
s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
1
4
7
0
6
5
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
1
8
.
7
.
2
0
2
4

RESEARCH ARTICLE

3D imaging of undissected optically cleared

Anopheles stephensi mosquitoes and midguts

infected with Plasmodium parasites

Mariana De NizID
1¤a*, Jessica Kehrer2, Nicolas M. B. Brancucci3¤b, Federica Moalli4¤c,

Emmanuel G. Reynaud5, Jens V. Stein6, Friedrich Frischknecht2

1 Institute of Cell Biology, Heussler Research Group, University of Bern, Bern, Switzerland, 2 Center for

Infectious Diseases, Integrative Parasitology, Heidelberg University Medical School, Heidelberg, Germany,

3 Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity & Inflammation, University of

Glasgow, Glasgow, United Kingdom, 4 Theodor Kocher Institute, University of Bern, Bern, Switzerland,

5 School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland, 6 Department

of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland

¤a Current address: Instituto de Medicina Molecular João Lobo Antunes, Faculty of Medicine, University of

Lisbon, Lisbon, Portugal

¤b Current address: Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland

¤c Current address: San Raffaele Scientific Institute, Milan, Italy

* mariana.deniz@medicina.ulisboa.pt

Abstract

Malaria is a life-threatening disease, caused by Apicomplexan parasites of the Plasmodium

genus. The Anopheles mosquito is necessary for the sexual replication of these parasites

and for their transmission to vertebrate hosts, including humans. Imaging of the parasite

within the insect vector has been attempted using multiple microscopy methods, most of

which are hampered by the presence of the light scattering opaque cuticle of the mosquito.

So far, most imaging of the Plasmodium mosquito stages depended on either sectioning or

surgical dissection of important anatomical sites, such as the midgut and the salivary

glands. Optical projection tomography (OPT) and light sheet fluorescence microscopy

(LSFM) enable imaging fields of view in the centimeter scale whilst providing micrometer

resolution. In this paper, we compare different optical clearing protocols and present recon-

structions of the whole body of Plasmodium-infected, optically cleared Anopheles stephensi

mosquitoes and their midguts. The 3D-reconstructions from OPT imaging show detailed

features of the mosquito anatomy and enable overall localization of parasites in midguts.

Additionally, LSFM imaging of mosquito midguts shows detailed distribution of oocysts in

extracted midguts. This work was submitted as a pre-print to bioRxiv, available at https://

www.biorxiv.org/content/10.1101/682054v2.

Introduction

Arthropod-borne diseases constitute an enormous public health burden world-wide. Some of

the most medically relevant diseases in tropical areas caused by mosquitoes include malaria,
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dengue, yellow fever, Chikungunya fever, Zika fever, encephalitis, and filariasis [1–4]. The

blood-sucking behavior of female mosquitoes is necessary for egg development and constitutes

the link to vertebrate hosts, as pathogens are transmitted during mosquito blood meals. There

are approximately 3,500 species of mosquitoes grouped into two main sub-families and 41

genera [5]. The two subfamilies are the Anophelinae and the Culicinae, which not only display

important anatomical and physiological differences, but vary in their clinical significance as

disease vectors of the pathogens they transmit. Recent outbreaks of Zika and dengue fever, as

well as the constant pressure of malaria on many regions of the developing world continue to

demand a better understanding of host-pathogen interactions in the vector. Advances in this

field are likely to inform researchers across various disciplines about improved ways of block-

ing pathogen transmission. In this paper we explore 3D imaging of intact (in contrast to dis-

sected), optically cleared Anopheles mosquitoes as vectors for the Plasmodium parasite, the

causing agent of malaria. We envisage that the technique is equally useful to Aedes and Culex
mosquitoes, both of which are important vectors of a wide range of pathogens.

Malaria causes over 200 million infections and over 400,000 human deaths per year [6].

Although hundreds of vertebrate-infecting Plasmodium species exist, only five species are

infectious to humans. During their life cycle, Plasmodium parasites adopt various forms, both

invasive and replicative, within the vertebrate host and the mosquito vector (reviewed by

[7,8]). While rodent-infecting parasites have been imaged in all relevant tissues within mice

(skin, liver, blood and bone marrow) [9–12], imaging of parasites within the living mosquito

has remained largely elusive and limited to the passive floating of sporozoites in the hemo-

lymph and proboscis [13,14]. The development of sporozoites in vivo in the midgut and their

entry into mosquito salivary glands remains to be visualized. As an optically opaque cuticle

surrounds these organs, most of the imaging achieved so far has relied on dissection of these

organs and imaging in situ.

The possibility to visualize biological tissue in 3D has proven to be invaluable for under-

standing complex processes in various tissue forms–including that of insects. For centuries,

imaging at depth required the physical sectioning of tissue due to photon scattering. The imag-

ing limit of conventional microscopy in terms of penetration depth is set by a physical parame-

ter of photons known as the mean free path (MFP) (reviewed by [15]) which refers to the

collision events of these wave-particles. With widefield epifluorescence microscopy, high qual-

ity imaging is possible when the thickness of tissue sections is within 10–50 μm (Fig 1A). With

confocal and multi-photon microscopy, greater penetration depths (>500 μm) can be achieved

(Fig 1B); however, this penetration depth is still impractical for highly resolved 3D digital

reconstructions of large specimens.

