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Abstract
Background: Mesial temporal lobe epilepsy (TLE) is one of the most widespread 
neurological network disorders. Computational anatomy MRI studies demonstrate a 
robust pattern of cortical volume loss. Most statistical analyses provide information 
about localization of significant focal differences in a segregationist way. Multivariate 
Bayesian modeling provides a framework allowing inferences about inter-regional 
dependencies. We adopt this approach to answer following questions: Which struc-
tures within a pattern of dynamic epilepsy-associated brain anatomy reorganization 
best predict TLE pathology. Do these structures differ between TLE subtypes?
Methods: We acquire clinical and MRI data from TLE patients with and without hip-
pocampus sclerosis (n = 128) additional to healthy volunteers (n = 120). MRI data 
were analyzed in the computational anatomy framework of SPM12 using classical 
mass-univariate analysis followed by multivariate Bayesian modeling.
Results: After obtaining TLE-associated brain anatomy pattern, we estimate predic-
tive power for disease and TLE subtypes using Bayesian model selection and com-
parison. We show that ipsilateral para-/hippocampal regions contribute most to 
disease-related differences between TLE and healthy controls independent of TLE 
laterality and subtype. Prefrontal cortical changes are more discriminative for left-
sided TLE, whereas thalamus and temporal pole for right-sided TLE. The presence of 
hippocampus sclerosis was linked to stronger involvement of thalamus and temporal 
lobe regions; frontoparietal involvement was predominant in absence of sclerosis.
Conclusions: Our topology inferences on brain anatomy demonstrate a differen-
tial contribution of structures within limbic and extralimbic circuits linked to main 
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1  | INTRODUC TION

Temporal lobe epilepsy (TLE), one of the most common forms of 
focal epilepsy, is associated with progressive cognitive dysfunction 
and resistance to antiepileptic drug therapy (Wiebe & Jette, 2012). 
Although considered for many years as disorder related to focal 
temporal lobe pathology, there is strong evidence for disruptions 
in a widespread cortico-subcortical network (Bernhardt, Hong, 
Bernasconi, & Bernasconi, 2013; Bonilha et al., 2013; Concha, Kim, 
Bernasconi, Bernhardt, & Bernasconi, 2012). Given the fact that the 
TLE clinical phenotype is modified as function of disease progres-
sion, there is clear need to shed light on spatial and temporal dynam-
ics of changes within affected brain circuits.

Computational anatomy studies in TLE, using in vivo brain mag-
netic resonance imaging (MRI), demonstrate a specific pattern of 
cortical volume loss and changes in corresponding white matter path-
ways that extend beyond mesial temporal lobe structures (Bernhardt, 
Hong, et al., 2013; Keller & Roberts, 2008). Theoretical work and 
studies on animal models suggest that TLE-associated network re-
modeling follows a specific temporal trajectory (Leite et al., 2005; 
Sutula,	 2004).	 Recent	 report	 provided	 empirical	 evidence	 for	 the	
assumption of bidirectional brain anatomy changes during disease 
progression with initial seizure-dependent boost in neurogenesis 
followed by gliosis due to depletion of hippocampal stem cells and 
shift toward astrocytes production (Sierra, Grohn, & Pitkanen, 2015; 
Sierra, Martin-Suarez, et al., 2015). In humans, cross-sectional 
(Bonilha	 et	 al.,	 2004)	 and	 longitudinal	 studies	 (Bernhardt,	 Kim,	 &	

Bernasconi, 2013) corroborated continuous changes affecting hip-
pocampal volume loss in chronic TLE stages. Unpublished findings 
from our own group confirmed the notion of bidirectional hippocam-
pus alterations and demonstrated hippocampus volume increase in 
early stages of TLE, followed by progressive atrophy of the hippo-
campus ipsilateral to seizure onset (Roggenhofer et al., 2019). The 
assumption of differential temporal dynamics of brain anatomy 
changes within the TLE network remains to be tested, particularly in 
relationship with individual clinical phenotype.

Compared to investigation of temporal trajectories of TLE-
induced brain circuit changes, our knowledge in the spatial domain of 
network modulation remains very limited. Previous studies demon-
strated strong links between clinical phenotype and functional brain 
network organization in the case of left- or right-lateralized TLE 
(Doucet, Osipowicz, Sharan, Sperling, & Tracy, 2013), however, com-
parable work in the field of brain anatomy lacks specificity. Current 
statistical analyses in the framework of computational anatomy de-
scribe the spatial pattern of TLE pathology without formally testing 
the question about interdependencies between spatially segregated 
structural findings. At present, it remains unclear to which degree a 
particular structure within the TLE specific network is involved in 
underlying pathological mechanisms and how these regional inter-
dependencies evolve over time.

