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Celui qui ne sait pas d’où il vient ne peut savoir où il va car il ne sait pas où il est.
En ce sens, le passé est la rampe de lancement vers l’avenir

Otto von Habsburg (Le nouveau défi européen)

Chapter I

Introduction

Through history, humans always tried answering the two existential questions: “Where do we come
from?” and “Where shall we go?”. While it belongs to philosophers, to governments, to social sciences,
and to each of us to answer the question “Where shall we go?”, we should be able to have at least a partial
answer to the question “Where do we come from?”. Only knowing the past enables one to make useful
predictions for the future.

The question “Where do we come from?” is not only a philosophical one. It is foremost a question
with an answer based on facts and observations, which can be studied scientifically. Thereby a major
task of historians, archaeologists, palaeontologists, geologists, and (astro)physicists is to study facts and
observations and to understand how the world evolved. While the scientists study the history at different
time scales; the sum of their researches allows us to have a better understanding of what happened since
the beginning of the universe. With a good knowledge of our past, we can understand the present and
predict the future more precisely. The different studies are very often based on the traces left by the
various events that happened in the past. These traces are often analysed using methods coming either
from physics (14C dating) or from chemistry (chemical composition analysis). Based on the experimental
data, scientists propose scenarios to explain the observations. Finally, a good theory also studies the
likelihood of the hypothesis considering all available information.

The group in Berne at the time of writing this thesis comprised of four members: a geologist, a chemist,
a physicist, and an astrophysicist. The objective of our group is mainly focused on the study of meteorite
histories. “Where do they come from?”, “How long was their journey?”, and “How long have they been on
Earth?” are common questions we try to answer. This quest is aided and guided by the measurements of
isotopes in meteorites. They are produced by cosmic rays and known as cosmogenic nuclides. The group
studies also cosmogenic nuclide production high in the atmosphere as well as at the surface of moons and
planets. The analysis of cosmogenic nuclide abundances in the studied objects gives crucial information
about their irradiation histories. However, we can go one step further and try to understand the history
of the cosmic rays and, by extension, to better understand the history of the solar system, galaxy, and
the universe. The actual works of the different group members are very different but complementary in
the objective to answer the question “Where do meteorites, cosmic rays, etc. come from?”. And, as we
know: “We” are all stardust, “We” are the result of the interaction between different types of stars, dust,
and cosmic rays since the beginning of the universe. In this sense, we can also say that the objective of
our group is to help answering the fundamental question “Where do we come from?”.

Nowadays, we understand the origin and the physics of the cosmic rays relatively well, even if fun-
damental questions are still not answered. Cosmic rays are free elementary particles and atomic nuclei
travelling though the universe. They are mainly produced by dying stars, mostly supernova explosions.
Then, they propagate in the vacuum of space with a velocity often close to the speed of light. Finally, the
particles end their lives in hard collisions with massive objects like planets and meteoroids (the name of
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CHAPTER I. INTRODUCTION

meteorites before they fall on Earth or another planet). In addition, there are also interactions within the
galactic cosmic rays (GCR) itself, i.e., GCR particles interacting with other GCR particles. Taking into
account their quantities and their effects, the cosmic ray spectrum relevant for our studies is dominated by
hadrons (mainly protons and alpha particles) with energies in the range of few GeV . When such particles
collide with a nucleus in a meteoroid, a planet, or an atmosphere, it results in a phenomenon known as
nuclear spallation.

Nuclear spallation (hereafter simply called spallation) is a complex phenomenon, which happens when
a light particle collides with a heavier nucleus with energies in the energy range of a few GeV . This collision
leads to a fragmentation of the involved nucleus, often leading to a smaller nuclide and to the emission of
hadrons and small clusters. A good example of such a type of reaction is the case of a proton colliding
with a lead nucleus at a relatively high energy. This can result in the formation of a gold nucleus with
the ejection of some protons and neutrons. It does make us wonder what would the alchemists of the past
centuries say if they knew that lead can naturally turn into gold while being irradiated in space? Could we
perhaps find the famous philosopher’s stone in the cosmic rays? Behind this nice but very specific example,
it is important to emphasis that the chemical composition of an object in space can be and actually is
modified. The nuclei in the objects exposed to cosmic rays can be transformed into other elements through
spallation reactions and this is a naturally occurring phenomenon. The study of the isotope composition
of the irradiated objects allows us to get information about their exposure history. Moreover, some of
the often studied cosmogenic nuclides are radioactive. Therefore, an equilibrium between production and
decay will be reached after some irradiation time, which depends on the half-life of the studied nuclide.
This equilibrium not only depends on the irradiation history but is also disturbed if changes happen in the
irradiation set-up (e.g., if the meteorite fall on Earth where it is shielded from cosmic rays). Therefore,
studying isotope ratios makes it also possible to obtain information about the history of the objects after
being exposed to cosmic rays. As an example, for a meteorite, the measurement of some of the isotope
ratios involving radioactive cosmogenic nuclides allows us to determine when the meteorite fell on Earth
and it also provides information about the journey of the meteorite and finally about the cosmic rays
themself.

A reliable interpretation of the measured nuclide abundances and isotope ratios requires a deep un-
derstanding of the irradiation process. Notably, the fluxes of primary and secondary cosmic ray particles
must be known with high precision as a function of particle types, energy, and depth within the irradiated
object as well as a function of the size and chemical composition of the irradiated object. In addition,
there is a need to know the interaction cross sections between the different elements present in the target
and the cosmic ray particles. The complexity of all involved processes makes it impossible to under-
stand cosmogenic nuclides synthesis only based on experimental data. The best solution available for this
problem is to carry out sophisticated physical simulations, which allows to study all involved processes at
minimal cost in terms of time and money. However, such simulations must be validated by experiments for
various representative cases to ensure the reliability of the prediction for unknown and/or not well-studied
regions.

This is in this context that my thesis took place. My work was to develop a program simulating the
cosmic ray irradiation of meteoroids and (exo)planetary atmospheres. This program is named Cosmic-
Transmutation. The objective of this program is to predict the fluxes of light particles (protons, neutrons,
and alpha particles) together with the radioisotope production in meteorites and atmospheres. Another
point of interest of this program is to study the links between the irradiation spectrum and the effects
on the exposed object. This would help to better understand and interpret the experimental data. For
example, detection thresholds could be established, which can guide future experiments.

The first two years of my PhD were spent at the CEA Saclay (France), in the DPhN (Département de
Physique Nucléaire). My work there was to improve and validate the IntraNuclear Cascade model of Liège
(INCL), which describes and quantifies the output of spallation reactions. The code INCL is included
in the transport model Geant4. The objectives were threefold. The first objective was an improvement
of the INCL model i.e., an extension to high energies, which resulted in a better prediction of spallation
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reactions. The second objective was to develop a deep understanding of the Geant4 and INCL models
and of the associated physics, which are crucial parts of the final CosmicTransmutation model. The last
objective was to further develop my programming skills, especially in C++, which were highly useful
during the development of the CosmicTransmutation model.

After the improvement of the INCL code and its implementation into the public version of Geant4,
the last two years of my thesis took place at the University of Bern, in Switzerland and were devoted to
the development of the CosmicTransmutation model and to the analysis of first results.

The first phase of this thesis allowed me to answer two important questions coming with the devel-
opment of any program: “How much can we trust this program?” and “What are the important input
parameters that should be taken into account to make correct predictions?”. In the second phase, I learned
what type of predictions are needed to understand the history of meteorites. This thesis develops and
explains the work done during the PhD with the development and the validation of the different models
I worked on. Additionally, I will discuss how the different types of data can be interpreted.

The thesis is organised as follows. First, chapter II describes the basic concepts of this thesis, which are
cosmogenic nuclides, cosmic rays, and spallation. In chapter III, I presents the IntraNuclear Cascade model
INCL that has been developed and used all along this PhD. Chapter IV is devoted to the implementation
of strange particles into INCL realised at the CEA Saclay. It is followed by chapter V, which describes
the variance reduction scheme introduced to boost the study of strange particle production in INCL by
avoiding statistical problems. Next, chapter VI corresponds to the final part of the work carried out
at CEA Saclay; it presents the results obtained with the newly developed version of INCL. Similarly,
chapter VII summarises the development of the CosmicTransmutation model realised at the University
of Bern. Thereafter, chapter VIII presents first results obtained with the CosmicTransmutation model.
Finally, chapter IX draws a conclusion of the work carried out during this PhD and I will discuss some
possibilities for future work.
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CHAPTER I. INTRODUCTION
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Chapter II

Basic concepts and applications

The work carried out during this thesis can been divided into two relatively independent parts. The
development of INCL, which was the first part of this work, was motivated by the second part, i.e., by
the application for cosmogenic nuclides. However, besides the study of cosmogenic nuclides, there was
a variety of further motivating points for improving and further developing INCL. Consequently, such a
heterogeneous project is based on a large number of basic concepts, which are introduced in this chapter.

Here I give a general overview of the arguments why is was necessary to improve INCL with a special
emphasis on combining the two different parts of this PhD. To do so, I develop the scientific context of
this thesis, its basic concepts, and its motivations and applications.

II.1 Concepts and Context

This thesis is centred around three concepts: cosmogenic nuclides, cosmic rays, and nuclear spallation.
All three concepts already exist for a long time (1934 [1], 1912 [2], and 1937 [3] respectively). However,
the possibilities to simulate and predict these phenomena are relatively recent. Major progress was made
thanks to the improvement of computing power that has been realised in the last few decades. This
created a renewed interest in the three concepts relevant for this thesis. The number of publications
about these subjects increased by orders of magnitude in the past decades. Here, I summarise only the
very basic concepts, which are important for a proper understanding of the thesis at hand.

II.1.1 The cosmic rays

The cosmic rays were first identified when the scientists realised that the level of natural radiation
increases with increasing altitude in contrast to the expected decrease if the radiation would have been
originated in the ground [2]. This observation led to the conclusion that a significant part of the radiation
observed at the ground level comes actually from above. With time, physicists measured the flux and
the nature of cosmic rays not only on or close to the ground level but also in the atmosphere and even in
space.

Two main types of cosmic rays can be distinguished. First, the solar cosmic rays that are produced
by solar flares and/or solar energetic particle events on the sun. The composition of these cosmic rays
correspond to solar composition and the flux varies with the solar activity and generally decreases with
the square of the distance to the sun. The spectrum consists mostly of relatively low energy (< 10 MeV)
protons but some particles can reach energies in the range of hundreds of MeV. The second type of
cosmic rays are the galactic cosmic rays, which are supposed to be created in explosive stellar events like
supernovae. The galactic cosmic rays consist mostly of protons and alpha particles (see Figure II.1). In
contrast to solar cosmic rays, the flux decreases when the solar activity, and with it the solar magnetic
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Figure II.1: Galactic cosmic ray spectra in the 100 MeV-200 GeV energy range. Data for protons,
alphas, antiprotons were measured by the the BESS-Polar collaboration [4, 5] and data for electrons and
positrons were measured by the the AMS collaboration [6].

field, increases. The shielding effect of the solar magnetic field rejects the lowest energy part of the galactic
cosmic ray spectrum. The typical energy for particles reaching the Earth magnetosphere is in the GeV
range. It is this second type of cosmic rays that is predominantly responsible for cosmogenic nuclides
production.

The cosmic rays are already studied for some time. However, there are sill some open questions. For
example, there is the problem of the matter/antimatter asymmetry (see electron and positron flux in
Figure II.1). Another question that has not yet been satisfyingly answered is how is the galactic cosmic
ray spectrum far away from the Earth magnetic field and also far away from the solar magnetic field? The
effects induced by magnetic fields from, e.g., the planets or the Sun, disturb the cosmic ray flux. These
magnetic fields are often variable, making the cosmic ray flux time dependent. Consequently, there are
significant differences in the irradiation spectra depending on when and where the target is irradiated.
The possibility to sent detectors in space to measure these fluxes at various location is limited by the
financial cost for such missions. Therefore, the best way to experimentally study the cosmic ray flux at
least outside the Earth’s magnetosphere is by measuring their impact on mediators like the meteoroids
and/or cosmic dust.

Recently, cosmic rays are mainly studied for two reasons: first, for their impact on either onboard
electric devices and on humans in aircrafts and especially in space missions. Second, cosmic rays are
studied to obtain information about the history of cosmic rays with respect to our galaxy. In this thesis,
I will focus on the second topic; more specifically, I will focus on the types of information that are exper-
imentally studied in our group. The theoretical approach of this thesis is motivated by the needs of the
experimentalists to interpret their data in terms of, e.g., how measured cosmogenic nuclide concentrations
can be used to study the temporal constancy of galactic cosmic rays, how measured cosmogenic nuclide
activities can be used to study the irradiation history of the meteoroid or the cosmic dust particles, and
finally, how the measured cosmogenic nuclide activities can be used to study terrestrial ages of meteorites
and with it the influx rate of extraterrestrial material on Earth
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II.1.2 The nuclear spallation

Basically, spallation is a phenomenon happening when a light particle (typically a proton) collides with
a heavy nucleus at an energy between a few tens of MeV and some GeV. During this spallation process
there is the production of numerous particles, predominantly neutrons. The process can be divided into
two stages [7]. In the first stage of the collision, the light particle enters the heavy nucleus. Considering the
energies involved, the hadrons can be considered as free particles evolving in a mean nuclear potential.
The incoming projectile with its high kinetic energy induces a cascade of binary collision between the
hadrons. These hard binary collisions often lead to the creation of new unstable hadrons like, e.g., pions
or kaons. Additionally, some of the scattered particles can have high enough energies to pass over the
potential barrier and leave the nucleus as so-called ejectiles. This first stage is called the intranuclear
cascade and its typical duration time scale is given by the time needed for a particle with a velocity close
to the speed of light to travel through the nucleus having a radius of few femtometer. This corresponds to
a travel time about 10−23−10−22s. The nucleus left after this first stage is called the remnant. The energy
remaining after the intranuclear cascade often makes the remnant highly unstable. The second stage of
the spallation will therefore be the de-excitation of the remnant. During this phase, different processes
are in competition to release the excess energy (e.g., fission, evaporation, ...). This stage is responsible for
the majority of emitted neutrons, which are relatively easily ejected due to the missing coulomb barrier.
The typical duration time scale of this stage is about 10−20s. Potentially, the de-excitation can even be
much longer. However, processes like internal conversion or beta decay are usually not considered when
discussing the spallation and nuclei with half-lives longer than 10−17s are considered stable.

A distinction should be done between the microscopic spallation, which corresponds to one individual
collision as described above, and the macroscopic spallation, which corresponds to a cascade of micro-
scopic spallation reactions induced by particles emitted during the intranuclear cascade of the microscopic
spallation. The emitted particles from one spallation reaction can induce multiple further spallation re-
actions. Therefore, a single proton with a relatively high energy can induce tens of microscopic spallation
reactions.

During the first chapters of this thesis describing the development and improvement of INCL, the term
spallation refers to microscopic spallation. However, the spallation induced by cosmic rays discussed in
the second part of the thesis refers to the macroscopic spallation.

II.1.3 The cosmogenic nuclides

The study of cosmogenic nuclides started accidentally in 1934 [1] with the discovery of an unknown
radioactivity emitted by minerals originating from Greenland. This discovery was associated to cosmic
rays even if the phenomenon was not understood by then. Cosmogenic nuclides are the results of spallation
reactions induced by cosmic rays. They are produced directly through spallation reactions or indirectly
through the decay of short-lived nuclei resulting from spallation reactions.

In 1946, cosmogenic nuclides found their first real application with the use of the famous 14C dating
method [8]. Since then, many other cosmogenic nuclides (10Be, 26Al, 40K, etc.) resulted in various dating
methods and they found various applications ranging from archaeology, hydrology, and oceanography to
geology and geochemistry not to mention astrophysics (see subsection II.2.2). The astrophysical applica-
tions, which are the main topic of this thesis, started with the study of cosmogenic nuclides in meteorites
because they are directly exposed to cosmic rays leading to relatively high cosmogenic production rates.
Later, it was extended to lunar samples. The terrestrial applications started much later because of the
significantly lower cosmogenic nuclides production due to the shielding effects of the atmosphere and the
Earth magnetic field.

As mention before, the production of cosmogenic nuclides is dominated by hadrons, notably by protons
and alpha particles. This is well illustrated in Figure II.1 where it can be seen that the electron and anti-
proton fluxes in the galactic cosmic rays are at least 2 and 4 orders of magnitude lower than the proton
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flux, respectively. Additionally, electrons interact with matter only via the electroweak interaction whereas
the hadrons interact via the strong interaction. In Figure II.1, one can also see that the flux of particles
decreases quickly with increasing energy. Actually, the proton flux decreases according to Φ ∝ E−2.7.
This explains why only protons and alphas around the GeV scale are usually considered in studies of
cosmogenic nuclides production.

II.2 Motivations and applications

Two different simulation programs were improved and/or developed during this PhD. The first pro-
gram, INCL, does not depend on the second one, CosmicTransmutation, and the improvements realised
in INCL are important but not crucial for the CosmicTransmutation model.

The objectives of this section are threefold. First, I give the motivation for the renewed interest for
cosmic rays, cosmogenic nuclides, and spallation reactions. These motivations go beyond the framework
of the thesis. Next, the arguments why these phenomena are studied using Monte Carlo simulations are
explained. Finally, the connections between both phases of this thesis are discussed.

II.2.1 The cosmic rays

Cosmic rays are abundant and everywhere in space. They are able to penetrate parts of planetary
atmospheres and for Earth, as an example, the secondary particles produced by the interactions of pri-
mary cosmic ray particles with atoms from the atmosphere even reach the surface and produce so-called
terrestrial cosmogenic nuclides. The effects caused by cosmic rays can be used as a source of information.
The dominant measurable effects of cosmic rays are actually induced by nuclear spallation reactions. Via
cosmogenic nuclides, which will be discussed in the next subsection, the induced radioactivity can be used
to remotly study the chemical composition of objects in space if they cannot be directly studied in a
laboratory. It is interesting to note that cosmic rays also have an impact on the composition of cosmic
rays itself. The spallation induced by cosmic ray particles with other cosmic ray particles is responsible
for a significant part of the light elements (Li, Be, etc...) available in the universe.

In addition to nuclide production processes, the cosmic ray spectrum can be used to obtain some direct
information. For example, the detection of electron and positron spectra in the cosmic ray flux obtained
by looking in different directions can be used to determine the asymmetry of matter/antimatter in the
primitive universe, in galaxies, or in clusters. The detection of neutrino pulses can be used to anticipate
the observation of supernovae.

However, cosmic rays also have negative aspects, which must be studied and taken into account,
notably for space missions and in aircrafts. The irradiation of on-board electronic devices and humans
can cause irreversible damages. This is crucial for the planning of space missions but it is also important
for commercial airliner where a significant increase in the cosmic ray flux induced by, e.g., a solar eruption
can be mortal for passengers. Additionally, with the miniaturisation of electronic devices, cosmic ray
effects become more likely and some effects can already be measured at sea level.

II.2.2 The cosmogenic nuclides

Cosmogenic nuclides cover a large range of atomic mass and charge numbers. However, for most of
them there is no scientific application. To be scientifically useful, a cosmogenic nuclide must fulfil four
conditions. First, the natural abundance of the nuclide must be low to be able to resolve the production
against the natural background. To give an impression, the order of magnitude for the production of
cosmogenic nuclides is in the range of a few thousand atoms per gram per year. Therefore, very often
the amount of newly produced nuclides is small compared to the amount of already naturally occurring
nuclides. The second condition is that the nuclide is either stable or has a half-life greater than or
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comparable to the events of interest. If the half-life is too short, the nuclide reaches equilibrium (potentially
below the level of detection) too fast to give any useful information about the past of the object. The third
condition is the feasibility of the experimental measurement. Some nuclides are extremely challenging
to measure and, sometimes, the uncertainties and/or the systematic errors for them are too large to
obtain meaningful results. The final condition is a good theoretical understanding of the production
and loss mechanisms of the studied nuclide. If these processes are not well understood, the analysis
of the experimental results cannot lead to firm conclusions. The two first requirements are natural
constraints and cannot be bypassed. However, the two other requirements are technical constraints and
one of the major tasks of our research group is to push the limits. Notably, this thesis is devoted to the
fourth requirement with the aim to provide a state-of-the-art understanding of the cosmogenic nuclide
production.

The first application of cosmogenic nuclides was their use in a dating system. It started in 1946
with the development of the 14C dating method [8]. Still, dating is the goal for most cosmogenic nuclide
studies and depending on the time scale to be dated, specific nuclide pairs are used like, e.g., 26Al/21Ne or
40K/K. To obtain reliable ages the applicability of each individual dating system must be known. For some
applications, however, there is still no dating system available. This motivates many experimentalists to
further push the state-of-the-art measurement methods for cosmogenic nuclides, which becomes more and
more challenging. This allows not only to improve the precision of existing methods, it also creates new
fields of application.

The physical basics of all dating methods are relatively easy. For a given cosmic ray flux, the production
and loss rate of the relevant cosmogenic nuclides are calculated. Then, the time dependent nuclide ratio
can relatively easily be determined. The very same methods can be applied to various fields of application.
Here I mention the study of cosmic ray exposure ages, i.e., the time the meteoroid has been exposed to
cosmic rays, or terrestrial ages, i.e., the time the meteorite is shielded from cosmic rays while being on
Earth. In geology, the age of geological surfaces can be calculated. Taking into account shielding effects
of the studied surfaces, it is possible to measure erosion rates. Going even deeper in the analysis, it is
possible to obtain information about variations of the cosmic rays flux. It is then also possible to study the
dynamics of small bodies in the solar system. Additionally, the exposure age (together with the terrestrial
age) of meteorites can help to constrain if two of them share the same origin, i.e., were ejected from the
same parent body. Actually, studies demonstrated that the majority of the meteorites found on Earth
come from just a few major collisions between massive objects. Finally, with the increasing precision of
measurements, it is possible to study mountain uplift since the cosmic rays flux depends on the altitude.
For a more exhaustive description of the various application of cosmic rays, see ref. [9].

II.2.3 The spallation

Spallation is a complex phenomenon, which plays a crucial role in a large variety of fields. The major
applications can be divided into two subgroups: the fields related to natural spallation induced by cosmic
rays and the fields related to human controlled spallation. The interest in natural spallation is part of
our interest in cosmic rays and cosmogenic nuclides. However, natural spallation induced by cosmic rays
is only a minor part of all the applications related to spallation.

The human controlled spallation can directly or indirectly be used as a tool in a large variety of
fields. The most famous field of application is its use in neutronics. As already mentioned, the neutron
production cross section in spallation reactions is very high (several barns). This makes spallation reactions
a suitable source for neutrons as it is already done in various existing or planned facilities (e.g., nToF,
ESS) using neutrons as projectiles or studying them. Using the spallation process for the production
of neutrons provides significant advantages compare to other neutron sources like nuclear reactors. The
flux of neutrons of such so-called spallation sources is relatively easy to control in terms of intensity,
energy, time dependence, and direction. The secondary fast neutrons can be slowed down and used to
explore the structure and the dynamic of, for example, condensed matter. Considering nuclear power
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plants, the long-lived radioisotopes in the nuclear waste are known as a major hazard because of their
long lifetime and their high radiotoxicity. A solution might be found using the MYRRHA project. This
nuclear reactor project plans to demonstrate the feasibility of an Accelerator Driven System (ADS). In this
set-up, the nuclear waste, notably the long-lived radioisotopes, are used as combustible and are irradiated
with a spallation source. The reactions induced not only lead to the transmutation of the various long-
lived radioisotopes into stable or short-lived isotopes, the entire process is able to produce energy, i.e.,
electricity. In more fundamental research, spallation reactions are used for the creation of exotic nuclei
like neutron- or proton-rich nuclei or hypernuclei. Finally, spallation is used in medicine. It plays a crucial
role in hadron therapy where light nuclei are accelerated at very specific energies (∼ 100 MeV ) in order
to irradiate tumours.

In summary, spallation is a very interesting tool for physicist. It is not only relevant for fundamental
research, the applications range for astrophysics, to energy production, and medicine. Therefore, there
are good reasons to study and better understand the spallation process.

II.2.4 INCL and CosmicTransmutation

As mentioned above, the study of cosmogenic nuclides requires a good theoretical understanding of
the underlying production and loss mechanisms. On a more general level, current research in physics is
often very sophisticated and complex. The data obtained in sophisticated and specialised experiments,
need a theoretical framework to be interpreted and to give rise to predictions and conclusions. However, a
deterministic approach of complex phenomena is often unrealistic and/or needs some approximations and
hypotheses, which in turn reduces the predictive power. The recent increase in computing power enables
that in many fields simulations can be a realistic alternative to the deterministic approach. The approach
used in this thesis is based on Monte Carlos simulation codes and is therefore not deterministic. In such
codes, some a priori hypotheses are made. For example, the question of what are the relevant nuclear
parameters to be considered needs to be answered. Then, theoretical predictions obtained with the codes
are compared to experimental data. These comparisons give information about the predictive power of
the used models. Finally, the models are used to make theoretical predictions for unmeasured and often
so-far unstudied processes.

In particle physics, simulation of macroscopic events are based on a relevant and useful underlying
environment. The Geant4 toolkit [10] is such an environment and it is likely the most famous environment
for high energy physics simulations. In this environment, various independent models are implemented in
order to treat the different aspects of the entire physical problem. Sometimes, there are different models
proposed for simulating the same process. This allows to make comparisons and to choose the physics list
that gives the best results. The reliability of Geant4 based programs is directly linked to the reliability
of the implemented models. In the context of cosmic ray interaction, the dominant process is spallation
in the GeV energy range. What we consider as the most promising model implemented in Geant4, which
treats spallation, is the IntraNuclear Model of Liège (INCL). This is why the first stage of this PhD was
devoted to the improvement of INCL to a state-of-the-art model.

The new version of the INCL model, which was developed during this thesis, will be described in
detail in chapter III. Basically, the code simulates the IntraNuclear Cascade (INC) phase of the spallation
reaction. In combination with a suitable de-excitation code, it simulates the microscopic spallation. When
implemented and used in a transport code like Geant4, macroscopic spallation can be simulated. The
stand-alone version of INCL can be used directly to simulate experiments on thin targets in order to
calculate, e.g., cross sections for the particle production or for the production of residual nuclides. On the
other hand, such experiments provide data, which are essential to test the reliability of the INCL model.

Either as stand-alone models or implemented into a transport code, models like INCL are only appli-
cable to specific particles and energy ranges. The different models included in a transport code that are
all needed to fully cover all physical aspects, need to overlap in energy to guarantee a complete coverage
of the energy range of interest. Usually, the larger the overlap, the smoother the transition between the
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models, which is necessary to avoid discrepancies and/of jumps in the predictions
Improvements in INCL have thus two types of motivation. On the one hand, they improve and extend

the range of application for INCL. On the other hand, the extended range guarantees a better overlap
with the other models in Geant4, consequently improving its predictive power.

The CosmicTransmutation model was developed from scratch during the second phase of this PhD.
This model simulates the irradiation of meteoroids and planets with protons and α particles from cosmic
rays. The CosmicTransmutation model was developed for a specific purpose: to support the prediction
of cosmogenic nuclides production. The program was developed to be as versatile as possible, i.e., it
considers meteoroids, atmospheres, and the surface of planets, moons, and asteroids without atmospheres.
Similar codes already exist but they are often limited to very specific targets, which were in the focus
of the researches that developed the models. In contrast, the development of the CosmicTransmutation
model was not linked to a specific target with a specific composition or with any specific characteristic.
It has been planned and developed in the most general way possible. In addition to its flexibility, the
development of a new code allowed to implement new possibilities, which were not found in other codes
like, e.g., the simulation of non spherical objects.

II.2.5 The dual development

Both INCL and CosmicTransmutation, which were both developed during this thesis, are Monte Carlo
simulation codes. Therefore, their predictive power is directly linked to their basic hypotheses.

The CosmicTransmutation model is based on Geant4, which can be seen as a toolkit code. Geant4
is not a simulation model by itself. It notably provides C++ classes, which can treat numerous physical
aspects. In this context, Geant4 is often used as a black box. The problem is therefore to estimate the
errors and uncertainties of the predictions and the limitations of the code itself. Additionally, the models
implemented in Geant4 are black boxes for Geant4 itself. Consequently, the errors and limitations of
the individual programs propagate, often without being quantified or even estimated, to the final result.
To overcome this limitation it is necessary to go inside the sub-models and to understand their relevant
limits, strengths, and weaknesses.