Novel 3D imaging techniques such as optical projection tomography (OPT) [16] and light

sheet fluorescence microscopy (LSFM) also known as selective plane illumination microscopy

(SPIM) or ultramicroscopy, allow visualization of large objects without the need of physical

sectioning [17] (see commentary by [18]). A pre-requisite for these imaging techniques applied

to opaque samples is optical clearance, as in transparent media light propagates deeper into tis-

sues, (reviewed by [15]. In order to generate a transparent sample, tissues can be chemically

cleared using various solvents and imaging techniques (reviewed by [9]). After rendering the

specimen transparent, OPT imaging is achieved via tissue trans- and epi-illumination over

multiple projections [16] as the specimen is rotated through 360 degrees in angular steps

around a single axis (Fig 1C). Virtual sections are reconstructed from the acquired images

using a back-projection algorithm [19]. OPT achieves penetration depths of up to 15 millime-

ters [16], and allows high resolution 3D image reconstructions of the sample’s complete vol-

ume. Conversely, LSFM uses a thin plane of light (or light sheet), shaped by a cylindrical lens

or a laser scanner to exclusively illuminate the focal plane of the sample (Fig 1D) [17] and is
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characterized by high imaging speed, reduced toxicity, and reduced photobleaching (reviewed

by [20]). 3D image formation is based on raw images being assembled after translation or rota-

tion of the entire sample. The difference between OPT and LSFM in terms of mesoscopic

imaging is that OPT images are isotropic (without distortion in any 3D axis), but the focal

depth is deliberately large and low numerical aperture (NA) objectives are used yielding low

Fig 1. Microscopy methods used for imaging mosquitoes. A) ‘Inverted’ widefield microscopy: White light is filtered to the appropriate emission wavelength,

and the emitted fluorescent light is projected onto a camera. B) Confocal microscopy: laser light is focused onto the specimen and a pinhole excludes out of focus

light. Instead of a camera, photomultiplier tubes (PMTs) collect photons. C) Optical projection tomography: The optically cleared specimen is embedded in

agarose, attached to a metallic cylinder within a rotating stage, and suspended in an index-matching liquid to reduce scattering and heterogeneities of refractive

index throughout the specimen. Images are captured at distinct positions as the specimen is rotated. The axis of rotation is perpendicular to the optical axis, so

that straight line projections going through the sample can be generated, and collected on the camera. D) Light sheet fluorescence microscopy: The sample is

embedded in agarose, and suspended within a sample holder inside an index-matching liquid. A thin (μm range) slice of the sample is illuminated perpendicularly

to the direction of observation. Scanning is performed using a plane of light, which allows very fast image acquisition. This figure was created using BioRender.

com. Diagrams to generate this figure are republished from BioRender under a CC BY license, with permission from BioRender, original copyright (2020).

https://doi.org/10.1371/journal.pone.0238134.g001
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resolution. Conversely, LSFM images are anisotropic (with higher resolution in the x and y

axes than in z), but usually work with higher NA objectives and therefore achieve a high reso-

lution, up to single cell level. OPT can also be designed for single cell resolution but at the

expense of sample size imaging capacity (reviewed in [21]).

Open source, custom built-versions and free software for LSFM (OpenSPIM) [22,23] and

OPT (OptiJ) [24] have been generated, making these imaging platforms easily accessible across

laboratories and disciplines. OPT and/or LSFM have been used to image various specimens

(reviewed in [9]) including a detailed reconstruction of the anatomy of the flight musculature

of a Drosophila fly, its nervous and digestive systems, and ß-galactoside activity throughout the

fly’s whole body [25,26]. Using OPT or LSFM, fluorescence reporters and antibody labeling

can be used to reveal specific structures or protein localizations. Recent work showed the

development of P. berghei (Plasmodium parasites infecting mice) at fixed points in optically

cleared mosquitoes using CUBIC (Clear Unobstructed Brain/Body Imaging Cocktails and

Computational Analysis) [27].

Here, we generated 3D reconstructions of optically cleared Anopheles stephensi mosquitoes

infected with mCherry- or GFP-expressing Plasmodium berghei parasites using OPT and

LSFM. We present a comparative evaluation of different clearance protocols and discuss their

value concerning different applications and research questions. Ultimately, following testing

of the various protocols, we performed further work with the method we found most efficient

for clearance while preserving mCherry fluorescence. Thus, the reconstructions we present are

based on mosquitoes rendered transparent using Murray’s clear [28,29]. Our approach pro-

vided detailed views of the anatomy of the mosquito head, thorax and abdomen. We envisage

that the presented techniques will be of use for the study of pathogen and vector biology.

