Intraflagellar Transport Complex B Proteins Regulate the Hippo Effector Yap1 during Cardiogenesis

Graphical Abstract

Highlights

- IFT proteins restrict proepicardial and myocardial development

- IFT proteins act independently of primary cilia in this process

- IFT proteins modulate BMP signaling by tuning Yap1-Tead activity

- IFT88 and IFT20 interact with YAP1 in the cytoplasm to set Yap1-Tead activity

Authors

Marina Peralta, Laia Ortiz Lopez, Katerina Jerabkova, ..., Benedicte Delaval, Sigolène M. Meilhac, Julien Vermot

Correspondence
jvermot@imperial.ac.uk

In Brief

Peralta et al. show that intraflagellar transport (IFT) complex B proteins (Ift88, Ift54, and Ift20) modulate the Hippo pathway effector Yap1 in zebrafish and mouse. This cytoplasmic interaction is key to restrict proepicardial and myocardial development.

Peralta et al., 2020, Cell Reports 32, 107932
July 21, 2020 © 2020 The Authors.
https://doi.org/10.1016/j.celrep.2020.107932
Intraflagellar Transport Complex B Proteins Regulate the Hippo Effector Yap1 during Cardiogenesis

Marina Peralta,1,2,3,4 Laia Ortiz Lopez,1,2,3,4,13 Katerina Jerabkova,1,2,3,4,13 Tommaso Lucchesi,5,6,7,13 Benjamin Vitre,8 Dong Han,5,6 Laurent Guillomet,5,6 Chaitanya Dingare,9 Izabela Sumara,1,2,3,4 Nadia Mercader,10,11 Virginie Lecaudey,9 Benedicte Delaval,8 Sigolène M. Meilhac,5,6 and Julien Vermot1,2,3,4,7,12,14,*

1Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
2Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
3Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
4Université de Strasbourg, Illkirch, France
5Imagine–Institut Pasteur, Laboratory of Heart Morphogenesis, Paris, France
6INSERM UMR1163, Université Paris Descartes, Paris, France
7Sorbonne Université, Collège Doctoral, F-75005, Paris, France
8Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), CNRS, Université de Montpellier, Montpellier, France
9Institute for Cell Biology and Neurosciences, Goethe University of Frankfurt, Frankfurt, Germany
10Institute of Anatomy, University of Bern, Bern, Switzerland
11Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
12Department of Bioengineering, Imperial College London, London, UK
13These authors contributed equally
14Lead Contact
*Correspondence: jvermot@imperial.ac.uk
https://doi.org/10.1016/j.celrep.2020.107932

SUMMARY

Cilia and the intraflagellar transport (IFT) proteins involved in ciliogenesis are associated with congenital heart diseases (CHDs). However, the molecular links between cilia, IFT proteins, and cardiogenesis are yet to be established. Using a combination of biochemistry, genetics, and live-imaging methods, we show that IFT complex B proteins (Ift88, Ift54, and Ift20) modulate the Hippo pathway effector YAP1 in zebrafish and mouse. We demonstrate that this interaction is key to restrict the formation of the proepicardium and the myocardium. In cellulo experiments suggest that IFT88 and IFT20 interact with YAP1 in the cytoplasm and functionally modulate its activity, identifying a molecular link between cilia-related proteins and the Hippo pathway. Taken together, our results highlight a noncanonical role for IFT complex B proteins during cardiogenesis and shed light on a mechanism of action for ciliary proteins in YAP1 regulation.

INTRODUCTION

Primary cilia are immotile microtubule-based organelles, well known for being both chemical and/or mechanical sensors (Berrabari et al., 2009; Ferreira et al., 2019). Disruption of cilia function causes multiple human syndromes known as ciliopathies (Reiter and Leroux, 2017). Cilia are required for cardiac development and mutations in cilia-related proteins have been linked to congenital heart diseases (CHDs) (Kiena et al., 2016; Li et al., 2015; San Agustin et al., 2016; Slough et al., 2008). Nevertheless, the specific role of cilia and cilia-related proteins during cardiogenesis is still unclear.

Intraflagellar transport (IFT) proteins are required for the transport of cilia components along the axoneme and are thus essential for cilia formation and function (Rosenbaum and Witman, 2002). The role of IFT proteins during ciliogenesis is highly conserved across organisms (Taschner et al., 2012). The IFT machinery is composed of two biochemically distinct subcomplexes, IFT-A and IFT-B (Taschner et al., 2012). The IFT complex B member IFT20, which localizes inside the cilium and at the Golgi complex in mammalian cells, participates in the sorting and/or transport of membrane proteins for the cilia (Follit et al., 2006). Within the IFT complex B, IFT20 interacts with IFT54/Elipsa (Omori et al., 2008; Zhu et al., 2017) and IFT88, which is essential for flagellar assembly in Chlamydomonas and ciliogenesis in vertebrates (Pazour et al., 2000). Mutations in some IFT proteins have been identified in CHDs (Li et al., 2015). IFT proteins also display noncanonical, cilia-independent functions (Hua and Ferland, 2018; Vertii et al., 2015). IFT88, for example, is needed for spindle orientation and organization, cleavage furrow ingression, or extra centrosome clustering in dividing cells (Delaval et al., 2011; Taulet et al., 2017, 2019; Vitre et al., 2020) and regulates G1-S phase transition in nocilcated cells (Robert et al., 2007). IFT20, together with IFT88 and IFT54, plays a role...
in the establishment of the immune synapse in T lymphocytes lacking cilia (Finetti et al., 2009; Galgano et al., 2017). These observations suggest that IFT proteins could play a key role in embryonic cardiogenesis through both cilia-dependent and -independent functions.

The Hippo signaling mediators, YAP1/WWTR1 (TAZ), constitute a key signaling pathway for the regulation of cardiac development (Fukui et al., 2018; Lai et al., 2018; Ragni et al., 2017; Xin et al., 2011) and cardiac regeneration (Bassat et al., 2017; Leach et al., 2017) in vertebrates. For example, YAP1/WWTR1 (TAZ) are required for epicardium and coronary vasculature development (Singh et al., 2016) in mice. In addition, Yap1 signaling has been reported to regulate the number of atrial cardiomyocytes derived from Islet1 (Isl1)-positive (+) secondary heart field (SHF) cells in the zebrafish (Fukui et al., 2018). Changes in cell shape, substrate stiffness, and tension forces activate a phosphorylation-independent YAP1/WWTR1 (TAZ) modulation (Elo-sequi-Artola et al., 2017), which is mediated by the Motin family (AMOT, AMOTL1, and AMOTL2) (Bratt et al., 2002; Zheng et al., 2009). Motin proteins bind to YAP1/WWTR1 (TAZ), sequestering them in the cytoplasm in several cellular contexts (Agarwala et al., 2015; DeRan et al., 2014; Nakajima et al., 2017; Wang et al., 2011; Zhao et al., 2011). While it is known that ciliary proteins from the Nephrocystin family modulate the transcriptional activity of YAP1/WWTR1 (TAZ) (Frank et al., 2013; Grampa et al., 2016; Habbig et al., 2012) and that the Hippo kinases MST1/2-SAV1 promote ciliogenesis (Kim et al., 2014), the connection between the Hippo pathway and cilia function remains unclear.

Cardiogenesis involves an interplay between multiple tissue layers. The epicardium is the outermost layer covering the heart. This cardiac cell layer plays an essential role in myocardial maturation and coronary vessel formation during development (Männer et al., 2005; Moore et al., 1999; Wu et al., 2013) and has a crucial role during regeneration (González-Rosa et al., 2012; Kikuchi and Poss, 2012; Limana et al., 2011). Epicardial cells derive from the proepicardium (PE), an extracardiac transient cluster of heterogeneous cells (Katz et al., 2012). The PE, the sinoatrial node, and the atrial myocardium all derive from the SHF (Buckingham et al., 2005; Monnersteeg et al., 2010; van Wijk et al., 2009). In zebrafish, the transcription factor Isl1 marks a subset of SHF cells that give rise to part of the atrial myocardium (de Pater et al., 2009; Witzel et al., 2012). In mice, the PE is a single cell cluster located close to the venous pole of the heart (Katz et al., 2012), while in zebrafish it is composed of two cell clusters, avcPE (the main source of cells) and vpPE (Peralta et al., 2013). PE cells give rise to the epicardium, part of the coronary vasculature, and intracardiac fibroblasts (Acharya et al., 2012; Katz et al., 2012; Mikawa and Fischman, 1992; Mikawa and Gourdie, 1996). The secreted signaling molecules of the bone morphogenetic protein (BMP) family are indispensable for PE formation (Ishii et al., 2010; Liu and Stainier, 2010; Schluter et al., 2006).