Main goal of our study is to investigate differential topology of 
brain anatomy changes within TLE circuits. We hypothesize that 
the ipsilateral hippocampus is the structure with strongest con-
tribution to TLE-induced brain anatomy remodeling. Additionally, 

effects of TLE and hippocampal sclerosis. We interpret our results as evidence for 
TLE-related spatial modulation of anatomical networks.

K E Y W O R D S

Bayesian model selection, BMS, computational anatomy, hippocampus, magnetic resonance 
imaging, multivariate Bayesian modeling, MVB, temporal lobe epilepsy

TA B L E  1   Demographic and clinical information of study participants

No.

Gender [no.]

Age [year]

Drug resistance [no.]

AO [year] TD [year] TIV [l]F M D+ D−

TLE 128 69 59 38 ± 11 52 76 19.2 ±	14.3 19.0 ± 13.7 1.40	± 0.17*

L TLE 72 45 27 39 ± 11 36 36 20.4	± 15.5 18.2 ± 13.3 1.38 ± 0.15*

R TLE 56 24 32 38 ± 11 40 16 17.7 ± 12.8 20.0.±13.5 1.43	± 0.19

MTS 57 34 23 40	± 10 7* 50* 15.6 ± 13.2* 24.2	± 13.3* 1.36 ± 0.18*

MRI− 71 35 36 37 ± 11 45* 26* 22.1 ±	14.5* 14.8	± 11.7* 1.43	± 0.16*

C 120 63 57 36 ± 10 – – – – 1.45	±	0.14*

Total 248 132 116 37 ± 10 1.42	± 0.16

Note: Statistical	significance	for	group	differences	between	TLE	(sub)group	and	C	or	between	MTS	and	MRI−	TLE	of	p < .05 marked by *.
Abbreviations:	AO,	age	of	disease	onset;	C,	healthy	control	volunteers;	D−,	drug-resistant;	D+, drug-responsive; f, female; L TLE, left lateralized; 
m,	male;	MRI−,	MRI	negative,	without	macroscopic	MRI	brain	changes;	MTS,	mesial	temporal	lobe	sclerosis;	R	TLE,	right-lateralized	TLE;	TD,	time	
duration of disease; TIV, total intracranial volume; TLE, temporal lobe epilepsy.
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we predict that limbic and extralimbic structures with weaker 
contribution to TLE anatomical pattern show differential involve-
ment depending on the laterality of seizure onset and presence or 
absence of MRI-visible hippocampus sclerosis. To test the added 
value of multivariate analysis over classical mass-univariate analy-
sis, we use the same dataset of TLE patients and healthy controls 
reported in our previous study (Roggenhofer et al., 2019). Brain 
anatomy feature extraction is performed in the established frame-
work of voxel-based morphometry (VBM), followed by multivar-
iate Bayesian (MVB) statistics adapted for use of structural MRI 
data.

2  | METHODS

2.1 | Participants

For statistical analysis, we used cross-sectional data from 
128 TLE patients (69 females, mean age ± standard deviation: 
38.17 ± 10.81 years, age range: 19–63 years) and 120 sex- and age-
matched healthy volunteers (63 females, mean age ± standard de-
viation: 36.01 ± 9.89 years, age range: 17–60 years; Table 1) that 
were reported previously (Roggenhofer et al., 2019). The protocol 
was approved by the local Ethics Committee. Informed consent was 
obtained from each participant. All procedures were performed in 
accordance with national and international guidelines.

The diagnosis of TLE followed the well-established criteria 
of the International League Against Epilepsy (Berg et al., 2010; 
Engel, 2006) including (a) clinical aspects of seizures like semiol-
ogy, onset, and history, (b) standard and/or sleep electroencepha-
lography with or without hyperventilation and intermittent photic 
stimulation additional to long-term video-electroencephalography 
(King	et	al.,	1984)	monitoring,	and	(c)	neuro-radiological	assessment.	
The evaluation of lateralization of the epileptogenic seizure onset 
zone, that is, what hemisphere was affected, depended on seizure 
semiology, evidence of unilateral epileptic activity in serial routine 
or long-term video-EEG monitoring and MRI findings. Patients with-
out strong evidence for lateralization, bilateral, lateral temporal or 
extra-temporal foci or with macroscopically evident brain pathology 
outside the mesial temporal lobe were excluded from subsequent 
analysis. Additional exclusion criteria included history of psycho-
genic nonepileptic seizures, autoimmune etiology, history of alco-
hol or drug abuse, history of brain trauma and evidence of ischemic, 
hemorrhagic brain lesions or tumors.