Results

Optical clearance of infected and uninfected Anopheles stephensi
mosquitoes

A major hurdle for whole-body mosquito imaging is light scattering due to presence of the

cuticle. To overcome this hurdle, we used optical clearing methods to increase light depth pen-

etration and reduce scattering. While multiple clearance techniques have been developed over

the past decade, we tested four different techniques based on either organic solvents or water,

and we compared them in terms of a) time to achieve mosquito transparency (Fig 2A), b) pres-

ervation of fluorescence in full mosquitoes (Fig 2B and 2C) and excised midguts (Fig 2D) as

well as c) conservation of mosquito tissue morphology (Fig 2E). These methods are BABB

(Murray’s clear) [28,29], ScaleS [30], SeeDB [31], and 3DISCO [32]. Results are summarized in

Table 1 and Fig 2. For all methods, samples were mounted as described in S1 Fig.

Mosquito clearance and transparency was successful using 3DISCO and

BABB

First, we compared tissue transparency achieved by 3DISCO, BABB, ScaleS and SeeDB. Opti-

cal clearance was defined to be successful (100% transparency) as soon as imaging of the entire

width of the mosquito body with OPT and confocal microscopy was possible. The two solvent-

based protocols, BABB and 3DISCO, achieved clearance of the mosquito cuticle within a

median time of 6.5 days (SD = 4.5; n = 50 in triplicate experiments) and 21 days (SD = 8.6;

n = 50 in triplicate experiments) respectively (Fig 2A). Conversely to BABB and 3DISCO, the

sorbitol-based clearance method ScaleS achieved only up to 80% transparency in all mosqui-

toes tested, within a median time of 32.5 days (SD = 6.0, n = 50 in triplicate experiments).
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Fig 2. Quantitative and semi-quantitative assessment of tissue clearance methods as applied to A. stephensi mosquitoes. A)

Determination of time of clearance for achievement of transparency of Anopheles mosquitoes. For each method, 50 mosquitoes

were embedded in ultrapure low melting temperature agarose gel, and processed as required for SeeDB, ScaleS, 3DISCO and

BABB clearance. Mosquitoes were imaged by confocal microscopy, and 100% transparency determined as the possibility to

image through the full sample at a high level of detail and without significant light scattering. Two-way ANOVA test between
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Next, we tested SeeDB, a protocol that combines use of the water-soluble clearing agents fruc-

tose and urea. Similar to what we found for ScaleS, clearance of the cuticle was only partial

after 34.5 days of incubation (SD = 7.9, n = 50 in triplicate experiments) using these water-

based methods (Fig 2A).

Fluorescence preservation significantly differs among clearance methods

and fluorophores used

In a next step, we compared the preservation of parasite-expressed fluorophores (mCherry or

GFP) in the mosquito midgut by monitoring the emitted fluorescence until >80% clearance

was reached with 3DISCO, BABB, ScaleS and SeeDB (Fig 2B). Our findings for 3DISCO

showed that the cuticle is fully cleared within a median time of 21 days. However, compared to

untreated mosquitoes, mCherry signal was reduced by 20% (SD = 16) by the time the mosqui-

toes were 50% cleared, and by 58% (SD = 13) by the time mosquitoes were 100% cleared.

BABB achieved fastest optical clearance, yet fluorescence decreased by 60% (SD = 20) at 50%

mosquito transparency, and by 64% (SD = 12) when mosquitoes were fully transparent. ScaleS

and SeeDB were slowest to achieve what we defined as 100% optical clearance, yet fluorescence

preservation with both methods had a tendency to be higher than with either BABB or

3DISCO. With ScaleS clearance, fluorescence decreased by 30% (SD = 6.5) at 50% mosquito

transparency, and by 40% (SD = 8.0) by the time mosquitoes were fully transparent. With

ScaleS, fluorescence decreased by 32% (SD = 8.2) at 50% mosquito transparency, and by 42%

(SD = 8.5) by the time mosquitoes were fully transparent (Fig 2B).

In cleared mosquitoes harbouring GFP-expressing parasites, the loss of fluorescence was

significantly higher compared to mCherry, both at 50% and 100% optical mosquito clearance.

Particularly, both solvent-based methods (i.e. BABB and 3DISCO) resulted in 70–80% fluores-

cence loss by the time full clearance was achieved (Fig 2B and 2C). To determine specific fluo-

rescence loss, we measured fluorescence intensity throughout clearance time in excised

mosquito midguts. The time for achieving transparency in midguts was half of that needed to

methods for days required for mosquito clearance, p = 0.06. B) mCherry fluorescence intensity and C) GFP fluorescence

intensity were measured using a widefield microscope in all infected mosquitoes at the time of euthanasia (at day 12 post-

infection) prior to clearance, and this value was defined as 100% for each sample. Fluorescence was measured again at various

times of clearance. Graph B shows the average fluorescence percentage relative to time 0, at time points whereby 50% and

maximum transparency were achieved. Dots represent average percentage. Error bars represent standard deviations. ANOVA

tests resulted in p-values of 0.86 and 0.82 for B and C respectively. D) Mosquito midguts were excised and optically cleared

using BABB. mCherry fluorescence intensity was then measured throughout midgut clearance. Images show fluorescence by the

time the midgut was fully cleared. Results shown in the graph are the mean and standard deviations of 20 midguts measured.