In the case of CosmicTransmutation, which is based on Geant4 and, by extension, on INCL, the hy-
potheses of Geant4 and INCL affect the reliability of the results obtained using the CosmicTransmutation
model. Even if the limits of Geant4 and INCL can be relatively well understood using the documenta-
tion of both codes, the estimation of errors and how they propagate is very complex for the users. The
participation in the INCL and Geant4 collaborations gave me a profound understanding of both codes.
The knowledge of the strengths and weaknesses of both codes allows me to better estimate the reliability
of the results obtained using CosmicTransmutation and to go deeper into the analysis of the results.
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Chapter III

The IntraNuclear Cascade model of
Liège

A thesis is a good place to go back to the history of a model and to reunify and summarise its various
references. Two models have been developed during this PhD. However, the CosmicTransmutation model
has no history since the model has been created from scratch for this PhD. Therefore, this chapter will
be fully devoted to INCL. The objective here is twofold: understanding the INCL operation, which is at
the core of this thesis, and discussing the various subjects of improvement treated over time. This will be
useful for users who want to know the strengths and weaknesses of the model. To this effect, this chapter
is divided into three sections. In a first section, the history of the model is summarised. It is followed
by a discussion about the initialisation of INCL before the intranuclear cascade simulation. Lastly, the
global operation of the actual INCL model is described in some detail.

III.1 History

INCL is almost 40 years old and during this time the code went through many phases of development.
They can be divided into three main phases; a first phase during which the code was developed in order to
study specific physical aspects with various corresponding extensions. There was no generalised purpose.
It was followed by a second phase in which the code was recast to become a code for general applications
and to fit in transport codes for a wide distribution. In the final phase, which is the current phase,
constant efforts are made to improve and extend the capabilities of INCL and to maintain the structure
of the code in state-of-the-art spallation simulation models.

III.1.1 From origins to a well founded model

INCL is a code simulating the intranuclear cascade in nuclear collisions. The code was created in 1980
by J.Cugnon, T.Mizutani, and J.Vandermeulen [11]. It was initially devoted to heavy nucleus-nucleus
collisions in the GeV energy range, with studies focussing on the dynamics and the production of particles
during a collision [12, 13].

With the second major version of INCL in 1987 [14], the code evolved and focused on the spallation
with a light projectile and a heavier target. A constant effort has been made in the following decade to
extend the capabilities of INCL with new versions or parallel extensions [15–21]. It has notably been seen
the first apparition of strange particles in p-nucleus collisions [16]. I will discuss this specific extension in
chapter IV.
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III.1.2 Transport codes and benchmarks: the era of recognition

After various developments, INCL was recast at the beginning of the millennium and came back to
the fundamentals of the spallation simulation with a special focus on proton-induced spallation reactions
with energies between 200 MeV and 2 GeV. This new version, INCL4.2 [22], is the base on which the
current INCL model is built.

In 2001, INCL was implemented for the first time in a transport model. The model in question is the
Los Alamos High Energy Transport (LAHET) model [23]. This was of high importance for both parties.
For LAHET, it represented a new model available with excellent results obtained with the stand alone
version of INCL. Moreover, INCL was able to treat light nuclei (up to A = 4) as projectiles, this was
an issue in LAHET. Up till this point, only the Isabel model [24] was able to consider light clusters as
projectiles in this transport model and the comparison between physics list was not possible.

In 2010, a benchmark of the spallation models was carried out by the IAEA [25]. This benchmark
compared various combinations of intranuclear cascade and de-excitation models for energies up to 3 GeV.
A the end of this study, the INCL model was recognised as one of the best spallation models when
associated to the ABLA07 [26] de-excitation model. An example of notations obtained by the various
models tested is given in Figure III.1.

III.1.3 High energy and new particles

The conclusions of the IAEA benchmark confirmed the quality of the combination of INCL and ABLA
models. However, the quality of this combination in the 200 MeV-2 GeV energy range was already well
accepted for many years. The two models showed excellent results with a good reproduction of the total
and differential cross sections as well as the particle multiplicities. This led to a new policy: the extension
of INCL capabilities. During the 2000’s, we can notably cite the increase of the energy range treated
[27, 28], with a focus in direction of high energies, and a better description of the target nucleus with the
implementation of a correlation momentum/position for nucleons in the initial nucleus.

Figure III.1: Notation obtained by the different models tested during the IAEA benchmark for iso-
topic distributions. The reaction tested were p + Fe at 300 and 1000 MeV/nucleon, p + Pb at 500 and
1000 MeV/nucleon, and p+U at 1000 MeV/nucleon and the experimental data used for the comparisons
came from refs. [29–36]. A notation of 0 or more indicates a model is able to reproduce experimental data
with, at least, the minimal precision fixed by the authors of the benchmark.
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The improvements in the direction of the high energies (∼ 15 GeV) were possible thanks to the
implementation of reactions producing many pions in the final state during the cascade (see sect. III.2 for
details). This version is called the multipions version.

One of the main changes in the INCL model after the IAEA benchmark was the translation of the
Fortran version of INCL into C++. This work was done by P. Kaitaniemi for the version INCL4.2 in 2011
[37] and by D. Mancusi in 2012 for the version INCL4.5. It was realised in order to implement INCL in
Geant4. This resulted in a large number of new possibilities for the model. Soon after, the decision was
taken to stop the parallel development of both the Fortran and C++ version in the benefit of the C++
version alone.

For Geant4, the main objectives with the implementation of INCL were to get better junctions between
the different hadronic models thanks to a large overlap between models treating high energies and those
treating low energies; and to have an up-to-date and still actively developed model, which is well docu-
mented and validated. These objectives were motivated by various reasons but I will only mentioned an
increased interest in nuclear interactions coming from space applications and the cosmic ray interactions.
Since the first implementation of INCL4.5, every new public version of INCL has been implemented in
Geant4.

Between the implementation of INCL4.5 in Geant4 and the beginning of this PhD, a new public version
of INCL has been distributed: INCL4.6 [38]. In this version, several features were added or improved.
For the novelties, one can notably cite the emission of clusters and a Coulomb deflection for entering
and outgoing charged particles. Since this version, three main subjects where improved: the description
of light ions induced reactions [39], the inclusion of quantum effects based on Hartree-Fock-Bogoliubov
calculations for a better nucleus surface description [40, 41], and the high energy improvement. This high
energy improvement was the base of a new major version of INCL: INCL5.0 [42] with the implementation
of new particles, which are the η and the ω mesons. In addition, because of their physics, photons can be
created in INCL5.0 but they cannot interact.

My work carried out at the CEA in France started slighlty before the finalisation of INCL5.0 and was
included in this idea of high energy development. This work resulted in a new major version of INCL:
INCL6.0 [43, 44]. In this new major version, a new aspect of the physics has been opened for simulation:
the strangeness.

III.2 Operation of INCL

INCL is a complex model. However, as the development of INCL is a major part of this thesis,
the reader should have at least a basic understanding of its global operation. In this section, the most
important aspects of the operation of INCL are discussed.

III.2.1 Initialisation

The initialisation of the projectile and the target plays a crucial role in INCL. It directly influences
the reliability of the results. It also defines a validity range and it must be, at least partially, understood
for the proper analysis of the final results.

Projectile and target handled by INCL

INCL is able to accommodate various particles as projectiles. At the beginning of this PhD, the
allowed projectiles were the nucleons (p and n), the pions (π−, π0, and π+), and light nuclei with A < 18.
With the implementation of strange particles realised during this PhD, a new zoology of particles are now
available as projectiles. Namely, the kaons (K+ and K0), the antikaons (K0 and K−), the Lambda (Λ),
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and the Sigmas (Σ−, Σ0, and Σ+). Additionally, light hypernuclei can be used as projectiles following the
same rules as for “normal” nuclei.

Note that it is technically possible to use projectiles with A ≥ 18. However, the hypotheses of
INCL are less and less valid with increasing projectile mass (see sect. III.2.1 for details). Therefore, it is
recommended to not go higher than this upper limit.

The targets, which can be handled by INCL, cover the set of nuclei with A > 4. Once again, this PhD
opened new possibilities with hypernuclei, which are now available as targets. It should be noticed that
the larger the target mass is, the more valid will be the basic hypotheses of INCL. These hypotheses are
the same as the Serber hypotheses [7], which can be summarised using the following inequality [9]:

λ–� d < Λ < R (III.1)

with λ– the reduced de Broglie wavelength, d the distance between two nucleons inside the target nucleus, Λ
the mean free path of the particle in the nucleus, and R the radius of the nucleus. The physical meanings
of the sub-inequalities are:

• λ– � d - The size of the wave packet describing the particle is much lower than the internucleonic
distance. Consequently, all nucleons appear distinct and well defined in momenta and positions for
the incoming projectile. This allows a classical treatment of the particles propagation.

• λ–� Λ - The scattered wave reaches its asymptotic state before the next interaction and interactions
can be treated in a classical approach.

• d < Λ - Interactions are independent from each other (assuming that the time between two collisions
is larger than the interaction time scale). Interactions and transport can be treated independently.

• Λ < R - The possible interferences between the scattered waves cancel out due to the large number
of interactions.

These hypotheses define a range of validity for intranuclear cascade models. Notably, it defines an
energy range for the projectiles. At low energy, i.e., below 100 MeV/Nucleon, the wavelength of particles
increases. However, the mean free path increases due to the Pauli blocking. Therefore, the second
condition remains valid. Moreover, for peripheral collisions, the projectile will have more difficulties to
penetrate deep in the nucleus and the first inequality stays true since the nucleonic density is lower in
periphery of the nucleus. Special attention to the low energy domain showed that results down to a few
tens of MeV could be as good as those obtained via models dedicated to the description of low energy
nuclear reactions [45]. At very low energy and when the collision is central, no cascade is instantiated,
the projectile is absorbed, and a compound nucleus is directly formed. At high energy, the wavelength of
particles is small enough to be sensitive to the sub-structure of baryons, which are the quarks and gluons.
Therefore, the collisions cannot be treated as nucleon-nucleon collision any more, the hadronisation time
must be taken into account, and the interactions and the propagation cannot be treated using a classical
approach. The high energy limit of validity of Serber hypotheses is between 10 and 40 GeV/Nucleon [46]
and likely around 20 GeV/Nucleon.

We can state the Serber hypotheses define an energy range covering the major part of the relevant
energies for cosmogenic nuclides production, which is the topic of this PhD (see Figure II.1).

Nucleons distribution

The description of the target is crucial for a proper simulation of the spallation reactions. Therefore,
it is described with high precision. A special attention is paid to the generation of nucleons inside the
target nucleus. Moreover, some ingredients are implemented in the code to mimic the quantum mechanical
features.
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In the target nucleus, nucleons travel freely in a potential well and they have various momenta and
positions. The couples position and momentum are not distributed completely randomly. The momentum
defines a radius of action inside the nucleus. Therefore, a correlation exists between momentum and
position (r-p correlation).

In previous versions of INCL [22], the radius of action was treated with a classical approach where
all the momentum below the Fermi momentum pF (= 270 MeV/c) in a Fermi’s sphere had an equal
probability of realisation and the radius of action R(p) is well defined. The nucleons with a momentum p
cannot cross the limit R(p) as illustrated in Figure III.2.

Figure III.2: Repartition of nucleons in space phase. Left graph: space-momentum density. Right
graph: space-radius density. The shaded zone on the two graphs are occupied by the same nucleons.

The previous statement illustrated in Figure III.2 can be written as:

AT
4π p2dp

4π
3 p3

F

= −4π
3 R3(p) dρ(R(p)). (III.2)

with AT the mass number of the target nucleus and ρ the nuclear density.
In the latest version of INCL, ρ(r) for r < Rmax is defined as:

ρ(r) =



ρ0

1 + exp( r−R0
a )

for A > 19

ρ0
1 + α(r/a)2

exp((r/a)2) for 6 < A ≤ 19
ρ0

exp((r/a)2) for A ≤ 6

(III.3)

with a and α, two parameters defined as functions of the target mass number and ρ0 the normalisation
term to get the right target mass. Rmax is the maximal radius of the nucleus and is also defined as a
function of the target mass. For r ≥ Rmax, ρ(r) is zero regardeless of the nucleus mass number. These
distributions are called the Woods-Saxon, the modified-harmonic-oscillator, and the Gaussian density
distributions, respectively. The values for the parameters a and α can be found in ref. [22] for the
Woods-Saxon distribution and in ref. [47] for the two other distibutions. More details can be found in
ref. [41].

The radius of action of a particle with momentum p can be deduced from the integration of eq. III.2,
which leads to the formula:

AT

(
p

pF

)3
= −4π

3

∫ R(p)

0

dρ(r)
dr

r3dr (III.4)
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Figure III.3: Phase space distribution of protons in a nucleus of 27Al. Upper panel: proton distribution
in the classic approach. Lower panel: proton distribution in the quantum approach of ref. [40]. The black
line in the lower panel represents the classical phase space limit of the proton distribution seen in the top
panel.

Once R(p) has been determined, the nucleons can be generated in the joined probability density:

f(−→r ,−→p ) = d6n

dr−→
3
dp−→

3 = AT
Θ(R(p)− r) Θ(pF − p)

4π
3 R

3(p)× 4π
3 p

3
F

(III.5)

with Θ the Heavyside function. In practice, the momentum p was generated in the uniform Fermi sphere
distribution and the position was generated in a uniform sphere of radius R(p).

In order to improve the description of the surface, two main improvements have been made in the latest
version of INCL [40, 41]. First, the radius of action of protons and nucleons are defined independently since
the number of nucleons of each type can be different. Additionally, the Fermi’s momentum can be different
for protons and neutrons because of the N-Z asymmetry. For most of bound nuclei in the nuclear chart,
the number of neutrons are higher than the number of protons. In these cases, a “neutron skin” naturally
appears around the nucleus. Second, the quantum mechanics is taken into account with the possibility
for a nucleon with a momentum p to cross the corresponding radius of action R(p). In the new approach,
the term Θ(R(p) − r) in eq. III.5 becomes a Wood-Saxon distribution and, in practice, the positions of
nucleons are no longer distributed uniformly in the Fermi’s sphere of radius R(p). The positions are now
corrected following the aforementioned Wood-Saxon distribution as shown in Figure III.3, as detailed in
refs. [40, 41].

In the case where Λ particles are present in the initial target, they follow the same rules as nucleons.
However, no test has been performed on target hypernuclei since no experimental data exists for such
systems.

The description of the projectile is less crucial for the simulation. Therefore, the target and the
projectile are treated asymmetrically in INCL for sake of simplicity. Whereas the nucleons in the target
travel freely in a potential well, the nucleons in the projectile are frozen.
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III.2.2 Spectators and Pauli blocking

With a classical approach of the nucleons and their interactions unphysical processes would happen
in INCL. Some special rules have been implemented to the model to avoid such unphysical processes and
to mimic the quantum mechanical effects.

The first problem with a classical approach is that the nucleons inside the target would naturally
collide and exchange energy. This would happen without the contribution of any projectile. In such a
case, the momentum of some nucleons could cross the Fermi momentum and escape the target nucleus
even if this nucleus is stable. This phenomenon is known as the spontaneous Fermi sea boiling. In order to
avoid this phenomenon, the concept of spectator and participant nucleons has been introduced in INCL.
The spectator nucleons are prohibited to interact with each other. Only the participant-participant and
spectator-participant interactions are allowed. At the beginning of the cascade, every nucleon in the target
is spectator and particles in the projectile are participants. Then, when a participant interacts with a
spectator, the spectator becomes participant as well as the eventual particles produced. The other way
around, when the energy of a nucleon participant is below a threshold energy, its status change back to
spectator in INCL4.2. The low limit had been defined as the Fermi energy plus a small quantity fixed to
18 MeV. This procedure was motivated by various considerations (e.g., the localisation of nucleon are not
precisely defined at very low energy). This procedure was inspired by the Isabel code [24]. In addition
to avoid unphysical processes, this solution reduced significantly the computational time. However, this
limit had been fixed arbitrary and is not representing any physical process. Moreover, some unphysical
processes were avoided but others appeared in the neutron spectra at very low energy. In INCL4.6, the
limit to turn a participant nucleon into a spectator was fixed to 7 MeV for neutrons and to the emission
threshold plus two thirds of the Coulomb barrier for protons.

The second main problem that could happen with a classical approach is the production of states that
cannot be realised in reality. As an example, the creation of states that are blocked by the Pauli principle
must be avoided. In INCL, two tests are applied to the collisions to reproduce the Pauli blocking. The
first one is applied to every interaction except the first one. This test controls the presence of nucleons
of the same type in the final state of the interaction in a phase space defined by ∆r = 3.185 fm and
∆p = 200 MeV/c. Then the state is randomly blocked or not based on the number of particles detected.
The probability to be not blocked is given by:

P =
∏
i

1− 1
2

h3

4π
3 (∆r)3 × 4π

3 (∆p)3

∑
k 6=i

Θ(∆r − |−→rk −−→ri |) Θ(∆p− |−→pk −−→pi |)

 , (III.6)

with h the Plank constant and i and k stand for the nucleons of the same type created by the binary
collision and those in the nucleus, respectively. The 1/2 accounts for the spin because it is not directly
considered in INCL. Explicitly, the probability for the collision to be accepted is reduced by 21% for each
nucleon of the same type present in the phase space previously defined. In the case of the first collision,
the test applied is strict and prohibits the production of nucleons below the Fermi momentum. The second
test is applied to every collision. This test controls the presence of holes in the Fermi sea, which would
result in a negative excitation energy for the nucleus. If any of these tests is positive, the interaction is
blocked.

III.2.3 Projectile-target collision

The first step after the initialisation of the projectile and the target in INCL is the collision between
projectile and target. First of all, an impact parameter is generated randomly. The impact parameter is
then modified because of the Coulomb force between the projectile and the target. Thereafter, when the
projectile enters the target nucleus, its energy is corrected according to the nuclear potential. When the
projectile is a cluster, it is possible that only some of its components enter the target nucleus. In such a
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case, the nucleons of the projectile that do not enter the target nucleus travel freely and no modification
or correction is applied to the remaining cluster.

Inside the nucleus, a nuclear potential is felt by the particles. This potential is a square well potential.
Consequently, the kinetic energy of the particles entering or leaving the nucleus is modified when the
particles cross the surface and inside the nucleus all particles travel freely along straight lines.

III.2.4 Cascade

After the particles enter the target nucleus, the most important part of the simulation starts. This
stage gave its name to the entire process: the intranuclear cascade (INC). The INC is a cycle of three steps.
First, the particles inside the nucleus are propagated until two particles collide. In INCL, interactions
with three or more particles are not treated except with the Pauli blocking. This is justified by the
inequality d < Λ in eq. III.1 representing the basic hypotheses of every INC model. In practice, INCL
calculates the location of every possible collision, interaction with the surface, or decay (grouped under
the name of avatar) and when they will take place. This first step updates the list of the avatars for every
particle that has been created, modified, or destroyed in the previous collision, which is described by the
two others steps of the cycle. In the approach of INCL, a collision occurs when the distance between two
particles is below the minimal distance of approach based on their total interaction cross sections and
given by: dmax =

√
σtot/π. At the end of this step, the next avatar to be treated by the following steps

is determined. The second step is applied only in case if the next avatar is a binary collision, which is
the majority of cases. In this step, the type of the next binary collision is randomly chosen based on the
respective reaction cross sections. For example, the reaction chosen can be NN → N∆. In the last step,
the phase space and the charge repartition of particles in the final state of the avatar is generated. In case
of binary collisions, they are randomly generated either based on differential cross sections (if available)
or on phase space generators. At the end of this step, tests like the Pauli blocking are performed. If any
of these tests forbids the final state, the last steps 2 and 3 are cancelled and the corresponding avatar is
removed from the list of avatars to be proceed further. Then, the cycle is repeated until the end of the
intranuclear cascade.

A special constraint has been implemented in INCL to avoid the treatment of reactions that would
be invariably blocked by the Pauli principle. These reactions are the very low energy nucleon-nucleon
collisions. When there are two nucleons with an energy in their center of mass below 1920 MeV, the two
particles cannot interact except for the first collision. This energy correspond to a kinetic energy available
of ∼ 40 MeV.

For a better representation of a cascade in INCL, a representation of a simple INC is given in Fig-

Figure III.4: Representation of an IntraNuclear Cascade.
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ure III.4.

III.2.5 Short life and resonant particles

A special particle, which can be created during the INC, is the ∆ particle. The standard half-life of
this particle (∼ 6×10−24 s) is smaller than the typical duration of an INC (∼ 10−22−10−21 s). Therefore,
its decay (∆→ Nπ) must be taken into account. Moreover, this very short half-life also means the particle
is resonant. The particle width is ∼ 117 MeV and its nominal mass is ∼ 1232 MeV [48].

In INCL, when a ∆ particle is created, its mass is randomly chosen based on its nominal mass and
its width. The maximal possible mass is defined based on the available energy in the collision and the
minimal mass corresponds to the sum of the masses of a pion and a nucleon to be sure that the ∆ particle
can properly decay. Additionally, the ∆ particle can decay in-flight (understand: inside the nucleus). Its
half-life is determined based on the deviation from its nominal mass and on the phase space of the final
state.

Other particles have life time comparable to the typical duration of an INC since the new improvements
[42, 43]. These particles are the meson ω (τ ∼ 8 × 10−23 s), the meson η (τ ∼ 5 × 10−19 s), and the Σ0

particle (τ ∼ 7×10−20 s) [48]. These particles are rare compared to ∆ particles. However, they play a role
in specific processes, specifically in the strangeness production for the Σ0. The widths of these particle are
small compared to their respective masses. Therefore, they always have their nominal masses in INCL.
However, the question of in-flight decay for these particles is open. A maximal half-life of 10−19 s has
been defined as the limit to take into account the in-flight decay of particle. Consequently, the in-flight
decay of the meson ω and the Σ0 particle are considered in INCL but not the in-flight decay of the meson
η.

III.2.6 Reflection, transmission, and cluster formation

In addition to binary collisions and the in-flight decay of particles, there is another type of avatar
playing a crucial role in the INC. This avatar type corresponds to the interaction with the surface of
the nucleus. Namely, when a particle reaches the surface of the nucleus, the particle can be reflected or
transmitted.

When a particle reaches the surface, the transmission probability is computed. If the average nuclear
potential felt by a particle is repulsive, this transmission probability is 1 and the particle is automatically
transmitted. Otherwise, the transmission probability Pt is given by:

Pt = 4× pin × pout
(pin + pout)2 e

−2G, (III.7)

with pin the momentum of the particle inside the nucleus, pout the future momentum of the particle
outside of the nucleus, and G the Gamow factor [49]. pout takes into account the mean nuclear potential
as well as a correction for the modification of the binding energy of the nucleus. G is zero for neutral and
negatively charged particles.

By default, the refraction of particles is not taken into account and particles are transmitted without
any change of propagation direction. However, an input option of INCL allows to compute this refraction.

When a proton, a neutron, or a Λ particle is transmitted, INCL scans the other particles, which are
close in terms of phase space. The potential cluster including the first particle are considered to be formed
and ejected. The maximal dimensions of clusters are Amax = 12 (default 8), Zmax = 8, and |S|max = 3,
with A the baryonic number, Z the electric charge, and |S| the absolute strange charge (the number of
Λ particle in our case. See subsection IV.3.2 for details). Then, the better candidate is selected based on
its binding energy. Finally, tests are performed to know if the cluster will be effectively formed. These
tests control that i) the cluster energy is above the emission threshold energy, ii) the cluster succeeds in
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Figure III.5: Evolution of, from left to right, the exitation energy of the nucleus, average kinetic energy
of particle emitted, and momentum assymetry of participants as a function of time in a typical case of an
INCL cascade. This figure is from ref. [22]

passing the Coulomb barrier, and iii) the cluster trajectory is not “too tangential” (cos(θ) ≤ 0.7) to not
be splintered because of the nuclear deformation. If all these tests are positive, the cluster is emitted.
Otherwise, only the first particle is transmitted. Details can be found in [38].

III.2.7 End of the cascade

The INC is the part of the spallation in which energetic particles are emitted. At the end of the
cascade, the nucleus is left in an exited state and it has lost its initial state memory. The nucleus at the
end of the cascade is called the remnant or the hyperremnant if strange particles are inside. In Figure III.5
three indicators of the cascade state in a typical INCL case are plotted as a function of the time. In this
figure, one can see relatively well distinguished phases, which allowed us to determine the end of the
cascade (indicated with the arrows in Figure III.5). A previous study [22] led to the stopping time limit
formula:

tstop = 29.8×A0.16
T [fm/c], (III.8)

with AT the baryonic number of the target at the beginning of the cascade.
In INCL, when the cascade duration reaches this limit, the cascade is stopped. Additionally, if no

particle in the nucleus has an energy of at least 10 MeV above the Fermi energy, the cascade is also
stopped in order to gain computational time without changing the final result.

Once the INC ends, post-cascade features are applied to the particles inside the remnant. For example,
the pions are absorbed and their energy is transformed into nuclear excitation energy. Then, every particle
that escaped along the cascade and with a half-life below a limit are forced to decay (the default limit value
is 10−19 s). Afterwards, INCL controls conservation rules. Namely, INCL checks the conservation of the
relevant quantum numbers; which are the baryonic number, the electric charge, and the strange charge.
These quantum numbers are a priori always conserved. Then, the conservation of the energy-momentum
four-vector is controlled. Actually, this test allows us to calculate what is the momentum of the remnant.
Finally, the angular momentum conservation rule is applied to fix the intrinsic angular momentum of the
remnant.

This last step marks the end of an INCL simulation and the information is registered in a root file.
However, an additional step is needed to complete the simulation of the spallation: the deexcitation.
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III.2.8 Deexcitation

INCL takes care of the intranuclear cascade as explained before. However, most of the observables of
the spallation like the neutron multiplicity cannot be reproduced without a proper deexcitation model.
This is why INCL needs to be coupled to a deexcitation model to produce results, which can be compared
to experimental data.

No direct work has been carried out in this thesis considering deexcitation. However, I have been
indirectly involved in the development of the “strange” ABLA model [50], a new version of ABLA devel-
oped specially to fit the needs of INCL with the deexcitation of hyperremnants. Moreover, the crucial
role played by this phase will be discussed at some points of this work. In this thesis, the limit between
INCL and the deexcitation model will not always be explicit.

At the end of the cascade, the remnant is often highly exited. The nucleus have various possible
deexcitation channels. Namely, the nucleus can emit light particles like γ’s, nucleons, hyperons, or α
particles. Heavier clusters, called intermediate mass fragments, can also be emitted. Another possibility
of deexcitation is nuclear fission. All of these processes are in competition and the remnant uses several
channels of deexcitation in series or in parallel. Finally, a process of multi-fragmentation can occur if the
energy of the remnant is high enough.

Once the remnant has released all its excess energy and has reached a bound state; the deexcitation
and therefore the simulation of the spallation ends. It is also important to mention that the final nucleus
is in its ground state and is bounded. However, it can be highly radioactive. For many experiments, like
the production of cosmogenic nuclides, the results of the INCL-ABLA model must be analysed taking
into account radioactive decay chains.
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Chapter IV

Extension of INCL

In this chapter, the first phase of my work carried out at the DPhN, CEA Saclay in France will be
presented. This first phase was the implementation of strange particles and their physics into INCL. This
chapter corresponds partially to the work published in ref. [44] where the main ingredients needed for the
strange particle implementation (the interaction and double differential cross sections) were displayed.
There is also some correspondences with the first part of a work to be published [43].

The needed ingredients to account for strange particles (limited here to kaons, antikaons, Lambda,
and Sigmas) are their characteristics, the average nuclear potentials they feel, the reaction cross sections
involving strange particles in the initial and/or final state, angular distributions, and momentum and
charge repartition of the particles in the final state. Since these ingredients are independent of the code
considered, the characteristics summarised and the parametrisation proposed in this chapter can be used
in any other code. It is worth mentioning that hyperon and kaon production from a nucleus are already
modelled in several codes, e.g., GiBUU [51, 52], JAM [53], LAQGSM [54], INCL2.0 [16, 55] (no more
available), and Bertini [56].

Numerous scenarios exist to treat the production of strange particles. Some models split the energy
range in two parts: a low-energy part with a center-of-mass energy roughly below 3-4 GeV and a high-
energy part. The low-energy part is described either by resonance or directly by their decay products.
However, the cross sections are then often treated differently compared to INCL; there are often given in
resonant and non-resonant terms. For the high energy part the LUND string model [57] is usually used.
Some other models, like Bertini and INCL, which both focus on the energy domain considered here, i.e.,
below 15 GeV, consider directly the decay products of the resonances and they rely on experimental data,
calculation results (e.g., from string models), and approximations. Therefore, some information already
exists. However, I investigated new parametrisations by using all available materials (experimental data,
hypotheses, and models). The ref. [44] has been the opportunity to report our best knowledge of the thus
determined cross sections and to improve some parametrisations. The goal was also to provide a rather
comprehensive set of cross sections and angular distributions in an as simple and accurate as possible form,
that can be used by other model builders and/or end-users. In addition, the work published in ref. [44]
attempts to a systematic and coherent elaboration of fitted cross sections, largely based on symmetry and
simple hadronic models, as reported in detail in this chapter.