Among the 128 patients, 56 had right-lateralized TLE and 72 
left-lateralized TLE (Table 1). The neuro-radiological assessment 
confirmed the absence of macroscopic anatomical abnormalities in 
a	total	of	71	MRI	negative	patients	 (MRI−),	whereas	the	remaining	
57 patients were diagnosed with MTS (Table 1). 76 of 128 patients 
had a pharmaco-resistant type of epilepsy. The mean age of epilepsy 
onset was 19.2 ±	 14.3	 years.	 The	 disease	 duration	was	 averaged	
at 19.0 ± 13.7 years. The total intracranial volume was higher for 
healthy controls as for patients with TLE (Table 1).

2.2 | Magnetic resonance imaging and 
data processing

The MRI protocol consisted of T1-weighted images acquired on a 
1.5 Tesla Philips INTERA system (Philips Medical Systems) using 
a 3D magnetization prepared rapid gradient echo protocol (MP-
RAGE) yielding 150 contiguous slices (TE =	4.6	ms,	TR	= 30 ms, flip 
angle = 30°, FOV = 250 mm, matrix 256 × 256, voxel size 1 mm3 
isotropic).

Image preprocessing was performed using the SPM12 software 
package (Statistical Parametric Mapping, www.fil.ion.ucl.ac.uk/spm) 
running under Matlab 7.13 (Mathworks Inc.). The algorithm followed 
the default settings including automated tissue classification in the 
“unified segmentation” framework (Ashburner & Friston, 2005) 
using a novel set of brain tissue priors showing increased accu-
racy for subcortical structures (Lorio et al., 2016). Following this 
step, gray and white matter probability maps were spatially regis-
tered to a standardized Montreal Neurological Institute space using 
the diffeomorphic algorithm based on exponentiated lie algebra—
DARTEL (Ashburner, 2007). The resulting gray matter probability 
maps were scaled with the corresponding Jacobian determinants 
to preserve the initial total amount of signal intensity followed 
by spatial smoothing using an isotropic Gaussian kernel of 8 mm 
full-width-at-half-maximum.

2.3 | Multivariate Bayesian analysis

The MVB statistics followed a mass-univariate analysis investigating 
the temporal dynamics of structural remodeling in TLE (Roggenhofer 
et al., 2019). We used whole-brain two-sample t tests on gray mat-
ter volume maps to demonstrate a pattern of volume differences 
and their modulation by side of seizure onset additional to presence 
or absence of hippocampal sclerosis. Here, we combined the sig-
nificant clusters of the classical VBM approach separately for right 
and left laterality followed by binarization of the resulting pattern. 
We used atlas information (probabilistic and maximum probability 
tissue labels—derived from the “MICCAI 2012 Grand Challenge 
and Workshop on Multi-Atlas Labeling” www.masi.vuse.vande rbilt.
edu/works hop2012) to label anatomically distinct areas within the 
binarized VBM pattern. The anatomical labels as region-of-interest 
(ROI) provided the spatial constraints for multivariate decoding and 
Bayesian model selection.

Multivariate Bayesian was implemented to decode disease- 
related patterns from structural brain images (Friston et al., 2008). 
This decoding framework relies on a model inversion using a vari-
ational Bayesian implementation of expectation maximization, to 
furnish the model evidence and the conditional density of the mod-
el's hyperparameters (Friston & Kiebel, 2009). Free energy is an in-
formation theory quantity derived from physics that bounds the log 
evidence of a model of data (Friston, 2009). The multivariate model 
allows drawing inferences about where and how TLE pathology is 
represented in the brain by evaluating competing anatomical coding 

http://www.fil.ion.ucl.ac.uk/spm
http://www.masi.vuse.vanderbilt.edu/workshop2012
http://www.masi.vuse.vanderbilt.edu/workshop2012
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hypotheses on a group level. Therefore, MVB provides the statistical 
evidence for each regional model that the structural data predict the 
pathology (Kherif & Muller, 2020). We emphasize that the objective 
of this MVB approach is not to predict the pre- or absence of epi-
lepsy itself as the diagnosis is a known parameter but to enable in-
ferences on distinct regional models and differentiate the individual 
degree of contribution to a pattern of dynamic epilepsy-associated 
brain remodeling.