Scale bar: 20 μm. E) Semi-quantitative representation of morphological changes in mosquitoes following incubation in BABB,

3DISCO, SeeDB or ScaleS. Mosquito sizes were measured at point 0 (day of euthanasia), and measured again at the time of

maximum transparency. Dotted lines represent the range considered not significant, based on all measures regardless of

method used. Only BABB resulted in tissue shrinkage leading to a median size decrease of 26% (SD = 13). Sample size for each

method was n = 50 mosquitoes. Two-way ANOVA test between all clearance methods for morphology, p = 0.12. Mosquito

diagrams in this figure are republished from BioRender under a CC BY license, with permission from BioRender, original

copyright (2020).

https://doi.org/10.1371/journal.pone.0238134.g002

Table 1. Comparison of clearing methods for mosquito cuticle.

Method Principle Time to achieve tissue transparency Preservation of fluorescence signal Preservation of tissue morphology

3DISCO Organic solvent 20–30 days (++) + Unaltered

BABB (Murray’s clear) Organic solvent 5–10 days (+++) + Slight dehydration

ScaleS Water-based Partial clearance at 30 days (+/-) +++ Unaltered

SeeDB Water-based Partial clearance at 30 days (+/-) +++ Unaltered

https://doi.org/10.1371/journal.pone.0238134.t001
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achieve transparency of full mosquitos, and fluorescence intensity was better preserved, as

shown in Fig 2D. Data shown are the result of measuring 20 midguts at day 8–10 post-feed.

Different clearance methods conserve mosquito morphology equally well

Clearance methods can introduce morphology artefacts, including dehydration or expansion

of biological samples. To determine the morphological alterations introduced by each of the

methods tested, we measured relative size change of the samples by the time of maximum opti-

cal clearance. We found that 3DISCO, SeeDB ScaleS and BABB induced slight morphological

changes in the samples, with the median size being 89% (SD = 10), 90% (SD = 8.5), 98%

(SD = 5.0), and 77% (SD = 13) the size of the same samples prior to clearance, respectively

(range of significance is shown between dotted lines, Fig 2E).

Considering all parameters, we chose the method with the greatest tissue clearance success

within a short time-frame, and therefore we decided to use BABB as the method of choice for

all subsequent experiments reported in this work. Our rationale for this choice is that in subse-

quent work we will aim at method optimization for fluorescence preservation, however we

considered that tissue transparency was a significant advantage for various relevant anatomical

observations without the need of fluorophores, and BABB was the most efficient method to

achieve this.

OPT enables visualization of the entire anatomy of intact adult mosquitoes

Cleared adult Anopheles stephensi mosquitoes were three-dimensionally reconstructed from

OPT projections (Fig 3A and 3B; S1 File), to represent various features of the head, the thorax,

and the lower body including the midgut in situ. Following clearance, the absorption, reflec-

tion and auto-fluorescence of the cuticle were reduced to an extent that internal organs of the

mosquito could be visualized (Fig 3). The mosquito head is specialized for processing sensory

information, and feeding. The mosquito has compound eyes made up of multiple lenses called

ommatidia, which could be faithfully reconstructed by OPT (Fig 3C, top panels). Moreover,

olfaction is an additional primary sensory modality of mosquitoes. OPT enabled imaging of

the antennae, and the mouthparts (Fig 3C, top panels). (marked with arrowheads). The

Anopheles mosquito thorax is specialized for locomotion, and is divided into three segments,

the prothorax, the mesothorax, and the metathorax, all of which were readily distinguished by

OPT (Fig 3B; note that the surface rendered image has been previously shown in [9]). Each

thoracic segment supports a pair of legs (3 pairs in total), while the mesothorax additionally

bears a pair of wings (Fig 3C, bottom panels) (Fig 3A and 3B). Finally, the abdomen (Fig 3A

and 3B) is specialized for food digestion, reproduction, and egg development. The Anopheles
mosquito abdomen is long and can be divided into up to 10 segments, clearly visible by OPT

(Fig 3B, right panel). Unlike the thorax, segments I to VIII can expand significantly upon

ingestion of a blood meal. This expansion was clearly visible in fed mosquitoes. Segment VIII

bears the terminal anus of male and female mosquitoes. In females, segments IX and X bear

the gonopore, and a post-genital plate, while in males, segments IX and X harbour a pair of

clawed claspers and an aedigus. All structures of the thorax, abdomen and reproductive seg-

ments were readily visualized by OPT (Fig 3A and 3B) and are marked by arrows respectively.

OPT enables imaging Plasmodium parasites within the isolated midguts

and salivary glands

We used mCherry- or GFP-tagged P. berghei to observe parasite distribution within entire

mosquitoes at various times post blood-feed, however, encountered significant
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Fig 3. Visualization of an optically cleared Anopheles stephensi female mosquito. A) 2D reconstruction of two

reconstructed mosquitoes showing detailed views of the head structures (H) including the antennae (A), and the

proboscis (P) and the eyes. Detailed view of the thorax is also possible, as well as of all segments of the abdomen. Scale
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autofluorescence arising from the eggs. We imaged isolated mosquito midguts by LSFM (Fig

4) and performed an OPT time course experiment using intact mosquitoes.