This chapter is divided into seven sections. First, I come back on the reasons of the implementation
of strange particles in INCL. Second, the particles implemented in INCL and the associated reactions
are introduced as well as the criteria of their selection. Then, the main ingredients which are needed for
the strange particle implementation excluding cross sections are displayed. It is followed by two sections
which describe the most important part of the work carried out at the DPhN: the parametrisation of
the interaction and double differential cross sections. Then, comparisons of the earlier parametrisations
with experimental data and parametrisations from other models are discussed. Finally, the last section is
devoted to a conclusion about the parametrisation work, which come back on the difficulties faced.
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IV.1 Motivation for the strange particles in INCL

The INCL version I started with has been described in chapter III. At the beginning of this PhD,
the hadrons, which were treated in the nucleus were the nucleons (n and p), the Deltas (∆−, ∆0, ∆+,
and ∆++), and the pions (π−, π0, and π+). However, when the energy rises above a few GeV , various
other particles can be produced in the nucleus. For a better description of the high energy domain (up
to 15− 20 GeV ), these additional particles should be implemented.

The strange particles can be produced in spallation reactions. The relevance of these particles increases
with increasing energy. The implementation of strange particles was motivated by various reasons. First,
there is a need to make better transition between string models as the FTF model [58], for which the few
GeV scale represents the low-energy part, and IntraNuclear Cascade (INC) models as INCL where the
few GeV scale represents the high-energy part. The strange particle production represents few percent
of the total cross section in nucleon-nucleon reactions and even more in Delta-nucleon collisions with
around 15− 20% of the total interaction cross section at 5 GeV. Therefore, the implementation of strange
particles in INCL can significantly improved the modelling of spallation reactions in the energy range of
transition between string models and INCL. A second motivation is the fact that comparisons of model
calculation with experimental data may also probe the nuclear medium effects. A last motivation for the
implementation of strange particles in INCL is the interest in exotic physics appearing in the high energy
region. One can cite the production of strange particles themself as well as hypernuclei and neutron or
proton rich nuclei production, which can be stabilised by strange particles. In addition, the new version
of INCL obtained has been implemented into the transport code Geant4 [10, 59]. Thus, it can be used in
the simulation of macroscopic systems. This allows other collaborations to freely access the last version
of INCL. It can notably be used it for the design of new experiments dedicated to the study of strange
particles and hypernuclei in the foreseeable future, such as for the HypHI [60], Panda [61], and CBM [62]
experiments at the FAIR facility.

IV.2 Particles and reactions implemented

The very first step in the implementation of strange particles in INCL was the choice of the list of
particles to implement. Inserting all the strange particles was neither realistic nor consistent. This was
not realistic because there is a set of 20 particles with a charge of strangeness when there was only 9
non-strange particles in INCL at the beginning of my thesis. It was not consistent either because the
production of a Ω− for example is less likely than the creation of an antiproton in a spallation process
but antiparticles are not currently considered in INCL.

The choice of the list of particles to be implemented had to correspond to the INCL needs. INCL is
developed to be able to simulate spallation reactions for a projectile kinetic energy ranging from few tens
of MeV to 20 GeV. Therefore, an obvious criterion used to select particles to be implemented was base
on the production rate in NN and πN collisions, which are the most common reaction types involved
in intranuclear cascades in the energy range considered. However, we also considered the quantity of
available information in addition to a priori knowledge.

Based on the criteria displayed above, we decided to include only particles with a nuclear spin J = 0
and J = 1/2 and with a strangeness charge of ±1. The corresponding implemented particles are the
kaons (K0 and K+), the antikaons (K0 and K−), the Sigmas (Σ−,Σ0, and Σ+), and the Lambda (Λ).
It should be mention that the distinction between kaons and antikaons is relevant in this thesis whereas
in other publications both types are often grouped under the name of kaons. The distinction is made
because the opposite hypercharge leads to significant differences, notably in the production, scattering,
and absorption reactions. In this chapter, “a kaon” always represents a K+ or a K0. The heavier strange
particles were not considered, due to lower production rates (they might be added in future extensions).
The Φ meson (ss) was not explicitly taken into account due to the lack of experimental data, even if it
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may be relevant in the kaon-antikaon pair production. Part of its contributions are, however, hidden in
the cross sections as it is the case for other resonant particles.

The types of particles considered and the energy range of INCL application define the types of reactions
that must be considered. The need to implement a specific type of reaction is based on its relative
importance, given by the experimental cross sections. Knowing that the main particles that evolve during
the intranuclear cascade are nucleons and pions, we decided to consider reactions contributing at least 1%
to the NN and πN total cross section and at least 10% of the total cross section for Y N(Y = Λ or Σ),
KN , and KN reactions. The reactions taken into account in INCL are listed in Table IV.1. This choice
is based on available experimental data.

Table IV.1: List of considered reactions involving strangeness based on experimental data.

NN → NΛK πN → ΛK NK → NK NK → NK
→ NΣK → ΣK → Λπ → NKπ
→ NΛKπ → ΛKπ → Σπ → NKππ
→ NΣKπ → ΣKπ → NKπ NΛ → NΛ
→ NΛKππ → ΛKππ → Λππ → NΣ
→ NΣKππ → ΣKππ → Σππ NΣ → NΛ
→ NNKK → NKK → NKππ → NΣ

In addition, we included two other types of reactions. The first one considers strangeness production
via ∆N reactions. ∆’s are less numerous than nucleons and π’s, but are nevertheless expected to contribute
significantly to the strangeness production according to the study of Tsushima et al. [63]. The second
type is the strange production in reactions where many particles are produced in the final state but
no exclusive measurements are available. Since their contributions increase significantly with increasing
energy, a specific study was necessary to get the correct inclusive strangeness production cross section
[64]. Table IV.2 lists the channels for both types of reactions also taken into account.

Table IV.2: List of the reactions involving strangeness and requiring information to be taken exclusively
from models. Meaning of X is explained in sect. IV.4 and excludes the reactions cited in Table IV.1

∆N → NΛK NN → K +X
→ NΣK
→ ∆ΛK πN → K +X
→ ∆ΣK
→ NNKK

In the reactions listed in Table IV.2, kaon production is equivalent to strangeness production, since
it is the only particle with strangeness +1 in the energy range under consideration in INCL, which can
counterbalance the production of strangeness −1 of Λ, Σ, and K particles (strangeness is conserved in
strong interaction processes).

Considering isospin, there are 488 channels, excluding the reactionsNN → K +X and π N → K +X
of Table IV.2, which must be characterised by their reaction cross sections (sect. IV.4) and their final
state, i.e., charge repartitions, emission angle, and energy of the particles (sect. IV.5).

IV.3 Strange particle characteristics and physics

The main ingredients needed for the implementation of strangeness can be divided into three main
type of information: the particle characteristics (mass, charge, isospin, decay modes, and average nuclear
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potential), the particle interaction cross sections, and the post-cascade treatment of the new particles.
The determination of interaction cross sections and double differential cross sections are developed in
sect. IV.4 and sect. IV.5, respectively. Here, the information from the literature or concerning the post-
cascade treatment of strange particles are summarised.

IV.3.1 Average nuclear potentials and characteristics

The mass, charge, isospin, decay modes, and half-life of each considered particle are taken from the
Particle Data Group review [48]. The average nuclear potential is much more difficult to determine.
Only some of the implemented particles are relatively well known (Λ, K+, and K−). Studies on the Σ’s
potential are rather sparse and it is not yet clear whether the Σ’s potential is attractive or repulsive. The
K0 and K0 are also problematic regarding their nature with the propagation eigenstates being different
to the interaction eigenstates.

Because few experimental measurements exist, the average potentials for strange particles in INCL
are considered constant for sake of simplicity. In the case of the Λ particle, a dependence on the nuclear
asymmetry [65] is introduced to improve hypernuclei physics. Typically, the potential used for the Λ is
a 28 MeV attractive potential for the symmetric nuclei that grows up to a 41 MeV attractive potential
for the highest asymmetries ((A − 2 Z)/A = 0.25). The K+ and K− have been relatively well studied
and it is commonly accepted that the K+ potential is slightly repulsive and that the K− is strongly
attractive [66]. The values retained in this paper are a 25 MeV repulsive potential for the K+ and a
60 MeV attractive potential for the K−. It was decided to consider the same potential for K0 (K0) as
for K+(K−) with a slight correction (10 MeV) due to Coulomb repulsion. This choice is consistent with
experimental measurements summarised in [66]. The potential for Σ particles is extremely difficult to
measure because of in-medium effects. A repulsive potential of 16 MeV for all Σ’s is used in INCL based
on a recent study [67].

In summary, the potentials used in this new version of INCL are:

25 MeV, K+,

15 MeV, K0,

−60 MeV, K−,

−50 MeV, K0,

16 MeV, Σ′s,
[−28,−41] MeV, Λ (Ref.[65]).

(IV.1)

Note that the difference between the potentials for kaons and antikaons potentials is not considered
in other codes that we use for our comparisons (in chapter V). This produces significant differences in
cross section predictions near threshold energies.

IV.3.2 Post-cascade treatment

The implementation of strangeness can lead to a new situation at the end of the intranuclear cascade;
a hyperremnant can be produced in which at least one strange particle is still inside the target nucleus
at the end of the intranuclear cascade. Therefore, we had to decide how to treat the remaining strange
particle after the end of the cascade.

Owing to the repulsive average nuclear potential for kaons, we decided to eject the trapped kaons at
the end of the cascade and to correct their kinematics according to their potential.

All Σ’s and antikaons have high absorption cross sections (NΣ→ NΛ and NK → Λπ) at low energy.
Therefore, we decided to absorb all of them when they are trapped inside the nucleus and to convert the
excess energy and the mass energy of the possible pions into nuclear excitation energy.
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After kaon emission and Σ and antikaon absorption, the hyperremnant contains only protons, neutrons,
and Λ’s. The hyperremnant is then de-excited using a new version of the ABLA07 code [50], which will
be presented in a future paper.

IV.4 Reaction cross sections

Among the ingredients needed to include new particles in an INC model, reaction cross sections are
the most important. As far as possible they are taken from experimental data. However, measurements
are not always performed over the entire energy range, rarely for all isospin channels, and are often
inexistent when numerous particles exist in the final state. To overcome these limitations a step-by-step
procedure has been developed to obtain parametrisations of the required cross sections (see Table IV.1 and
Table IV.2). First, a search of the available experimental data has been performed. Second, two methods
based on isospin symmetry allowed to extend our database by increasing the available information. Third,
the still missing cross sections were determined using models and/or similar reactions with the help of
plausible hypotheses. Finally, generic formulae, which can be applied to parametrise cross sections, are
given in the last subsection.

All cross section parametrisations determined by this procedure are given in Appendix A.

IV.4.1 Available experimental data

The number of measured data for each reaction from Table IV.1 are given in Table IV.3. The energy
range goes up to 32 GeV and the data are taken from Landolt-Börnstein [64] and two other papers [68, 69].

Since some of the published experimental data are rather old, our study offers the possibility to check
and summarise our knowledge of the cross sections. We therefore give for each reaction the number of
isospin channels, number of experimental data points, and the Gini coefficient.

The Gini coefficient[70] is a statistical tool used typically in economy to measure the dispersion of a
system (usually the income distribution of the residents of a nation). The coefficient takes values between
0 (perfect repartition) and 1 (maximal inequality). The Gini coefficient for the discrete case is calculated
as follows:

G =
2

n∑
i=1

i yi

n
n∑
i=1

yi

− n+ 1
n

, (IV.2)

with yi the number of data in the ith channel arranged as yi+1 ≥ yi (non-cumulative). This coefficient
measures the repartition of data in the different isospin channels and, in our case (with a very high
inequality and a high number of channels), correspond to the missing part of data for each reaction. For
example, if G = 0.8 approximatively 80% of additional data are needed to complete the 20% of existing
data and to make the entire database for each channel as precise as for the most precise channel.

Table IV.3 shows that the number of data depends strongly on the given reaction. For example, in
average there are only 2-3 points per channel for the NN collisions while for the NK reactions more than
35 data per channel are available. However, the Gini coefficients exhibit an important inhomogeneity
(G > 0.5) with respect to the isospin channels. There is also a significant inhomogeneity, not given
by the Gini coefficient, with respect to the energy range studied, with more data at the threshold and
in the resonances region (see Figure IV.1). When available, these data nevertheless enable a reliable
parametrisation over the entire considered energy range (up to 15 GeV).

Using only experimental data the reaction cross sections were determined (sometimes partially) only
for about 17% of the channels listed in Table IV.1. For the remaining 83% various hypotheses were
necessary, which are explained in detail in the next subsections.
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Table IV.3: Available experimental data points for reactions studied in my work

Reaction # of
channels

# of
data

Gini
coefficient

NN to
NΛK 4 31 0.62
NΣK 10 44 0.69
NΛKπ 10 29 0.63
NΣKπ 26 43 0.74
NΛKππ 16 14 0.77
NΣKππ 44 15 0.87
NNKK 10 16 0.71

πN to
ΛK 4 108 0.75
ΣK 10 158 0.74

ΛKπ 10 68 0.72
ΣKπ 26 148 0.77

ΛKππ 16 60 0.81
ΣKππ 44 63 0.86
NKK 14 57 0.81

ΛN to
NΛ 2 44 0.5
NΣ 4 11 0.75

ΣN to
NΛ 4 11 0.75
NΣ 10 21 0.80

KN to
NK 6 687 0.61
NKπ 14 500 0.72
NKππ 22 124 0.87

Λπ 4 349 0.52
Σπ 10 685 0.59

Λππ 6 256 0.66
Σππ 16 496 0.73

KN to
NK 4 134 0.69
NKπ 14 223 0.62
NKππ 22 123 0.89

IV.4.2 The Bystricky procedure

The first method used to get information about missing isospin channels is based on the assumption of
isospin symmetry, which is described in detail in ref. [71]. Their goal was to provide a phenomenological

30



IV.4. REACTION CROSS SECTIONS

Figure IV.1: K−p → Λπ+π− reaction cross section as a function of the K− momentum. Data taken
from [64].

calculation tool for elastic and inelastic cross sections in the framework of isospin symmetry for the
reactions NN→NNπ and NN→NNππ.

The procedure, which is based on the isospin decomposition of systems, was used in a previous work
[72] to find missing cross sections in channels involving multiple pion production in INCL. The procedure
was applied up to the production of four pions and the determined cross sections were then implemented
in a previous version of INCL. Briefly, the initial state of two nucleons |NN〉 is projected on the final
state, which is decomposed into the nucleon final state 〈NN | and the pion final state 〈xπ|. The amplitude
of the reaction is given by the following equation:

M(NN → NNxπ) = (〈NN | ⊗ 〈xπ|)M |NN〉 , (IV.3)

with M the reduced matrix element. Eq. IV.3 is subsequently decomposed using isospin projection:

〈I(1)I
(1)
3 I(2)I

(2)
3 |M |I

iIi3〉 = CG MI(1)I(2)Ii , (IV.4)

with CG the associated Clebsch-Gordan coefficient, I(1) and I
(1)
3 isospin of the NN system and its

projection, I(2) and I(2)
3 the isospin of the xπ system and its projection, I(i) and I(i)

3 the isospin of initial
state and its projection andMI(1)I(2)Ii the reduced matrix element for the isospin decomposition IiI(1)I(2).
This equation can be written as the isospin decomposition into each multiplet system involved in the initial
and final state contracted on the reduced matrix element.

Next, by integrating over all kinematic variables of the final state and summing over all permutations
we obtain a decomposition of the cross section into isospin states, which is then compared with others to
establish relations between the different cross sections.

This same procedure was then applied to reactions involving strange particles. In our case, eq. IV.3
can be written as the tensor product of the nucleon, pion, kaon, antikaon, Lambda, and Sigma systems
of the initial and final state contracted on the reduced matrix element. With this eq. IV.3 becomes:
M
(
Initial state→ xNN xππ xYY xKK xKK

)
=
(
〈xNN | ⊗ 〈xππ| ⊗ 〈xYY | ⊗ 〈xKK| ⊗ 〈xKK|

)
M |Initial state〉

= (〈system1| ⊗ 〈system2|)M |Initial state〉 , (IV.5)

with 〈system1| and 〈system2| a contraction of the final multiplet systems in two arbitrary systems. Note
that the final result does not depend on the choice of contraction since it is consistent across the channels
of a same reaction.
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The so obtained results are either simple equalities between individual cross sections, resulting from
the Clebsch-Gordan coefficients associated with isospin symmetry, or equations between several cross
sections resulting from the cross sections associated with a given total value of the isospin, which can be
expressed as sums of partial cross sections on various final charge states. Non trivial expressions of this
kind are reported in Appendix B in bold. As example, for the reaction Nπ→NKK we get:

σ(π+p→ pK+K
0) =σ(π−n→ nK0K−), (IV.6)

σ(π−p→ nK0K
0) + σ(π−p→ nK+K−) + σ(π−p→ pK0K−) + σ(π+p→ pK+K

0)

= 2σ(π0p→ nK+K
0) + 2σ(π0p→ pK0K

0) + 2σ(π0p→ pK+K−). (IV.7)

Errors arising from this procedure are introduced by the isospin invariance hypothesis and are esti-
mated to be in the range of a few percent, which is approximately the mass differences between particles
belonging to a same multiplet.

The Bystricky procedure allowed us to increase the knowledge of the reaction cross sections by about
a factor of 2. Thus, at this stage 35% of the channels were parametrised but still 65% were missing. For
establishing a complete database another method, also based on isospin symmetry, was used (see next
section).

IV.4.3 Hadron exchange model

In order to complete the dataset, a procedure based on the hadron exchange model (HEM) was
developed. The basic of this model is to apply the isospin symmetry at the Feynman diagram level,
considering only diagrams at leading order, to obtain cross section ratios. This way, once again, unknown
cross sections can be determined from known cross sections.

This procedure is an adaptation of the method used by Li [73] and Sibirtsev [74]. In this method,
complete Feynman diagrams are considered and not only the initial and final states as in the Bystricky
procedure [71]. The method used by Li and Sibirtsev treats the case of pion and kaon exchange. Here,
baryon exchange is also considered because of the type of the studied cross sections. Initially, the hadron
exchange model was developed with the idea to calculate explicitly a cross section and then using the
isospin symmetry to determine easily other channel cross sections for a specific type of reaction. Here,
the explicit calculation is replaced by a fit of experimental data. In the following, the method is explained
and illustrated in an example.

Similar to the Bystricky method, the procedure determines in a first step relations between matrix
elements and, in a second step, the cross section ratios by integrating over all kinematic variables of the
squared matrix elements:

σ =
∫
|Mfi|2dΩ. (IV.8)

To make things easier, the method used by Li and Sibirtsev neglects interferences between diagrams.
They estimated that this hypothesis could change their results by about 30%. In our case, first we consider
only the ratios between cross sections and second we check, as far as possible, the results by comparing
them to experimental data or results arising from the Bystricky procedure. Doing so, the cross section of
a specific isospin channel can be rewritten as the sum of all individual diagram contributions:

σ(channel) =
∑
i

∫
|MXi(channel)|2dΩ, (IV.9)

with MXi(channel) the diagram amplitude of the isospin channel with the exchange particle Xi. In
the reduced matrix element amplitude, there are three types of contribution: the initial and final fields,
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the propagators, and the vertices. Due to isospin symmetry, in the case of the same type of exchange
particles, propagators and fields are identical. Therefore, the only difference between matrix elements
comes from the vertices. However, the vertices have the same structure when the same particle types
are involved. Consequently, these vertices are linked together by the isospin symmetry and this link can
be obtained using Clebsch-Gordan coefficients. Note that kaons and antikaons have the same field and
the same propagator because of the matter/antimatter symmetry. Considering a specific vertex with two
incoming particles and one outgoing particle, the contribution can be written as:

〈IoutIout3 | V |Iin(1)I
in(1)
3 , Iin(2)I

in(2)
3 〉 = CG VX,Y,Z , (IV.10)

with Iout and Iout3 the outgoing particle isospin and its projection, Iin(i) and I
in(i)
3 the isospin and the

projection of the ith incoming particle, V the matrix element associated to the vertex, CG the associ-
ated Clebsch-Gordan coefficient, and VX,Y,Z the projected matrix element for the incoming and outgoing
particles of type X,Y, Z. Since Clebsch-Gordan coefficients are scalar, diagrams with the same type of
exchange particle are linked by a coefficient that is independent of energy. The matrix element of one
diagram can be rewritten as:

MXi(channel) = aXi(channel)×MXi , (IV.11)

withMXi the isospin-independent part of the matrix element and aXi(channel) the product of all Clebsch-
Gordan coefficients coming from each vertex (isospin-dependent part). A factor n! appears in the case
of n identical particles in the final state. The matrix element MXi contains all the propagators, field
contributions, and the structure of the vertices. The aXi(channel) coefficient is a real scalar, which
contains only the factor linking the different matrix elements. Using eq. IV.11, eq. IV.9 can be rewritten
as:

σ(channel) =
∑
i

|aXi(channel)|2
∫
|MXi |2dΩ. (IV.12)

Two cases must be distinguished. In the first case, all |aX(channelj)/aX(channelk)| ratios are equal,
independent of the diagram. In such a case, the cross section ratio of the two channels can easily be
determined. In the second case with unequal ratios, extra information and hypotheses are required. In
a first step, global relations obtained from the Bystricky procedure were systematically used as extra
information. In a second step, hypotheses linking diagrams together or neglecting some diagrams are
needed. Small coupling constants involved and/or small disintegration rates of the intermediate particles
allow to leave out some diagrams. Note that all resonances (the ∆ particle is not considered as a nucleon
resonance from an isospin point of view: J∆ 6= JN ) are automatically considered because a given particle
and its resonances have the same isospin and the same isospin projection. Therefore the aX coefficients
are identical. Consequently, the sum over all diagram amplitudes with the same type of exchange particle
can be treated as:

∑
X

(∗)
i

|aXi(channel)|2
∫
|MXi |2dΩ = |aX (channel)|2

∑
X

(∗)
i

∫
|MXi |2dΩ (IV.13)

= |aX (channel)|2
∫
|MX |2dΩ,

with X(∗)
i the particle and its resonances (∗) and MX the isospin independent general matrix element of

the particle type X defined as:
|MX |2 =

∑
X

(∗)
i

|MXi |2. (IV.14)

In order to illustrate the basic procedure, the way to solve the difficulties but also to demonstrate the
limits, we discuss an illustrative case based on the πN → ΣK reaction. Sadly, the hadron exchange
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model gives no solution in this case but instead presents the rare advantage to be relatively simple but to
exhibit numerous problems, which often appear in more complex cases.

Five diagrams (three types), listed in Figure IV.2, are considered.

Figure IV.2: List of Feynman diagrams at leading order for the πN → ΣK reaction.

Using eq. IV.12 the cross section is given by:

σ(πN → ΣK) = a2
K

∫
|MK |2dΩ + a2

Λ

∫
|MΛ|2dΩ + a2

Σ

∫
|MΣ|2dΩ

+ a2
N

∫
|MN |2dΩ + a2

∆

∫
|M∆|2dΩ. (IV.15)

In this example, there are two vertices in each diagram called vX1 and vX2 as shown in Figure IV.2.
The Σ exchange in the case π+p→ Σ+K+ is a Σ0. Then, the projection on isospin eigenstates at vΣ

1 is:

Pr(vΣ
1 )(π+p→ Σ+K+) = (〈K+| ⊗ 〈Σ0|)V |p〉

=
(〈1

2
1
2

∣∣∣∣⊗ 〈10|
) ∣∣∣∣12 1

2

〉
VKΣN =

√
1
3VKΣN . (IV.16)

Table IV.4: List of normalised aXi(channel) squared coefficients for the reaction πN → ΣK.

a2
K a2

Λ a2
Σ a2

N a2
∆

π+p→ Σ+K+ 1 1 1/2 0 1
π0p→ Σ+K0 1/2 0 1 1/2 2/9
π0p→ Σ0K+ 1/4 1 0 1/4 4/9
π−p→ Σ0K0 1/2 0 1 1/2 2/9
π−p→ Σ−K+ 0 1 1/2 1 1/9

Doing the same calculation for each diagram, each channel, and each vertex gives the coefficients aXi

once a global normalisation has been chosen. The counterweight of this normalisation is hidden in the
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isospin-independent part of the matrix element. Here the choice is that the largest aXi is equal to 1.
All a2

Xi
are given in Table IV.4. Only channels with an incoming proton are given here since channels

with an incoming neutron can easily be deduced from this. It can be seen that the a2
Xi

coefficients of the
π0p→ Σ+K0 channel are equal to the ones of the π−p→ Σ0K0 channel. Therefore, we can infer:

σ(π0p→ Σ+K0) = σ(π−p→ Σ0K0). (IV.17)

Second, another interesting point is given by the following relations:

2a2
N = a2

Λ + 2a2
Σ − 2a2

K , (IV.18)
9a2

∆ = 2a2
Λ − 2a2

Σ + 8a2
K . (IV.19)

Thus, if we define three new matrix elements:

|M1|2 = |MK |2 − |MN |2 + 8
9 |M∆|2, (IV.20)

|M2|2 = |MΛ|2 + 1
2 |MN |2 + 2

9 |M∆|2, (IV.21)

|M3|2 = |MΣ)|2 + |MN |2 −
2
9 |M∆|2, (IV.22)

eq. IV.15 becomes:

σ(πN→ΣK) = a2
K

∫
|M1|2dΩ + a2

Λ

∫
|M2|2dΩ + a2

Σ

∫
|M3|2dΩ. (IV.23)

The |Mi|2 being unknown, extra hypotheses are needed to obtain other relations between the cross
sections of the different channels. Their reliability will, however, directly affect the reliability of the final
result. The hypotheses for this show-case are: the experimental data exhibit some similarities between
the known channel cross sections (3 channels in the 10 that which should be parametrised are reasonably
well measured). It can be reasonably argued that:

σ(π−p→ Σ0K0) ≈ σ(π−p→ Σ−K+). (IV.24)

That implies:
|M1|2 = 2|M2|2 − |M3|2. (IV.25)

Finally, two more hypotheses are necessary to link the isospin channel cross sections of the reaction
πN → ΣK. First N and/or ∆ exchanges were neglected, because the strange decay ratio is very weak
for most of the resonances. Second, the graphs with a Λ exchange and a Σ exchange are supposed to be
equivalent because of their similar nature. Doing so, it follows:

|MK |2 = |MΛ|2 = |MΣ|2. (IV.26)

We finally get:

σ(π+p→ Σ+K+) = σ(nπ− → Σ−K0)

= 5
3σ(π0p→ Σ+K0) = 5

3σ(π−p→ Σ0K0)

= 5
3σ(nπ+ → Σ0K+) = 5

3σ(nπ0 → Σ−K+)

= 2σ(π0p→ Σ0K+) = 2σ(nπ0 → Σ0K0)

= 5
3σ(π−p→ Σ−K+) = 5

3σ(nπ+ → Σ+K0). (IV.27)
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Figure IV.3: Experimental πN → ΣK cross sections

After all necessary relations have been found, the result is always compared to the experimental data
and/or the predictions of the Bystricky procedure, if available, in order to check if the hypotheses used
are reasonable. Unfortunately, in this special case the result obtained by the HEM procedure is not very
reasonable (see Figure IV.3), likely due to unreliable hypotheses.

We anticipate that the Bystricky procedure predictions associated to available experimental data are
sufficient for parametrising all πN → ΣK channels. Then, exclusive cross sections were fitted channel
per channel for the ones with experimental data and the other cross sections are determined using the
symmetries from the Bystricky procedure. However, in cases without enough experimental data, the
relations obtained with sometimes questionable hypotheses must be kept. In general, the reliability of
the relations found using this method decreases with increasing number of outgoing particles. This is
due to the increasing number of Feynman diagrams, which should be taken into account and which then
increases the number of hypothesis needed. An example of a case that works well even if the prediction
does not match perfectly over the entire energy range the experimental data for many channels is shown
in Figure IV.4.

The errors introduced by this method on the isospin average cross sections are estimated to be around
10% − 20%, supposing that hypotheses are wisely chosen because, even if a specific isospin channel is
under- or overestimated by a large factor, the Bystricky procedure provides relatively strong constraints
on the isospin average cross sections. The list of all graphs considered and relations found are available
in Appendix B.

Thanks to the use of isospin symmetry in the hadron exchange model, combined with experimental
data and the Bystricky procedure, around 72% of the required information (Table IV.1) can be obtained.

IV.4.4 Enlarging the data set

Unfortunately, both methods, which are based on isospin symmetries in combination with experimental
data, are not sufficient to provide a parametrisation for all reactions listed in Table IV.1 . The missing
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Figure IV.4: Experimental KN → Σπ cross section showing the cross section of known channels
normalised using the coefficients given by the HEM are equivalent.

cross sections were either obtained from models or from our best knowledge of similar reactions (notably
based on reactions already studied in a previous version of INCL [39]). The reactions in question are:

• NN → NNKK,

• NN → NΛKπ, NN → NΣKπ,

• NN → NΛKππ, NN → NΣKππ.

The parametrisation of the NN → NNKK reaction cross section is taken from ref. [74] (Eq. 21).
For the other four reactions we assume similarities with the already included reactions σ(NN → NNπ)

and σ(NN → NNππ), taking into account the center of mass energy (
√
s in MeV in the following

equations). Actually, in these cases, the changes in the shape of the cross sections, when adding a pion in
the final state, is supposed to be the same as if a hyperon and a kaon replace a nucleon and a pion.