We used 6 different designs as MVB models including two 
groups—healthy volunteers and a subgroup of TLE patients. The 
subgroups were defined based on clinical phenotype—laterality of 
seizure onset (left and right TLE) and presence (MTS) or absence 
(MRI−)	of	temporal	lobe	pathology.	Bayesian	model	comparison	im-
plies the prior generation of multiple regional hypotheses (i.e. ROI or 
models) to be compared. As input for each Bayesian model, we use 
the voxel information based on gray matter probability maps within 
anatomically distinct atlas-defined ROI (see above “Magnetic reso-
nance imaging and data processing”). The calculation of the model 

evidence permits Bayesian Model Comparison and selection (Penny, 
Flandin, & Trujillo-Barreto, 2007). Bayesian Model Selection (Penny 
et al., 2007; Stephan, Penny, Daunizeau, Moran, & Friston, 2009) is 
applied on the created models to compare different spatial hypoth-
eses	(Hulme,	Skov,	Chadwick,	Siebner,	&	Ramsoy,	2014)	using	both,	
the model log evidence (Free Energy) and the parameter densities. 
Regional models maximizing free energy are more likely to confirm 
the model-specific prediction of TLE disease and subtype pathol-
ogy. Statically significant clusters at the group level were identified 
using the classical SPM mass-univariate approach. Each cluster was 
labeled according to their ROI.

We quantify the contribution of regions to the presence of di-
agnosis within the pattern of structural brain reorganization and 
ranked regions dependent on their free energy values. Rankings 
were performed in left and right TLE in comparison with healthy 
volunteers (Figure 1a) and, respectively, in left and right MTS and 
MRI−	TLE	 (Figure	 3b).	 To	 provide	 proportional	 comparability,	 free	
energy values of subgroups were scaled to subgroup-dependent 

F I G U R E  1   Structural remodeling in lateralized TLE patterns: main effects of disease. Multivariate Bayesian modeling (MVB) based on 
differences in volume estimates between healthy control volunteers and L or R TLE. Free energy values plotted for each parcellated region-
of-interest (ROI) displaying patterns of structural remodeling in L and R TLE based on sparse spatial prior. (a) Values for each ROI shown in 
descending order and (b) projected to standard MNI space for cortical ROIs. L TLE, left lateralized; R TLE, right-lateralized TLE
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maxima (Figure 3a). Statistical ANOVA analysis revealed differences 
of free energy values between TLE subtypes within the same TLE 
laterality. Left- and right-lateralized TLE parameters cannot be di-
rectly matched due to different selections of ROIs.

2.4 | Statistical analysis

Finally, we compared rankings based on multivariate pattern mode-
ling to the established VBM approaches. For detecting group differ-
ences between left- or right-lateralized TLE and healthy volunteers, 
we applied a statistical threshold at p < .001, uncorrected. VBM 
rankings depended on statistical parametric mapping and T-map 
values, averaged across distinct anatomical structures, that is, ROIs 
or regional models. For visualization of T-statistics, we adopted 
the same ranking sequences like for MVB results (Figure 2). The 

multivariate statistics (model log evidences) and the mass-univariate 
statistics (averaged T-statistics) cannot be compared for the same 
ROI. Instead, we propose to compare the overall ranking of the ROIs.

In a first analysis, we computed the MVB models using four 
types of structural abnormalities representations: compact, sparse, 
smooth, and support representations for each parcellated ROI 
(Friston et al., 2008). The model log evidences were compared with 
the same ROIs across different kernels. Models using a sparse rep-
resentation were the most predictive ones for both individual mesial 
temporal lobe structures and the mean of gray matter ROIs (data 
not shown).

Weights attributed to each voxel in ROIs suggest sparse struc-
tural coding. Therefore, sparse priors were uniformly chosen in this 
study to optimize the implemented models. Results are illustrated 
for left-lateralized TLE on the left side and for right-lateralized TLE 
on the right side on all following figures.