Immediately after a blood-feed on an infected mouse, no fluorescent signal from parasites

was detected using OPT, yet the mosquito anatomy could be visualized at high level of detail.

At day 16 post-infection, we detected strong mCherry signals in the salivary glands, the meso-

thorax, the base of the wings, and the midgut (Fig 4A). However, the signal was diffuse and did

not allow for detection of individual sporozoites or oocysts in the complete mosquito. Also

detailed insights into multiple mosquitoes imaged shows strong signal arising from autofluor-

escence which in some cases is indistinguishable from mCherry-specific fluorescence and in

some cases is not (S2 and S3 Figs). In contrast, LSFM performed on isolated midguts clearly

shows individual P. berghei oocysts across a full rotation of the sample (Fig 4B and S2 File). In

S2 Fig we show that detection of specific fluorescence as opposed to autofluorescence is

bar: 500 μm. B) 3D reconstruction and clear view of all body cavities of an optically cleared mosquito (left panel). 3D

reconstruction and rendering of the mosquito (right panel) clearly showing abdominal segments, thorax and head

features (previously shown in [9]); see S1 File. C) Close-up views of various views of the optically cleared mosquito

body including the eyes and mouthpieces (side view, upper left panel), the head and mouthpiece (top view, upper right

panel), the thorax (side view, lower left panel), and the abdomen including eggs (side view, lower right panel). Scale

bar: 200 μm. All elements of this figure were generated by the authors.

https://doi.org/10.1371/journal.pone.0238134.g003

Fig 4. Visualization of Plasmodium-infected Anopheles stephensi female mosquitoes. (A) 3D project (B&W) and 3D reconstructions of mosquitoes at the beginning

and end of P. berghei infection as well as egg development (yellow rendering). Scale bar 500 μm. (B) Isolated P. berghei-infected mosquito midguts imaged by LSFM.

Oocysts are shown in white (P. berghei-mCherry) or black (P. berghei-GFP). Scale bars: 100 μm. All elements of this figure were generated by the authors.

https://doi.org/10.1371/journal.pone.0238134.g004
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possible using OPT, and we suggest that LSFM or hybrid methods such as OPTiSPIM could be

well suited for specific quantification of oocyst numbers and sizes in whole body mosquitoes.

In excised cleared midguts, the technique we present here, allowed full quantification of oocyst

numbers. Moreover, in optically cleared mosquitoes, we found it would also be possible to per-

form egg quantification in the entire mosquito.

Discussion

One of the major hurdles for whole-body imaging of insects is light scattering due to presence

of the cuticle. Optical clearing techniques enable an increase of light depth penetration and

generally reduce light scattering by replacing cellular water with solutions that have a refractive

index similar to that of the cell membrane. Lipids in cell membranes are dominant scattering

agents in biological tissues, and optical clearing methods can obtain approximately uniform

refractive index profiles by removing them. Reduced light scattering ultimately leads to higher

spatial resolution and greater contrast. Various clearance techniques have been developed,

including the use of organic solvents [29,32–34], water [30,31,35], and electrophoresis-based

protocols [36,37]. In this study, four techniques were tested for mosquito clearance, and were

compared in terms of a) time to achieve tissue transparency, b) preservation of fluorescence

signal in mosquitoes infected with mCherry-expressing Plasmodium berghei parasites (albeit

not effective preservation of GFP signal) and c) resulting mosquito tissue morphology follow-

ing treatment. Altogether, we conclude that the use of BABB was most useful for our purposes

for achieving the highest transparency in the shortest amount of time. This method allowed

full clearance of the mosquito and visualizing overall anatomical features, however, it did not

reach sufficient detail to distinguish individual parasites due to loss of fluorescence. In dis-

sected midguts, however, clearance allowed high resolution imaging of oocysts. We hence

present the method as a baseline for future optimization and visualization of antibody-labeled

or fluorescently-tagged anatomical structures of the mosquito, relevant in the context of Plas-
modium infections and for other insects as a starting point. Since the development of our

work, alternative methods, including CUBIC [34,38], have been developed and used in various

contexts with successful fluorescence preservation, which might also prove useful for studying

host-pathogen interactions using fluorescent probes.

Our aim while developing the clearance and full body/ full midgut imaging methods by

LSFM and OPT was to provide a complementary tool to currently existing methods, that

addresses some shortcomings that current methods for mosquito imaging pose. These meth-

ods are summarized in Table 2 (further discussed in [9]), and can be separated into two groups

based on their advantages and disadvantages: the first group is made of techniques that have

allowed imaging parasites within mosquitoes with great detail and high resolution (including

TEM, immunohistochemistry, and confocal microscopy). The main shortcoming of these

methods, however, is that for visualization of the entire mosquito body, extensive and labori-

ous physical sectioning is required, as well as laborious 3D reconstructions with possible arti-

facts deriving from the physical sectioning itself. Tissue optical clearance methods, as well as

OPT and LSFM have been proposed in various contexts as an optimal tool to gain insight into

a full organism without the need for physical sectioning and complex stereology techniques.