Despite the increasing evidence for the role of IFT proteins in cell signaling, it has been difficult to pinpoint the exact function of cilia-related proteins outside the cilium. Without this key information, the question of whether cilia-related proteins can affect the developmental program independently of their cilia function remains unresolved. Here, we provide a combination of in vivo and in vitro analyses of IFT protein function showing that IFT complex B proteins can modulate the Hippo pathway effector Yap1. In particular, we show that IFT88 is required to restrict PE and myocardium development through cytoplasmic activity.

RESULTS

IFT Complex B Proteins Regulate PE Development in Zebrafish and Mouse

Considering the importance of cilia during cardiogenesis, we assessed the role of several IFT complex B proteins during PE development. In order to benefit from live imaging and genetics, we used zebrafish as a model organism. We performed live-imaging focusing on the main PE cell source located near the atrioventricular canal (avcPE) in ift88 (Tsujikawa and Malicki, 2004) and elipsa/ift54 (Omori et al., 2008) mutants (Figures 1A–1D). Between 50 and 57 hours post fertilization (hpf), we found that ift88 mutants display multiple avcPE clusters (either two or three), when controls have only one (Video S1). Using a wilms tumor 1 (wt1a) enhancer trap line that marks proepicardial and epicardial cells (Et(−26.5Hsa.WT1-gata2:EGFP)ts1; hereafter, epi:GFP) (Peralta et al., 2013), we quantified avcPE and epicardial cell number and found that ift88−/− have increased avcPE and

![Figure 1. IFT Complex B Proteins Regulate Proepicardial Development in Zebrafish and Mice](image-url)}
epicardial cell numbers compared to their controls at 50 and 55 hpf, respectively (Figures S1B and S2A). Similarly, we found that elipsa/ift54 also showed bigger avcPE compared to controls (Figures S1C and S2A). Taken together, these data indicate that ift88 and elipsa/ift54 are required to restrict PE size.

To determine whether primary cilia are required for PE formation, we took advantage of the iguana/dzip (Tay et al., 2010) mutant, a well-established cilia mutant lacking primary cilia (Kim et al., 2010). We confirmed the absence of primary cilia in the pericardial cavity of the iguana mutant (Tay et al., 2010). We found that the absence of primary cilia in the pericardial cavity of the iguana mutant phenotype (Huang and Schier, 2009). Live imaging revealed that a significant fraction of iguana mutants lacked an avcPE between 50 and 57 hpf (Figure 1B; Video S3). At 55 hpf, iguana/−/− displayed decreased avcPE cell numbers (Figures 1D, S1A, and S2A). Since the iguana mutants presented a phenotype opposite to that of the ift88 mutants, we analyzed the ift88/−/−; iguana/−/−; epi:GFP double mutant to elucidate whether the differences could be due to a new cilia-independent function. The ift88/−/−; iguana/−/−; double mutant shows multiple avcPE cluster formation and an increased avcPE cell number, reminiscent of ift88 loss of function (Figures 1E, 1F, and S1D). We conclude that ift88 modulates the PE cell number independently of its cilia function.

We assessed whether the role of IFT complex B proteins during PE formation was conserved in mammals. We analyzed the PE in ift20 and ift88 knockout (KO) mice at mouse embryonic day 9.5 (E9.5) (Figures S3A and S3B). First, we performed immunofluorescence (IF) using an anti-Arl13b antibody to quantify the number of ciliated PE cells in ift20, ift88, and wild-type mice (Figures S3C–S3C). We found that, while over 60% of the wild-type PE cells were ciliated, in ift88/−/− and ift20/−/−, the percentage of ciliated PE cells in ift20/−/−; tcf21:nls-GFP and ift88/−/−; tcf21:nls-GFP double mutants was conserved in mammals. We analyzed the ift88/−/−; tcf21:nls-GFP and ift20/−/−; tcf21:nls-GFP double mutants to determine whether Isl1+ SHF cells were altered at earlier stages leading to the increment in avcPE and atrial myocardial cells, we quantified Isl1+ cells in ift88 and amot2a mutants at 36 hpf. We did not find differences between ift88/−/−; amot2a/−/−, and their controls (Figure S1E).

BMP Signaling Is Increased in ift88, elipsa/ift54, and ift20 Mutants during PE Development

As it is known in zebrafish that overexpressing BMP increases PE size (Liu and Stainier, 2010), we investigated whether ift88 loss influences BMP signaling. We first assessed bmp4 expression by in situ hybridization (ISH) in ift88 and elipsa mutants. We found that ift88/−/− display ectopic expression of bmp4 in the dorsal pericardium (DP) at 48 hpf (Figure S4B). To validate that the upregulation is functional in vivo, we quantified cellular BMP activity by using p-smad1/5 as a readout and confirmed that the absence of Ift88 leads to increased BMP signaling activity in the DP and myocardium, especially in the venous pole (Figures 2D, 2D′, and S4C). By 55 hpf, bmp4 expression at the atrioventricular canal myocardium is reduced and the expression at the venous pole is almost undetectable in controls. By contrast, ift88 mutants presented strong bmp4 expression in both domains (Figure S4B). Myocardial p-smad1/5 was also increased in ift88/−/− compared to controls, but not in the DP (Figures 2F, 2F′, and S4C).
A, B, C, F, G: Diagrams showing cell number and cluster number changes under different conditions.

D: Graph showing the percentage of avcPE cluster number.

E: Diagrams showing bmp4 expression levels.

H, H': Diagrams showing YAP1 and AMOTL1 positive cells under different conditions.

(legend on next page)
We observed that some pericardial cells show stronger GFP intensity (hence higher levels of active Yap1) than others. Consistently with our data at later stages (Video S4; Figure S5B), pericardial cells at the area that will give rise to the avcPE show stronger GFP intensity. Additionally, we obtained similar data with Ctgf antibody, a well-characterized Yap1 target gene (Zhao et al., 2008; Figure S5E).

To test whether the increased avcPE cell number was due to abnormal Yap1 activity, we performed IF to quantify the number of nuclear Yap1+ cells in ift88 and elipsa mutants (Figures 3A, 3A’ and S5F–S5G). At 55 hpf, ift88−/− showed more myocardial with nuclear Yap1+ cells than controls, especially in the atrium (Figure 3A–A’). Similar data were obtained with the elipsa mutants (Figure 3A). To further validate the link between increased PE size and Yap1-Tead activity, we treated the ift88−/− with the drug Verteporfin, which binds to YAP and changes its conformation, blocking its interaction with TEAD (Liu-Chittenden et al., 2012). To assess Verteporfin specificity, we performed time-lapse imaging on Verteporfin-treated 4xGTIC:d2GFP embryos. We measured the Yap/WWtr1-Tead activity (GFP average intensity) in the same PE and pericardial cells at several time points: before adding Verteporfin (t0), after 2-h treatment with Verteporfin, and 45 min after washing out (Figure S5C). We found that Yap/WWtr1-Tead activity is significantly decreased with Verteporfin, confirming the specificity of the drug on the embryo. The next treated ift88−/− and control (ift88+/− and +/+ embryos with Verteporfin (Figure 3B). Control embryos treated with Verteporfin showed smaller avcPE compared to untreated controls.