σNN→NΛKπ(
√
s) = 3 σNN→NΛK(

√
s)× σNN→NNππ(

√
s− 540)

σNN→NNπ(
√
s− 540) , (IV.28)

σNN→NΣKπ(
√
s) = 3 σNN→NΣK(

√
s)× σNN→NNππ(

√
s− 620)

σNN→NNπ(
√
s− 620) , (IV.29)

σNN→NΛKππ(
√
s) = σNN→NΛKπ(

√
s)× σNN→NNππ(

√
s− 675)

σNN→NNπ(
√
s− 675) , (IV.30)

σNN→NΣKππ(
√
s) = σNN→NΣKπ(

√
s)× σNN→NNππ(

√
s− 755)

σNN→NNπ(
√
s− 755) . (IV.31)

37



CHAPTER IV. EXTENSION OF INCL

The factor 3 used in eq. IV.28 and eq. IV.29 is a normalisation factor needed to fit the few available
experimental data. The method was tested using the same type of reaction cross sections (strangeness
produced or not) with the πN initial state that are already relatively well described. It appears also a
factor of approximatively 3 between the cross section ratio σπN → Nπππ/σπN → Nππ and the cross section
ratio σπN→Y Kπ/σπN→Y K with the appropriately shifted center of mass energy. Note that this verification
starts with the πN → Nππ reaction, because the reaction πN → Nπ is an elastic reaction and
therefore, is clearly not similar to πN → Y K.

The charge repartition is determined using the work done in subsection IV.4.3 for theNN → NNKK,
NN → NΛKπ, and NN → NΣKπ reactions. As discussed previously, the method based on the hadron
exchange model is not used to calculate the total cross sections for those reactions (too many hypotheses
needed), but it can be used to determine charge repartition. The charge repartition for NN → NΛKππ
and NN → NΣKππ were determined using an approach by Iljinov et al. [75], simplified to take into
account only the combinatorics of the final state as it was done in the Bertini model [56]. The method
determines the ratio of channel cross sections from a same reaction based only on the particle multiplicities
in the final state as:

σ

(
A+B →

∑
i=n,p,π+,...

xii

)

σ

(
A′ +B′ →

∑
j=n,p,π+,...

xjj

) =

∏
i=n,p,π+,...

xi!∏
j=n,p,π+,...

xj !
(IV.32)

with xi the number of particles i in the final state.
In addition and as mentioned in sect. IV.2 and Table IV.2, two additional reaction types must be

considered: strangeness production reactions with numerous particles in final states and ∆-induced strange
production reactions.

With increasing energy, kaon production is associated with an increasing number of particles in the
final state and, consequently, the reactions listed in Table IV.1 are not sufficient to account for kaon
production. Actually, the additional particles are mostly pions as demonstrated by the Fritiof model [58]
(see Figure IV.5). Therefore, regarding the high-energy reactions NN → K+X and πN → K+X, inclu-
sive parametrisations of the cross sections are determined from experimental measurement and individual
cross sections can be generated by trying to reproduce as good as possible the particle multiplicities given
by the Fritiof model [58] using a random generator.

The parametrisation for ∆-induced strangeness production cross sections listed in Table IV.2 are
taken from ref. [63], except for the reaction ∆N → NNKK, which is discussed below and is given in
Appendix A. Since the estimates given by ref. [63] for the cross sections related to ∆N collisions are very
large compared to the cross sections related to NN collisions with the same final states (factor ∼10), it
was decided to take the isospin average cross section σ(∆N → NNKK) as 10 times the isospin average
cross section σ(NN → NNKK).

Even if the number of ∆ particles present in the nuclear volume during the collision is significantly
lower than the number of pions and nucleons, ∆-induced reaction are expected to contribute significantly
to the strangeness production. Indeed, the cross sections calculated by Tsushima et al. [63] for ∆-induced
reactions are much larger than those measured for pion-induced or nucleon-induced reactions. However,
for these parametrisations, they used hypotheses, which are not obviously fair for the entire energy range
studied in this work and the experimental data in NN → NYK calculated with the same hypotheses are
not always well reproduced (see [63], Fig.7). Considering the rather large uncertainties associated to these
theoretical cross sections, this kind of reaction is supposed to be the largest source of error on strangeness
production in our code.

The charge repartition was determined based on information obtained from the Bystricky procedure
and the Hadron Exchange Model.
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Figure IV.5: Particle rate per reaction in pp→ K +X reactions in the Fritiof model [58] as a function
of the incident proton momentum.

IV.4.5 Parametrisations

Different generic formulae were used to parametrise the reaction cross sections. The reactions con-
sidered are of two types: elastic and inelastic. This section presents our choice of fit functions. We give
below the generic formulae and in Appendix A the parametrisations for all reactions in the whole energy
domain considered (momentum in laboratory frame of reference below 15 GeV ).

The elastic scattering cross sections become extremely large when the incoming particle momentum
goes down to zero. Upper limits are placed at low energies to avoid cross section divergences. The limits
have no consequences on the final result if placed high enough, because the cross sections are only used
to determine which reaction will contribute. The elastic cross sections appear relatively complex in the
energy range studied here to be defined by a singular function. Consequently, the energy ranges studied
were split into several parts in order to get better parametrisations of the cross sections. The following
functions were used:

σ(pLab) = a+ b e−c pLab , (IV.33)

σ(pLab) = a+ b p−cLab. (IV.34)

Note that this kind of reaction is often resonant; the resonances are fitted by adding bumps of Gaussian
shape on the underlying background.

The quasi-elastic reactions, which are NK → N ′K ′, NK → N ′K
′, and NΣ → N ′Σ′, are especially

problematic at low energies with respect to the assumption of isospin symmetry because of the existence
or absence of reaction thresholds. This asymmetry is taken into account by a cross section shift, which
“breaks” the isospin symmetry hypothesis for both reactions.

The inelastic cross sections are the most important for the physics studied here. A lot of different
formulae were tested. The following function, which is similar to formulae found in literature, gives good
results for most reactions. We used the basic formula over the entire energy range even for those reactions
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where only few data concentrated in a narrow energy range exist.

σ(pLab) = a
(pLab − p0)b

(pLab + p0)c pdLab
, (IV.35)

with p0 the threshold momentum and a, b, c, and d positive fitting parameters. In a few cases, Gaussian
functions are added in order to fit resonances.

IV.5 Double differential cross sections

After fixing the type of reaction, the final state must be determined. Doing so, charge and momentum
must be assigned to each particle in the final state.

In most cases, charge repartition is determined using isospin symmetry and the hadron exchange
model, which both predict relations between the isospin channel cross sections. The ratios are given
in Appendix B. We then randomly chose charge repartition using the ratios determined before. For the
reaction NN → NYKππ, the Bystricky procedure and the hadron exchange model discussed in sect. IV.4
are not able to provide any ratio. Therefore, the simplified Iljinov et al. approach [75] is used.

The other information needed to define the final state is the three-momentum of outgoing particles.
In INCL, there are two different options to determine the kinematics of outgoing particles: the first one
is to provide an angular distribution based on experimental measurements. The second one is to use a
phase space generator, which is isotropic for the simplest cases or more sophisticated for more complex
cases (Kopylov [76] or Raubold-Lynch [77]). Typically, no experimental data are available and therefore,
phase space generators are used. Nevertheless, studies providing Legendre coefficients have been carried
out for KN [78–91] and πN [92–98] elastic and quasi-elastic reactions. The results are used to provide
angular distributions for KN and πN reactions. Details are given and summarised in Table IV.5 .

Table IV.5: List of reactions for which the angular distributions were studied experimentally. Momentum
range and references are given.

∆p(MeV/c) Reaction Refs
225 - 2374 K−p→ K−p [78–86]
235 - 1355 K−p→ K

0
n [83–88]

436 - 1843 K−p→ Λπ0 [85–87, 89–91]
436 - 865 K−p→ Σ0π0 [85, 89, 91]
436 - 1843 K−p→ Σ±π∓ [85–87, 91]
930 - 2375 π−p→ K0Λ0 [92–94]
1040 - 2375 π−p→ K0Σ0 [95, 96]
1105 - 2473 π+p→ K+Σ− [97, 98]

The angular distributions for a given energy are usually parametrised using Legendre polynomials as
follows:

dσ(
√
s,Θc.m.)
dΩ = λ–2(

√
s)

n∑
l=0

Al(
√
s)Pl(cos Θc.m.), (IV.36)

with λ– the c.m. reduced wavelength, Al the lth Legendre coefficient,
√
s the center of mass energy, Θc.m.

the angle of the outgoing particle with its initial momentum in the center of mass reference frame, and
Pl the lth order Legendre polynomial.

The experimental papers studying angular distributions often provide Al at different energies [78–97].
If it is not the case, like in ref. [98], I determined the Legendre coefficients from the experimental data
(c.f. eq. IV.36). However, the Legendre coefficients determined in experiments strongly depend on the
experimental set-up, like the backward detection and the angular binning, and can therefore provide an
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angular distribution that is only valid in a partial angular range. Sometimes, aberrations like negative
density probability also appear. In an intranuclear cascade model, a description of Legendre coefficients
as a function of the energy is needed. Doing so, a direct (non-parametric) fit of the Al using all Legendre
coefficients coming from the experiments were done. Using these fitted Al, we observed that most of
the negative density probability problems disappeared. When negative probability density problems
persisted, the density was set to zero. Thanks to the cross section parametrisation (see sect. IV.4), only
the Ai(

√
s)/A0(

√
s) fittings are needed. Below, we elaborate on the two methods used to define the

Ai(
√
s)/A0(

√
s) ratios in the given energy range.

The first method used is the Nadaraya–Watson kernel regression [99]. The parametrisation of the
ratios is obtained by determining the function m̂h(x) given by:

m̂h(x) =
∑n
i=1Kh(x− xi).yi∑n
i=1Kh(x− xi)

, (IV.37)

with (xi, yi) the set of n data, Kh is a kernel, here a Gaussian with a standard deviation defined so
that their quartiles (viewed as probability densities) are at ±0.25h. The denominator in eq. IV.37 is the
normalisation term. In our analyse, the bandwidth was chosen as h = 25, 50, 100, 150 or 200 MeV/c
either on the whole energy range or according to available energy bins. The latter case is used when
complex structures or narrow resonances appear, thereby avoiding fitting non physical fluctuations.

The second method used is the smoothing spline regression [100]. This method consists in the min-
imisation of the following function:

n∑
i=1

(yi − µ̂(xi))2 + λ

∫ xn

x1

(
µ̂
′′(x)

)2
dx, (IV.38)

with (xi, yi) the set of n data, µ̂ the non-parametric fit function (a spline), and λ the smoothing parameter.
This method corresponds to the common χ2 minimisation with a second term used to limit quick variations
in the fit function. The smoothing parameter was for each case optimised by hand to obtain a good
compromise between the smoothness and the proximity to the data in order to fit resonances but to avoid
fitting the noise.

As already mentioned, there is no fit function for the two non-parametric methods. The result is a
tabulation of Legendre coefficients as a function of momentum with bins as small as needed. An example
is shown in Figure IV.6.

The two methods use completely different ways of fitting but give very similar results, as shown in
Figure IV.6. The choice to use one or the other was made case-by-case. Out of the experimental data
energy range, it was decided to use an isotropic distribution in the energy range below the experimental
data and a more and more forward peaked distribution for higher energies

Tables used in INCL are available as electronic supplementary material of ref [44]. Note that the
extrapolation of the Ai(

√
s)/A0(

√
s) outside the energy range considered here is not reliable and is likely

to produce unphysical results.

IV.6 Comparison with other models

Here the cross sections, charge repartition, and phase space generation determined thanks to the
procedures explained above are compared to the same input parameters available in the literature and
already used in other models that consider strangeness production in the same energy range. These models
are: (i) INCL2.0 [16, 55], a version of INCL no more available developed about 25 years ago to study
anti-proton physics and including kaon physics, (ii) the Bertini Cascade model [56], and (iii) the GiBUU
model [51, 52]. To do this comparison, different examples will be discussed in order to show the strength
and the weakness of each model.
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Figure IV.6: Example of A1(
√
s)/A0(

√
s) fit in the case K−p → Λπ0 using Nadaraya-Watson kernel

regression (blue), and smoothing spline regression (red).

The different models parametrise the reactions using different methods. The Bertini cascade model
tabulates the cross sections based on parametrisations and calculations at 30 kinetic energies corresponding
to intervals whose width is increasing logarithmically with incident energy and spanning the 0 to 32 GeV
domain. In INCL2.0, cross sections were parametrised only for reactions with two particles in the final
state. The parametrisation is often a fit in one or two parts using a formula like σ = a pb, with p
the momentum in the laboratory frame of reference. In the GiBUU model, the energy range is divided
in two parts: the low-energy part is fitted with parametrisations and the high-energy part is treated
using PYTHIA [101], which is based on the Lund string model [102]. The transition between the low-
energy parametrisation and the PYTHIA predictions is a smooth linear transition. The energy transition
considered in GiBUU is

√
s = 2.2 ± 0.2 GeV in meson-baryon collisions, which corresponds, in term

of momentum, to 2.1 ± 0.5 GeV/c for pion nucleon collisions and to 1.9 ± 0.2 GeV/c for kaon nucleon
collisions, and

√
s = 3.4± 0.1 GeV in baryon-baryon collisions, which corresponds to 5.1± 0.4 GeV/c for

nucleon-nucleon collisions.
Nucleon-nucleon collisions have a high contribution in strangeness production. The first open reaction

channel with a proton as a projectile is the pp → pΛK+ channel, which is important at low energies
but which contributes less and less at high energies. As shown in Figure IV.7, all models reproduce well
the experimental cross sections. However, in the range 3.7 − 5 GeV/c, where there are no experimental
data, there are significant differences between the different fits. Such differences are very common when
experimental data are not available in some energy range and/or are rather inconsistent.

A typical problematic channel is pp → pΣ+K0 with the cross section parametrisation shown in
Figure IV.8. The parametrisation from our work matches relatively well the experimental data at energies
up to 4 GeV/c but underestimates the high energy part. This is due to the compromise between inclusive
calculations from the Fritiof model [58] and exclusive cross section measurements. We have chosen to
artificially reduce our fit in order to be consistent with the inclusive cross section data. However, this
type of reaction could deserve extra work according to its contribution in INC models. Another crucial
point for this type of reaction, which can also be observed in Figure IV.8, is the inconsistency of the
experimental data. For example, the two measurements around 3.7 GeV/c in this last figure differ by
a factor 3 and the data point at 10 GeV is suspiciously high compared not only to other data from
this reaction but also compared to other isospin channels, which seem to show decreasing cross sections

42



IV.6. COMPARISON WITH OTHER MODELS

Figure IV.7: The pp → pΛK+ cross section fits from the Bertini cascade model (green line), GiBUU
(blue line), and my work (red line) compared to experimental data (black dots) as a function of inci-
dent proton momentum. Note that above 5.5 GeV/c GiBUU used Pythia and therefore has no proper
parametrisation.

Figure IV.8: The pp→ pΣ+K0 cross section fits from the Bertini cascade model (green line), GiBUU
(blue line), and my work (red line) compared to experimental data (black dots) as a function of inci-
dent proton momentum. Note that above 5.5 GeV/c GiBUU used Pythia and therefore has no proper
parametrisation.
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with increasing energy. The parametrisations in the other models differ significantly from our work. The
Bertini cascade model and the GiBUU model, which uses the formula from [63] scaled by a factor 0.7, are
two different compromises between the experimental data.

Figure IV.9 highlights a problem with the INCL2.0 parametrisations. The result of the parametrisation
describes correctly the magnitude of cross sections but does not give good fits of the energy dependence of
the cross sections. As seen in Figure IV.9, the cross section is slightly overestimated in the energy range
1.5− 2 GeV/c for the π−p→ ΛK0 reaction and in the energy range 1.5− 10 GeV/c for the π+p→ Σ+K+

reaction. In the Bertini cascade model tabulations, because of the few energy intervals, quick variations
in cross sections as a function of energy can be missed. For example, for the reaction π−p→ ΛK0 shown
in Figure IV.9, the Bertini cascade model reproduces well the experimental data near the threshold and
at high energies but, the first interval being too wide, some part of the cross section is underestimated.
The π−p→ ΛK0 cross section from the GiBUU model is close to the experimental data up to 1.4 GeV/c
but, surprisingly, there are relatively large deviations from the experimental data at higher momenta.
However, this deviation is in the energy range of the transition between the parametrisation and the
PYTHIA model (see above). Note also that the parametrisation for the reaction π+p→ Σ+K+ from my
work is slightly shifted to higher energies (about 10 MeV - seen only at low energies) because the isospin
invariance considers an equal mass for all particles belonging to a same multiplet. Here, the mass for a
multiplet was considered as the heaviest mass of this multiplet and therefore, can produce this artefact.

Figure IV.9: The π−p → ΛK0 and π+p → Σ+K+ cross sections fits from the Bertini cascade model
(green line), GiBUU (blue line), INCL2.0 (orange line), and my work (red line) compared to experimental
data (black dots) as a function of incident pion momentum.

Figure IV.10 illustrates another important result: the predictions at high energies from the Bertini
cascade model are significantly different from our results. However, since there are only very few exper-
imental data in this energy range, we cannot state which model is more reliable. This phenomenon is
also visible in Figure IV.11, though with more physical relevance. Deviations between experimental data
and predictions are not very problematic when cross sections are relatively low because other reactions
dominate. However, deviations of two orders of magnitude as seen for the reaction K−n → Σ0π− (Fig-
ure IV.11) are much more significant. Again, looking only at the experimental data, it is not obvious
which of the parametrisations are correct. Fortunately, for this special case the deviations have a low
impact on the entire cascade because antikaons, except if they are projectiles, play a minor role (very low
production yield).
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Figure IV.10: The π−p→ ΛK+π− cross section fits from the Bertini cascade model (green line), GiBUU
(blue line), and my work (red line) compared to experimental data (black dots) as a function of incident
pion momentum.

Resonances are not treated directly in our work. However, they appear as Gaussians in the cross section
parametrisation. If the hadron exchange model is used to determine a missing channel, those resonances
also appear in the missing channel cross section even if they cannot be the intermediate state because
of quantum number considerations. As an example, the resonances fitted for the reaction K−p → Σ0π0

(Figure IV.11) appear also in the K−n → Σ0π− cross section fit, even if the third component of the
isospin differs (0 for the former and −1 for the latter). Note that the GiBUU parametrisation is not
shown in Figure IV.11 because the reaction is treated in a different way using resonant and non-resonant
cross sections. Therefore, no simple formula can be given. Figures IV.11 and IV.12 also show another
problem with the earlier INCL2.0 parametrisations: resonances are not reproduced. In contrast and as
an improvement, the parametrisations proposed in this work and in the Bertini cascade model have no
difficulties reproducing resonant cross sections.

Unlike antikaon-nucleon collision cross sections discussed above, theK+p elastic cross section is impor-
tant for spallation processes with either nucleons or pions as projectiles. This is due to the low production
rate of antikaons compared to kaons. Figure IV.13 shows that the cross section is well reproduced using
the results from this work and in the Bertini cascade model. Also the GiBUU model gives a good de-
scription of the experimental data. Differences between the three different approaches are observable at
low energies where the differences are not very relevant because of the lack of competing processes in this
energy range. In contrast, the INCL2.0 model underestimates the cross sections over the entire energy
range.

In general, the parametrisations of the three different models fit the experimental data (if available)
rather well. However, if experimental data are missing in an energy range, fits can be very different.

The two last subjects developed in this chapter are the charge repartition and phase space generation.
Since information about phase space generation in other models is too scarce, a comparison between the
different models is not possible. Considering charge repartition, different methods are used by the different
models. The Bertini cascade model uses a simplified version [56] of the Iljinov et al. approach [75]. For
the GiBUU model, the charge repartition is determined using isospin rules and, in the case πN → NKK,
using the hadron exchange model with K∗ and π exchange diagrams. In INCL2.0, the charge repartition
was determined using isospin invariance rules by neglecting interferences.
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Figure IV.11: The K−p(n) → Σ0π0(−) cross section fits from the Bertini cascade model (green line),
INCL2.0 (orange line), and my work (red line) compared to experimental data (black dots) as a function
of incident kaon momentum.

IV.7 Conclusion on the parametrisation work

The work discussed in this chapter was particularly challenging. It was absolutely necessary for the
implementation of strange particles in INCL but the major part of the absolutely needed ingredients, which
are the interaction and the double differential cross sections, were very scarce in the literature. Only 17% of
the needed information to implement the reactions summarised in Table IV.1 were available. The Bystricky
procedure, which allowed to double the information, were already a well established procedure. However,
the development of the procedure based on the hadron exchange model detailed in subsection IV.4.3 and
its application to every reaction in Table IV.1 and Table IV.2 has been very complex and extremely time
consuming. Moreover, this procedure required a lot of creativity to draw reliable hypotheses needed to
handle some of the reactions.

A second problem made the realisation of my work even more challenging. The problem appeared
when the reactions summarised in Table IV.1 alone showed that they had difficulties to reproduce the ex-
perimental data (see chapter VI for details). These reactions represented the major part of the interaction
cross sections measured experimentally. Various hypotheses were explored to explain the discrepancies
with, for example, the possibility that the kaons were not produced on shell in the nucleus. It took
some time before considering the ∆-induced strangeness production reactions of Table IV.2 because the
∆ particles are much less numerous than nucleons and pions in the cascade and these reactions are not
taken into account in other models.

The uncertainties linked to the ingredients discussed in this chapter were a major concern considering
the various hypotheses required for the hadron exchange model procedure and the ones used by Tsushima
et al. in ref. [63]. Hopefully, the comparisons with experimental data for elementary interaction cross
sections, when available, showed good results. Moreover, these parametrisation has been validated a
posteriori with the comparisons between INCL results and experimental data of spallation reactions
shown in chapter VI.
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Figure IV.12: The K−p quasi-elastic cross section fits from the Bertini cascade model (green line),
INCL2.0 (orange line), and my work (red line) compared to experimental data (black dots) as a function
of incident kaon momentum.

Figure IV.13: The K+p elastic cross section fits from the Bertini cascade model (green line), INCL2.0
(orange line), GiBUU (blue line), and my work (red line) compared to experimental data (black dots) as
a function of incident kaon momentum.
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Chapter V

The variance reduction scheme

This chapter is devoted to the variance reduction scheme (VRS) implemented in INCL. This chapter
corresponds partially to the work described in ref. [43]. The subject being atypical in nuclear physics, the
chapter will also be the place to discuss some particular points of the method in more detail.

Note that, as in ref. [43], this chapter is not required for the discussing INCL results. The VRS
developed here, and used in INCL, aims at getting results with lower uncertainties and in some cases is
the only way to get results within a reasonable computation time but it does not change the conclusions.

The VRS born with a simple ascertainment: strangeness production is a rare process in spallation
reactions, especially for energies below 5−6 GeV. However, the user of INC models, and notably of INCL,
might be interested in strangeness physics. Therefore, to get enough statistics, a calculation requires a
large number of events. This needs a lot of computational time and results in useless information; taking
a lot of space on a hard drive and slowing down the analysis.

The solution I proposed is to use variance reduction methods. The methods proposed are based on
the importance sampling method. The VRS implemented in INCL artificially increases the statistics for
the observables linked to the strangeness production, keeping the calculation time and the output file size
unchanged.

Note that INCL already has an option allowing to write in the final ROOT file only if a certain
condition is fulfilled. This makes the output size problem marginal for us. However, the information
that does not fulfil the condition is lost with this option. With the new variance reduction scheme all
information is kept.

The chapter is divided into two mains parts. In a first part, I develop the method. The reader will find
some generalities (sect. V.1) presenting the topic, the constraints and the difficulties within INCL, the
scheme developed together with the technical aspects (sect. V.2), and the case of correlations (sect. V.3).
In the second part, the reliability of the method is tested (sect. V.4) and some examples of the VRS are
shown (sect. V.5).

V.1 Generalities

Basically, a fully operational important sampling method consists of two successive steps. In a first
step, the rules of the simulation, i.e., the physics ingredients, are modified (biased) in order to improve
the sampling. In our approach, we increase the strangeness production. In a second step, the simulation
result is accordingly corrected. The goal of the variance reduction methods is to obtain the true observable
of interest (e.g., a cross section) with a reduced variance and therefore with reduced uncertainties within
the same computational time.

For this study, all processes associated with strangeness production are of interest. Therefore, the
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VRS in INCL was developed to increase the realisation probability for all of them, independent of the
observable. However, even though the current VRS globally modifies the probabilities for processes
involving strangeness, other schemes are in principle possible. The scheme could also be adapted to
be more restrictive (e.g., forward kaon production) or to work for another particle type (e.g., η meson
production) or physics (e.g., peripheral collisions).

The reason for the low global strangeness production rates in INCL comes from the low elementary
strangeness production cross sections. For example, the strangeness production represents 0.014%(0.15%)
of the total cross section in proton-proton collisions at kinetic energies of 2(3) GeV. Therefore, in a first
step, the VRS modifies the hadron-hadron cross sections in order to increase strangeness production.
In a second step, it corrects a posteriori the bias introduced in order to obtain the unbiased observable
estimators with reduced uncertainties.

In the general case, the second step (i.e., the bias reversal) consists in determining the ratio of the
probability to make an observation in the non-biased version to the probability to make the same ob-
servation in the biased version. This ratio is called the importance or the weight and can be calculated
for a complete event (a cascade), a specific particle or for any observation during the event. Next, the
importance is used to weight the contribution of observations. This number gives the information about
how much this observable is biased. The importance for an observable X can be written as:

WX = P (X|no-bias)
P (X|bias) . (V.1)

This expression of the importance leads to a first requirement that events contributing to a variable
of interest should have a non-zero probability of realisation in the biased version (the version using the
variance reduction scheme) otherwise it will result in an arithmetic exception. In other words, every
strange event in INCL that can be produced in the standard version must be attainable in the version
using the variance reduction scheme. Only the probability of realisation can be changed. Because of this
constraint and because it is not trivial to know whether strangeness production could occur later during
an event, no channel cross section can be reduced to zero at the binary collision level in INCL.

The treatment of a particle during an INCL event can be subdivided into a three step cycle. First,
the particles are propagated inside the nucleus. This step ends when two particles collide. A collision
occurs when the distance between two particles is below a maximal interaction distance based on their
total interaction cross sections. Second, the type of the reaction of the binary collision is randomly chosen
based on the respective reaction cross sections. In the last step, the phase space and the charge repartition
is randomly generated either based on differential cross sections (if available) or on phase space generators.
Then, the cycle is repeated until the end of the intra-nuclear cascade.

The propagation along straight trajectories between collision events is deterministic. According to
this, an artificial decrease of a total interaction cross section can lead to a situation of particles flying past
each other where they would have collided using the original cross section. From such an event onwards,
the subsequent cascade is outside the universe of possibilities based on the unbiased total interaction cross
section. Therefore, the importance of this event would be null according to eq. V.1. The same argument
can be made for an increased total interaction cross section. Hence, the total interaction cross sections
must be conserved.

Thanks to the random treatment of the reaction choice and the phase space generation, both steps can
be biased: changing the probability of realisation. In our case, only the step selecting the type of reaction
needs to be biased to increase the global strangeness production. However, if the user is interested in the
production of a particle in a specific phase space (e.g., backward production), phase space generation can
be biased with only minor modification in the code.

The two constraints, the prohibition to cancel a channel and the total cross section conservation, will
be crucial for the INCL variance reduction scheme.

With the variance reduction scheme, the new weighted estimators and the associated variances of an
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observable X [103] are given by:

E(X) =
∑M
i=1wixi
N

, (V.2)

V (X) =
∑M
i=1(wixi − E(X))2

M
, (V.3)

with wi the importance of the ith observation xi of the observable X and N the number of events.
The natural summation in such a case is a sum over the events (M = N), with wi the importance of
the ith event and xi the number of observations corresponding to the observable X (e.g., kaons) in the
corresponding event.

An alternative summation is actually possible and preferred in our case. We can sum over the final
particles (M 6= N) with wi the importance of the ith particle and xi = 1 or 0 if the particle corresponds
to the observable or not, respectively. With the natural summation, we estimate the mean value of the
number of strange particles produced per reaction. In the alternative summation, we estimate the number
of strange particles produced then we normalise by the number of reactions. It clearly appears that the
observables estimated correspond to each other.

For INCL, it is simpler to sum over the particles considering the output generated. Moreover, for sake
of simplicity, the relative uncertainties displayed in the figures below do not come from eq. V.3 but are
calculated using the formula:

relat. uncer. =
√∑(wixi)2∑

wixi
, (V.4)

which is equivalent to the standard relative uncertainty equals to the inverse square root of the number
of observations in the Monte Carlos simulations and which is an approximation of eq. V.3.

It is worth emphasising that the observable X can be anything. For example, it can be the presence
or absence of a particle of a certain type, the number of particles of a certain type produced during the
cascade, the presence of many particle correlated, an entire event, or a part of an event.

