S., N. M. Fortin, and T. Lemieux. 2009. Unconditional Quantile Regressions. Fcono-
metrica 77: 953-973.

Handcock, M. S. 2016. Relative Distribution Methods. Version 1.6-6. Available from https:
//cran.r-project.org/web/packages/reldist/index.html.

Handcock, M. S., and E. M. Aldrich. 2002. Applying Relative Distribution Methods in R.
University of Washington Working Paper No. 27. Available from http://dx.doi.org/
10.2139/ssrn.1515775.

68


https://ideas.repec.org/c/boc/bocode/s438002.html
https://ideas.repec.org/c/boc/bocode/s438002.html
https://cran.r-project.org/web/packages/reldist/index.html
https://cran.r-project.org/web/packages/reldist/index.html
http://dx.doi.org/10.2139/ssrn.1515775
http://dx.doi.org/10.2139/ssrn.1515775

Handcock, M. S., and P. L. Janssen. 2002. Statistical Inference for the Relative Density.
Sociological Methods and Research 30(3): 394-424.

Handcock, M. S., and M. Morris. 1998. Relative Distribution Methods. Sociological Method-
ology 28: 53-97.

. 1999. Relative Distribution Methods in the Social Sciences. New York: Springer.
Hao, L., and D. Q. Naiman. 2010. Assessing Inequality. Thousand Oaks, CA: Sage.

Jann, B. 2004. DUNCAN: Stata module to calculate dissimilarity index. Statistical Soft-
ware Components S447202. Available from https://ideas.repec.org/c/boc/bocode/
8447202 .html.

. 2005. moremata: Stata module (Mata) to provide various functions. Statistical Soft-
ware Components S455001. Available from http://ideas.repec.org/c/boc/bocode/
s455001 . html.

. 2007. Univariate kernel density estimation. Available from https://doi.org/10.
7892/boris.69421.

. 2008. The Blinder-Oaxaca decomposition for linear regression models. The Stata
Journal 8(4): 453-479.

. 2014. Plotting regression coefficients and other estimates. The Stata Journal 14(4):
708-737.

. 2017. kmatch: Stata module for multivariate-distance and propensity-score match-
ing, including entropy balancing, inverse probability weighting, (coarsened) exact match-
ing, and regression adjustment. Statistical Software Components S458346. Available from
https://ideas.repec.org/c/boc/bocode/s458346 . html.

. 2020. Influence functions continued. A framework for estimating standard errors
in reweighting, matching, and regression adjustment. University of Bern Social Sciences
Working Papers 35. Available from https://ideas.repec.org/p/bss/wpaper/35.html.

Morris, M., A. D. Bernhardt, and M. S. Handcock. 1994. Economic Inequality: New Methods
for New Trends. American Sociological Review 59(2): 205-219.

Parzen, E. 2004. Quantile Probability and Statistical Data Modeling. Statistical Science
19(4): 652-662.

Rios-Avila, F. 2020. Recentered influence functions (RIFs) in Stata: RIF regression and RIF
decomposition. The Stata Journal 20(1): 51-94.

69


https://ideas.repec.org/c/boc/bocode/s447202.html
https://ideas.repec.org/c/boc/bocode/s447202.html
http://ideas.repec.org/c/boc/bocode/s455001.html
http://ideas.repec.org/c/boc/bocode/s455001.html
https://doi.org/10.7892/boris.69421
https://doi.org/10.7892/boris.69421
https://ideas.repec.org/c/boc/bocode/s458346.html
https://ideas.repec.org/p/bss/wpaper/35.html

	1
	Introduction
	Theory
	Distribution function and density
	Relative ranks
	The relative distribution function
	The relative density function
	Location and shape decomposition
	Summary measures
	Divergence
	Polarization

	Covariate balancing
	Integrating over conditional distributions
	Reweighting


	Estimation
	The relative distribution function
	Computing relative ranks
	The relative density function
	Kernel density estimation for continuous data
	Histogram density estimation
	Discrete relative density for categorical data

	Divergence
	Continuous data
	Categorical data

	Median relative polarization
	Covariate balancing
	Standard errors
	Variance estimation by means of influence functions
	Influence function for the relative CDF
	Influence function for the relative histogram
	Influence function for the relative PDF
	Influence function for the discrete relative density
	Influence functions for divergence measures
	Influence functions for polarization indices
	Influence functions for descriptive statistics
	Influence functions in case of covariate balancing


	The reldist command
	Syntax
	Options for reldist
	Options for reldist graph
	Saved results

	Examples
	Wage mobility in two eras
	Processing results from reldist
	Survey estimation

	Acknowledgements