Figure 3. Yap-Tead Activity Is Increased in ift88, elipsa/ift54, and Ift20 Mutants during Proepicardium Development

(A) Graphs show number of Yap1+ cells in the myocardium (myoc) and dorsal pericardium (DP) quantified in ift88 (n = 13), elipsa (n = 6), and their controls (n = 12 and n = 7, respectively), ift88 mutants showed increased Yap1+ myoc cell numbers (t test, p value, 0.03) and a tendency toward higher Yap1+ DP cell numbers (t test, p value, 0.07). elipsa mutants show higher Yap1+ myoc cell numbers (t test, p value, 0.036).

(A) Control and ift88−/−. epi:GFP immunofluorescence (IF) confocal sections labeled with anti-myosin heavy chain antibody (MHC) (red), GFP (green), -Yap1 (white), and DAPI (blue) at 55 hpf. Individual channel is displayed for Yap1 (signal is shown as ice LUT to facilitate the visualization of signal intensity, where green is the minimum and red is the maximum). Yellow arrows mark nuclear Yap1-positive atrial myocardial cells. White arrowheads mark the avcPE.

(B) Graph shows avcPE cell number quantified in control (n = 9), ift88−/−; epi:GFP (n = 8) and Verteporfin (5 μM)-treated ift88−/−; epi:GFP (n = 16) and control (n = 20) embryos. Control embryos treated with Verteporfin showed smaller avcPE compared to untreated controls (t test, p value, 0.04). Verteporfin-treated ift88−/−; epi:GFP embryos presented lower avcPE cell numbers than nontreated ift88−/−; epi:GFP embryos (t test, p value, 0.027). ift88−/−; epi:GFP embryos showed bigger avcPE compared to untreated (t test, p value, 0.01) and treated controls (t test, p value, 0.0001).

(C) Graph shows number of p-smad1/5/8+ cells in the myoc quantified in control (n = 7), ift88−/−; epi:GFP (n = 5), and Verteporfin (20 μM)-treated ift88−/−; epi:GFP (n = 9) and control (n = 6) embryos from 31 to 55 hpf. Control embryos treated with Verteporfin showed decreased p-smad1/5/8+ cell numbers compared to untreated controls (t test, p value, 0.0219). Verteporfin-treated ift88−/−; epi:GFP embryos presented less p-smad1/5/8+ cells than non-treated ift88−/−; epi:GFP embryos (t test, p value, 0.0173). ift88−/−; epi:GFP embryos showed more p-smad1/5/8+ cells compared to untreated (t test, p value < 0.0001) and treated controls (t test, p value < 0.0001).

(D) Percentage of avcPE cluster number in amotl2a−/− (n = 26) and amotl2a−/− (n = 38) embryos between 50 and 57 hpf (Mann-Whitney test, p value, 0.08).

(E) Whole-mount bmp4 in situ hybridization (ISH) in amotl2a−/− (n = 18/25) and amotl2a−/− (n = 13/17) embryos (55 hpf). Yellow arrow shows bmp4 overexpression. Scale bars: 20 μm.

(F) Graph shows number of p-smad1/5/8+ cells in the myoc quantified in Verteporfin (20 μM)-treated amotl2a−/− (n = 19) embryos from 31 to 55 hpf and untreated amotl2a−/− (n = 12) embryos. Treated embryos showed decreased p-smad1/5/8+ cell numbers compared to untreated ones (t test, p value, 0.0148).

(G) Graph shows avcPE cell number quantified in Verteporfin (20 μM)-treated amotl2a−/− (n = 13) embryos from 31 to 55 hpf and untreated amotl2a−/− (n = 10) embryos. Treated embryos showed decreased avcPE cell numbers compared to untreated ones (t test, p value, 0.0059).

(H) Whole-mount bmp4 ISH in XA9310 (10 μM)-treated amotl2a−/− (n = 16) from 31 to 55 hpf and untreated embryos (n = 11). Treated embryos showed either decreased (n = 8/16) or absent (n = 7/16) bmp4 expression at the atrioventricular canal myoc and the venous pole. Scale bars: 20 μm.

(I) Graphs show percentages of YAP1+ PE cells and double-YAP1-AMOTL1-positive PE cells in ift20 KO (n = 5 embryos: 1,196 nuclei analyzed) and control (n = 4 embryos: 929 nuclei analyzed) mice at E9.5. The percentage of nuclear YAP1+ PE cells (Chi-square test of homogeneity = 25.354; p value, 4.77E-07 on 1 degree of freedom) and nuclear YAP1-AMOTL1+ cells (Chi-square test of homogeneity = 12.025; p value, 5.25E-04 on 1 degree of freedom) were higher in ift20 KO than in control mice.

(J) Control and ift20 KO IF confocal sections labeled with TBX18 (red), YAP1 (yellow), and Hoechst (blue) at E9.5. The white dotted lines enclose the PE area. (H) Zoomed region shows the difference between nuclear YAP1+ cells (yellow arrows) and YAP1-negative cells (yellow asterisks). Hoechst signal (blue) highlights cell nuclei. YAP1 signal is shown as fire LUT to facilitate the visualization of signal intensity, where blue is the minimum and yellow is the maximum. In all graphs, red bars indicate mean ± SD. In all panels, ventral views, anterior is to the top. V, ventricle; At, atrium.
Figure 4. IFT88 and IFT20 Are Physically Associated to YAP1, and IFT88 Modulates YAP1 Activity

(A) Co-IP experiment using HeLa cells transfected with IFT88-GFP, HA-Amot1, and YAP1-Myc (l.e., long exposure; s.e., short exposure). Co-IP experiment using HEK293 cells transfected with Flag-Amot1 and IFT20-GFP. Endogenous levels of Yap1 are monitored.

(B) Schematic representation of the IFT88 auxin-inducible degron (AID) system.

(C) Western blot analysis of IFT88 and YAP1 degradation after auxin treatment (0, 0.5, and 2 h).

(D) Graph shows the increase in normalized YAP1 nuclear signal in cells treated with auxin (6 h) (Mann-Whitney, p value < 0.0001) (controls: 2 replicates, n = 204 cells; Auxin 2 h: 2 replicates, n = 261 cells).

(E) Graph shows the increase in YAP/WWTR1 (TAZ) nuclear signal in IFT88-siRNA (48 h)-treated MDCK cells (n = 5 replicates, average cell number analyzed for each condition = 382; t test, p value, 0.004). Box and whiskers (5th–95th percentile). Outliers are represented as red dots (NT-siRNA) or blue squares (IFT88-siRNA).

(legend continued on next page)
Verteporfin-treated ift88^{−/−} embryos presented fewer avcPE cell numbers than nontreated ift88^{−/−} embryos. Interestingly, nontreated controls and treated ift88 mutants did not show significant differences in avcPE cell number. Thus, the increase in avcPE cell number induced in the absence of ift88 was rescued by Verteporfin treatment. These results suggest that ift88 requires Yap1 activity to modulate the PE size restriction.