The minimum variance for a given number of events is achieved when all strange particle importances
are equal according to eq. V.2 and eq. V.3. However, these importances are not always equal in INCL
for reasons explained further below. Therefore, the objective is to keep them as close as possible to each
other to minimise the variance and therefore uncertainties.

V.2 Variance reduction scheme in INCL

For a better understanding of the VRS used in INCL, a cascade can be seen as a time ordered
graph where the edges (arrows) and vertices correspond to the particles propagating and to the binary
collisions, respectively. Thus, a cascade is fully defined by the set of its vertices. The information about
what happened before (e.g., the projectile type, the impact parameter, ...) is hidden in the definition of
the vertices initial state. A schematic example is displayed in Figure V.1.

As explained in the previous subsection, the VRS must increase strangeness production in a way that
minimises the spread of the strange particle importances to achieve minimum variance and therefore to
obtain the smallest possible uncertainties for a given number of events.

In our variance reduction scheme, if the particle Y shown in Figure V.1 is a strange particle, the event
containing the set of vertices A, C, D, and F should have an increased probability of realisation. If the
particle X is a strange particle, the events containing the set of vertices A, B, C, D, E, and G should be
promoted. If both particles are strange particles, both paths should be promoted in the same way. Two
solutions can be considered. The first one is to promote the vertices A, C, and D, which are common to
both paths, and to continue as a standard cascade. In such an approach, it actually means only the first
vertex can be biased. The problem is that we do not know whether a strange particle will be produced in
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Figure V.1: Simplified example of an intra-nuclear cascade represented as a time ordered graph. Circles
and arrows represent binary collisions and the propagation of the particles, respectively. The blue (red)
and purple part of the graph is the history of the X (Y ) particle.

any of the binary collision represented by a later vertex. As a consequence, only strangeness production in
the first collision can be promoted. This would lead to differences between the importances for the events
that produced strangeness in the first collision and the events that produced strangeness in secondary
collisions. Thus, it would be a new source of variance, i.e., exactly what should be avoided. The second
solution is to bias each vertex (each elementary binary collision) along the entire cascade in such a way
that the same importance is obtained for every strange particle. The second solution was chosen for INCL
and the importance associated to each final particle is provided in the final ROOT file.

In our solution, the promotion of strangeness production can change from one binary collision to the
next. However, if different channels are producing strangeness in a given binary collision, they should be
promoted in the same way in order to get the same importance as the other strange particles whatever
the channel chosen. Once again, this should be done in order to minimise the variance.

With the INCL variance reduction scheme, we introduce a new input parameter to INCL. This input
is a scalar, which is used to define the wanted importance of strange particles. This allows to have the
same importance for strange particles in the different events, which are independent. This input scalar
will be called the bias factor in the following. The VRS implemented in INCL tries to force the final
importances of strange particles to be the reciprocal value of the bias factor. Consequently, the bias
factor is a multiplication factor of the probability to create a strange particle. However, the effective
increase is lower in some cases. This is discussed in sect. V.5 with the way to optimise the bias factor.

Before I explain how the VRS forces the final importances of strange particles to be a specific value,
we describe how the importances of particles are calculated. Doing so, we start with the general formula:

P (N ∩M) = P (N |M)× P (M), (V.5)

with P (N ∩M) the probability of realisation of N and M , P (N |M) the probability of realisation of N
knowing that M is realised, and P (M) the probability of realisation of M .

In Figure V.1 the vertex B can happen only if the vertex A has been realised, therefore:

P (A|B) = 1. (V.6)
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Combining eq. V.5 and eq. V.6 we get:

P (A ∩B) = P (A|B)× P (B) = P (B). (V.7)

For the same reason:

P (A|F ) = P (C|F ) = P (D|F ) = 1, (V.8)
⇒ P (A ∩ C ∩D ∩ F ) = P (F ). (V.9)

Therefore, in the version using the VRS the probability of producing the final particle Y , which is
produced in vertex F , must be corrected by the importance WY , which is given by:

WY = WF = P (F |no-bias)
P (F |bias) ,

= P (A ∩ C ∩D ∩ F |no-bias)
P (A ∩ C ∩D ∩ F |bias) ,

= P (A|no-bias)
P (A|bias) × P (C|A,no-bias)

P (C|A, bias)

× P (D|A,C,no-bias)
P (D|A,C,bias) × P (F |A,C,D, no-bias)

P (F |A,C,D, bias) ,

= σ(A)/σtot(A)
σ′(A)/σtot(A) ×

σ(C)/σtot(C)
σ′(C)/σtot(C) (V.10)

× σ(D)/σtot(D)
σ′(D)/σtot(D) ×

σ(F )/σtot(F )
σ′(F )/σtot(F ) ,

= σ(A)
σ′(A) ×

σ(C)
σ′(C) ×

σ(D)
σ′(D) ×

σ(F )
σ′(F ) ,

= CSR(A)× CSR(C)× CSR(D)× CSR(F ),

with CSR(I) the cross section ratio of vertex I, σ(I) and σ′(I) the standard and biased cross section of
the reaction that took place in vertex I, and σtot(I) the total interaction cross for vertex I. WY = WF

because the propagation is not biased.
The cross section ratios are easily determined during an event since both terms in the ratio σ/σ′

are known for all possible reactions when a binary collision happens. Some examples are discussed in
appendix E.

In the VRS of INCL, the cross section ratio of the vertices are stored. Therefore, whenever a binary
collision happens, the cross section ratio of the previous vertices are known. This allows to calculate what
should be the cross section ratio of the vertex representing the next binary collision (e.g., the vertex F
for the case in eq. V.10) to match the importance of outgoing particles (the particle Y in our example) to
the desired importance. This calculated cross section ratio defines how the strangeness production should
be promoted (see examples in appendix E).

In the special case of a binary collision between a strange particle and another particle, a strange par-
ticle will be present in the final state regardless of the channel chosen in INCL. Therefore, the strangeness
cannot be promoted and the cross section ratio will be equal to 1. Such a binary collision can result in a
strange particle that does not have the aimed importance of the strange particles. No solution was found
to solve this problem. However, the dispersion of particle importances due to this phenomenon in most
cases is marginal thanks to the precautions discussed below and this problem therefore does not introduce
a new significant source of variance.

The main source of importance dispersion for strange particles in INCL, which is itself source of
variance, is due to the two constraints discussed before. First, the non-strange cross sections cannot be
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null but no lower bound is forced. Therefore, when a reaction cross section is drastically reduced but the
corresponding reaction is chosen anyway, the cross section ratio of the binary collision is extremely large.
Second, the total cross section must remain unchanged. This fixes a lower bound for the cross section ratio
of a vertex that produces strangeness (=σstrange/σtot). Therefore, if the cross section ratio required for a
vertex is below this limit, the effective strangeness promotion will not correspond to the one required.

The first constraint can lead to extremely large cross section ratios, which cannot be counterbalanced
by the following ratios because of the second constraint. If a strange particle is produced on such a path,
it would result in a strange particle with a large importance compared to others and, therefore, it will
strongly contribute to the observables. Such high contributions produced by single particles will make the
convergence slower, lead to variance jumps and, therefore, to large uncertainties for the observables (see
subsection V.5). If pronounced jumps are seen, all the observables estimated using the corresponding INCL
results should not be trusted. In such a case, the associated uncertainty estimated according to eq. V.3
or eq. V.4 might be highly underestimated because of the bad sampling. This situation indicates that the
bias factor was chosen way too large and paths important for strangeness production were suppressed too
much.

To avoid these problems, a compromise should be found between the increase of statistics, obtained
using high bias factors, and the maintain of equal importances for strange particles, which is most easily
achieved using small bias factors.

Therefore, a safeguard was implemented in the variance reduction scheme. This safeguard aims at
optimising the convergence efficiency for observables of interest by modifying the used bias factor. The
safeguard does it by preventing the decrease of channel cross sections below half of the initial cross
sections. Therefore, a vertex cross section ratio cannot be higher than 2. This strongly limits the product
of vertex cross section ratios for a given history and it will be easier to counterbalance it. At the end of
an event, this procedure strongly reduces the variance jumps even if the bias factor was chosen too high.
A less restrictive safeguard has been tested but the actual one presents a better compromise. However,
this safeguard is not perfect. If a particle has a history with numerous vertices with cross section ratios
between 1 and 2, it can have a large importance anyway and will result in variance jumps and a slow
convergence.

V.3 Event importance reversal

As previously mentioned, eq. V.2 is used to estimate the observables. Two types of summation can be
used: a sum over the events using the importance of the events where xi is an integer (not used in our case)
or a sum over the particles using the importance of the particles where xi = 0 or 1. However, the dynamic
adjustment of the bias factor depending on the history of events and their importances introduces some
sort of dependency between particles of a same event. If working at the level of particle importances as
we do, eq. V.2 is probably not correct when correlations must be considered (e.g., when studying cross
section of hyperon emission in coincidence with a kaon).

There is an alternative possible type of summation for eq. V.2. The summation can be done over the
particles (xi = 0 or 1) but using the event importances instead of the individual particle importances.

The event importance is equal to the product of every vertex cross section ratio of the entire event. It
is, a priori, different from the importance of an observation X (let us say a particle) because it includes
the contribution of extra vertices, which are not on the path of the particle X, and are therefore not
relevant. However, the expected value of the cross section ratio of a vertex A is:

E(CSR(A)) =
∑
reac

σ(reac)
σ′(reac) × P (reac|init. state,bias),

=
∑
reac

σ(reac)
σtot

= 1, (V.11)
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Figure V.2: Λ transverse momentum versus rapidity distribution in p(1.7 GeV ) + Ca collision. Both
plots are obtained using the same number of events (107). Top: no bias. Bottom: bias factor = 10.

with the same notation as in eq. V.10. Noteworthy, this equation is true only if no reaction of the non
biased version is forbidden in the biased version, which is the case in INCL. The same argument can be
used for any sub-structure in a cascade, which has no constraints on its final state. In particular, the extra
vertices, which are not on the path of the particle X, have no constraint on their final state since they
play no role in the production of particle X. Therefore, the contribution of extra vertices is statistically
null and the expected value of the event importance knowing the particle X has been produced is equal
to the importance of this particle X.

Then, it is trivial to prove that the expected value of the estimator is the same using wi (= E(wevent))
or wevent by taking into account xi = 0 or 1 in eq. V.2 when using the summation over the particles.

The event importance is provided in the final ROOT file. The convergence being slower or equal, it is
recommended to use the particle importance for the reversal of independent observables. However, it was
decided to conserve only a scalar importance for each particle and an event importance in order to limit
the quantity of information recorded in the output file. Doing so, the correlations are lost. Therefore, if
the observable is a coincidence production, the event importances must be used regardless of the type of
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summation. Additionally, if INCL is connected to another program (e.g., a transport code) that is not
able to keep track of the importance of the individual particles, this program can use the event importance
to weight its own results.

V.4 Validation

As a first test of whether the VRS works reliably and as expected, the results obtained using the
variance reduction method are compared with results obtained using the non-biased version. Not only the
observables obtained with the VRS must be the same as the observables obtained without it (no residual
bias), but the uncertainties must also be reduced for the same calculation time (variance reduction).
Various representative comparisons are discussed in the following.

A comparison of simulations with and without the VRS indicates that the calculation time is in-
dependent of the bias factor used. Therefore, the number of events can be used as a measure of the
computational time and/or to compare the efficiency of calculations using different bias factors.

Figure V.2 shows a comparison of calculations with and without bias. The two calculations have
identical inputs except for the bias factor (1 and 10). It can be clearly seen that the calculation using
the bias factor = 10 (right panel) produced a much more precise distribution using the same binning
thanks to the statistic increased by a factor of around 10. Additionally, there is no significant difference
for the amplitude, the mean values, and the standard deviations shown for both bias factors in the frames.
Consequently, the objectives of the VRS are perfectly fulfilled.

A test of convergence was carried out for the reaction p(1.7 GeV )+12C using different bias factors (no
bias, 10, and 100) using 4500 simulations with various numbers of events per calculation. The observable
chosen to test the convergence efficiency is the K+ mean momentum. What is considered as the true
value for the K+ mean momentum was estimated in an additional calculation using no bias and 109

Figure V.3: Mean relative error on the K+ mean momentum estimator as a function of the number of
events. The number of events corresponds to a simulation time. The true value taken for the kaons mean
momentum is estimated with a 109 unbiased event calculation. The reaction is p(1.7 GeV ) +12 C with
bias factor = 10 (red), 100 (cyan) and not using a variance reduction method (green). Dotted lines are
fits of the shape a nb. The horizontal blue line is here to guide eyes (see text).
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events, which resulted in an uncertainty of 0.1% for the true value. We then compared the estimator of
the K+ mean momentum for the 4500 simulations to the true value. The absolute value of the difference
between an estimator and the true value is the error. Figure V.3 shows the mean relative error for the
different bias factors as a function of the number of events, which corresponds to a computational time,
which is independent on the bias factor. Fits of the form a nb are plotted and the parameters and their
uncertainties are shown.

Since the true value has been estimated with an uncertainty of 0.1%, a mean relative error lower than
0.001 cannot be interpreted in Figure V.3.

A horizontal line was added in Figure V.3. It represents a relative error of 1.5%. According to this, the
precision of 1.5% is obtained with about 5× 106 events without the VRS and with only 5× 105(1.8× 105)
events with a bias factor 10(100). Therefore, the 1.5% precision is reached with about 10 times less events
using a bias factor 10, while using a bias factor of 100 the gain in time is not 100, but only 30. This
reduction of the computational time needed to reach the same precision is called the effective bias factor.
The effective bias 30 for the bias factor 100 indicates that the optimal bias is probably around 30 and the
safeguard (see sect. V.2) forced the effective bias factor to be closer to this value.

In Figure V.3, a decreasing mean relative error that is inversely proportional to the square root of
the number of events is observed for every bias factor used. This includes the bias factor that is clearly
above the optimal bias factor. Additionally, the dispersion of the results for the 4500 calculations follows
a normal distribution around the true K+ mean momentum (estimated using the calculation with 109

events) with respect to their statistical uncertainties. This confirms that every calculation converges to
the same limit regardless of the bias factor used. Therefore, the VRS (bias + reversal) does not introduce
any bias in the final observables. They all converge to the true value.

V.5 Examples

Let us remind the important nomenclature introduced in this chapter:

bias factor The increase of the statistics of strange particles required at the beginning of the calculation.

effective bias factor The real increase of the statistics of strange particles observed.

optimal bias factor The bias factor minimising the uncertainties linked to strange particles for a given
number of events.

The use of the VRS in INCL++6 requires two steps in addition to the standard use of INCL. First,
the user must provide the bias factor and second, the user must weight the final observables with the
corresponding importances stored in the output file.

The a priori bias factor optimisation is not trivial because the optimal bias factor strongly depends on
the initial parameters, like the target size and the projectile kinetic energy, but it depends also on the final
observables. However, the bias factor does not need to be perfectly optimised; a sensible choice for the
bias factor already helps significantly to speed up the convergence of estimator of observables involving
strangeness production. By starting with a sensible choice, the safeguard presented above is able to finalise
the optimisation. A work on the bias optimisation was carried out. However, the observables multiplicity
and the possibilities of initial parameters being too large, a simple way to determine the optimal bias
factor cannot be provided by the authors. The simplest way to evaluate the optimal bias factor is an
interpolation taking into account the energy and the mass number of the target, given that it is safer to
be below the optimal bias factor. Examples of sensible choices can be found in chapter VI for each figure
plotted.

In Figure V.4, we show the results of a study dedicated to understand the limits of the variance
reduction methods implemented in INCL. The limits discussed are problematic only for some extreme
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Figure V.4: Left: Hyperremnant mass distribution in p(10 GeV ) +208 Pb collisions with 107 shots.
Calculations with bias factors = 2 (top) and 10 (bottom) are compared to the calculation without variance
reduction scheme used. Right: Evolution of uncertainties and statistics as a function of the bias factor
(see text). The uncertainties and statistics are normalised to 1 for bias factor=1 (no variance reduction
scheme used).

(high projectile energy and high target mass) reactions where the choice of the bias factor was not sensible.
However, this case illustrates perfectly the problem of the importance dispersion, which produces large
uncertainties in terms of variance jumps even when the statistics is increased.

Here, we studied the mass distribution of hyperremnants in p (10 GeV ) + 208Pb collisions. The bias
factors used were 1 (no variance reduction method used), 2, 5, 10, 20, and 50. The number of events
was the same (107) for all calculations and the computational time was equivalent. The upper and lower
panels in the left column shows the results obtained using the variance reduction scheme, with a bias
factor 2 and 10 respectively, together with the result from the standard calculation. The increase of the
statistics (n_Hyp) and the normalised mean uncertainty as a function of the bias factor are displayed in
the right column. The left panels clearly show the minimal variance (i.e., the smallest uncertainties) is
not achieved with the highest statistics in this case.

An interpolation (shown as a blue line) of the normalised uncertainties predicts an optimal bias factor
of around 2.5. This is illustrated by the significantly better description of the hyperremnants spectrum
obtained using a bias factor 2 compared to the calculation using a bias factor 10. The large uncertainties
obtained using a bias factor 10 are purely linked to the dispersion of hyperremnant importances. It is
interesting to note that the interpolation of the effective bias factor (blue line) in the top right panel
deviates from the nominal bias factor (dashed brown line) around the optimal bias factor (2.5). The
effective bias factor is reduced by the safeguard as discussed before and the reduction starts to be significant
slightly above the optimal bias factor. This demonstrates that the safeguard worked well in this case,
though it is not perfect.

Generally, variance jumps result in a global underestimation compared to the standard calculation and
in some strongly overestimated bins. This can be dangerous if an underestimated bin is studied because
the error bars for this bin are not significantly large but they can be far from the true value (see bottom
left panel in Figure V.4). This is why it is crucial to minimise the importance dispersion. Remember,
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Figure V.5: K+ momentum in p(1.6 GeV ) +12 C with 107 events. INCL using a bias factor 104 (blue)
is compared to INCL using not the variance reduction scheme (red).

however, that every calculation converges to the same limit. Once again, the variance jumps just make
the convergence slower. The problem is that the variance, and by extension the error bars, might be
underestimated because of the bad sampling.

Figure V.5 shows a reaction in which the number of nucleons in the target is too low to produce
variance jumps thanks to the safeguard regardless of the bias factor. The number of target nucleons being
low, this leads to short intranuclear cascades with a low number of vertices. Additionally, the cross section
ratio of vertices is limited by the safeguard. This results in strong constraints for the importances of final
particles.

In such cases (low mass number) associated to a low energy, the safeguard matches automatically the
effective bias factor to the optimal bias factor when the bias factor has been chosen too high. This is well
illustrated in Figure V.5. Although the nominal bias factor (104) is clearly above the optimal bias factor,
which is 60, the spectrum obtained using the VRS exhibits no variance jump.
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Chapter VI

INCL++6 results

In this chapter, results of INCL calculations are compared to experimental data and to other model
predictions. It corresponds to the second part of my work published in ref. [43]. This work was important
for the validation of both studies described in chapter IV and chapter V.

The different strengths and weaknesses observed in INCL are discussed. The hypernucleus production
is not presented here because it depends strongly on the de-excitation stage of the spallation reaction,
which was not a direct part of my work. A following paper will be dedicated to the strange degree of
freedom in the de-excitation model and the hypernucleus production. Here, we focus on the intra-nuclear
cascade and single particle production.

The particles studied for the validation of INCL++6 are the charged kaons (K+ and K−), the Λ, and
the neutral kaons. The K+ was clearly the most studied particle in the past. Experimental data exist
near the threshold, and even in the sub-threshold region, up to high energies (∼ 14 GeV). Additionally,
various targets were studied and the emitted K+ were observed at different angles. Moreover, the K+ is
the only particle together with the K0 in our energy range that carries a positive hypercharge. Therefore,
every strangeness production results in kaon production. Because the production modes of the two kaons
are similar, studying the K+ also gives an estimate of the reliability of the total strangeness production
in INCL. The K− was less intensively studied because of the lower production rate (about two orders
of magnitude compared to the K+). However, double differential experimental data can be found in the
literature. Since the Λ and the neutral kaons have no electric charge, their detection is more complex
and less experimental data are available. However, their analysis can help to understand the different
processes in competition for the strangeness production.

The bias factors (see chapter V) used to obtain the INCL results are given in the captions of respective
figures.

VI.1 KaoS

The KaoS [104] (Kaon Spectrometer) experiment was performed at the heavy-ion synchrotron SIS at
GSI in Darmstadt. The KaoS collaboration measured the K+ and K− production in p + C and p + Au
collisions at 1.6, 2.5, and 3.5 GeV proton beam kinetic energies. The kaon momentum was measured from
plab = 0.3 to 1.1 GeV/c.

Most of the data measured for the K+ production are well described by INCL. Fig. VI.1 shows the K+

production invariant cross section in two configurations measured by the KaoS collaboration in comparison
to INCL and to the Bertini cascade model [56]. For the left panel showing K+ production near threshold
on a light nucleus (carbon) and for the right panel showing K+ production at higher energy on a heavy
nucleus (gold), the results of INCL match very well the experimental data. The comparison with the KaoS
data indicates a reliable total strangeness production cross section for a relatively large range of nuclei,
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Figure VI.1: K+ invariant cross section for various angles in (left) p(1.6 GeV ) + C and (right)
p(3.5 GeV ) +Au collisions. Experimental data [104] (black symbols) are compared to INCL (red) and to
the Bertini cascade model [56] (blue). Bias factor used: 10

energies, and angles. It can be seen that the Bertini cascade model gives a shape similar to INCL in the
momentum range of the experimental data but underestimates these data by roughly 40%. This difference
can be explained by the ∆-induced strangeness production, which is not included in the Bertini model.
Figure VI.1 depicts for the low momenta region huge differences between the predictions from INCL and
Bertini models. This is due to the different values used for the K+ potential. In our approach, the K+

repulsive potential in INCL reduces drastically the invariant cross section at low momenta. Experimental
data at low momenta would help to test the K+ potential.

Figure VI.2 shows the invariant cross section for K− production for the reaction proton on Au at
3.5 GeV. It can be seen that the data are well described by INCL for momenta above 0.5 GeV/c. However,

Figure VI.2: K− invariant cross section at 40◦, 48◦, and 56◦ in p(3.5 GeV )+Au collisions. Experimental
data [104] (black) are compared to INCL (red) and to the Bertini cascade model [56] (blue). Bias factor
used: 10.
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below this energy, the cross section is clearly underestimated and INCL does not reproduce the shape
of the experimental data. In ref. [104], the authors conclude that the K− production is mostly due to
the NY → K−NN reaction and to a lesser extent to the πY → K−N reaction. Both reactions are
not considered in INCL because of the lack of experimental data. This is probably the explanation.
The low energy production being dominated by secondary reactions and the high energy production
by primary reactions, our result seems consistent with a predominance of antikaon production through
strangeness exchange (NY → K−NN and πY → K−N) for low momenta and through direct production
(NN → NNKK) for high momenta. The Bertini cascade model, which includes the NY → K−NN
(but not the πY → K−N) reaction, shows a significantly better description over the entire momentum
range covered by the experimental data. This would argue for adding the extra strangeness exchange
reactions even if they have a low confidence level.

VI.2 ITEP

The study carried out at the Institute of Theoretical and Experimental Physics (ITEP) accelerator in
Russia [105] measured the K+ production in proton-nucleus collisions. The nuclei studied were Be, Al,
Cu, and Ta. This choice covers a mass range from A = 9 to 181 (Z = 4 to 73). The projectile energy
range from 1.65 up to 2.91 GeV. The experiment measured the production of K+ with a momentum
p = 1.280± 0.014 GeV/c and with an emission angle θ = 10.5◦. This very specific phase space constraint
was used to drastically reduce the contribution of the K+ production in πN → Y K secondary reactions
(see ref. [105] for details). This simplified their analysis by considering only the NN → NYK primary
reactions.

Figure VI.3: K+ invariant cross section in p + A → K+ + X reactions for kaons emitted with a
momentum of 1.280±0.014 GeV/c at θ = 10.5◦. The experimental data from [105] (circles) are compared
to INCL with (triangles) and without ∆-induced strangeness production (squares). Bias factor used: 50
for INCL without ∆-induced strangeness production for Tp < 2 GeV , 20 otherwise.
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In our analysis, we tested the implemented ∆-induced strangeness production, which is not based on
experimental data. In contrast, the corresponding cross sections are based on theoretical calculations
from Tsushima et al. [63] (see ref. [44] for more details). In Figure VI.3 we compare INCL calculations
with and without ∆-induced strangeness production to experimental data [105]. This allows to study the
impact of ∆N → NYK secondary reactions compared to NN → NYK primary reactions; the πN → Y K
secondary reactions being naturally suppressed by the phase space constraint. The Bertini model, which
has no variance reduction method, is not plotted in Figure VI.3 because of the unreasonable computing
time needed to get comparable uncertainties. The threshold for the direct production of K+ with a
momentum p = 1.280 ± 0.014 GeV/c is T = 2.115 GeV in nucleon-nucleon collisions. The sub-threshold
production is allowed thanks to collective effects like the Fermi momentum, and also to secondary reactions
(e.g., ∆N) as explained below.

Figure VI.3 shows that the standard INCL calculations (with ∆-induced strangeness production)
reproduce relatively well the shape and the absolute values of the experimental data, especially for energies
below 2.1 GeV, which correspond to the sub-threshold production. However, the standard INCL model
overestimates the 2.1− 2.9 GeV energy region by around 50%. In comparison, INCL without ∆-induced
strangeness production underestimates the experimental data over the entire energy range. Above T =
2 GeV , the underestimation is around 20%. This underestimation becomes above one order of magnitude
for the lowest momenta. This demonstrates the crucial role of ∆’s in the strangeness production. Going
deeper in the analysis, the overestimation in the 2.1− 2.9 GeV energy range indicates that the ∆-induced
kaon production in this region is likely overestimated. This seems consistent with observations made
in ref. [63] where the authors observed an overestimation of the cross sections for such reactions with
center-of-mass energies 200 MeV above the threshold.

The assumption that cross sections are very well described near the threshold but are overestimated
at higher energy could be due to the negligence of hyperonic resonances in the model used in ref. [63].
This choice was made because of the low confidence level associated to such resonances. However, they
could play a significant role, especially at high energies.

A precise evaluation of ∆-induced strangeness production cross sections with INCL is difficult to realise
because of the complexity of the spallation process. However, the impossibility to measure the ∆-induced
strangeness production cross sections and the limitations of the theoretical calculations make simulation
models like INCL valuable candidates to estimate and/or test such cross sections.

VI.3 ANKE

The ANKE experiment [106] investigated the production of K+ in the forward direction in proton-
nucleus collisions with proton kinetic energies between 1 and 2.3 GeV. The targets were A = 2H,12C,Cu,
Ag, and 197Au. The experiment took place at the COoler SYnchrotron COSY-Jülich in Germany. The
angular acceptance was ±12◦ horizontally and ±7◦ vertically.

In Figure VI.4, calculations from LAQGSM [54], Bertini [56], and INCL are compared to ANKE
experimental data. It can be seen that the three models fit relatively well the experimental data at low
momenta (below 300 MeV/c) with INCL being slightly closer to the experimental data than the other two
models. At higher momenta, INCL and LAQGSM still reproduce the data while Bertini underestimates
them. At higher energies where no experimental data exist, every model gives a different shape. Whereas
LAQGSM decreases rapidly, INCL continues to increase, and Bertini predicts a bump. The maxima are
of around 600 MeV/c, 800 MeV/c, and 900 MeV/c for LAQGSM, INCL, and Bertini, respectively. An
extrapolation from Figure VI.3 suggests that INCL overestimates the production cross section forK+ with
pK+ = 1.280 GeV/c in forward direction by roughly 30%. This would be compatible with the Bertini’s
value at pK+ = 1.280 GeV/c. Again, the INCL ∆-induced kaon production is probably overestimated.

64



VI.4. LBL

Figure VI.4: K+ momentum spectrum in p(2.3 GeV ) +12C collisions within the angular acceptance of
the ANKE experiment. Two sets of experimental data [106] (circles and squares) are compared to INCL
(red), LAQGSM [54] (green), and the Bertini cascade model [56] (blue). Bias factor used: 10.

Figure VI.5: K+ invariant cross section at 2.1 GeV/Nucleon for the reactions p+208 Pb (upper panel)
and 2H+208Pb (lower panel). The experimental data [107] (black dots) measured at the LBL are compared
to the Bertini cascade model [56] (blue) and INCL (red). Bias factor used: 10.

VI.4 LBL

The experiment carried out at the Lawrence Berkeley Laboratory (LBL) [107] studied the inclusive
K+ production using projectiles with T = 2.1 GeV/nucleon. Several projectile types and targets were
tested but a direct comparison between measured and modelled data is only possible for the reactions
p+208 Pb and 2H +208 Pb.