F I G U R E  2   Comparison between uni- and multivariate method. Bar plots represent ROI-dependent results based on MVB contrasted 
with VBM and differences in volume estimates between healthy volunteers and L or R TLE. In both diagrams, values rank in descending 
order of free energy. Missing structures in VBM rankings indicate T values below statistical threshold. (a) Free energy plotted across 
parcellated regions involved in structural remodeling for L and R TLE. (b) Means of T-statistics plotted across parcellated regions for L and 
R TLE, statistical threshold of p < .001, uncorrected. (c) Free energy values for MVB contrasted with T-statistics for VBM, averaged across 
ROIs for L and R TLE, plotted in A and B (mean ± standard deviation). L TLE, left lateralized, MVB, multivariate Bayesian, R TLE, right-
lateralized TLE, VBM, voxel-based morphometry.
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3  | RESULTS

3.1 | Main effects of disease

Using VBM, we defined the TLE-associated pattern and labeled the 
involved distinct anatomical structures. Based on MVB, we calcu-
lated free-energy parameters for each of these structures.

The topological MVB ranking determines that volume estimates 
in ipsilateral mesial temporal lobe regions most contribute to TLE 
(Figure 1a, b). The two most contributing regions cover the ipsilateral 
hippocampus and para-hippocampal gyrus independent of laterality. 
The consequent ranking positions are located prefrontally in superior 
and middle frontal gyrus for left TLE and bilaterally thalamic and ip-
silateral temporal polar for right TLE. In left TLE, higher free energy 
values are achieved for ipsilateral high frontal and parietal regions 
including superior frontal, postcentral gyrus, superior parietal lobule, 
precuneus, and supramarginal gyrus as well as lateral temporal regions 

including middle and inferior temporal gyrus. In contrast, the ipsilateral 
hippocampus and bilateral thalamus are ranked higher in right TLE.

In left TLE, the affected pattern differs in comparison to right TLE. 
The left-sided pattern is characterized by a lower maximal free energy 
value of 13 in left TLE in comparison with 20 in right TLE (Figure 1a), 
higher mean values (6.7 ±	4.0	in	left	TLE	and	5.7	±	4.7	in	right	TLE),	
and higher numbers of affected structures in general: n = 30 ipsilat-
eral and n = 13 contralateral in left TLE and n =	24	and	3	in	right	TLE	
(Figure 1a). The range between minimal and maximal values is more 
restrictive	for	left	TLE	(0.8;	13.6)	compared	with	right	TLE	(0.3;	20.4).

3.2 | Comparison between mass uni- and 
multivariate methods

To contrast the method with established volumetric morphology ap-
proaches, we paralleled the MVB-based ranking with a ranking based 

F I G U R E  3   Structural remodeling in TLE subtypes. MVB based on differences in volume estimates between healthy volunteers and left 
and	right	MTS	and	MRI−	TLE.	Free	energy	values	plotted	across	parcellated	regions	involved	in	structural	remodeling.	Values	are	shown	in	
descending order of free energy and based on sparse spatial prior. (a) Line diagram displays free energy values normalized to maximum of 
each	TLE	subgroup.	(b)	Absolute	values	of	free	energy	are	plotted	for	MTS	and	MRI−	subgroups.	L	TLE,	left	lateralized;	MRI−,	MRI	negative,	
without macroscopic MRI brain changes; MTS, mesial temporal lobe sclerosis; R TLE, right-lateralized TLE
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on VBM ROI-dependent means of T-statistics. For the whole remod-
eling pattern, the free energy values demonstrate a higher vari-
ance between distinct ROIs based on the MVB approach (6.7 ±	4.0	
in left TLE and 5.7 ±	4.7	 in	 right	TLE)	compared	with	VBM-based	
T-statistics (3.7 ± 1.5 in left TLE and 3.5 ±	0.4	in	right	TLE)	(Figure	2).

In terms of VBM ranking positions, we achieve highest scores 
for the ipsilateral thalamus, hippocampus, and temporal pole in right 
TLE. In right TLE, rankings provide highly congruent results based 
on the two distinct methods. Ranking positions of thalamic and 
para/hippocampal structures are switched between both methods. 
The VBM approach estimates an increased involvement of the ip-
silateral thalamus and inversely downgrades hippocampal and pa-
ra-hippocampal areas. In left TLE, VBM rankings differ extensively 
from MVB-based ones in diverse positions including top ranks. The 
first five VBM ranking positions comprise ipsilateral lateral tempo-
ral structures implying the middle and inferior temporal gyrus and 
prefrontal structures implying the opercular inferior frontal and 
middle frontal gyrus next to the thalamus. The VBM ranking com-
pared with the MVB approach supports ipsilateral lateral temporal 
structures (middle temporal gyrus), the fronto-basal cortex (inferior 
frontal gyrus and medial orbital gyrus), and the bilateral thalamus 
to a higher degree. Structures dominating the MVB-based ranking 
compared with VBM are mesial temporal lobe structures implying 
the para-hippocampal and bilateral hippocampal regions and the 
high frontal regions including the ipsilateral pre-, postcentral gyrus, 
and bilateral superior frontal gyri.