To explore a possible role of Yap1 in the regulation of BMP signaling by IFT, we treated ift88^{−/−} and control (ift88^{+/+} and ^{+/−}) embryos with Verteporfin (Figure 3C) and quantified BMP activity. Control embryos treated with Verteporfin showed decreased p-smad1/5⁺ myocardial cell number compared to nontreated controls. Verteporfin-treated ift88^{−/−} embryos presented fewer p-smad1/5⁺ myocardial cells than nontreated ift88^{−/−} embryos. Remarkably, nontreated controls and treated ift88^{−/−} did not show significant differences. Thus, the increase in BMP activity induced in the absence of ift88 was rescued by Verteporfin treatment. Likewise, ISH performed in elipsa^{−/−} and control (elipsa^{+/+} and ^{+/−}) embryos treated with Verteporfin displayed decreased bmp4 expression (Figure S6C). Furthermore, treatment with the drug XAV939, a tankyrase inhibitor that suppressed YAP-TEAD activity (Wang et al., 2015), also led to a reduction of bmp4 expression (Figure S5H). These results suggest that ift88 and ift54 require Yap1 activity to modulate BMP signaling activity in the myocardium of the zebrafish. To confirm the involvement of an increased Yap1 activity in the ift88^{−/−} phenotype, we analyzed the avcPE in angiomotin like 2a (amotl2a) mutants (Figures 3D and 3E). In zebrafish, Amotl2a physically interacts with Yap1 leading to its cytoplasmic retention in a way that amotl2a mutants show upregulated Yap1 activity (nuclear Yap1) (Agarwala et al., 2015; Nakajima et al., 2017). Accordingly, amotl2a^{−/−} presented multiple avcPE formation and increased bmp4 expression when compared to amotl2a^{+/−} embryos at 55 hpf. When treated with Verteporfin, amotl2a^{−/−} showed decreased myocardial p-smad1/5⁺ and avcPE cell numbers compared to untreated amotl2a^{−/−} embryos (Figures 3F and 3F). Bmp4 expression at the atroventricular canal myocardium and at the venous pole were reduced in amotl2a^{−/−} embryos treated with XAV939 (Figure 3G). Thus, Verteporfin and XAV939 treatments rescued the increase in BMP signaling induced in the absence of Amotl2a, suggesting it acts through Yap1 activity. We next analyzed the yap1 mutants (Agarwala et al., 2015). At 55 hpf, yap1^{−/−} showed decreased myocardial cell number compared to their controls (Figure 2C). Besides, fewer myocardial cells were p-smad1/5⁺ (Figure 2F). Surprisingly, avcPE cell number was similar between yap1^{−/−} and their controls (Figures S2B and S2B). Altogether, these results suggest that ift88 and ift54 modulate BMP signaling activity by tuning Yap1-Tead activity in the myocardium of the zebrafish. To assess whether the upregulation of Yap1 activity observed in IFT zebrafish mutants was conserved in vertebrates, we analyzed YAP1 localization in the PE of ift20 KO and control mice (Figures 3H–3H'). We quantified the proportion of nuclear YAP1⁺ cells (i.e., cells with higher signal intensity inside the nucleus than in the cytoplasm). The percentage of nuclear YAP1⁺ PE cells was higher in ift20 KO than in control mice. In mouse myocardium, YAP1 and AMOTL1 translocate to the nucleus together to modulate cell response (Ragni et al., 2017). To assess AMOTL1 localization in PE cells, we performed AMOTL1 IF. Consistent with the results obtained with an anti-YAP1 antibody, the percentage of nuclear AMOTL1⁺ cells (i.e., cells with higher signal intensity inside the nucleus than in the cytoplasm) was increased in the ift20 KO when compared to control mice (Figure S5I). We also found that the mutants showed an increase in the percentage of YAP1-AMOTL1 double-positive cells (Figure S5H). Together, these data show that the increased PE size in ift20 KO mice is associated with increased YAP1 activity.

IFTs Interact with YAP1 and Regulate Its Activity

Taking advantage of cultured cells, we next explored the mechanism by which IFT proteins could regulate YAP1 activity. IF performed in HeLa cells transfected with IFT88-GFP showed co-localization between IFT88 and YAP1 in the cytoplasm (Figures S6A–S6C). To confirm a potential physical interaction between IFT proteins with Yap1, we performed co-immunoprecipitation (co-IP) experiments using IFT88-GFP and Yap1-Myc in HeLa cells but never obtained any clear interaction. Considering that Yap1 often necessitates the scaffold protein Angiomotin-like-1 (Amot1) (Ragni et al., 2017), we next performed co-IP experiment using HA-Amot1, IFT88-GFP, and Yap1-Myc in HeLa cells. The experiments revealed a clear interaction between YAP1, Amot1, and IFT88 (Figure 4A). Similarly, physical interaction between endogenous YAP1, Flag-Amot1, and IFT20-GFP was observed in transfected HEK293 cells (Figure 4A). These results reveal that IFT proteins, Yap1, and Amot1 could function as part of a complex involved in the functional modulation of Yap1 activity in vivo.

To functionally assess the impact of endogenous IFT88 depletions on Yap1 activity, we used a DLD-1 IFT88-auxin-inducible degron (AID) cell line, in which a rapid degradation of IFT88 protein can be induced by auxin treatment (Figure 4B). Of note, DLD-1 cells do not grow cilia, allowing us to explore the cytoplasmic, cilia-independent function of IFT88 (Lancaster et al., 2011).

We observed that 2 h of auxin treatment led to IFT88 and Yap1 degradation. The rapid co-degradation further suggested that both proteins physically interact (Figure 4C). We confirmed this finding by performing shorter auxin treatments to study the progressive degradation of IFT88 and Yap1 (Figure 4C). Importantly, as previously observed in vivo, longer depletion of endogenous IFT88 after 6 h of auxin treatment led to an increase in nuclear Yap1 measured by IF (Figure 4D). Consistently, the nuclear/cytoplasmic Yap1 ratio was also increased (Figure S7A). Additionally, we confirmed these results using HeLa and MDCK cell lines where IFT88 function was inactivated by IFT88-siRNA. The IFT88-siRNA efficiency was validated by IF

(F) Immunofluorescence (IF) confocal images of MDCK cells treated with NT- or IFT88-siRNA (48 h). DAPI (blue) and YAP/WWTR1 (TAZ) (white inverted LUT).

(IF) Graph shows the increase in YAP/WWTR1 (TAZ) nuclear signal in IFT88-siRNA (48 h)-treated HeLa cells (n = 5 replicates, average cell number analyzed for each condition = 252; t test, p value, 0.02). Box and whiskers (5th–95th percentile). Outliers are represented as red dots (NT-siRNA) or blue squares (IFT88-siRNA).

(IF) IF confocal images of HeLa cells treated with NT- or IFT88-siRNA (48 h). DAPI (blue) and YAP/WWTR1 (TAZ) (white inverted LUT).

(F) Immunofluorescence (IF) confocal images of MDCK cells treated with NT- or IFT88-siRNA (48 h). DAPI (blue) and YAP/WWTR1 (TAZ) (white inverted LUT).
and western blot (Figures S7E–S7G). After 48 h of IFT88-siRNA treatment, nuclear YAP1 signal was measured by IF (Figures 4E–4F). The inactivation of IFT88 was accompanied with increased nuclear YAP1 (Figures 4E and 4F). Altogether, these data indicate that IFT88 can interact with YAP1 in the cytoplasm and is involved in modulating the activation of the Hippo pathway effector YAP1.

To confirm that increased nuclear YAP1 is specific of IFT protein function, we performed IFT88 and IFT20 overexpression assays. While the transfection of pEGFP C1 did not alter the nuclear signal between GFP-positive and GFP-negative cells (endogenous control) (Figure S6D), IFT88-GFP and IFT20-GFP overexpression caused a decrease in nuclear signal (Figures S7B–S7D). Together, these data confirm that IFT proteins modulate YAP1 activation.