In order to estimate the inclusive K+ production cross section, the collaboration measured K+ spectra
at four different angles: θ = 15◦, 35◦, 60◦, and 80◦ for the p +208 Pb reaction and at θ = 15◦, 25◦, 35◦,
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and 60◦ for the 2H +208 Pb reaction. Spectra were measured for kaon momenta from 350 to 750 MeV/c.
The two panels in Figure VI.5 shows that there is good agreement between INCL predictions and

experimental data both for proton and deuteron induced reactions. It must be mentioned that this
experiment is very similar to the one carried out by the KaoS collaboration. Though, the angles studied,
the energies, the projectiles, and the targets used are slightly different but the conclusions are the same.
Again, the good agreement not only in the absolute values but also in the energy dependence of the data
demonstrates the reliability of the implemented strange physics in the new INCL version. This is also a
first validation that INCL can handle light clusters as projectile.

VI.5 HADES

The HADES (High Acceptance DiElectron Spectrometer) collaboration studied Λ and K0
s productions

in p+ p and p+Nb collisions at 3.5 GeV [108, 109]. The Experiment took place at GSI in Germany. The
Λ particles were measured in the [0.1, 1.3] rapidity (y) range in the laboratory frame and the K0

s particles
were measured in the [−0.85, 0.55] rapidity range in the nucleon-nucleon center of mass (ylab = −1.118).

The hypernucleus production is strongly correlated to the Λ production since most of the observed
hypernuclei involve one or more Λ’s. Therefore, the Λ production must be tested before studying the
hypernucleus production, which implies more complex processes.

In Figure VI.6 we compare the Λ production yield as function of rapidity calculated using INCL to
predictions from UrQMD [110] and GiBUU [51] and to experimental data [108]. The original plot is taken
from [108]. The Bertini cascade model does not handle Σ0’s decay, which plays a role in the Λ production.
Therefore, results from the Bertini code are not plotted here.

Figure VI.6: Λ production yield in p(3.5 GeV ) +Nb collisions as a function of rapidity. The HADES
experimental data (black square) are compared to GiBUU (blue dashed line), UrQMD (purple line), and
INCL (red line) model predictions. The original plot can be found in [108]. Bias factor used: 10.
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Figure VI.7: Λ rapidity versus transverse momentum yield in p(3.5 GeV ) +Nb collisions. Left panel:
INCL predictions. Right panel: Experimental data from [108] after correction of efficiency.

Figure VI.6 depicts a rather good agreement between INCL and the experimental data if taking into
account systematic errors. An exception are the data at rapidities higher than 0.9. The bump observed
in the INCL predictions around y = 1.3 can also be seen in the GiBUU model, but for this model at lower
rapidity. The UrQMD model does not exhibit such a behaviour and is close to the experimental data,
but it misses the first two data points at the lowest rapidities.

Aiming at understanding the INCL bump, we show in Figure VI.7 the transverse momentum versus
the rapidity of Λ particles. It can be seen that the left (INCL) and right (HADES data) panels match
well. For the problematic rapidities (above y = 0.9) one can find an overabundance of Λ particles in
the prediction of INCL compared to HADES in the rapidity range [1, 1.4] and the transverse momentum
range [200, 500] MeV/c. This corresponds to emission angles between 5 and 19 degrees if the experiment
acceptance is between 18 to 85 degrees.

With the acceptance of the HADES experiment being limited, data for the unmeasured region visible
in the right panel of Figure VI.7 have been estimated by extrapolating the transverse momentum spectra
using Maxwell-Boltzmann distributions. The thus determined data are in disagreement with the INCL
prediction. Consequently, the bump around y = 1.3 predicted by INCL is in a phase space not measured
experimentally. Therefore, there is no strict contradiction between experimental data and INCL model
predictions

In the region around y = 0, every model predicts a peak. This peak is high and broad using UrQMD,
narrow and smaller using GiBUU, and high and narrow using INCL. A comparison between INCL with
and without Σ0 in-flight decay showed that the peak in INCL predictions is entirely due to the in-medium
Λ production. Additionally, studying the origin of the Λ’s indicated that this peak is the result of the
hyperremnant de-excitation for INCL.

The second particle measured by the HADES collaboration is the K0
s . In Figure VI.8 the experimental

data [109] are compared to GiBUU calculations with and without a chiral potential, to the Bertini cascade
model, and to INCL. It can be seen that the best description of the experimental data are obtained using
GiBUU. However, the version of GiBUU used here is a modified version in which the K0 production has
been artificially reduced to fit the p+p HADES experimental data (see ref. [109] for details). Additionally,
this GiBUU version is not the same as the one used in ref. [108], although the reaction studied is the
same. This makes their results difficult to interpret. INCL gives a good shape but overestimates the
experimental data by roughly 65%. Similarly to the case for the K+ production, the ∆-induced reactions
could be an explanation for the overestimation but some part of this overestimation might also be due to
the normalisation. The total reaction cross section σp+Nbtot used by HADES is 848± 127 mb, while INCL
calculates a value of 1048 mb. A measurement of the total reaction cross section for the same system
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Figure VI.8: K0
s production cross section in p(3.5 GeV ) + Nb collisions in function of the rapidity

in the nucleon-nucleon center of mass. HADES experimental data [109] (black circles) are compared to
GiBUU with (cyan) and without (blue) a chiral potential, the Bertini cascade model (green) and INCL
(red). The original plot comes from ref. [109]. Bias factor used: 10.

at a lower energy (1.2 GeV instead of 3.5 GeV) gave 1063 ± 40 mb [111], which is consistent with the
INCL value. The Bertini cascade model does not reproduce the energy dependence of the experimental
data, but the predicted absolute yield of K0

s corresponds to the experimental data. The bump around the
laboratory rapidity (ylab = −1.118) can also be seen in GiBUU predictions with the chiral potential. This
is likely due to the attractive potential used by these models for the K0, whereas INCL uses a repulsive
potential.

VI.6 FOPI

The FOPI collaboration [112] measured the in-medium neutral kaon inclusive cross sections in π−-
induced reactions on various targets: C, Al, Cu, Sn, and Pb. The pion beam had a kinetic energy
T ' 1.02 GeV (pπ = 1150 MeV/c). The experiment took place at the heavy-ion synchrotron SIS at GSI.
The geometrical acceptance of the detector was restricted to polar angles in the range 25◦ < θ < 150◦. An
a posteriori correction was applied by the FOPI collaboration to obtain the total inclusive cross sections.

Figure VI.9 depicts the production of neutral kaons measured by the FOPI collaboration. In the
original paper [112], the authors compared their experimental data to two models: the quark-meson
coupling model (QMC) [113] and the hadron-string-dynamics model (HSD) [114, 115]. By fitting the
data, the FOPI collaboration found that the inclusive cross sections can be described by a A-dependent
cross section of the form σ(A) = σeff× Ab, with b = 0.67± 0.03. This would indicate that K0 production
is dominated by peripheral collision. Therefore, they developed the function:

σ(A) = σ(π−(1150 MeV/c) +N → K0 +X)×A2/3, (VI.1)

with N a target nucleon. The nucleon cross section was obtained by summing all σ(π− +N → K0 + Y )
processes weighted with the relative proton and neutron numbers of the target nucleus. The thus developed
function is represented as a hatched band in Figure VI.9. The bandwidth corresponds to an uncertainty
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Figure VI.9: Neutral kaon production cross section in the collision π−(1020 MeV ) + A (pπ =
1150 MeV/c). The FOPI experimental data [112] (blue squares) are compared to QMC [113] (pink
dash-dotted line), HSD [114, 115] (red dashed line), Bertini [56] (green circles), and INCL (orange cir-
cles) models. The meaning of the hatched area is explained in the text. The original figure comes from
ref. [112]. Bias factor used: 10.

of 20%. It appears that the experimental data do not plot in the region defined by this band, which
indicates that the simple dependence expressed in eq. VI.1 cannot explain the observed cross sections.
Therefore, there must be an additional process.

The INCL calculations slightly underestimate the experimental data but they are within the exper-
imental systematic uncertainties (rectangular bars). The inclusive cross sections predicted by INCL are
proportionnal to A3/4, which promote a different interpretation of the K0 production processes with larger
contributions of secondary reactions and a deeper strangeness production. The Bertini cascade model [56]
shows a result similar to INCL but with a slightly lower slope. Both INCL and Bertini cross sections are
consistent with eq. VI.1 using a dependence of A3/4 instead of the proposed A2/3.

VI.7 E-802

The INCL model has been extended to work up to incident energies of about ∼ 15 GeV. However, most
of the experiments studying strangeness production focus on energies below 3.5 GeV. A notable exception
is the experiment realised by the E-802 collaboration [116] at the Brookhaven National Laboratory (US)
using a proton beam momentum of 14.6 GeV/c (Tp ' 13.7 GeV ). This experiment measured various
particle production cross sections in proton-nucleus reactions and, notably, it also measured the K+

production cross sections. Therefore, it provides a good opportunity to test INCL strangeness physics at
the high energies. The nuclei studied by the E-802 collaboration were Be, Al, Cu, and Au.
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Figure VI.10: K+ production cross sections in p(14.6 GeV/c) + A collisions as a function of rapidity.
The experimental data [116] (black) are compared to INCL predictions (red). No variance reduction
method was used.

Fig. VI.10 shows a comparison of INCL predictions with E-802 experimental data. The Bertini model
predictions are not plotted because the upper energy limit for this model is about 10 GeV. Considering
that the experimental data are close to the upper energy limit of INCL, the shape as well as the absolute
values are in excellent agreement. However, a slight underestimation at high rapidities can be observed
for Cu and Au. The observed deviations are difficult to analyse because they are only for two target
elements and the discrepancies differ: a bump for Au and a linear deviation for Cu.

VI.8 LINP

The experiment carried out at the Leningrad Institute of Nuclear Physics (LINP) [117] studied the
sub-threshold K+ production on various nuclei, from beryllium to uranium. A measurement of the total
cross sections as a function of energy was performed in the 800− 1000 MeV energy range for Be, C, Cu,
Sn, and Pb.

In Figure VI.11 INCL predictions are compared to the experimental data. The first observation is a
clear overestimation of the experimental data. This overestimation is about a factor 6 for Be and about
a factor 4 for the other nuclei. The prediction of the slope is good, especially for C, Sn, and Pb. While
the agreement between model predictions and experimental data is only fair, the major success of these
calculations is the variance reduction (see chapter V). The effective bias factors of these calculations are
around 1000 depending on the configuration with a maximum at about 2000. This allowed to obtain
cross sections below the nano-barn scale using a relatively short calculation time (half a day for the entire
set by using parallelisation). Such a result cannot be obtained in a reasonable time without a variance
reduction method.
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Figure VI.11: Subthreshold K+ production cross sections in p+A collisions as a function of the initial
proton kinetic energy. The experimental data [117] (circles) are compared to INCL predictions (triangles).

Different explanations are possible for the observed overestimation. To understand the problem, it is
important to remember that the beam energies in this experiment are far below theK+ production thresh-
old for p+p collisions (1.582 GeV). Therefore, the strangeness production requires strong collective effects,
which are complex and not very well understood. Such effects include effects related to the momentum
spectra of particles inside the nucleus and effects related to successive collisions. Additionally, ∆ particles
seem to play a crucial role in this experiment. An explanation for the overestimation could therefore be
the treatment of ∆ particles in INCL. Another explanation could be the semi-classical description of the
nucleus by INCL, which does not consider every quantum mechanical effect that could play a significant
role in sub-threshold processes. A following study has been carried out in order to better understand the
discrepancies. The effect and limitations of the semi-classical approach cannot be tested but modifications
related to the physics of ∆ particles or to collective effects showed a sensible reduction of the strangeness
production. None of the modifications, however, could fully explain the observed discrepancies. Therefore,
the overestimation is likely due to a combination of the three explanations proposed above. However, it
is difficult to proof or reject this hypothesis considering the complexity of the processes involved.
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Chapter VII

CosmicTransmutation

In the previous chapters, I discussed in detail nuclear spallation reactions. In the following chapters,
I focus on the production of cosmogenic nuclides.

In this chapter I discuss the CosmicTransmutation model created during the second phase of the
PhD. Here I will discuss in some detail the applied astrophysical approaches and the used algorithms
implemented in the CosmicTransmutation code.

The purpose of this chapter is to help understanding and using the CosmicTransmutation code. Doing
so, this chapter is divided into six sections. First, the objectives of this model are introduced. Second, the
global operation of the program is demonstrated. Following there are two sections detailing the special
features for simulation of meteoroids and planets. Next, the algorithms developed in this PhD to treat
special aspects of the simulation are discussed. Finally, some biases and problems that must be considered
for the analysis of the CosmicTransmutation results are explained.

VII.1 Objectives

The major objective of this thesis and of this code is to calculate the production of cosmogenic
nuclides in various targets. However, the entire process of cosmogenic nuclide production is too complex
to be simulated by one code created from scratch and developed by one single person. Some aspects of
physics must be delegated to other codes. Such an association of models is usually made in transport
codes; therefore, the CosmicTransmutation model is based on one of them. Since cosmogenic nuclides
are predominantly produced in spallation reactions or in reactions resulting from spallation, the used
transport code must be able to handle energies ranging from tens of MeV to tens of GeV for primary
particles like protons and alpha particles; and energies down to eV for secondary particles like neutrons.
A famous transport model that is able to handle the energy range is the Geant4 toolkit [10]. Therefore,
it has been decided that the CosmicTransmutation model is be based on the Geant4 toolkit.

The Geant4 toolkit is a transport model originally designed for high energy interactions. However, it
also enables to make simulations for neutron induced reactions and neutron transport down to energies
of a few meV. These features allow the CosmicTransmutation model to calculate cosmogenic nuclides
production over the entire relevant energy range. Effects induced by radioactive decay, e.g., the fact
that the final nuclide very often is the nuclide at the end of the radioactive decay chain and not the
nuclide directly at the end of the nuclear reaction, is not fully treated in Geant4 and therefore also
not in CosmicTransmutation. When a particle is stopped in Geant4, this particle is not tracked any
more. The decay of nuclei is considered only while nuclei are moving. Therefore, the objective of the
CosmicTransmutation code is limited to, first, calculating the outcome of the nuclear reaction (before the
radioactive decay) and, second, to calculate the location of the production. The production of cosmogenic
nuclides after the radioactive chains is left as a post-treatment of the results of the CosmicTransmutation
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model.

VII.2 Global operation

Basically, a Geant4 based model has only two steps, the initialisation and the creation of the outputs.
The simulation itself is then done by the Monte Carlo code. In the Geant4 based model, the simulation
of the physics is computed by the various implemented, but hidden, models in the toolkit, which plays
the role of a coordinator.

For a better understanding, some terms from the nomenclature of Geant4 that are also used in this
chapter are defined here:

• Event: The simulation of a collision of a single initial particle with the target (e.g., a meteoroid).

• Run: A set of events simulated in a same configuration.

• Track: The path of a particle from its creation to its absorption or decay.

• Physics list: The set of physics models used to process the different aspects of the physics in Geant4.

• Logical volume: A volume used to construct the detector geometry in Geant4, including its properties
and characteristics.

• Sensitive detector: A logical volume that produces an output, which can be used by the primary
program (i.e., CosmicTransmutation).

VII.2.1 Initialisation

The initialisation of the CosmicTransmutation model can be divided into three main parts: the target,
the irradiation spectrum, and the initialisation of the physics list.

The first step for running the CosmicTransmutation model is to define the target. The relevant
parameters are size, shape, and composition. The shapes currently available for users are limited to
spherical and ellipsoidal objects. The pre-atmospheric shapes of meteorites are difficult to know but
with the spherical and ellipsoidal shapes provided, the majority of the meteoroids should be covered
reasonably well. The composition of the meteoroid is a crucial parameter for the production of cosmogenic
nuclides. The compositions, including the density of the material, of C-chondrites, L-chondrites, and iron
meteorites, which are the most common meteorite types, are directly available in the code. However,
other compositions can be handled using a user-defined input file.

The second step of the CosmicTransmutation model is the definition of the irradiation spectrum. In
terms of energy, two possibilities are pre-programmed for the user. The standard cosmic ray spectrum
that can be used to simulate a realistic cosmic ray irradiation flux (see sect. VII.3). In addition, a mono-
energetic flux, which can be used to study the impact of one specific energy. Next, the user can choose
the type of the irradiating particles. In the cosmic ray spectrum, the major part of the flux is made of
protons, which contributes about 90% of the total flux. In addition, the alpha particles represent almost
all the other 10%. The heavy ions represent less than one percent and can therefore be neglected in
this first approximation. However, while alpha particles are less numerous than protons, they consist of
four nucleons, which results in a significantly higher cosmogenic nuclide production per collision. In the
CosmicTransmutation model, the choice between an irradiation spectrum completely made of protons,
alpha particles, or using the natural elemental composition is given. This allows us to simulate the
natural irradiation as well as to study the different components of the cosmic ray spectrum separately. In
addition, also the possibility of neutron irradiation is implemented, though mostly for theoretical analyses.
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For example, this set-up allows us to test the usual hypothesis that the alpha particles can be replaced
by 2 protons and 2 neutrons carrying each one fourth of the total kinetic energy.

For the definition of the physics list, Geant4 proposes various model combinations to treat the different
aspects of the physics [10, 59]. The user is free to choose any of the physics lists proposed in Geant4.
However, the default physics list used by CosmicTransmutation is “FTFP_INCLXX_HP”. In this physics
list, the Fritiof model [58] is used for high energies (i.e., above 15 GeV for hadrons and 2.9 GeV/Nucleon
for ions) and INCL takes care of the intermediate energies. The question what is an intermediate energy
depends on the particle type. In Geant4.10.05, the latest public version available at the date of publication
of this thesis, the energies treated by INCL for nucleons, i.e., protons and neutrons, are between 1 MeV
and 20 GeV. For ions, and notably for alpha particles, INCL is used between 0 and 3 GeV/Nucleon. Since
neutron physics is crucial for cosmogenic nuclide production the physics list “FTFP_INCLXX_HP” is
preferred to “FTFP_INCLXX”. In the former, the lower limit for neutron handled by INCL is 20 MeV and
lower energies are treated by the use of tabulations providing a very high precision down to 10−12 MeV.
On the other hand, in the second physics list, a precompound model is used for energies below 2 MeV.
In the chosen physics list, there are sufficient overlaps between the energy ranges to allow for smooth
transitions between the individual models.

VII.2.2 Running and outputs

After the initialisation, there is the running of the program. As already mentioned, the processing
of a run is fully treated by the Geant4 environment. During this stage, the improvements of the INCL
code discussed in the previous chapters influence the final results. This, however, is not visible to the
user. During the computational run, the CosmicTransmutation model collects all necessary information
generated by the Geant4 environment and creates the outputs files. In our case, we want to calculate
the differential fluxes of light particles, i.e., protons, neutrons, alphas, together with the production of
cosmogenic nuclides as a function of the location within the target.

The CosmicTransmutation model produces two different outputs. First, a ROOT file is generated in
which all the relevant information is stored in three TTree’s, which allows a large number of combinations
between the different TLeaf’s. A second output stores in data files only the information on proton,
neutron, and alpha particle fluxes as a function of the depth within the meteoroid. It is left to the user
to decide which output (potentially both) will be created.

Two methods can be used to study cosmogenic nuclide production using the CosmicTransmutation
model. The simplest method is to take the results of the model in the ROOT file in which all the
information about the production of cosmogenic nuclides is stored. This method is very direct, however,
the statistics for the production of rare nuclei can be problematic. Thus, this method requires a significant
computational time for the study of specific cosmogenic nuclides. The second method is by using the
CosmicTransmutation model as a code to calculate the depth dependent fluxes of particles like protons,
neutrons, and alpha particles. The fluxes can be obtained both from the ROOT file or from the data
files. The thus calculated particle fluxes must then be combined with the cross sections of the relevant
nuclear reactions of the elements in the target to calculate the production of cosmogenic nuclides. The
cross sections, i.e., the excitation functions, can be obtained using spallation models like INCL. In the
latter case, the spallation model (INCL) is used twice: once in Geant4, where it is used, first, to calculate
the differential particle spectra, and, second, to calculate relevant cross sections. The reliability of the
spallation model used in this second approach is even more crucial. It explains why so much effort was,
and is still, put into the development in the validation of the INCL model as demonstrated in the previous
chapters.
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VII.3 Meteoroids, asteroids, and moons

From the irradiation point of view, there is no major difference between meteoroids, asteroids, and
moons. The main difference between the different objects is in their composition. However, the principals
of the irradiation processes are the same.

Once the composition, the density, the shape, and the size of the target are given by the user as input
parameters, the final step is to define the irradiation spectrum.

Two irradiation spectra are implemented in the CosmicTransmutation model in addition to a mono-
energetic particle beam. They correspond to differential galactic cosmic ray particle spectra for protons
and alpha-particles.

The formula used in CosmicTransmutation for the differential galactic cosmic ray proton flux is a
modified version of the formula used in ref. [118].

Jp(T,M) = cp ×
T (T + 2mpc

2) (T + x+M)−2.65

(T +M) (T + 2mpc2 +M) (VII.1)

with T the kinetic energy, M the solar modulation parameter, and mp the proton rest mass. The factor
x is defined as:

x = 780× e−2.5 10−4×T [MeV] (VII.2)

For a flux in the unit [particle m−2 s−1 sr−1 MeV−1], the parameter T , M , x, and mpc
2 must be

expressed in MeV and the normalisation factor is cp = 109.
The solar modulation parameter M is used to take into account the variations in the cosmic rays flux

due to solar activity. This parameter varies between 300 MeV (low solar activity) and 1100 MeV (high
activity) [119–122]. The best average for the last millions years for the solar modulation parameter is
M = 550 MeV at 1 au [123, 124].

The differential alpha particle flux used in the CosmicTransmutation model is given by a formula
developed within this thesis:

Jα(T,K) = cα ×
TK × (T + 2mαc

2)
(T + 700)(T + 2mαc2 + 700)(T + 312500 T−2.5 + 700)1.65+K (VII.3)

with T the kinetic energy per nucleon expressed in MeV/nucleon and cα = 5.5 107 for a flux in [particle
m−2 s−1 sr−1 (MeV/nucleon)−1]. The K parameter takes into account the solar activity and is based on
the solar modulation parameter M as:

K = (1.786 10−3 ×M)− 0.1323 (VII.4)

Equations VII.1 and VII.3 are used in the energy range between 10 MeV/nucleon and 100 GeV/nucleon.
It is important to mention that the integration of these two formulae must be done for a solid angle

of 2π and not 4π, as it is often done wrongly, to get the integrated flux at the surface of the target in the
unit [particle m−2 s−1 (MeV/nucleon)−1]. This is due to the fact that the target surface is irradiated only
from the outside. The particles coming from the inside are secondary particles, which are not part of the
primary cosmic ray spectrum.

VII.4 The planetary model

The irradiation of planets by cosmic rays is very different to the irradiation of meteoroids or moon.
The main difference does not come from the gaseous nature of the overlying atmosphere as we could
assume. If the production of secondary particles and the absorption of primary particles is discussed
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in the unit g/cm2 (i.e., as a function of the volumetric mass density integrated over the deepness), the
curves for planets and meteoroids actually look very similar. The main difference between planets and
meteoroids actually is in the presence of a magnetosphere around the planets.

The magnetic fields around planets modify the trajectory of the particles. Some of these trajectories,
particularly for the low energy particles, are curved in such a way that they never cross the planet’s
atmosphere. Therefore, a part of the standard cosmic ray spectrum is rejected and the remaining part is
modified. This must be considered for the simulations. Details on the planet irradiation process are given
in subsection VII.5.3.

In the CosmicTransmutation model, the processing of a run including a magnetosphere has been di-
vided into two parts. The first part is devoted to the computation of the trajectories in the magnetosphere
where no collision happens and the second part corresponds to the irradiation of the atmosphere.

The magnetic fields of planets are usually not simple dipoles. The dipole, however, is very often the
dominant term of the magnetic field. Nevertheless, major perturbations like the solar magnetic field and/or
the solar wind strongly influence the shape of the local magnetic field. Moreover, the dipole generated
by the planet is not necessary aligned to the rotational axis of the planet and/or it can be shifted with
respect to the center of the planet. In some cases, the magnetic field generated by the planet is not a
dipole at all. At the current stage, the magnetic fields that can be handled in the CosmicTransmutation
model are relatively simple. Two components are considered: the dipole generated by the planet, which
can be shifted and/or rotated, and a constant magnetic flux representing exterior perturbations.

Another difference between simulations for planets and meteoroids/asteroids is caused by the Geant4
toolkit. Unfortunately, Geant4 does not allow to create logical volumes with a variation in density
and/or composition as a function of the location in this volume. Therefore, the atmosphere with its
variation in composition, density, and temperature must be decomposed into several layers in which these
characteristics are assumed to be constant. The number of layers, which will directly affect the precision,
has to be defined by the user. The temperature is not relevant for the CosmicTransmutation model.
Therefore, the temperature used is the default value of Geant4 (293.15 K) for all layers. On the other
hand, the composition and the density of the atmosphere are obviously highly relevant for the outcome of
the simulation. It is not realistic to know the exact composition and density of the atmosphere for each of
the defined layer. Two models are used: one for the composition and one for the density. The composition
model requires knowledge of the composition at the bottom and the top of the atmosphere. From this,
the composition of intermediate layers are calculated using a simple linear interpolation. Whereas, for
the density, the developed model only requires the density of the atmosphere at the ground level. Then,
an exponential decrease as a function of altitude is applied and the top layer density is defined as 10−4

times the density of the bottom layer.
While the magnetic field is really crucial in the magnetosphere, it becomes of secondary importance in

the atmosphere. Therefore, for sake of simplicity, the magnetic field within the atmosphere is considered
constant along the irradiation phase of the simulation. This is justified by the relative short path of
particles within the atmosphere with respect to their path in the magnetosphere. Moreover, the variations
of the magnetic field along tracks in the Earth’s atmosphere are less than 5%.

VII.5 Algorithms

In the course of the current thesis, some algorithms were developed for the CosmicTransmutation
model. Here I summarise the relevant developments.
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VII.5.1 Irradiation

Once the cosmic ray spectrum has been defined, the CosmicTransmutation model must generate a
homogeneous flux to irradiate the meteoroid, the asteroid, and/or the moon.

For spherical objects, the special symmetry reduces the characteristics of the location and direction of
the incoming cosmic ray particles to only one relevant parameter: the impact zenith angle. Indeed, on a
spherical target, no impact location can be distinguished from one another. Therefore, the impact location
is not relevant. In addition, a rotation of the target around an axis connecting the impact location with
the center of the sphere leaves the target unchanged. Therefore, the impact azimuth angle is not relevant
either.

For a uniform irradiation of a spherical object, the impact zenith angle θ must be generated between
0 and π/2 with a probability density proportional to sin(θ). This comes from the Jacobian in spherical
coordinates. It is often convenient to use the impact parameter instead of the zenith angle. The impact
parameter corresponds to the normalised radial distance ρ in the cylindrical coordinate system with the z
axis aligned with the direction of the incoming cosmic ray particle. In such case, the impact parameters
ρ must be generated between 0 and 1 with a probability density proportional to √ρ.

In the CosmicTransmutation model, the cosmic rays irradiating the spherical objects are generated
along the z axis. Therefore, the particle type, the kinetic energy, and the impact parameter fully charac-
terise the incoming cosmic rays. All three parameters are stored in the output ROOT file.

If the target is of any shape, the location and the direction of the incoming cosmic rays cannot be
reduced to less than 4 parameters (2 for the location and 2 for the direction). A system of 2 parameters
defining the impact location on the surface of the target can generally not be found. Moreover, some
locations can be partially shielded by parts of the target. Therefore, the simplest way to irradiate such an
object with a non regular shape is to generate the irradiation on a virtual sphere surrounding the target.
Therefore, a random initial location for the incoming cosmic ray must be chosen on the virtual sphere as
well as random impact zenith and azimuth angles as a function of the corresponding probability density.
However, this method might generate events in which the cosmic ray particle does not hit the target and
it is therefore not very effective.

In the case of ellipsoidal objects, the symmetries do not allow to reduce the location and the direction
of the incoming cosmic rays to less than 4 parameters, as it was possible for spherical objects. However, a
specific algorithm is implemented in the CosmicTransmutation model to generate a homogeneous irradia-
tion of ellipsoid in which no cosmic ray particle misses the target. This optimises the computational time
and helps to estimate the relative uncertainties of future results, which decrease with the square root of
the number of hitting cosmic rays. This algorithm is given in Appendix F.

VII.5.2 Irradiation time

One of the main components needed for the normalisation of the results obtained using the Cosmic-
Transmutation model is the irradiation time. However, the irradiation time is not a relevant parameter to
estimate a priori the precision of the results. For a given irradiation time, large objects (e.g., moons) are
more exposed to cosmic rays than smaller objects (e.g., micro-meteoroid). Thus the statistics is related
to the size of the object and the irradiation time. Therefore, the relevant input parameter that affects the
precision of the results is the number of computed events.

An algorithm is implemented in the CosmicTransmutation model to compute the equivalent irradiation
time of a run. This algorithm is divided into three parts. First, the differential flux of cosmic ray particles
parametrised by the solar modulation parameter M , which is provided by the user, is integrated over the
solid angle and the energy. Second, the surface of the target is calculated, and finally, the integrated flux
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IF , the target surface S, and the number of events Nevent are combined to get the irradiation time t via:

t = Nevent

IF × S
(VII.5)

The irradiation time given in s and the target surface given in m2 are both stored in the output ROOT
file as well as in the output data files.