3.3 | Structural remodeling in TLE subtypes

To evaluate regional specificity between TLE subtypes, MVB mod-
els	were	established	for	MTS	and	MRI−	subtypes	of	TLE.	Structural	
changes	in	MTS	compared	to	MRI−	and	in	right	lateralized	compared	
to a left-lateralized epilepsy patterns (R MTS >	R	MRI−,	p = .0002 
and R MTS > R TLE, p = .030; Figure 3a, b) contribute most to struc-
tural remodeling, measured by higher absolute values of free energy. 
Patterns of structural remodeling overlap between right TLE with 
MTS and TLE without subdifferentiation. MTS TLE differs in a pro-
portionally stronger involvement of the ipsilateral amygdala and to 
a lower degree of the contralateral thalamus (Figure 3). Structural 
differences	 in	right	MRI−	TLE	do	not	contribute	for	differentiation	
except the ipsilateral temporal pole, contralateral thalamus, and ip-
silateral precuneus.

In left TLE, extrahippocampal patterns of structural remodeling 
differ between the whole TLE cohort and distinct TLE subtypes. 
Both	subtypes,	left	MTS	and	MRI−,	exhibit	the	ipsilateral	hippocam-
pus as the mayor structure decisive for the disease (Figure 3 left). In 
consequent positions in MTS TLE, bilateral thalami as well as mesial 
and lateral temporal lobe regions including the para-hippocampal, 
middle, and inferior temporal gyrus next to the amygdala precede 
the ranking, followed by medial prefrontal areas like the middle and 
superior	frontal	gyrus.	 In	MRI−	TLE,	prefrontal	next	to	parietal	re-
gions dominate the mayor ranking positions including the ipsilateral 

middle and inferior frontal, the postcentral and supramarginal gyrus, 
the precuneus and bilateral superior parietal lobules. Comparing 
remodeling	patterns	directly	between	 left	MTS	and	MRI−	TLE,	bi-
lateral amygdala, thalamic and entorhinal regions almost exclusively 
contribute	 for	 differentiation	 MTS.	 In	 MRI−	 TLE,	 prefrontal	 and	
parietal regions are predominantly important including the inferior 
frontal gyrus, supplementary motor area, pre- and postcentral gyrus, 
precuneus, angular, and supramarginal gyrus.

4  | DISCUSSION

Our study provides unique empirical evidence for a differential con-
tribution of brain regions to the process of brain anatomy remodeling 
in TLE. Using multivariate statistical methods allowing for topology 
inferences, we quantify the individual contribution of structures 
within limbic and extralimbic circuits to the TLE-associated brain 
anatomy pattern. We identify the ipsilateral hippocampal complex 
as main driver of spatial dynamics in TLE, whereas thalamus and a 
number of cortical areas show differential contribution depending 
on the laterality of the epileptogenic focus and mesial temporal lobe 
pathology. We interpret our findings as correlates of differential spa-
tial trajectories within the TLE network that are also subjected to 
changes in due course of disease. The translation of our approach to 
clinical usage could provide a novel in vivo diagnostic tool for nonin-
vasive localization of an epileptogenic focus, not detectable by con-
ventional radiological assessment.

4.1 | Main effects of disease

Our main finding is that the hippocampal complex is the most dis-
criminative region for TLE-related remodeling of brain anatomy. 
Distinct morphology inferences dependent on hippocampal scle-
rosis corroborate that the hippocampal topology plays a decisive 
role in TLE-related spatial modulation of anatomical networks, sup-
plementary to the previously described temporal dynamics. We 
observed a common pattern for TLE patients with mesial temporal 
lobe pathology that includes the ipsilateral hippocampus, para-
hippocampal gyrus, amygdala, and bilateral thalamus—all struc-
tures representative of the brain anatomy network implied in TLE 
(Maccotta, Moseley, Benzinger, & Hogan, 2015; Mathern, Babb, 
Vickrey, Melendez, & Pretorius, 1995). Given the role of thalamus 
in the seizure propagation across both hemispheres (Blume, 2009), 
we interpret our bilateral thalamic findings as confirmation for its 
important	role	in	the	initiation	(Li	et	al.,	2014;	Toyoda,	Bower,	Leyva,	
& Buckmaster, 2013), modulation, and propagation (Barron, Fox, 
Laird, Robinson, & Fox, 2012; Bertram, Mangan, Zhang, Scott, & 
Williamson, 2001; Norden & Blumenfeld, 2002) of seizures.