The second group of tools used for mosquito imaging includes two-photon microscopy, wide-

field microscopy, scanning electron microscopy (SEM) and synchrotron X-ray tomography.

These tools have provided important findings on the mosquito anatomy, and parasite develop-

ment. While these tools have allowed full body imaging, two-photon and widefield imaging

still have limited tissue penetration due to the mosquitos’ opaque cuticle. Conversely, SEM

requires relatively complex sample preparation compared to the relatively simple one required
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for OPT or LSFM imaging. Equally, synchrotron X-ray tomography requires a complex plat-

form for imaging, while OPT and LSFM can be performed with relatively simple setups and

require relatively little user training. Moreover, optical transparency is compatible with fluo-

rescence and autofluorescence, which increases the range of structures/cells of interest that can

be simultaneously visualized to answer specific questions of interest. For example, we envisage

that imaging of intact optically cleared mosquitoes using the absorption mode will also enable

tracking of pathogen-induced changes in gene expression [16], and changes in expression of

specific components in the mosquito’s sensory systems.

While the work we present here provides a baseline for optical clearance, and demonstrates

in practice the principle using different fluorophores, we expect that groups interested in using

this tool can envisage investigating a wide range of physiologically relevant questions. For

instance, we know that changes in insect sensory responses and behavior are likely to increase

the chances of parasite transmission, and are thought to arise either from changes in the

expression of salivary gland components [39–41], or from the modulation of the mosquito

nervous system. These changes may be induced by parasites, including Plasmodium [42].

Imaging of specific molecules and gene expression levels at a whole body level that potentially

influences mosquito behavior but could be achievable with OPT or LSFM. Our work was suc-

cessful in the clearance of the mosquito thorax and visualization of internal structures. Further

study of these structures in undissected mosquitoes might shed light into the mosquito’s biol-

ogy and vectorial capacity. Beyond specific optimization of OPT and LSFM for answering spe-

cific physiological questions of interest, we also envisage that the use of combined tools such as

the hybrid system OPTiSPIM [43], could be relevant to study parasites in vivo. Altogether,

another advantage we see in OPT/LSFM is the possibility of monitoring the entire body of the

mosquito during infection (rather than specific sites at a time). A limitation we faced in our

study was the overlap between autofluorescence arising from either the blood-meal or the

Table 2. Comparison of OPT/LSFM with other microscopy procedures.

Method Principle Advantage Disadvantage

Widefield

microscopy

Light passes through the sample,

maximizing illumination

Simple to perform. Fluorescence detection possible.

Live imaging possible.

Does not allow acquisition of detailed parasite

development or localization. For this, it would

require physical sectioning.

Confocal

microscopy

Increases optical resolution by means

of a pinhole that blocks out of focus

light.

Higher optical resolution possible. Visualization of

specific structures and their interactions possible.

Live imaging possible.

Requires optical sectioning. 3D reconstruction of

a full sample is time consuming. If sample

uncleared, scattering is problematic.

Two photon

microscopy

Two low energy photons cooperate to

cause a higher-energy electronic

transition in a fluorescent molecule.

Penetration of up to 1mm of depth, and

minimization of phototoxicity. Live imaging

possible.

Requires optical sectioning. 3D reconstruction of

a full sample is time consuming. If sample

uncleared, scattering is problematic.

Electron

microscopy

Uses beam of accelerated electrons as a

source of illumination.

Very high resolution achievable. Information on

details of structures, tissues, cells, organelles and sub-

organellar structures easy to obtain.

Sample cannot be live. Method for sample

preparation is complex and time consuming. Full

mosquito reconstruction would be very time

consuming.

OPT Form of tomography involving optical

microscopy that allows full 3D sample

reconstruction.

Fluorescence based method. Allows detailed

visualization and 3D reconstruction. Does not

require physical sectioning of the sample.

Requires optimization of tissue clearance and

fluorescence preservation. At the moment cannot

be used in live samples.

LSFM Sample scanning with a plane of light. Fluorescence based method. High optical resolution

and high acquisition speed. Allows detailed

visualization and 3D reconstruction. Does not

require physical sectioning of the sample.

Requires optimization of tissue clearance and

fluorescence preservation. At the moment cannot

be used in live samples.

Synchrotron X-

ray tomography

Based on the detection of the

attenuation or phase shift of the beam

transmitted through a sample.

Allows visualizing the interior of bodies in a non-

destructive manner. High SNR at short time scales.

Complex setup. Requires specialized training.

https://doi.org/10.1371/journal.pone.0238134.t002
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eggs, and parasite-specific signals. While in some cases we were able to separate them, further

optimization is required to completely achieve separation. We recommend for instance, the

use of proteins with fluorescence in wavelengths of far red (e.g. 647 nm) rather than those

closer to the autofluorescence signal (in the range of 450–550 nm). Another way to solve this

shortcoming is through better preservation of GFP or mCherry fluorescence which would

then allow differential thresholding of signals for quantification. Also, autofluorescence can be

somewhat limited by using wider-pass filters.