DISCUSSION

IFT proteins have long been associated with ciliary functions in developmental processes. For example, *ift88* mutants display a number of phenotypes reminiscent of ciliary defects such as abnormal patterning of the neural tube, defects in the Hedgehog pathway and left-right patterning (Huang and Schier, 2009). Ift88 has also been associated with planar cell polarity (Cao et al., 2010) and cell division (Delaval et al., 2011; Taulet et al., 2017, 2019; Vitre et al., 2020). Our observations provide evidence for a role of IFT complex B proteins in cardiogenesis. Mechanistically, IFT proteins are best known for their function in ciliary transport (Ocbina et al., 2011). Here, we describe an unexpected interaction between the ciliary machinery proteins and a potent mechanosensing pathway, the Hippo pathway. The hippo effector YAP1 is known to have essential roles in cancer (Zanconato et al., 2016), regeneration (Bassat et al., 2017; Leach et al., 2019), organ size control (Artap et al., 2018; Thompson and Sahai, 2015; Yu et al., 2015). Several mechanisms have been shown to regulate the shuttling of YAP1 into the nucleus, including phosphorylation by Hippo kinases. Recent studies show that YAP1 is mechanosensitive and that force applied to the nucleus can directly drive YAP1 nuclear translocation (Elosegui-Artola et al., 2017; Sun et al., 2014). Additionally, Angiomotin (AMOT) has been shown to interact physically with YAP1 and act as a buffering factor sequestering YAP1 in the cytoplasm (Zhao et al., 2011). Nevertheless, AMOTL1 has also been shown to co-localize with YAP1 in the nucleus (Ragni et al., 2017; Yi et al., 2013), demonstrating that YAP1 subcellular localization is highly regulated by Motin family proteins. Our results indicate that IFT complex B proteins are also involved in regulating YAP1 localization. We demonstrate that IFT88 interacts biochemically with YAP1 and both co-localize in the cytoplasm. We did not study TAZ, the other Hippo effector that is known to act with YAP1 (Piccolo et al., 2014), and we cannot draw general conclusions on the role of IFT88 on all the known Hippo effectors. Nevertheless, our work suggests alternative ways to interpret Ift88 mutant phenotypes, which are often interpreted based on polarity or cilia function issues, and, more generally, phenotypes of other mutants with abnormal IFT complex B proteins. Our working model is that Ift88 participates in sequestering YAP1 away from the nucleus using its cargo transport activity. Other cilia-related proteins, such as kinesin2 and IFT complex A proteins, have been shown to promote nuclear localization of β-catenin during Wnt signaling in *Drosophila* (Vuong et al., 2019), further suggesting that proteins identified for their ciliary transport functions are not always limited to that function. Future work will reveal the mechanism by which Ift88 limits nuclear translocation of YAP1 and address whether IFT complex A proteins play a role.

Importantly, while our study points toward a noncanonical function for IFT complex B proteins, our results do not exclude a role for primary cilia in PE formation. We found that *iguana/dzip* mutants display an avcPE phenotype, suggesting that primary cilia function is required for PE morphogenesis. The HH pathway is often associated with ciliary function. To date, a number of studies suggest the proepicardium and epicardium formation are not regulated by Hedgehog signaling (Rudat et al., 2013; Sugimoto et al., 2017). Indeed, disruption of zebrafish *shha* function in the PE and epicardium using a *tcf21:CreER*, a well-established PE and epicardial tissue driver (Robb et al., 1998), does not affect PE formation (Sugimoto et al., 2017). Besides, expression of *Shh*, *Dhh*, *Ihh*, and *Ptc1* was neither detected in the mouse PE nor in the epicardium at subsequent stages (Rudat et al., 2013). Thus, primary cilia certainly operate independently of the HH pathway and Yap1, which is not altered in dzip mutants, in the process. Our work further highlights the important role of the BMP pathway in PE formation (Andrés-Delgado et al., 2019; Liu and Stainier, 2010). Primary cilia modulate BMP pathway and, more generally, TGF beta signaling pathways (Mönich et al., 2018; Vilalobos et al., 2019). In endothelial cells, primary cilia modulate angiogenesis by altering BMP signaling (Vion et al., 2018). We speculate the situation is different in PE cells, where BMP is activated downstream of YAP1, and where IFT88 helps to limit YAP1 and BMP signaling. Similarly, Hippo signaling determines the number of atrial myocardial cells that originate from the SHF by modulating BMP signaling (Fukui et al., 2018). Interestingly, lack of Ift88 did not affect *Is1* expression at early stages, suggesting Ift88 modulates Yap1-BMP axis at later stages during PE and atrial myocardium development. While *yap1* zebrafish mutants display decreased myocardial cell number, they surprisingly display normal avcPE cell number. The zebrafish *yap1* mutants are able to develop and to reach adulthood, which can be due to the compensation between Yap1 and Wwtr1 previously described (Mesfeld et al., 2015). We speculate that similar compensation may be at work in the PE as well. Importantly, we found phenotypic difference between mouse and fish, especially regarding the heart size, which is not affected in mouse. More work will be needed to understand these interspecific differences as well as the potential mechanisms of compensation involved if any. Zebrafish, *ift88* and *elipsa*, and mouse, *Ift20* and *Ift88*, mutants are lethal at 6 dpf and E10.5–E11.5, respectively, making impossible the study of cardiovascular defects at later stages without conditional gene inactivation approaches.

In summary, our study reports the role of IFT complex B proteins during PE development by modulating YAP1 activity independently of any cilia function. Linking IFT with YAP1 activity might have important implications for understanding the etiology of ciliopathies during cardiogenesis and for the interpretation of ciliary defects in IFT mutants.
STAR METHODS

Detailed methods are provided in the online version of this paper and include the following:

- KEY RESOURCES TABLE
- RESOURCE AVAILABILITY
 - Lead Contact
 - Materials Availability
 - Data and Code Availability
- EXPERIMENTAL MODEL AND SUBJECT DETAILS
 - Zebrafish (ZF) Models
 - Mouse Models
- METHOD DETAILS
 - In Vivo Imaging
 - ZF Treatments
 - ZF Immunofluorescence
 - In Situ Hybridization (ISH)
 - Whole Mount Immunofluorescence in the Mouse
 - Immunofluorescence on Cryosections in the Mouse
 - Cell Culture, siRNAs and Transfection
 - Generation of DLD-1 IFT88-AID Targeted Cells
 - Immunofluorescence on Cells
 - Lysates and Immunoblotting
- IMMUNOPRECIPITATION (IP) ASSAYS
 - HEK293 Cells
 - HeLa Cells
 - ZF avcPE Cell Quantification
 - ZF Myocardial Cell Quantification
 - Mice PE Volume Analysis
 - Mice Yap1- and Amot1-Positive Cell Quantifications
 - Nuclear Yap Quantifications on Cells
 - Nuclear/cytoplasmic Yap1 Ratio
- QUANTIFICATION AND STATISTICAL ANALYSIS

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.celrep.2020.107932.

ACKNOWLEDGMENTS

We thank P. Lamperti, E. Steed, A. Bhat, D. Riveline, S. Harlepp, J. Godin, A. Benmerah, and the Vermot laboratory for discussion and thoughtful comments on the manuscript, in particular R. Chow for her help with editing. We thank S. Roth for technical help. We thank G. Pazour, M. Faucourt, and N. Spassky for advice, for the gift of plasmids, and for providing the Ift20 and Ift88 mutant mouse lines, and C. Cimper, L. Bombardelli, and C. Shea for technical assistance. We are grateful to the IGBMC fish facility, the IGBMC imaging center, and the imaging platforms of the SFR Necker. This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme: GA No. 682938 (J.U.). This work was supported by FRM (DEQ20140329553), by ANR (ANR-15-CE15-0015-liveheart, ANR- SNF310030E-164245-forcinregeneration), and by the Grant ANR-10-LABX-0030-INRT, a French State fund managed by the Agence Nationale de la Recherche under the frame program Investissements d'Avenir labeled ANR-10-IDEX-0002-02. B.D.’s team was supported by ANR-12-CHEX-005 and CNRS. S.M.M.’s team was supported by core funding from the Institut Imagine, Institut Pasteur, Inserm, Université Paris Descartes, and a grant from the AFM-Téléthon (Trampoline 18727). T.L. was funded by the ED515 (1691/2014). L.O.L. is supported by the European Commission (H2020-MSCA-ITN-2016 European Industrial Doctorate 4DHeart 722427).