Laterality of the seizure onset influences the spatial pattern in 
such way that frontoparietal and latero-temporal structures have 
a predominant role in left TLE compared with right TLE, a result 
corroborated by VBM (Riederer et al., 2008) and cortical thickness 
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studies (Kemmotsu et al., 2011). Further, we demonstrate a decen-
tralized, but less severely affected pattern in left TLE. These find-
ings are supported by previous reports where patients with left TLE 
showed more widespread and diffuse abnormalities including cor-
tical volume loss (Kemmotsu et al., 2011; Riederer et al., 2008) and 
changes in white matter fiber tracts (Ahmadi et al., 2009) extending 
to contralateral regions.

The asymmetry in topology patterns could be a consequence 
of hemisphere-specific rates of brain fiber tract maturation. 
Quantitative and diffusion imaging corroborated that maturation 
occurs earlier and evolves quicker in the left than in the right hemi-
sphere (O'Muircheartaigh et al., 2013) whereas global and local ef-
ficiencies are significantly decreased until early adulthood (Zhong, 
He, Shu, & Gong, 2016). In the context of quicker left-hemispheric 
development and less integrated connection with less efficient 
communication, the left hemisphere tends to be more susceptible 
to initial events like febrile convulsions and early onset seizures 
(Kemmotsu et al., 2011). Analogously, hippocampal sclerosis is ob-
served more often in left rather than right hemisphere after febrile 
convulsions (Janszky et al., 2003). Correspondingly, age-related 
maturation of white matter is delayed in children with new-onset 
epilepsy (Chiron et al., 1997; Hutchinson et al., 2010). In our data-
set, the age at the first seizure was not different between left- and 
right-lateralized TLE favoring the argumentation that rates of mat-
uration differ across hemispheres. Furthermore, left hemispheric 
white matter connectivity in individuals with left-sided language 
dominance exhibit a more widespread pattern and comprises more 
complex hippocampal connections (Powell et al., 2007). This can 
provide a physiological network basis for a more diffuse and ex-
tensive left-lateralized seizure propagation underlying network 
deterioration.

4.2 | Differential regional contribution in 
TLE subtypes

Another important finding is the evidence for differential contri-
bution of specific brain structures to the TLE pattern under the 
modulatory impact of presence or absence of mesial temporal lobe 
pathology. The ipsilateral hippocampus volume is highly contribu-
tory to group differences between healthy controls and all TLE sub-
types	except	for	right	MRI−	patients	where	thalamus,	temporal	polar	
cortex, and insula achieved highest ranking. Our results, showing a 
principal difference of regional contribution to brain remodeling 
depending on the presence or absence of mesial temporal lobe 
sclerosis, confirm the supposition that these represent the same 
nosological entity or lie along a biologic continuum (Labate, Cerasa, 
Gambardella, Aguglia, & Quattrone, 2008; Mumoli et al., 2013). We 
go further to claim that the evidence for differential regional contri-
bution adds another layer of complexity linked to time-dependent 
modulation of brain structure in TLE. This is in line with our pre-
vious findings of a switch from hippocampus volume increases to 
decreases that could be interpreted as turning point with impact 

on remote regions within the TLE-affected network (Roggenhofer 
et al., 2019).

The regions, decisive for TLE in absence of mesial temporal 
lobe	 pathology	MRI−,	 represent	 a	 widespread	 distributed	 pattern	
including motor, premotor, and associative areas. Our findings cor-
roborate previous reports demonstrating either absence of brain 
anatomy changes (Alhusaini et al., 2013; Coan, Campos, Beltramini, 
et	 al.,	 2014;	Mueller	et	 al.,	 2006;	Peng	et	 al.,	 2014)	or	 implication	
of thalamus and sensorimotor cortex (Coan, Campos, Yasuda, et al., 
2014;	Labate	et	al.,	2008;	Mueller	et	al.,	2009;	Riederer	et	al.,	2008).	
Preceding	studies	 in	MRI−	TLE	support	 the	 involvement	of	 frontal	
and parietal cortices, especially the sensorimotor cortex mainly 
due to excitotoxicity induced neuronal loss (McDonald et al., 2008; 
Mueller et al., 2009).