Although some tissue clearance methods introduce effects including swelling or shrinkage,

from the images we were able to obtain in dissected midguts, we observed no significant

changes in parasite morphology. However, we encourage that for each application, relevant

controls (e.g. parallel imaging methods) should be acquired to ensure no artifacts are

introduced.

In conclusion, we have shown that adult Anopheles mosquitoes can be cleared efficiently,

and that this allows for transmission of white and fluorescent light to detect anatomical fea-

tures of parasite-infected mosquitoes in 3D using OPT and LSFM. In the future, another aim

based on tissue clearance that we think will be extremely useful in the context of vector imag-

ing is the possibility of imaging parasite development in living mosquitoes. Finally, altogether,

while several years ago the amount of data obtained from 3D reconstructions would be signifi-

cantly large and difficult to analyze, image analysis has advanced at increased speed over the

past few years. Various tools now exist [44–46] that facilitate the analysis of large datasets such

as the ones obtained in our work. We hope that the data presented here will hopefully inspire

the development of whole-body imaging technologies to allow for the discovery of important

host-pathogen interactions in the malaria field.

Materials and methods

Ethics statement

Mouse infections were carried out under the approval of the Animal Research Ethics Commit-

tee of the Canton Bern, Switzerland (Permit Number: 91/11 and 81/11); the University of Bern

Animal Care and Use Committee, Switzerland; and the German Tierschutzgesetz (Animal

Rights Laws). We have followed the Ethical Guidelines for the Use of Animals in Research. For

all mosquito feeds, female mice 5–8 weeks of age, weighing 20–30 g at the time of infection

were used. Mice were purchased from Harlan or Charles River laboratories. Blood feeding to

mosquitoes was performed under ketavet/dorbene anaesthesia, and all efforts were made to

minimize animal suffering.

Parasites lines and their maintenance in mosquitoes

P. berghei-ANKA lines were used in this study to infect mice used for mosquito feeds. P. ber-
ghei-mCherryHsp70 [47], P. berghei-GFPHsp70 and PbmCherryHsp70FLucef1α [48] express fluo-

rescent mCherry that localizes to the cytosol of the parasite, and is expressed constitutively

throughout the parasites’ life cycle.

Balb/c mice were treated with phenylhydrazine two days prior to intra-peritoneal (i.p.)

infection with P. berghei-mCherryHsp70 or PbmCherryHsp70FLucef1α. After 3 days of infection,

gametocyte exflagellation was assessed. Upon confirming exflagellation, the infected mice

were used to feed various cages with 100–150 Anopheles stephensi female mosquitoes. Mice

were anaesthetized with a combination of Ketasol/Dorbene anaesthesia, and euthanized with

CO2 after completion of the feed. Afterwards, mosquitoes were fed until use, with 8% fructose

containing 0.2% PABA.
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Mosquito embedding

Adult female Anopheles stephensi mosquitoes were killed at various times following feeds on

mice infected with P. berghei, and fixed overnight at 4˚C in a 1:1 mixture of 4% paraformalde-

hyde in 1x PBS and 100% ethanol. Mosquitoes were then washed 3 times in 1xPBS for 5 min-

utes each time. Washed mosquitoes were embedded in 1.3% ultrapure low-melting agarose

(Invitrogen) in deionized water. Gels containing the mosquitoes were transferred for at least

2h to 4˚C. Using a single-edge blade, the gel was then trimmed into a block containing a single

mosquito in the centre.

BABB (Murray’s clear)-based mosquito dehydration and clearance

Agarose blocks containing the mosquitoes at all times post blood-feed (including 2 h, 20 h,

and day 1 through day 16), were dehydrated in a graded ethanol series (50, 70, 90, 96, and

100%) for 1 h each. Mosquitoes were then transferred to another flask containing 100% etha-

nol, and dehydrated overnight. Finally, mosquitoes were incubated in a clearing solution con-

sisting of two parts benzyl benzoate and one part benzyl alcohol (BABB, also known as

Murray’s clear) [29,49,50] for at least 10 days, until they became transparent.

3DISCO-based mosquito dehydration and clearance

Previous work showed that tetrahydrofluoran (THF) in combination with dibenzyl ether

(DBE), fully clears multiple mouse tissues including the lymph nodes, spinal cord, lungs,

spleen and brain, while successfully preserving fluorescent signals [32,33]. Two clearing proto-

cols were adapted for use in mosquitoes, namely a relatively short protocol consisting of dehy-

dration in a graded THF series (50, 70, 80 and 100%) for 30 minutes each, followed by 2

further 30 minute incubations in 100% THF. This was followed by a 20-minute incubation in

dichloromethane (DCM), and a 15-minute incubation in DBE. The long protocol consisted on

dehydration in the graded THF series for 12 h each, followed by 2x 12 h incubations in 100%

THF. This was followed by clearance in DBE, without the intermediate DCM step.