VII.5.3 Magnetic field cut-off

As mentioned above, the particle trajectories in the magnetosphere of a planet are curved. This results
in constraints on the characteristics of the particles entering the atmosphere. Consequently, the particles
entering the atmosphere can only have limited combinations of location and momentum

Here, it is useful to introduce the concept of rigidity. The rigidity of a particle is defined as the
ratio of its momentum norm divided by its electrical charge and is commonly express in GV/c (or in GV
using the convention c = 1). This concept is useful as two particles with the same rigidity and the same
initial position and direction follow the same trajectory in a magnetic field independently of their nature.
Therefore, the set of allowed values for rigidity, direction, and location in a magnetic field are the same
for all the particles.

Considering the size of the magnetosphere compared to the size of the planet and the proportion
of the cosmic ray spectrum rejected, it is not realistic to generate the irradiation on a virtual sphere
surrounding the magnetosphere. This would be extremely CPU time consuming. Moreover, the interest
of the user is very often focused on cosmogenic nuclide production at a specific latitude-longitude location
(the altitude can vary with the applications). Therefore, the usual solution is to divide the simulation into
two parts. First, a map of the allowed rigidity-direction pairs at the top of the atmosphere is determined
for a given latitude-longitude location. Next, the irradiation of the planet from the top of the atmosphere
is calculated. However, the process is too complex for an analytical solution [125]; therefore, an algorithm
has been designed to draw the map of allowed rigidity-direction pairs.

For a given impact location and direction, the map of allowed and forbidden rigidities always follows
the same structure [125]. In this scheme, all rigidities below a certain rigidity called Rl (the lower cut-off)
are forbidden while all the rigidities above the rigidity Ru (the upper cut-off) are allowed. Between Rl
and Ru, a rigidity range called the penumbra consist of a succession of bandwidths, which could be of
various sizes.

Since the user is usually interested in cosmogenic nuclide production at a specific location, the common
solution to generate the map of allowed rigidity-direction pairs is to compute the trajectories in the
magnetic field using reverse kinematics as shown in Figure VII.2. Thus, the starting point of the trajectory
is at the top of the atmosphere and corresponds to the latitude and the longitude of interest for the
user. Next, the trajectories of the particles in the magnetic field, which has been defined by the user

Figure VII.1: Example of a penumbra region in a typical complex configuration.
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Figure VII.2: Examples of trajectories in a complex magnetic field. The curves have been computed
using the CosmicTransmutation model. The trajectories connecting two points of the atmosphere are
“closed” trajectories and are therefore forbidden for cosmic rays.

are computed with the help of the Geant4 environment [10, 59]. Particles that start from the surface,
following the computed trajectories and are able to escape the planet magnetosphere correspond to allowed
trajectories and, in contrast, particles falling back on the atmosphere correspond to forbidden trajectories.
The map of allowed rigidity-direction pairs is then constructed by scanning over all possible zenith and
azimuth angles as well as by considering all relevant rigidities (R ∈ [0 GV, 20 GV] for the Earth).

Usually, the penumbra has a complex structure. In other algorithms [125, 126], the median of the
allowed rigidities between Rl and Ru is determined. This rigidity (often called Rc) depends on the location
and the direction of the incoming cosmic rays and is used as a hard cut-off. Rigidities above and below
Rc would be considered allowed and forbidden respectively. This significantly simplifies the generation of
the irradiation spectrum during the irradiation phase. However, due to the improvement of computing
power realised in recent decades, we can improve on this situation. Therefore, this crude approximation is
not used in the algorithm implemented in the CosmicTransmutation model. Instead, the entire structure
of the penumbra is kept, which is supposed to improve the results of the model.

The rejection of specific trajectories changes the fluxes of the irradiating particles. These modifications
do not affect all particle fluxes the same. This changes the ratio of cosmic ray particles, i.e., it affects
the chemical composition of the relevant galactic cosmic rays. Some partial tests carried out with the
algorithm developed for the CosmicTransmutation model shows the proportion of α particles can range
from 10% to 15% of the total flux at the top of the atmosphere depending on the latitude and the magnetic
field.

VII.5.4 The funnel effect

As discussed before, magnetic fields of planets forbid some particle trajectories. However, this is not
the only effect produced by magnetic fields. They can also focus or disperse the allowed trajectories. This
modifies the probability of a specific trajectory. The magnetic field can act like a funnel or it can dissipate
the particles depending on the special configuration.

During the determination of allowed trajectories, an optional step can be added to the algorithm
presented in subsection VII.5.3. This step measures the dispersion of particles for a given rigidity, zenith,
and azimuth angles together with the latitude and longitude of the hitting location. This is done by
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Figure VII.3: Irradiation fluxes estimated at the top of the atmosphere as functions of the rigidity and
the zenith angle with (b) and without (a) taking into account the funnel effect. See text for the details.

Figure VII.4: Irradiation flux as a function of the rigidity. Red: taking into account the funnel effect.
Blue: without taking into account the funnel effect.
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reversing the final momentum of particles, which successfully escaped the planet’s magnetosphere during
the initial cut-off calculation. Consequently, the calculations in this part of the algorithm are done in
direct kinematics. Each allowed trajectory is tested several times with minor variations on the initial
position and direction. These variations correspond to a predefined phase space. Finally, the phase space
covered by the hitting locations on the top of atmosphere of these trajectories is compared to the initial
phase space scanned. If the final phase space is smaller than the scanned phase space, the trajectories
are focused. This increases the probability to observe the trajectories. Otherwise, the trajectories are
dispersed and the probability is reduced. The ratio of the two phase spaces is stored and is used to modify
this probability during the second part of the simulation: the irradiation phase.

Figure VII.3 represents the irradiation fluxes at the top of an atmosphere as functions of rigidity and
zenith angle. The geometry corresponds to a planet with a radius of 5000 km and an atmosphere, which
is 50 km thick. The associated magnetic field is a simple dipole aligned with the rotational axis of the
planet, and with an intensity of 20 µT at the top of the atmosphere. The tested location is at latitude
and longitude = (0, 0).

Many differences and similarities can be observed between the two plots in Figure VII.3. As for the
similarities, the limits of the two plots (the cut-offs) are the same. However, the detailed structures differ
between both set-ups. No clear structure appears in Figure VII.3.a except for some variations induced
by the phase space along the y axis and by the initial galactic cosmic ray flux along the x axis. These
variations are apparent in both panels. In Figure VII.3.b, a clear structure appears. For highly dispersed
trajectories, a thin band in the diagram zenith versus rigidity starts at around R = 6.8 GV and θ = 90◦
and finishes around R = 7.6 GV and θ = 40◦. This band indicates that corresponding trajectories are
indeed focussed. Numerically, the band seems to extend down to R = 10 GV and θ = 0◦. However, the
apparent focusing is low and it therefore hard to conclude if there is any relevant focussing effect

In Figure VII.4 the flux is plotted as a function of the rigidity for two different set ups; the blue line
is for the set-up without the funnel effect and the red line is for the calculated flux by considering the
funnel effect.

One important point is immediately obvious: the flux estimated without considering the funnel effect
is very erratic. This is easily explained by the occurrence of what we call saddle rigidities. In this
original approach, the tracks can only have two statuses: allowed or forbidden. When a new trajectory
is allowed with a slight increase in rigidity, this trajectory is completely accepted, which creates jumps in
the irradiation spectrum. It can also be seen that the flux decreases very regularly between the jumps.
The decrease in Figure VII.4 is proportional to R−2.65 originating from the proton flux formula given in
eq. VII.1. If the binning of the zenith angle is reduced in the algorithm, the jumps are less intense but
more numerous. However, the overall shape of the curve is not changed

With the new approach, the probability density for a cosmic ray to follow allowed trajectories is taken
into account. This reduces the jumps seen in Figure VII.4 with the previous approach. Moreover, the
irradiation flux determined is more stable. This is due to the fact that, whenever a new trajectory is
opened, the probability density associated to the trajectory is very low. Then, the amplitude of this
trajectory increases most of the time with increasing rigidity. The competition between the increasing
amplitude and the decrease in the initial flux, which is proportional to R−2.65, lifts the curve.

It is important to mention two points to recognise on Figures VII.3 and VII.4. First, the tested location
is for a latitude and longitude = (0, 0). At this location, the planet’s magnetic field is perpendicular to the
normal, which maximises the shielding effect of the magnetic field. This explains why the flux calculated
by considering the funnel effect is lower than the flux calculated using the original approach, i.e., without
considering the funnel effect. This, however, is not the general trend. At different locations, the flux
can also be increased. Some other examples are given in Appendix G in order to show different possible
configurations. Second, the occurrence of small bumps seen in Figure VII.4 with the new approach are
majorly due to the binning used for the zenith angle. A figure showing the impact of the binning in the
two approaches can be seen in Appendix G.
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VII.6 Elements of analysis

The simulation of physical processes needs hypotheses and approximations to start with but they can
also introduce biases in the results. These biases must be considered during the analysis of the simulation
results. This section summarises the weaknesses and potential biases but also the strengths of the newly
developed CosmicTransmutation model, which all must be considered for the analysis of the modelled
results. In addition, some useful tools are implemented in the CosmicTransmutation model. Here I give
a short summary.

VII.6.1 Double counting

Some issues arise with the use of Geant4; namely with the system of sensitive detectors (see ref. [59]). In
the Geant4 environment, the tracks are computed within logical volumes, which can be sensitive detectors.
When a track passes through one volume associated to a sensitive detector into another volume, this track
can be detected twice. Once upon leaving the first volume and then again when entering the second volume.
In such cases, the particle associated to the track is detected twice in a very small interval.

For meteoroids, the logical volume can be defined as the entire object. Therefore, the just discussed
effect is limited to the surface of the meteoroid. As this surface is typically lost because of ablation while
the meteor falls in the atmosphere, this effect can be neglected. However, another problem arise with this
solution. If the mean free path of a particle is long, the particle can travel a layer of interest without being
detected and therefore, the fluxes of particle can be underestimated. The flux of high energy neutrons
is particularly concerned by this problem. For the flux of particles, the solution is then to define thin
sensitive detectors (i.e., thinner than the particles mean free path) at the depths of interest, whereas the
rest of the target is not a sensitive detector. For planets, however, it is more complicated because the
atmosphere cannot be defined as only one logical volume. As mentioned above, Geant4 does not allow the
creation of logical volumes with a variation of density and/or composition as a function of the location
within this volume. This is why the atmosphere in the CosmicTransmutation model is made of several
layers with the composition and the density corresponding to the elevation. In this case, effects due to
double counting must corrected.

VII.6.2 Radioactive nuclei

As already mentioned, the CosmicTransmutation model calculates the direct production of cosmogenic
nuclides in meteoroids, planetary surfaces, and planetary atmospheres. However, the indirect production,
i.e., the final outcome after the full radioactive decay, is not treated. For most of the cosmogenic nuclides,
the indirect production is extremely important. The corresponding corrections can easily be applied a
posteriori.

VII.6.3 Funnel effect

The funnel effect has been introduced in order to consider the focussing or the dispersion of trajectories
in the magnetic fields. However, the algorithm developed in the CosmicTransmutation model is by far not
perfect. One example is the aforementioned binning bias, which can be seen in Figure VII.3 and which
has been manually minimised by tuning the binning, while keeping a reasonable computational time.

The approach of the funnel effect, which is described in this chapter, is entirely new in the field of
cosmogenic nuclide studies. It is worth emphasising that the principle of the approach has been validated
but the algorithm is not. It is important to consider the deflection of cosmic rays in the planet’s magnetic
fields. The evaluation of the funnel effect in the CosmicTransmutation model showed various effects on
the irradiation spectra and, by extension, on the production rate of cosmogenic nuclides. However, the
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method used to calculate this deflection has not been controlled rigorously in the course of this thesis.
Therefore, any conclusions based on the funnel effect should be considered carefully.

The algorithm in the CosmicTransmutation model computes the probability density for a cosmic ray
to follow trajectories in the magnetic field. This probability density arises from a comparison between a
phase space at the top of the atmosphere with the corresponding phase space outside the magnetosphere.
However, the computational time needed for a proper evaluation of this entire funnel effect was unreason-
ably long. In the current version, I decided to compare a predefined phase space outside the magnetosphere
to the corresponding phase space at the top of the atmosphere. Starting with a predefined phase space
makes the computational time reasonable. However, the method is more sensible to the dispersion of the
trajectories than to the focusing. The algorithm I developed for the CosmicTransmutation model has been
tested with a predefined phase space at the top of the atmosphere instead of outside the magnetosphere.
This alternative algorithm was efficient for the measurement of the focusing of trajectories but it was less
efficient in measuring the dispersion. Comparisons between the two methods showed significant differences
near the cut-off threshold but a convergence of the two models with increasing energy. Therefore, the
irradiation spectra obtained using the actual algorithm (with a predefined phase space at the top of the
magnetosphere) are likely slightly underestimated.

VII.6.4 Stable bias

One of the main strength by using only the model to calculate production of cosmogenic nuclides
comes from the “stable bias” of models like INCL. It is obvious that simulations are not perfect. An
infinite statistics does not mean a model converges to the true observables. This difference between the
true value of an observable and the value estimated by the model with a good statistic is called the bias of
the model. A recent study of the INCL biases [127] showed that they are very “stable”: if an observable
is overestimated in a given configuration, the same observable will also similarly be overestimated in
another configuration, if it is close to the first one. Moreover, close observables (e.g., the production rates
of 40K and 41K) will also present similar biases. Therefore, when we are interested in cosmogenic nuclide
ratios, such biases usually vanish. Consequently, it is preferable to use full theoretical approaches in such
situations instead of mixing theoretical and experimental approaches, even if the last ones are sometimes
more reliable.

VII.6.5 Exposure time and exposed surface

One of the most important steps during the analysis of theoretical as well as experimental data is
the normalisation. In the output of the CosmicTransmutation model, the observables are the production
rates of cosmogenic nuclides, which are expressed in kg−1s−1 in SI units, and the particle fluxes, which
can be expressed in m−2s−1 or in related units (e.g., m−2s−1sr−1 or m−2s−1(MeV/Nucleon)−1). In
order to simplify the analysis of the results, the irradiation spectrum is automatically integrated by the
CosmicTransmutation model taking into account the number of events and the exposed surface. Thus,
the exposure time is determined and provided in the output files. This exposure time can be used for the
normalisation of the observables. The exposed surface of the target is also provided in the output files. The
is particularly useful in the case of a general ellipsoid, since no analytical formula exists for the calculation
of the surface. In such a case, the surface of the target determined by the CosmicTransmutation model
must be used for the normalisation.

VII.6.6 Unidirectional irradiation

For a spherical meteoroid the irradiation algorithm considers symmetries to make the simulation and
the analysis simpler. The relevant parameters to define a collision are the impact parameter and the
characteristics of the cosmic rays. Therefore, the direction and the impact location of the cosmic ray can
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be modified if the impact parameter is conserved. In the CosmicTransmutation model, the choice has
been made to have an unidirectional irradiation flux along the positive z axis direction. This constraint
can be used to easily determine various observables, for example if a particle has been reflected.
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Chapter VIII

Cosmogenic nuclides production

Similarly to the discussion in chapter VI, where we presented the results at the INCL model, this
chapter summarises the results of the CosmicTransmutation model.

Comparisons between a model and experimental data require a perfect control of the initial state
of the studied systems and of the processes relevant for these experiments. In the case of cosmic ray
irradiation, the irradiation spectrum, the exposure time, as well as the initial characteristics of the target
must all be reproduced in a good experimental set-up. However, the main difficulty in astrophysics is that
most of the studied observables and relevant parameters cannot be reproduced and/or fully controlled in
the laboratories. For example, we are not able to produce a beam with the characteristics of the cosmic
rays. The few attempts to reproduce the effects of cosmic ray irradiation in the laboratory often used
mono-energetic proton beams, which required inter- and extrapolations and the experiments are not fully
representative of the real conditions in space. The experimental data coming from real meteorites are
also challenging; several assumptions are necessary to interpret the measured data. For example, the
outer layer of a meteoroid usually gets ablated while the object is travelling through the atmosphere.
Furthermore, some meteoroids break-up during atmospheric entry. Therefore, the shape and the size of
the initial meteoroid is not known and must somehow be reconstructed either from measurement alone
or from a combination of measured data and model predictions. All these problems and interferences
make comparisons of the results obtained using the CosmicTransmutation model with experimental data
extremely complex and debatable. Therefore, the best solution for the validation of the model is a
comparison with other models, whenever possible. In addition, a priori knowledge can be also used for a
rough estimate of the quality of the results.

In this chapter, comparisons with previous theoretical calculations will be discussed and the results
of the CosmicTransmutation model will be presented. This analysis requires to always remember biases
discussed in sect. VII.6.

VIII.1 Meteoroids

The core of this thesis is the study of cosmogenic nuclide production in, first, meteoroids and, second,
planetary surfaces and planetary atmospheres. In this section, the results of the CosmicTransmutation
model are compared to previous calculations [124] obtained using the LAHET code [23]. For the compar-
isons I consider differential particle fluxes for protons and neutrons and their dependence on the chemical
composition of the meteoroid and the size of the irradiated object.

Figure VIII.1 shows the simulated neutron fluxes at the surface of two C-chondrites of radius 10 cm
and 50 cm calculated using either the CosmicTransmutation model or the LAHET code. While the shapes
obtained with the two models are very similar, the fluxes calculated using the CosmicTransmutation code
are for both cases 2 times lower than the fluxes calculated using LAHET. The most likely explanation
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Figure VIII.1: Neutron fluxes at the surface (depth = 0 to 1 cm) of C-chondrites with pre-atmospheric
radii of 10 and 50 cm.

for this discrepancy is in the normalisation of the primary GCR spectrum. The normalisation of the
results requires to integrate the cosmic ray spectrum, which is usually expressed in [particle m−2 s−1 sr−1

(MeV/nucleon)−1]. As we already discussed before, the integration over the solid angle must be done over
2π, as opposed to 4π as it is very often wrongly done. This is because the irradiation comes only from
half of the phase space, the other side is hidden by the irradiated object itself. If this is not taken into
account, all the results, i.e., particle spectra and production rates, are increased by a factor of 2.

Ignoring the factor 2 of difference likely caused by the normalisation of the primary GCR spectrum, the
neutron fluxes calculated for the surface of a 10 cm C-chondrite by using either the CosmicTransmutation
or the LAHET model correspond very well for neutrons with kinetic energies ranging from 10−7 to
1 MeV. For lower energies, the flux obtained using the CosmicTransmutation code is consistently higher
with respect to the flux calculated using LAHET. However, this difference is not significant for the total
neutron production cross sections considering the integral of the total neutron flux in this energy range.
Considering the bumps predicted by each of the models at low energy, the finding is the same as for the
10 cm C-chondrite, i.e., the neutron flux predicted using CosmicTransmutation is higher than the flux
predicted using LAHET but once again is not significant. If we consider the factor of 2 difference likely
caused by the normalisation, the LAHET flux is still 1.5 times higher than the CosmicTransmutation flux
in the energy range 10−7 to 1 MeV. This energy range corresponds to neutron capture reactions, which
are very important for some cosmogenic nuclides production studies.

Figure VIII.2 is the same as Figure VIII.1 but here for protons and not for neutrons. In addition, the
proton flux used to irradiate the meteoroid is plotted. The proton flux predicted by the CosmicTrans-
mutation model can be divided into four energy ranges corresponding to as many physical phenomena.
First, the protons with energies above 4 GeV correspond to the original primary cosmic ray flux. For the
meteoroid with a radius of 10 cm, this flux is 60% higher than the primary GCR spectrum. This is due to
the high energetic particle from the other side of the meteoroid and passing through it with only “light”
elastic collisions. For the 50 cm C-chondrite, on the other hand, the flux at the surface of the meteoroid is

88



VIII.1. METEOROIDS

Figure VIII.2: Proton flux at the surface (depth = 0-1 cm) of C-chondrites with pre-atmospheric radii
of 10 and 50 cm.

almost identical to the primary flux, which is expected because essentially no particle can come from the
other side, i.e., passing the object without interaction. Second, in the energy range 100 MeV to 4 GeV,
additional protons appear, which are mainly produced in the intra-nuclear phase of spallation reactions,
either induced by primary galactic cosmic ray particles or by secondary particles. Third, the energy range
1 to 100 MeV is dominated by protons that are produced in the second phase of the spallation reaction;
the de-excitation phase (see chapter III). Here, the proton flux is higher for the larger meteoroid than
for the smaller meteoroids because secondary reactions are more numerous in larger meteoroids than in
smaller ones. Finally, the last part of the flux with energies below 1 MeV corresponds to secondary protons
that have been slowed down through elastic collisions and/or bremsstrahlung. It is worth emphasising
that protons with energies below a few MeV are not relevant for the study of cosmogenic nuclides because
they can neither induce spallation reactions nor can they be captured by a nucleus.

The first comparison between the proton fluxes calculated using either CosmicTransmutation or LA-
HET indicates the same factor 2 difference as already discussed for the neutrons (see above). By dividing
the LAHET flux by a factor of 2, the total flux of protons, i.e., the integral of the spectra, match perfectly
between the two models. In addition the spectra calculated using LAHET agrees with the primary galac-
tic cosmic ray flux for energies above 4 GeV only if the LAHET predictions are divided by a factor of 2.
This reinforces the hypothesis that there is a normalisation problem with the LAHET results. However,
the major differences between both models are for protons with energies below 100 MeV. Protons below
1 MeV were not tracked in this version of the LAHET model; but the main difference is in the energy
range 1 to 100 MeV where the flux calculated by LAHET is orders of magnitude lower than flux calculated
using the CosmicTransmutation model. This is likely due to the de-excitation in LAHET, which seems
to produce either no or only very few protons.

The results of the LAHET model have previously been used extensively for the study of cosmogenic
nuclides. All tests showed a rather good agreement between the experimental data and the model pre-
diction taking into account the uncertainties, which are often significant The similarities between the
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Figure VIII.3: Comparison of the neutron fluxes for different types of meteoroid and at different depth.

CosmicTransmutation and the LAHET model and the fact that the observed discrepancies can easily be
explained and are not expected to produce major differences for the production of cosmogenic nuclides
indirectly validate the CosmicTransmutation model. For a more profound validation of the model, the
predictions of cosmogenic nuclide should be tested against experimental data. However, this is outside
the scope of my thesis.

After having at least indirectly validated the model, it is interesting to study the differences of the
fluxes calculated for the three major types of meteoroids and for different depths within the meteoroids.
Figure VIII.3 depicts the neutron fluxes for C-chondrites, L-chondrites, and iron meteoroids, all with a
radius of 50 cm. The fluxes are given for the surface (depth 0 to 1 cm) and for a depth between 9 and
10 cm below the surface.

For energies above 10 MeV, the neutron fluxes at the surface are very similar for the different meteoroid
types. The differences of the fluxes between the surface layer and the deeper layer thereby depend on
the chemical composition of the irradiated object. In general, the denser the material, the faster is the
development of the spallation cascade, which results in an increased flux close to the surface. In the case of
iron meteoroid, which is made of 95% iron and 5% nickel in the simulation, the thermal neutrons are easily
captured because of the high capture cross sections (2.5 and 4.5 barns respectively [128]). This explains
why no neutron is observed below 0.1 eV. The differences between the neutron fluxes in the energy range
1 eV-10 MeV are explained by the combination of the aforementioned statements at the exception of the
bump between 100 keV and 1 MeV for the iron meteoroid. This bump is due to the presence of heavy
elements like iron and nickel. The coulomb barrier of such elements induces a higher emission of neutrons
during the deexcitation phase of the spallation than for light elements because protons cannot easily be
emitted. In comparison, the C and L-chondrites contain only 6% and 11% of heavy elements (Z > 18)
respectively, which explains why the bump is not observed for them.
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VIII.2 Planets

The objective of this section is not necessarily to validate the model and to analyse the production
of cosmogenic nuclides in atmospheres having different configurations but to analyse the impact of these
configurations on the production of cosmogenic nuclides. In a later step, this analysis will be useful to
study the propagation of uncertainties in the model and therefore to estimate systematic errors.

Systematic errors are often neglected in simulation models because the more complex a model is the
more difficult it is to estimate the systematic errors. However, due to the crucial need of high precision
in state-of-the-art sciences, and notably in astrophysics, there is an ever demanding interest in systematic
errors of the used models. Studies trying to estimate systematic errors have become more and more
common. In the context of this thesis, one can cite the works carried out on INCL [127] and on Geant4
[129]. In such approaches, several variations of the relevant parameters as a function of their respective
uncertainties are tested. Then, the variations in the final outputs are compared to the variations of the
chosen input. Thus, the sensitivity of the final result on each independent parameter as well as correlations
can be studied.

For studies of cosmogenic nuclide production in planetary atmospheres, the most relevant information,
but unfortunately with significant uncertainties, is the irradiation spectrum at the top of the atmosphere.
Currently, the cosmic ray spectrum is likely the biggest source of systematic uncertainties for such type of
model calculations. The cosmic ray spectrum outside the magnetosphere used in the CosmicTransmutation
model is fully defined by using the solar modulation parameter M (see eq. VII.1 and eq. VII.3). From
this, in the CosmicTransmutation model the irradiation spectrum at the top of the atmosphere is obtained
considering the effects induced by the magnetic field applying the cut-off algorithm (with or without the
funnel effect). In this section, the impact of the funnel effect, the M parameter, and the magnetic field
on nuclide production is studied.

In order to compare the results of the CosmicTransmutation model to results coming from other
models, the Earth’s geometry has been used. The standard input corresponds to a planet with a radius of
6378 km and an atmosphere 70 km thick (the top of the atmosphere is defined as the altitude where the
density is one thousandth to that of the ground level). The standard magnetosphere is defined as a dipole
centred in the core of the Earth and that is aligned to the rotational axis of the planet. The magnetic
field intensity is 30.2 µT at the top of the atmosphere and at latitude zero. The standard M parameter
used is 550 MeV, which is the best average over the last millions years at 1 AU.

It is important to mention that the error bars given in this section are purely statistical errors. They
do not take into account the sampling of the irradiation flux, which is limited due to time constraints.
The uncertainties due to sampling are estimated to be less than 10%.

VIII.2.1 The funnel effect

The first parameter to be tested is whether considering the funnel effect in the cut-off algorithm or
not has any significant influence on the production of cosmogenic nuclides. Figure VIII.4 shows the 14C
production rate in the atmosphere as a function of latitude calculated by considering the funnel effect
(red line) and calculated without considering the funnel effect (blue line).

The results of the model calculations indicate that the funnel effect indeed has a significant influence
on the 14C production rates (see Figure VIII.4). For the latitudes lower than 30◦, the production is
decreased by approximatively 30%, whereas the rate is increased by a factor 3 when the latitude is higher
than 50◦. These observations are consistent with the fact that the magnetic field is orthogonal to the
normal for the lowest latitudes, which leads to strong deflections, but is parallel to the normal for the
highest latitudes, which results in a focusing of particles.

The integration of the 14C productions over all latitudes shows a total increase of around 90% when
considering the funnel effect compared to the case without funnel effect. Very similar effects have been
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Figure VIII.4: 14C production rate in the atmosphere as a function of latitude. Red: calculated by
considering the funnel effect. Blue: without considering the funnel effect.

calculated for other cosmogenic nuclides. This clearly demonstrates that the funnel effect is crucial for
the study of cosmogenic nuclide production in the atmosphere.

VIII.2.2 The solar modulation parameter

One of the major parameter influencing cosmogenic nuclide production is caused by the variation of
the solar activity. Basically, during phases of high solar activity the strength of the solar magnetic field
increases. The solar magnetosphere acts like a magnetosphere of a planet (see sect. VII.4) with a rejection
of low energetic particles. The so-called solar modulation parameter M varies between 300 MeV (low solar
activity, high particle flux) and 1100 MeV (high activity, low particle flux) [119–122]. The best average
for the solar modulation parameter over the last few million years is M = 550 MeV at 1 au [123, 124].

Figure VIII.5 shows the 14C production rate in the atmosphere calculated using the CosmicTransmu-
tation model as a function of latitude for different solar modulation parameters; M = 400, 550 (standard),
and 1000 MeV. In comparison, Figure VIII.6 shows the production rate calculated by Masarik and Beer
[130] using a modified version of the LAHET code. A major difference between the two models is that
in the model by Masarik and Beer only protons are considered as primary galactic cosmic ray parti-
cles, whereas primary galactic cosmic ray alpha particles are also considered in the CosmicTransmutation
model.