4.3 | Methodological considerations

The descriptive comparison demonstrates the significant advantage 
in discriminative power when using multivariate instead of univari-
ate methods to answer the question about differential regional con-
tribution to brain remodeling in TLE. The MVB findings, confirming 
the hippocampus as main target of spatial remodeling, are in line 
with previous computational anatomy studies using univariate sta-
tistics (Bernhardt et al., 2008; Moran, Lemieux, Kitchen, Fish, & 
Shorvon, 2001).

The VBM analysis downgraded the role of the mesial temporal 
lobe structures in both right and left TLE and increased rankings in 
favor of cortical and subcortical structures known to be secondarily 
implicated in seizure. Indeed, one can infer generic disease-asso-
ciated structural differences by established VBM approaches. But 
the method does not allow drawing causal inferences about in-
ter-regional dependencies in brain anatomy. Disseminated patterns 
of structural reorganization are less likely to be identified in VBM 
approaches and inter-regional dependencies are not considered. 
In particular, mesial temporal lobe regions vary highly anatomically 
across healthy individuals in gyral and sulcal shape and patterning 
with a convoluted cortical ribbon. Characteristic signs of TLE are an 
increased folding complexity in temporo-limbic cortices, hippocam-
pal malrotations, and developmental anomalies (Kim et al., 2012; 
Voets, Bernhardt, Kim, Yoon, & Bernasconi, 2011) in addition to 
disease progression-related atrophy (Roggenhofer et al., 2019). 
Individual anatomical particularities and disease-dependent remod-
eling of medial temporal lobes can influence the spatial distribution 
of an affected structural pattern on the group level. In analogy, it 
was not possible to determine mesial temporal lobe structures as the 
most affected regions concerning structural differences between 
TLE and healthy volunteers in the VBM approach.

A multivariate approach can reveal information jointly encoded 
by several voxels as the multivariate distance between the two cat-
egories accounts for correlations among these. Extending classical 
inferences of mass-univariate analysis, the multivariate technique is 
particularly suited to quantify local changes in brain morphology and 



     |  9 of 11ROGGENHOFER Et al.

does not depend on a statistical threshold. Using MVB, we were able 
to answer the question which brain regions are jointly informative 
for the disease pathology and which anatomical structures allow to 
separate TLE patients and healthy controls. In this respect, the es-
tablished multivariate method provides a reliable and robust ranking.

4.4 | Limitations and conclusion

We acknowledge several limitations in the design which may have 
impacted our results. First, we performed a population-based study 
whereupon the explanatory power concerning a spatial pattern is 
limited on the level of the individual patient. With respect to inter-
subject spatial variability of the epileptogenic focus in TLE, a transla-
tion of the method to the individual level provides the possibility to 
localize	the	morphological	focus	in	MRI−	TLE.	The	focus	detection	of	
structural abnormalities in patients without an EEG-detectable sei-
zure onset zone can provide a decisive feature within a multimodal 
presurgical diagnostic framework in drug-resistant patients. Second, 
the MVB-based ranking was paralleled by a VBM-based ranking, 
which does not provide a validation of the MVB method. Up to now, 
it remains unknown to what extent a morphological focus is congru-
ent with the seizure onset zone. To validate the accuracy of the mul-
tivariate technique, one could assess the overlap between individual 
seizure onset zones based on concomitant intracranial EEG record-
ings and MVB-based detection of the focus which contributes the 
most to dynamic brain remodeling.

We present topology inferences of disease-related remodeling 
that highlights a key dissociation in the brain anatomy contributing 
to epilepsy pathology and healthy control conditions. Structural 
Bayesian modeling furnishes an appropriate framework for popula-
tion-based analysis to identify regions being most important for dis-
ease-related structural remodeling and quantitatively estimate the 
involvement of distinct structures in spatially restricted morphologi-
cal remodeling in focal epilepsy. An individualized focus identification 
can provide preoperative clinical benefits for targeting electrodes 
used for neurostimulation therapy and is relevant to guide and moni-
tor surgical intervention, especially in the context of increased use of 
minimally invasive approaches, such as MRI-guided thermal ablation.
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