SeeDB-based mosquito dehydration and clearance

In 2013, Ke and colleagues [31] first published a water-based optical clearing agent called

SeeDB, which had the advantage of preserving fluorescence, including that of lipophilic trac-

ers, while also preserving sample volume and cellular morphology. In order to prepare fructose

solutions, D(-)-fructose was dissolved in distilled H2O at 65˚C, and upon cooling to 25˚C, α-

thioglycerol was added to give a final concentration of 0.5%. Mosquitoes were initially fixed in

4% PFA, and embedded into 1% ultrapure agarose in dH2O. Fixed mosquitoes were then seri-

ally incubated in 20%, 40% and 60% fructose, each for 4 h, followed by a 12 h incubation in

80% fructose, a 12 h incubation in 100% fructose, and incubation in SeeDB at either 37˚C or

50˚C.

Microscopy—Optical projection tomography (OPT)

OPT scanning was performed according to the manufacturer’s instructions (Bioptonics). Filter

sets were exciter 425/40, emitter LP475 for autofluorescent signal, exciter 480/20, emitter

LP515 for green fluorescent signal; and exciter 545/30, emitter 617/75 for red fluorescent sig-

nal. Raw data were converted into 3D voxel datasets using NRecon software from Bioptonics.

Reconstructed virtual xyz data sets were exported as.tif files and analyzed with IMARIS (Bit-

plane) for visualization and/or isosurface reconstruction of parasite distribution in the
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mosquitoes. IMARIS reconstructions were carefully adjusted to fit original NRecon

reconstructions.

Light sheet fluorescence microscopy (LSFM)

Light sheet fluorescence microscopy scanning was performed using a commercially available

Ultramicroscope system (LaVision BioTec). Light was produced by a 200-mW laser that illu-

minates the sample from both sides by two co-localized thin sheets of light to compensate for

absorption gradients within the tissue. A 10x objective with a NA of 0.3 was used.

Microscopy—Confocal imaging

Confocal imaging of dissected midguts and salivary glands for validation of the observations

performed by OPT and LSFM was performed using a Leica SP8-STED microscope. Midguts

and salivary glands were imaged using a 20x air objective, using a white light laser at a wave-

length of 550nm, and a 63x oil immersion objective using a white laser at wavelengths 405 and

488 nm. The LASX software was used for image acquisition.

Sample mounting for OPT and LSFM

Microscope setups for conventional widefield and confocal systems are remarkably different

to those of OPT and LSFM (Fig 1). For conventional fluorescence microscopy samples are usu-

ally placed on glass bottom dishes or microscope slides in which they are overlaid with a cover-

slip. Preparation for OPT and LSFM requires placing the sample in a medium- or liquid-filled

chamber that enables rotation or motion during image acquisition (S1A Fig). In order to take

full advantage of the 3D imaging technique all the specimens need to be mounted into a special

metal sample holder that is inserted into the chamber from a magnet above (S1B Fig). The

specimen may be embedded in a gel such as low melting agarose dissolved in the medium or

buffer of choice (S1C Fig). The medium keeps the sample in place without influencing the pen-

etration of light and imaging quality.

Supporting information

S1 Fig. Mosquito mounting and embedding. A) OPT imaging requires embedding the mos-

quito in low-melting temperature ultrapure agarose gel, and mounting it onto a metallic cylin-

der that is attached to a rotating stage via a magnet. The embedded attached mosquito is then

lowered into a chamber containing index-matching liquid, such as Murray’s clear medium.

The setup for Ultramicroscopy imaging involves embedding the mosquito in low-melting tem-

perature ultrapure agarose gel, and mounting it on a lower ring of the customized holder. Both

the holder and the embedded mosquito are submerged into a chamber containing index-

matching liquid. B) Methods for mounting mosquitoes to enable imaging and rotation. C)

Petri dishes showing (1) fixed mosquitoes prior to optical clearance and embedding and (2)

optically cleared mosquitoes embedded in ultrapure low-melting temperature agarose. S1A

Fig was created using BioRender.com.

(PDF)

S2 Fig. Detected fluorescence and autofluorescence signals in undissected mosquitoes.

Given the very successful clearance obtained with BABB, fluorescence quenching occurs. We

show in this panel various possible outcomes of clearance using BABB, including A) a mixture

of detectable fluorescence in the midgut (yellow arrows), clear autofluorescence arising lower

in the body (green arrows) and autofluorescence arising from eggs (blue arrows); B) clear

autofluorescence arising from the eggs, but no other detectable signal in the abdomen; C)
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indistinguishable abdominal signal, without the possibility of distinguishing the bloodmeal

from the eggs and potential parasites in the midgut. All figures were generated by the authors

of this manuscript.

(PDF)

S3 Fig. Specific fluorescence. Examples obtained from S2 Fig, showing separate autofluores-

cence and mCherry signal, demonstrating preservation of mCherry. All figures were generated

by the authors of this manuscript.

(PDF)

S1 File. 3D visualization of an optically cleared Anopheles stephensi female mosquito,

imaged by optical projection tomography. This video was generated by the authors of this

manuscript.

(AVI)

S2 File. 3D visualization of an optically cleared Anopheles stephensi mosquito midgut,

imaged by LSFM. Fluorescent bodies correspond to Plasmodium oocysts. This video was gen-

erated by the authors of this manuscript.

(AVI)
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