AUTHOR CONTRIBUTIONS

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: October 24, 2019
Revised: April 30, 2020
Accepted: June 29, 2020
Published: July 21, 2020

REFERENCES

STAR METHODS

KEY RESOURCES TABLE

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibodies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>anti-myosin heavy chain</td>
<td>DSHB</td>
<td>Cat. # MF20; RRID:AB_2147781</td>
</tr>
<tr>
<td>anti-GFP</td>
<td>AVES</td>
<td>Cat. # GFP 1020; RRID:AB_10000240</td>
</tr>
<tr>
<td>anti-phospho-Smad 1/5 (Ser463/465)</td>
<td>Cell signaling</td>
<td>Cat. # 9516S; RRID:AB_491015</td>
</tr>
<tr>
<td>anti-phospho- Smad1/5/9</td>
<td>Cell signaling</td>
<td>Cat. #13820; RRID:AB_2493181</td>
</tr>
<tr>
<td>anti-Tbx18</td>
<td>Santa Cruz</td>
<td>Cat. # sc-17869; RRID:AB_2200374</td>
</tr>
<tr>
<td>anti-Yap1</td>
<td>Santa Cruz</td>
<td>Cat. # sc-101199; RRID:AB_1131430</td>
</tr>
<tr>
<td>anti-Yap1</td>
<td>Lecaudey laboratory</td>
<td>N/A</td>
</tr>
<tr>
<td>anti-Wt1</td>
<td>Santa Cruz</td>
<td>Cat. # sc-192; RRID:AB_632611</td>
</tr>
<tr>
<td>anti- Amotl1</td>
<td>Sigma</td>
<td>Cat. # HPA001196; RRID:AB_1078147</td>
</tr>
<tr>
<td>anti- γ-tubulin</td>
<td>Santa Cruz</td>
<td>Cat. # sc-17787; RRID:AB_628417</td>
</tr>
<tr>
<td>anti-α-tubulin</td>
<td>Sigma</td>
<td>Cat. # T6199; RRID:AB_477583</td>
</tr>
<tr>
<td>anti-IFT88</td>
<td>Euromedex</td>
<td>Cat. # 13967-1-AP; RRID:AB_2121979</td>
</tr>
<tr>
<td>anti-Iset1</td>
<td>Genetex</td>
<td>Cat. # GTX128201; RRID:AB_11179180</td>
</tr>
<tr>
<td>anti-Yap1</td>
<td>Cell signaling</td>
<td>Cat. # 4912; RRID:AB_2218911</td>
</tr>
<tr>
<td>anti-Yap/Taz</td>
<td>Cell signaling</td>
<td>Cat. # D24E4; RRID:AB_2799044</td>
</tr>
<tr>
<td>goat anti-chicken Alexa Fluor 488 IgY (H+L)</td>
<td>Invitrogen</td>
<td>Cat. # A-11039; RRID:AB_142924</td>
</tr>
<tr>
<td>goat anti-mouse IgG Cy3 conjugate (H+L)</td>
<td>Life technologies</td>
<td>Cat. # M30010; RRID:AB_2536619</td>
</tr>
<tr>
<td>goat anti-rabbit Alexa Fluor 647</td>
<td>ThermoFisher</td>
<td>Cat. # A-21244; RRID:AB_2535812</td>
</tr>
<tr>
<td>4′,6-diamidino-2-phenylindole (DAPI)</td>
<td>Invitrogen</td>
<td>Cat. # D1306; RRID:AB_2629482</td>
</tr>
<tr>
<td>anti-GFP</td>
<td>ThermoFisher</td>
<td>Cat. # CAB421; RRID:AB_10709851</td>
</tr>
<tr>
<td>anti-FLAG</td>
<td>Sigma</td>
<td>Cat. # F7425; RRID:AB_439687</td>
</tr>
<tr>
<td>anti-Ilt20</td>
<td>Proteintech</td>
<td>Cat. # 13615-1-AP; RRID:AB_2280001</td>
</tr>
<tr>
<td>anti-GFP</td>
<td>Abcam</td>
<td>Cat. # ab290; RRID:AB_303395</td>
</tr>
<tr>
<td>anti-HA</td>
<td>Roche</td>
<td>Cat. # 11867423001; RRID:AB_390918</td>
</tr>
<tr>
<td>Chemicals, Peptides, and Recombinant Proteins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-phenyl-2-thiourea (PTU)</td>
<td>Sigma-Aldrich</td>
<td>Cat. # P7629</td>
</tr>
<tr>
<td>Tricaine/MS-222</td>
<td>Sigma-Aldrich</td>
<td>Cat. # A-5040</td>
</tr>
<tr>
<td>UltraPure™ Low Melting Point Agarose</td>
<td>Invitrogen</td>
<td>Cat. # 16520-050</td>
</tr>
<tr>
<td>Verteporfin</td>
<td>Sigma-Aldrich</td>
<td>Cat. # SML0534</td>
</tr>
<tr>
<td>XAV939</td>
<td>Tocris Bioscience</td>
<td>Cat. # 3748</td>
</tr>
<tr>
<td>Phosphate buffered saline (PBS)</td>
<td>Sigma-Aldrich</td>
<td>Cat. # P4417</td>
</tr>
<tr>
<td>Indole-3-acetic acid sodium salt (Heteroauxin)</td>
<td>Sigma-Aldrich</td>
<td>Cat. # I5148</td>
</tr>
<tr>
<td>Lipofectamine® 2000 Transfection Reagent</td>
<td>ThermoFisher SCIENTIFIC</td>
<td>Cat. # 11668030</td>
</tr>
<tr>
<td>cCompleteTM Protease Inhibitor Cocktail</td>
<td>Roche</td>
<td>Cat. # 11697498001</td>
</tr>
<tr>
<td>Opti-MEM</td>
<td>GibCO</td>
<td>Cat. # 51985-026</td>
</tr>
<tr>
<td>Oligofectamine</td>
<td>Invitrogen</td>
<td>Cat. # 12252-01</td>
</tr>
<tr>
<td>Hoechst</td>
<td>ThermoFisher</td>
<td>Cat. # 62249</td>
</tr>
<tr>
<td>Experimental Models: Cell Lines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEK293 cells</td>
<td>Q-BIOgene</td>
<td>AES0503</td>
</tr>
<tr>
<td>MDCK cells</td>
<td>Sumara laboratory</td>
<td>N/A</td>
</tr>
<tr>
<td>HeLa cells</td>
<td>Sumara laboratory</td>
<td>N/A</td>
</tr>
<tr>
<td>DLD-1 IFT88-AID</td>
<td>Vitre et al., 2020</td>
<td>N/A</td>
</tr>
</tbody>
</table>

(Continued on next page)
RESOURCE AVAILABILITY

Lead Contact
Further information and requests for reagents may be directed to and will be fulfilled by the Lead Contact, Julien Vermot (jvermot@imperial.ac.uk).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
This study did not generate any unique datasets or code.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Zebrafish (ZF) Models
Animal experiments were approved by the Animal Experimentation Committee of the Institutional Review Board of the IGBMC. ZF lines used in the study were Et(−26.Shsa.WT1-1gata2:EGFP)c1 (referred to as epi:GFP) (Peralta et al., 2013), amotl2a f46 (Agarwala et al., 2015), elipsa f1L4bh (Omori et al., 2006), ift88 2088oval (Tsujikawa and Malicki, 2004), iguana f12584e (Tay et al., 2010), yap f1346 (Agarwala et al., 2015), 4xGTIIC:d2GFP (Miesfeld and Link, 2014), actb2:Mmu.Arl13b-GFP (Borovina et al., 2010) and tcf21:NLS-EGFP (Kikuchi et al., 2011). Male and female samples were mixed. All animals were incubated at 28.5°C for 24h before treatment with 1-phenyl-2-thiourea (PTU) (Sigma Aldrich) to prevent pigment formation.

Mouse Models
Ift20flox/+(Jonassen et al., 2008) were crossed to PGK-Cre mice (Lallemand et al., 1998) to generate Ift20null/+ maintained on a C57BL/6JRj genetic background. Ift88null/+ (Haycraft et al., 2007) mice were maintained on a B6D2 genetic background. Animal procedures were approved by the ethical committee of the Institut Pasteur and the French Ministry of Research. E9.5 embryos were isolated in 200ng/ml cold heparin, incubated in cold 250mM KCl and fixed in 4% paraformaldehyde in PBS inside a rotative oven at 37°C overnight to remove excess of blood. Male and female samples were mixed.

METHOD DETAILS

In Vivo Imaging
ZF embryos were staged, anaesthetized with 0.02% tricaine solution and mounted in 0.7% low melting-point agarose (Sigma Aldrich). Confocal imaging was performed on a Leica SP8 confocal microscope. Images were acquired bidirectionally with a low-magnification water immersion objective (Leica HCX IRAPO L, 25X, N.A. 0.95). For time lapse, z stacks were acquired each 15 or 30 min, depending on the experiment. The optical plane was moved 15 μm between z sections.

Bright field experiments were performed on a Leica DMIRBE inverted microscope using a Photron SA3 high speed CMOS camera (Photron, San Diego, CA) and water immersion objective (Leica 20X, NA 0.7). Image sequences were acquired at a frame rate of 150 frames per second.

ZF Treatments
Verteporfin (5 μM) (Sigma Aldrich) and XAV939 (10 μM) were diluted in fish tank water with 0.0033% PTU, in which larvae were incubated in darkness at 28.5°C for the required time.

ZF Immunofluorescence
Embryos were fixed at the desired stages in 4% paraformaldehyde (PFA) overnight at 4°C. After washing in 0.1% PBS Tween 20, embryos were permeabilized in 0.5% PBS Triton X-100 for 20 min at room temperature (RT). Samples were washed and then blocked (3% albumin from bovine serum (BSA), 5% goat serum, 20 mM MgCl2, 0.3% Tween 20 in PBS) during 2h at RT. Primary antibodies were added in the blocking solution and incubated overnight at 4°C. Secondary antibodies were added in 0.1% PBS Tween20 after thorough washing and incubated overnight at 4°C. Embryos were washed and incubated with DAPI (Invitrogen), 1:1000, for 15 min at RT. After being thoroughly washed, samples were mounted for imaging on a Leica SP8 confocal with a dipping immersion objective (Leica HCX IRAPO L, 25X, N.A. 0.95). Z stacks were taken every 10 μm. 3D images were reconstructed using IMARIS software (Bitplane Scientific Software). The ventral pericardium was digitally removed to provide a clearer view of the heart.

Antibodies used were as follows: anti-myosin heavy chain (MF20, DSHB) 1:20, anti-GFP (AVES) 1:500, anti-phospho-Smad 1/5 (Ser463/465) (Cell signaling) 1:50, anti-Islet1 (Genetex) 1:100, anti-Yap1 (Lecaudey laboratory) 1:200. Secondary antibodies: goat anti-chicken Alexa Fluor 488 IgY (H+L) (In vitrogen), goat anti-mouse IgG Cy3 conjugate (H+L) (Life technologies) and goat anti-rabbit Alexa Fluor 647 (ThermoFisher) were used at 1:500.

To test the effects of Verteporfin treatment, embryos were rinsed in fish tank water before being fixed and processed as described above.

In Situ Hybridization (ISH)
ISH was performed in whole embryos according to Thissa and Thissse, 2008, with minor modifications. Antisense mRNA probe used was against full coding sequence of bmp4. To test the effects of Verteporfin and XAV939 treatments, embryos were rinsed in fish tank water before being fixed and processed as described above.

Whole Mount Immunofluorescence in the Mouse
Embryos were fixed in paraformaldehyde. The cardiac region was dissected, permeabilized in 0.75% Triton. Aldehydes were quenched with 2.6mg/ml NH4Cl. Immunostaining was performed in 10% inactivated horse serum, 0.5% Triton with a primary antibody against Wt1 (Santa Cruz sc-192, 1:50), and with Alexa Fluor conjugated secondary antibodies (1:300) and counterstained with Hoechst (1:400). 80% glycerol was used to make the samples transparent.
Immunofluorescence on Cryosections in the Mouse

Embryos were embedded in 7% gelatin, 15% sucrose, frozen in cold isopentane and sectioned on a cryostat (10 μm). Immunostaining was performed on cryosections as described above, with permeabilization in 0.5% Triton, and with an additional incubation in 0.2 mg/mL goat anti-mouse IgG Fab fragment to reduce non-specific reactivity of antibodies raised in the mouse. Primary antibodies against Tbx18 (Santa Cruz sc-17869, 1:100), Wt1 (Santa Cruz sc-192, 1:50), Yap1 (Santa Cruz sc-101199, 1:100), Amotl1 (Sigma HPA001196, 1:50) and p-Smad1/5/9 (Cell signaling 13820, 1:250) were used, with Alexa Fluor conjugated secondary antibodies (1:500) and Hoechst nuclear counterstaining (1:1000). Samples were imaged in DAKO mounting medium on a LSM700 (Zeiss) confocal microscope with a 40X/1.3 objective. Z stacks were taken every 0.9 μm.

Cell Culture, siRNAs and Transfection

Cells were cultured in appropriate conditions: MDCK (MEM Eagle - Earle’s BSS, 10% FCS, AANE 0.1 mM, Sodium Pyruvate 1mM, Gentamicin 40 μg/ml), HeLa (DMEM 4.5 g/l glucose, 10% FCS, Penicillin 100 UI/ml, Streptomycin 100 μg/ml), HEK293 cells (DMEM 1g/L glucose, FCS 10%, Penicillin 100 UI/ml, Streptomycin 100 μg/ml) and DLD-1 (DMEM 4.5 g/l glucose, 10% FCS, Penicillin 100 UI/ml, Streptomycin 100 μg/ml). siRNA (Dharmacon) ON-Target plus - Control pool Non-targeting (D-001810-10-05) and SMART pool human IFT88 (L-012281-01) were used at 50 nM working concentration. Cells were transfected 16h after splitting using Opti-MEM medium and Oligofectamine reagent.

Generation of DLD-1 IFT88-AID Targeted Cells

DLD-1 IFT88-AID cells were generated by adding an AID tag followed by a YFP tag at the 3’ end of the last exon on the IFT88 genomic locus. In detail, a clonal population of DLD-1 cells stably expressing TIR1-9xMyc protein was used for targeting (Holland et al., 2012). sgRNA targeting two regions adjacent to the 3’ end of IFT88 gene were introduced under the control of U6 transcription promoter into two separate vectors encoding for the expression of the Cas9 nickase (D10A) (Cong et al., 2013) (addgene 42335). A donor construct containing 600 bp recombination arms surrounding the 3’ end of IFT88 locus, in frame with a sequence encoding for an AID-YFP-Stop sequence, was generated. All three vectors were transfected into DLD-1 TIR1 cells using XtremeGene 9 DNA transfection reagent (Roche). Cells were sorted based on their YFP fluorescence and single clones were isolated. Homozygous targeted clones were identified by PCR. Targeting of IFT88 and degradation of IFT88-AID-YFP was confirmed by immunoblot following addition of Auxin (Sigma-Aldrich) at 500 μM in the culture medium for the indicated times.

Immunofluorescence on Cells

Cells were fixed in 100% MeOH for 6 min at –20° C (IFT88 and γ-tubulin antibodies), in 4% PFA for 7 min at RT (DLD-1 cells, Yap1 antibody) or in PFA 4% for 17 min at RT (MDCK and HeLa cells, Yap/Taz antibody). After washing in 0.1% PBS Tween20, cells were permeabilized in 0.5% PBS-NP40 and blocked in 5% BSA 1h at RT. Primary antibodies were added in the blocking solution and incubated overnight at 4 °C. Secondary antibodies were added in 0.1% PBS Tween20 after washing and incubated for 2h at RT. Then cells were incubated with DAPI (Invitrogen), 1:1000, for 15 min at RT. After being thoroughly washed, samples were mounted for imaging on a Leica SP5 (siRNA experiments) or SP8 (DLD-1 experiments and experiments to assess subcellular localization) confocal microscope with an oil immersion objective (Leica HCX PL APO lambda blue, 63X, N.A. 1.4). Z stacks were taken every 1 μm.

Antibodies used were as follows: anti-γ-tubulin (Santa Cruz) 1:500, anti-γ-tubulin (Sigma, 1:2000), anti-IFT88 (Euromedex) 1:50, anti-Yap1 (4912) (Cell signaling) 1:50 (DLD-1 experiments), and anti-Yap/Taz (D24E4) (Cell signaling) 1:50 (MDCK and HeLa siRNA experiments). Secondary antibodies: goat anti-mouse IgG Cy3 conjugate (H+L) (Life technologies) and goat anti-rabbit Alexa Fluor 647 (in vitro) were used at 1:500.

Lysates and Immunoblotting

DLD-1 cell extracts were obtained after lysis with Laemmli sample buffer of an equal number of cells for each sample. Proteins were resolved by SDS-PAGE, transferred to nitrocellulose membranes and revealed by immunoblot using Western Lightning Plus-ECL kit (PerkinElmer).

IMMUNOPRECIPITATION (IP) ASSAYS

HEK293 Cells

HEK293 cells (Q-BIOgene AES0503) were co-transfected with plasmids Flag-Amotl1 (Pei et al., 2010) and Ift20-GFP (Follit et al., 2006), or a Flag-control plasmid using Lipofectamine® 2000 Transfection Reagent (ThermoFisher SCIENTIFIC) and cultured for 48h. Proteins were extracted in a lysis buffer (10mMTris-Ci pH 7.5, 5mM EDTA, 150mM NaCl, 10% glycerol and 5% CHAPS) in the presence of protease inhibitors (cOmpleteTM Protease Inhibitor Cocktail, Roche). Immunoprecipitation of protein extracts was performed using a monoclonal anti-Flag antibody covalently attached to agarose (Anti-FLAG M2 Affinity gel, Sigma). Proteins were eluted in 2xNuPAGE LDS Sample Buffer (ThermoFisher). Proteins were separated on SDS–polyacrylamide gel electrophoresis and transferred to a nitrocellulose membrane. Proteins were detected with the primary antibodies against Flag (1:1000, Sigma...
F7425), GFP (1:1000, ThermoFisher CAB421), Ift20 (1:500, Proteintech, 13615-1-AP), Yap1 (1:1000, Cell Signaling 4912S) and Amot1 (1:1000, Sigma HPA001196), followed by HRP-conjugated secondary antibodies (1:5000, Jackson ImmunoResearch) and the ECL detection reagent.

HeLa Cells

We performed IPs using GFP-Trap (ChromoTek) agarose beads in two conditions: Control IP (YAP1-Myc (Boin et al., 2014), pEGFP-C1 and HA-Amot1 (Ragni et al., 2017)) and IFT88 IP (YAP1-Myc, IFT88-GFP (He et al., 2014) and HA-Amot1). HeLa cells (2x 10cm dish/condition) were transfected with Lipofectamine 2000. Experiments were performed using the following setup: Cells were seeded at high density into 10cm dishes and transfected 16 hr after seeding at 95% confluency. Twenty-four hours post-transfection, cells were seeded into 15cm dishes in order to achieve culture of isolated cells (10x 15cm dish/condition). Proteins were extracted 60 hr post-transfection in a lysis buffer (10mM TrisHCl, pH7.5; 150mM NaCl; 0.5mM EDTA; 0.5% NP-40; protease inhibitors Complete). GFP beads were washed once in lysis buffer and incubated with 16 mg of the protein lysate for 16 hr at 4°C. Beads were washed four times in buffer without detergent and proteins were eluted by boiling for 10 mins. The input (1%) and IP were analyzed using immunoblot and the membranes were probed with anti-GFP (Abcam), anti-Yap/TAZ (D24E4, Cell Signaling) and anti-HA (Sigma Aldrich) antibodies.

ZF avcPE Cell Quantification

We performed whole-mount immunofluorescent staining on control and mutant embryos in the epi:GFP reporter line background and imaged the heart using a confocal microscope with a z-step of 10 μm. The different tissues were labeled using anti-myosin heavy chain (MHC) (myocardium) and anti-GFP (epi:GFP) antibodies, and DAPI dye to stain for nuclei. We then manually quantified the number of avcPE cells per z slice. We identified the avcPE clusters anatomically: avcPE clusters form in the dorsal pericardium, close to the atrio-ventricular canal (avc). PE cells were identified by their rounded morphology in conjunction with their expression of GFP (although some pericardial cells are also GFP-positive, they can be excluded due to their flat morphology). In order to count each cell only once in the z stack, we only counted a cell when its nucleus was visible.

ZF Myocardial Cell Quantification

We performed whole-mount immunofluorescent staining on control and mutant embryos using anti-myosin heavy chain (MHC) (myocardium) antibody and DAPI dye (nuclei). We imaged the heart using a confocal microscope with a z-step of 10 μm. We then manually quantified the number of myocardial cells per z slice (nuclei surrounded by MHC signal).

Mice PE Volume Analysis

Whole mount embryos stained with Wt1 antibody (Santa Cruz) were scanned on TCS SP8 DLS (Digital Light Sheet) Leica with a water immersion objective (HC APO L, 10X, 0.3). Z stacks were taken every 2 μm. Both, coronal and sagittal views were acquired, if possible, for a more precise analysis (Figure S2F). Using MATLAB software, the contour of the PE was manually drawn (Wt1 signal) for each z plane and the area (A) was calculated. Volume (V) was estimated as:

\[V = \sum_{i=1}^{zn} A_i \times dz; \quad zn = \text{number of planes}; \quad dz = 2 \mu m \]

We performed a double-blind quantitative analysis. 3D images were reconstructed using IMARIS software (Bitplane Scientific Software).

Mice Yap1- and Amot1-Positive Cell Quantifications

Nuclei positions on the slides were defined using IMARIS (Bitplane Scientific Software) Spots detection function. The results were manually corrected if needed. Nuclei positions were exported from Imaris and imported to MATLAB. Each cell was assigned a unique index. The intensity of Tbx18 signal was evaluated in correspondence with the nuclei positions. Cells where the intensity was found higher than a threshold were considered positive. The threshold was established according to the background noise intensity. Results were manually corrected if needed and Tbx18-positive cells were automatically counted. Yap1 signal was visualized in fire LUT to facilitate perception of signal intensity. Nuclear Yap1-positive cells (higher signal in the nucleus than in the cytoplasm) were manually defined through index identification of cells and counted automatically. The same procedure was followed for Amot1 signal. The outline of the outer PE region was manually drawn and areas of the two regions were calculated automatically. MATLAB provided the total positive cell number for each signal and area, including signal co-localization. We performed a double-blind quantitative analysis.

Nuclear Yap Quantifications on Cells

Analyses were performed using Fiji (Schindelin et al., 2012). Nuclei areas were selected manually using DAPI signal as reference on z-projection images (sum slices for DLD-1 experiment and maximum intensity projection for siRNA experiments). Yap average nuclear signal intensity was measured for the selected areas. In experiments in DLD-1 cells the values were measured for each individual nucleus, while in the case of siRNA experiments, all the nuclei in a slice were measured together. Values were normalized to their controls in order to merge data from different experiments.
Nuclear/cytoplasmic Yap1 Ratio
Analyses were performed using Fiji. Nuclei areas were selected manually using DAPI signal as reference on z-projection images (sum slices). Cytoplasmic areas were selected using α-tubulin signal as reference. Yap average nuclear signal intensity was measured for the nuclear ROI. Yap average cytoplasmic signal intensity was measured after subtracting nuclear ROI from the cytoplasmic ROI.

QUANTIFICATION AND STATISTICAL ANALYSIS
We applied D’Agostino & Pearson and Shapiro-Wilk normality tests to assess whether the samples fit a normal distribution and F test to compare variances. For normal distributed and homoscedastic samples, we used t test or ANOVA. For non-parametric samples, we applied Mann-Whitney or Kruskal-Wallis. The pertinent statistical analyses for each experiment were performed using GraphPad Prism 7 software. For the analysis of nuclear p-smad 1/5/9 and YAP1 signal in mice we used the non-parametric Chi-square test of homogeneity to test whether the observed frequency of positive nuclei was equally distributed across the wild-type and mutant embryos. In each figure legend is stated the number of embryos (n), as well as the meaning of error bars and p values.