A comparison between the model by Masarik and Beer and the CosmicTransmutation model without
funnel effect indicates that the two models predict very similar production rates. For latitudes higher
than 45◦, the shapes are similar (the slight oscillation seen in the results of the CosmicTransmutation
model are likely due to sampling of the irradiation flux, there is no physical meaning), but the production
rate given by the CosmicTransmutation model is 30% higher than the data given by Masarik and Beer.
This difference can be explained by the fact that we also consider alpha particles, which represent 10%
of the total flux but have a larger impact per incoming particle. For latitudes below 30◦, the model by
Masarik and Beer predicts an almost constant 14C production rate of about 1 atom cm−2 s−1, whereas
the CosmicTransmutation model predicts a continuous decrease down to 0.3 atom cm−2 s−1. Currently, I
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Figure VIII.5: 14C production rate in atmosphere as a function of latitude for different solar modulation
parameters and with or without the consideration the funnel effect.

Figure VIII.6: 14C production rate in atmosphere as a function of latitude for different solar modulation
parameters as calculated by Masarik and Beer [130].

have no explanation for this discrepancy. The differences between the irradiation flux calculated and used
by the CosmicTransmutation model between 0◦ latitude and 30◦ latitude indicate a significantly higher
primary flux at the top of the atmosphere at 30◦, which naturally ends in higher production rates (as seen
in Figure VIII.5 but not in Figure VIII.6, see also Appendix G). The 14C production rate is increased by
40% with the CosmicTransmutation model without the funnel effect with respect to the model by Masarik
and Beer at high latitude. This is easily explained with the consideration of α particles in the primary
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Figure VIII.7: 14C production rate in the atmosphere as a function of latitude, for different magnetic
field values and with or without considering the funnel effect.

galactic cosmic ray flux.
A comparison between the simulations considering the funnel effect with those not considering fun-

nelling indicate some very interesting results. The increase in the production rates at the highest latitudes
is more pronounced for a low solar modulation parameter (400 MeV) than for higher solar modulation
parameters. For this special example, the production rate calculated using M = 400 and considering
funnelling is a factor of 2.8 higher than for the case without funnelling. At higher solar modulation
parameters, the difference is a factor of 2.4. On the other hand, the variations in the calculated pro-
duction rates obtained with and without considering the funnel effect is almost independent on the solar
modulation parameter.

VIII.2.3 The magnetic field

Considering the relatively simple possible magnetic field configurations implemented in the Cosmic-
Transmutation model, only the impact of two parameters is studied here. First, the intensity of the
magnetic field (B0) and the shift of the magnetic field relative to the geometric center of the planet.

Figure VIII.7 shows the 14C production rate as a function of latitudes for different intensities of the
solar magnetic field. The tests were performed with magnetic field values of 20, 30.2 (standard value),
and 40 µT at the top of the atmosphere at 0◦.

The results for the 14C production rates without funnel effect shown in Figure VIII.7 indicate that
the changes in the magnetic field intensity has no relevant effect for latitudes larger than about 60◦. In
contrast, for latitudes lower than 50◦, there is a significant dependence of the modelled 14C production
rates on the strength of the magnetic field. To be more quantitative, for a B0 value of 20 µT the production
rates is on average 30% lower than the production rate calculated by assuming B0 = 30.2 µT . On the
other hand, by assuming B0 = 40 µT we calculate 14C production rates about 20% lower than the ones
calculated using B0 = 30.2 µT .

Interestingly, the funnel effect significantly changes the results, i.e., the dependence of the production
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Figure VIII.8: 14C production rate in the atmosphere as a function of latitude, for different magnetic
field locations and with or without considering the funnel effect.

rates on the magnetic field values. While the 14C production rate for latitudes lower than 50◦ is lowered
with increasing magnetic field like without the funnel effect, at high latitudes the 14C production rate is
higher for high magnetic field values.

This suggests that the higher intensity of the magnetic field increases the focusing of cosmic rays in the
polar regions. The differences in the 14C production rates due to the variations in the magnetic field values
are significant, i.e., 15% higher for B0 = 20 µT than for B0 = 30.2 µT or 5% lower for B0 = 40 µT , but
they are smaller than the effects introduced by the funnel effect. This is due to the increased focusing at
high latitudes, which is in competition with the higher rejection of incoming cosmic rays for low latitudes.

The last studied parameter is the shift of the magnetic field with respect to the center of the planet.
In Figure VIII.8 I compare the results obtained using the standard set-up to results from a calculation
done by assuming a magnetic field offset by 10% of the planet radius in direction of longitude-latitude
0◦ - 0◦. No significant differences are observable at low (< 30◦) and high (> 60◦) latitudes. However, at
intermediate latitudes the 14C production rate is slightly increased relative to the standard model.

VIII.2.4 Isotope ratio

I also tested the influence of the funnel effect on other observables than the 14C production rate. Here
I exemplarily focus on some isotope rates, which are very often crucial for dating systems. For example, in
our group two main dating techniques based on isotope ratios are commonly in use: the ratio 40K/K for
iron meteorites and the 10Be/14C ratio for stony meteorites. Here the argument is as follows, the funnel
effect does not only modify the overall irradiation flux but it also gives preference to specific rigidities and
thus, it can also increase or decrease specific production rates depending on the relevant rigidity.

Figures VIII.9 and VIII.10 show 10Be/14C and 7Be/3H production rate ratios as a function of latitude,
respectively. For the isotope ratio 10Be/14C no significant modification of the ratio as a function of latitude
can be seen. For the ratio 7Be/3H there is a dependence on latitude, which is due to the fact that the
production processes of the two isotopes are different. For example, 3H can easily be produced as a cluster
during spallation reactions. Interestingly, for both isotope ratios there is no dependence on whether or
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Figure VIII.9: 10Be/14C production ratio in the atmosphere as a function of latitude calculated with
(blue dots) and without (red dots) considering the funnel effect.

Figure VIII.10: 7Be/3H production ratio in the atmosphere as a function of latitude calculated with
(blue dots) and without (red dots) considering the funnel effect.

not the funnel effect is considered. Due to computational time, not all isotopes typically used in dating
techniques could be studied. In particular, isotopes with A > 20 produced in spallation reactions on
argon, which represent less than 1% of the entire atmosphere, are left for future studies.
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Conclusion

Cosmogenic nuclides are a wonderful tool to study the dynamics of small bodies in the solar system
and of the temporal history of galactic cosmic rays themself. More than 80 years after their discovery,
cosmogenic nuclides are still of major interest for many scientific applications. This research field is in
constant progress and new applications appear regularly. However, using the production of cosmogenic
nuclides as a tool requires a profound understanding of astrophysics, nuclear physics, and high energy
physics. This interdisciplinarity is a real challenge for all scientists working in this field.

The first part of my PhD has been the successful implementation of strange particles into the INCL
model, which is used to simulate nuclear spallation reactions. Doing so, I provided a comprehensive and
consistent description of all relevant elementary reactions involving strangeness production, scattering, and
absorption for cases when a light particle hits a nucleus. Here I focused on energies below 15 GeV in order
to fit the energy range relevant for cosmogenic nuclide production. This work was motivated by the need
to improve the high energy parts (beyond 2-3 GeV) of the models usually used for calculating cosmogenic
nuclide production. In addition, this study provided also the opportunity for the INCL collaboration
to contribute to hypernucleus studies. My work included the parametrisation of reaction cross sections,
charge repartition, and phase space generation. These parametrisations has been based on experimental
measurements, whenever available, in order to be as model independent as possible. Unfortunately, less
than 20% of the information needed for the reaction cross sections can be obtained directly in this way.
Therefore hypotheses and models were used to complete the parametrisation. The isospin symmetry
allowed to parametrise a large number of cross sections by linking known and unknown cross sections.
This procedure has been applied in two different ways, either by taking into account only the initial and
final states (with the so-called Bystricky procedure) or by considering the isospin symmetry at each vertex
of the Feynman diagrams used in a hadron exchange model. Even after this extended procedure, still
roughly one third of the cross sections needed additional information for a full characterisation. In a few
cases where experimental data are rare, it was necessary to use similarities, e.g., in the cross section ratios
when one pion is added. Finally, two reaction types are entirely based on modelling, i.e., without using
any experimental data at all: reactions with numerous particles in the final state (with increasing energy)
and ∆-induced reactions.

For quality control, I compared the developed parametrisation for the cross sections to experimen-
tal data as well as to parametrisations used in other models. My results reproduce reasonably well the
measurements, but assessing the quality of my cross section parametrisations for reactions and in energy
ranges where no experimental data exist is still a problem. Comparing the parametrisations done by me to
parametrisation used in other models indicates large differences for reactions and/or energy range where
no experimental data exist. A prominent example are the ∆-induced reactions for which no measure-
ments exist and my parametrisation relies on a theoretical model stating that those channels significantly
contribute to kaon and hyperon production [63].

This set of newly parametrised cross sections, handling strangeness, has been implemented in the INCL
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code, which resulted in a new major version: INCL++6. This version was validated. For this purpose,
calculations of kaon and hyperon production have been performed and the results have been compared to
experimental data. The study of hypernuclei production has been performed by one of my collaborator,
Jose-Luis Rodríguez-Sánchez, and resulted in a paper to be published.

For the validation of INCL++6, different projectiles (proton, deuteron, and pion) were tested at
various kinetic energies: from 1.6 to 13.7 GeV for protons, 1.02 GeV for pions, and 2.1 GeV/nucleon
for deuterons. Various targets ranging from 9Be to 208Pb were considered and a wide range of angles
was covered. For most of the studied cases there is a good agreement between experimental data and
INCL++6 predictions. Notably, the dependence of the experimental data on either energy or target
mass number is often well reproduced, which demonstrates that the physics of strangeness has been
sucessfully implemented. However, slight discrepancies still exist. In some cases experimental data are
overestimated. Different explanations were proposed in oder to understand these discrepancies but the
lack of experimental data prevents definitive conclusions. The dominant problem is likely in the ∆-
induced reactions. Implementing ∆-induced reactions significantly improved the description of strangeness
production. However, the cross sections used are probably overestimated at high energies, which is
consistent with the conclusions in ref. [63].

During validating the INCL results, and more generally with the simulation of strangeness produc-
tion, the problem of statistics and computational time arose. This problem has been solved with the
implementation of a variance reduction scheme in INCL. The developed method increases the strangeness
production artificially by respecting some mathematical constraints, which results in an increased statisti-
cal relevance for observables linked to the physics of strangeness, and therefore, to a significant reduction
of the required calculation time. This variance reduction scheme does not only solve the problem of com-
putation time associated to strangeness production but can also be adapted to simulations of any rare
process (e.g., the production of backward η meson production). The gain in computational time depends
on the process studied but, to simplify, the rarer the process the more efficient is the developed scheme.
This enables the possibility to simulate extremely rare cases like neutrino-nucleus interactions, which have
interaction cross sections of the order of 10−16 mb for the energies considered.

In addition, INCL++6 has been implemented into the transport code Geant4 [10, 59]. Thus, it can
be used in the simulation of macroscopic systems. This also permits other collaborations to have a full
access to the latest version of the model. They can use it for the design of new experiments dedicated to
the study of strange particles and/or hypernuclei in the near future, such as for the HypHI [60], Panda
[61], and CBM [62] experiments at the FAIR facility.

The second part of my PhD started with the development of the CosmicTransmutation model. This
model has been created from scratch. Its objective is to calculate the differential fluxes of light particles,
i.e., protons, neutrons, alphas, together with the production of cosmogenic nuclides in objects exposed to
cosmic rays. The programming was challenging for three reasons. First, the model has been created in
such a way it can easily be used by other members of the group. Therefore, major efforts have been made
to create a user friendly program, which does not require a specific knowledge of the physics involved. The
second challenge was the interdisciplinarity of the research area. The development of the model required
a profound knowledge in nuclear physics, high energy physics, and astrophysics. Many of the aspects
presented in this thesis were new for me when I started this PhD. The last challenge was the creativity
needed to solve the problems faced. In comparison, the work done for the implementation of strange
particles in INCL was much more guided. For example, the steps were well defined and the methods used
to determine the missing cross sections were simple adaptations or extensions of already existing methods.
The most original work carried out in the development of INCL is the implementation of the variance
reduction scheme. In contrast, for the development of the CosmicTransmutation model, no such guideline
existed. Most of the models developed in the same field are not open source and/or focus on very specific
targets. Luckily I had access to the PlanetoCosmic model [126], which guided me for the creation of an
algorithm for planet irradiation (namely, the cut-off algorithm). However, I had to develop many other
algorithms in order to produce the observables required, anticipate future needs, simulate specific physical
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process, or simply optimise the computational time. The large range of possible applications leaves some
space for future improvements of the CosmicTransmutation model.

The validation of the CosmicTransmutation model was also more complex than the validation of
INCL++6. Direct comparisons with experimental data were impossible or irrelevant. Therefore, the
CosmicTransmutation model has been compared to other models. The comparisons showed similarities
but also differencies, which have been studied. The results of the CosmicTransmutation model applied to
meteoroids are compatible with previous results obtained using the LAHET model [23]. However, there
is a systematic difference of a factor of 2, which can be explained by differences in the normalisation.
Some of the differences observed between the model are due to the additional features added to the
CosmicTransmutation model. In the case of cosmogenic nuclide production in atmospheres, the impact
of the input parameters on the outcome of the simulation has been investigated in order to study the
sensitivity of the results on the initial conditions. This in turn allows to estimate systematic errors of the
CosmicTransmutation model. Most of the studied parameters have a significant impact on the production
of cosmogenic nuclides in planetary atmospheres. A comparison of the new results with predictions from
the model by Masarik and Beer shows a good agreement between both approaches. The problem of the
funnel effect and its major impact has been analysed in some detail. In addition, the significant dependence
of the results on the magnetic field characteristics shows that a reliable description of the magnetic field
is crucial to analyse cosmogenic nuclide production. The variability of the magnetosphere of the Earth
is mainly caused by the variations of the solar activity, the solar magnetosphere, and the orientation of
the Earth’s magnetic field relative to the solar magnetic field. All such variations can result in significant
modifications of the incoming cosmic ray particle spectrum and therefore of the production of cosmogenic
nuclides. The consideration of the funnel effect raises a problem linked to cosmic ray flux measurements.
To be more precise, galactic cosmic ray flux measurements inside the Earth’s magnetosphere can be biased
or even wrong if the funnel effect is not taken into account. For example, the BESS-Polar collaboration
[4, 5] measured the cosmic-ray spectrum over Antarctica where the cut-off algorithm predicts a high
focussing of cosmic ray particles.

Based on the results of the CosmicTransmutation model it is hard to conclude if and how all the
different input parameters affect cosmogenic nuclide production in the atmosphere because the model
used for the magnetosphere is relatively simple. However, the model clearly indicates that there is a need
to rethink the production of cosmogenic nuclides in atmospheres with a better consideration of magnetic
field effects.

To conclude, the development of the nuclear reaction codes has been carried out with the goal to
estimate cosmogenic nuclide production in meteoroids and planetary atmospheres. This goal has been
successfully finished. However, both the development of the INCL model and the CosmicTransmutation
model indicates that the field of application for both models is much wider than cosmogenic nuclide
production alone. The INCL model was already used in a wide range of applications and the modifications I
applied improved the quality of the model. In addition, my work also opened new possibilities to study the
physics of strangeness and other rare processes like hypernuclei and the far subthreshold kaon production.
The CosmicTransmutation model has been designed from scratch to study cosmogenic nuclides production
in meteoroids and atmospheres. The comparisons with other theoretical calculations showed that the
model is able to produce consistent results, which can be used for the analysis of experimental data.
However, the developed model can also be used to study the propagation of cosmic rays in magnetospheres.
Finally, the work carried out in this thesis represents a new step forward for studies of nuclear spallation,
cosmic rays, and cosmogenic nuclides.
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Appendix A

Cross sections parametrisations

A.1 Elastic

A.1.1 NY → NY


σ = 200 [mb] if 0 <Plab <145MeV/c

σ = 869 exp(−Plab[MeV/c]/100) [mb] if 145MeV/c <Plab <425MeV/c

σ = 12.8 exp(−6.2e−5Plab[MeV/c]) [mb] if 425MeV/c <Plab <20GeV/c
σ = 0 if 20GeV/c <Plab

(A.1)

A.1.2 NK → NK



σ = 12 [mb] if 0 <Plab <935MeV/c

σ = 17.4− 3 exp(6.3e−4Plab[MeV/c]) [mb] if 935MeV/c <Plab <2080MeV/c

σ = 832Plab[MeV/c]−0.64 [mb] if 2080MeV/c <Plab <5.5GeV/c
σ = 3.36 [mb] if 5.5GeV/c <Plab <20GeV/c
σ = 0 if 20GeV/c <Plab

(A.2)

A.1.3 NK → NK



σ = 200 [mb] if 0 <Plab <135MeV/c

σ = 56368Plab[MeV/c]−1.15 + 30 exp −(Plab[MeV/c]− 3952)
500 [mb] if 135MeV/c <Plab <625MeV/c

σ = 90.19Plab[MeV/c]−0.15 + 7 exp −(Plab[MeV/c]− 790)2

3000
+ 20 exp(−(Plab[MeV/c]− 1030)2/19000) [mb] if 625MeV/c <Plab <20GeV/c
+ 4.4 exp(−(Plab[MeV/c]− 1640)2/42000)

σ = 0 if 20GeV/c <Plab
(A.3)

107



APPENDIX A. CROSS SECTIONS PARAMETRISATIONS

A.2 Inelastic

A.2.1 NN → NΛK

σ(pp→ pΛK+) = 1.11875(Plab[GeV/c]− Pth)1.0951

(Plab[GeV/c] + Pth)2.0958 [mb] if Pthreshold <Plab <30GeV/c

σ(pp→ pΛK+) = 0 else

(A.4)

A.2.2 NN → NΣK

{
σ(pp→ nΣ+K+) = 0 [mb] if 0 <Plab <2.57GeV/c
σ(pp→ nΣ+K+) = 6.38(Plab[GeV/c]− 2.57)2.1/Plab[GeV/c]4.162 [mb] else

(A.5)

A.2.3 NN → NNKK


σ(pp→ ppK+K−) = 0 [mb] if 0 <

√
s <2.872GeV

σ(pp→ ppK+K−) = 4/70
(

1− 2.872√
s[GeV/c]

)3 ( 2.872√
s[GeV/c]

)0.8
[mb] else

(A.6)

A.2.4 πN → ΛK



σ(pπ− → ΛK0) = 0 [mb] if 0 < PLab < 0.911GeV/c

σ(pπ− → ΛK0) = 0.3936PLab[GeV/c]−1.357

− 6.052 exp(−(PLab[GeV/c]− 0.7154)2/0.02026)
+ 0.489 exp(−(PLab[GeV/c]− 0.8886)2/0.08378) else

− 0.16 exp(−(PLab[GeV/c]− 0.9684)2/0.001432) [mb]

(A.7)

A.2.5 πN → ΣK


σ(pπ− → Σ−K+) = 0 [mb] if 0 < PLab < 1.035GeV/c

σ(pπ− → Σ−K+) = 4.352(PLab[GeV/c]− 1.035)1.006/PLab[GeV/c]5.375 [mb] else

(A.8)


σ(pπ+ → Σ+K+) = 0 [mb] if 0 < PLab < 1.020GeV/c

σ(pπ+ → Σ+K+) = 11.44(PLab[GeV/c]− 1.02)1.631/PLab[GeV/c]5.052 [mb] else

(A.9)
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A.2. INELASTIC


σ(pπ− → Σ0K0) = 0 [mb] if 0 < PLab < 1.034GeV/c

σ(pπ− → Σ0K0) = 0.3474(PLab[GeV/c]− 1.034)0.07678/PLab[GeV/c]1.627 [mb] else

(A.10)


σ(pπ0 → Σ+K0) = 0 [mb] if 0 < PLab < 1.030GeV/c

σ(pπ− → Σ+K0) = 3.624(PLab[GeV/c]− 1.03)1.4/PLab[GeV/c]5.14 [mb] else

(A.11)

A.2.6 πN → ΛKπ


σ(pπ+ → ΛK+π+) = 0 [mb] if 0 < PLab < 1.142GeV

σ(pπ+ → ΛK+π+) = 146.2(PLab[GeV/c]− 1.142)1.996

(PLab[GeV/c] + 1.142)5.921 [mb] else

(A.12)

A.2.7 πN → ΣKπ


σ(pπ0 → Σ0K+π0) = 0 [mb] if 0 < PLab < 1.29GeV

σ(pπ0 → Σ0K+π0) = 47.5(PLab[GeV/c]− 1.290)3.41

(PLab[GeV/c])7.276 [mb] else

(A.13)

A.2.8 πN → ΛKππ


σ(pπ+ → ΛK+π+π0) = 0 [mb] if 0 < PLab < 1.405GeV

σ(pπ+ → ΛK+π+π0) = 18.77(PLab[GeV/c]− 1.405)4.597

(PLab[GeV/c])6.877 [mb] else

(A.14)

A.2.9 πN → ΣKππ


σ(pπ+ → Σ+K+π+π−) = 0 [mb] if 0 < PLab < 1.563GeV

σ(pπ+ → Σ+K+π+π−) = 137.6(PLab[GeV/c]− 1.563)5.856

(PLab[GeV/c])9.295 [mb] else

(A.15)

A.2.10 πN → NKK

σ(pπ0 → nK+K
0) = 3.367(PLab[GeV/c]− 1.49)2.047

(PLab[GeV/c])3.75 [mb] if 1.49GeV <Plab <30GeV/c

σ(pπ0 → nK+K
0) = 0 else

(A.16)
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A.2.11 NΛ→ NΣ


σ(pΛ→ Σ0p) = 0 if Plab <0.6578GeV

σ(pΛ→ Σ0p) = 8.74(PLab[GeV/c]− 0.6578)0.438

(PLab[GeV/c])2.717 [mb] if 0.6578GeV <Plab
(A.17)

A.2.12 NΣ→ NΛ

{
σ(pΣ0 → pΛ) = 100 [mb] if 0 <Plab <100MeV/c

σ(pΣ0 → pΛ) = 8.23Plab[GeV/c]−1.087 [mb] if 100MeV/c <Plab
(A.18)

A.2.13 NΣ→ NΣ

{
σ(pΣ0 → nΣ+) = 100 [mb] if 0 <Plab <100MeV/c

σ(pΣ0 → nΣ+) = 13.79Plab[GeV/c]−1.181 [mb] else
(A.19)

A.2.14 NK → Λπ



σ(pK− → Λπ0) = 40.24 [mb] if 0 <Plab <86.636MeV/c

σ(pK− → Λπ0) = 0.97Plab[GeV/c]−1.523 [mb] if 200MeV <Plab <500MeV/c

σ(pK− → Λπ0) = 1.23Plab[GeV/c]−1.467

+ 0.872 exp
(
−Plab[GeV/c]− 0.749)2

0.0045

)
if 500MeV <Plab <2GeV/c

+ 2.337 exp
(
−Plab[GeV/c]− 0.95)2

0.017

)

+ 0.476 exp
(
−Plab[GeV/c]− 1.434)2

0.136

)
[mb]

σ(pK− → Λπ0) = 3Plab[GeV/c]−2.57 [mb] if 2GeV <Plab <20GeV/c
σ(pK− → Λπ0) = 0 else

(A.20)
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A.2.15 NK → Σπ



σ(pK− → Σ+π−) = 69 [mb] if 0 < Plab < 100MeV/c

σ(pK− → Σ+π−) = 1.4Plab[GeV/c]−1.7

+ 1.88 exp
(
−Plab[GeV/c]− 0.747)2

0.005

)
else

+ 8 exp
(
−Plab[GeV/c]− 0.4)2

0.002

)

+ 0.8 exp
(
−Plab[GeV/c]− 1.07)2

0.01

)
[mb]

(A.21)

A.2.16 NK → NK

special case (there are a minor discontinuity in the fit function)



σ(pK− → nK
0) = 0 if 0 < Plab < 89.21MeV/c

σ(pK− → nK
0) = 0.4977(Plab[GeV/c]− 0.08921)0.5581

Plab[GeV/c]2.704 [mb] if 89.21MeV/c < Plab < 0.2GeV

σ(pK− → nK
0) = 2Plab[GeV/c]−1.2

+ 6.493 exp
(
−0.5

(
Plab[GeV/c]− 0.3962

0.02

)2)
[mb] if 0.2GeV/c < Plab < 0.73GeV

σ(pK− → nK
0) = 2.3Plab[GeV/c]−0.9

+ 1.1 exp
(
−0.5

(
Plab[GeV/c]− 0.82

0.04

)2)
[mb] if 0.73GeV/c < Plab < 1.38GeV

+ 5 exp
(
−0.5

(
Plab[GeV/c]− 1.04

0.1

)2)
σ(pK− → nK

0) = 2.5Plab[GeV/c]−1.68

+ 0.7 exp
(
−0.5

(
Plab[GeV/c]− 1.6

0.2

)2)
[mb] if 1.38GeV/c < Plab < 30GeV

+ 0.2 exp
(
−0.5

(
Plab[GeV/c]− 2.3

0.2

)2)
σ(pK− → nK

0) = 0 if Plab > 30GeV/c
(A.22)
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σ(nK0 → pK−) = 30 [mb] if 0 < Plab < 100MeV/c

σ(nK0 → pK−) = 2Plab[GeV/c]−1.2

+ 6.493 exp
(
−0.5

(
Plab[GeV/c]− 0.386

0.02

)2)
[mb] if 0.1GeV/c < Plab < 0.73GeV

σ(nK0 → pK−) = 2.3Plab[GeV/c]−0.9

+ 1.1 exp
(
−0.5

(
Plab[GeV/c]− 0.812

0.04

)2)
[mb] if 0.73GeV/c < Plab < 1.38GeV

+ 5 exp
(
−0.5

(
Plab[GeV/c]− 1.032

0.1

)2)
σ(nK0 → pK−) = 2.5Plab[GeV/c]−1.68

+ 0.7 exp
(
−0.5

(
Plab[GeV/c]− 1.592

0.2

)2)
[mb] if 1.38GeV/c < Plab < 30GeV

+ 0.2 exp
(
−0.5

(
Plab[GeV/c]− 2.291

0.2

)2)
σ(nK0 → pK−) = 0 if Plab > 30GeV/c

(A.23)

A.2.17 NK → NKπ


σ(pK0 → pK−π+) = 0 if 0 < Plab < 510MeV/c

σ(pK0 → pK−π+) = 109.8(Plab[GeV/c]− 0.51)6.248

Plab[GeV/c]8.769 else
(A.24)

A.2.18 NK → Σππ



σ(pK− → Σ+π0π−) = 0 [mb] if 0 < Plab < 226MeV/c

σ(pK− → Σ+π0π−) = 85.46(Plab[GeV/c]− 0.226)8.118

(Plab[GeV/c] + 0.226)11.69

+ 0.1451 exp
(
−Plab[GeV/c]− 0.4031)2

0.00115

)
[mb] else

(A.25)
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A.2.19 NK → Λππ



σ(pK− → Λπ+π−) = 6364 Plab[GeV/c]6.07

(Plab[GeV/c] + 1.)10.58

+ 2.158 exp
(
−1

2

(
Plab[GeV/c]− 0.395

.01984

)2)
[mb] if 0 <Plab <970MeV/c

σ(pK− → Λπ+π−) = 46.3 Plab[GeV/c]0.62

(Plab[GeV/c] + 1.)3.565 [mb] if 970MeV/c <Plab <20GeV

σ(pK− → Λπ+π−) = 0 else
(A.26)

A.2.20 NK → NKππ


σ(pK− → pK−π+π−) = 0 if 0 < Plab < 850MeV/c

σ(pK− → pK−π+π−) = 26.8(Plab[GeV/c]− 0.85)4.9

Plab[GeV/c]6.34 else
(A.27)

A.2.21 NK → NK

This is a special case because of the threshold effect:


σ(nK+ → pK0) = 0 if 0 <Plab <63MeV/c

σ(nK+ → pK0) = 12.84(Plab[GeV/c]− 0.063)18.19

(Plab[GeV/c])20.41 [mb] if 63MeV/c <Plab
(A.28)

{
σ(pK0 → nK+) = 12.84(Plab[GeV/c] + 0.063)18.19

(Plab[GeV/c] + 0.126)20.41 [mb] (A.29)

A.2.22 NK → NKπ


σ(pK0 → pK+π−) = 0 if Plab < 530MeV/c

σ(pK0 → pK+π−) = 116.8(Plab[GeV/c]− 0.53)6.874

Plab[GeV/c]10.11 [mb] if 530MeV/c < Plab
(A.30)
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A.2.23 NK → NKππ



σ(pK0 → pK+π0π−) = 0 if Plab <812MeV/c

σ(pK0 → pK+π0π−) = 26.41(Plab[GeV/c]− 0.812)7.138

Plab[GeV/c]5.337 [mb] if 812MeV/c <Plab <1.744GeV/c

σ(pK0 → pK+π0π−) = 1572(Plab[GeV/c]− 0.812)9.069

Plab[GeV/c]12.44 [mb] if 1.744GeV/c <Plab <3.728GeV/c

σ(pK0 → pK+π0π−) = 60.23(Plab[GeV/c]− 0.812)5.084

Plab[GeV/c]6.72 [mb] if 3.728GeV/c <Plab

(A.31)
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Appendix B

Relations extracted from the HEM and
Bystricky procedures.

This appendix summarises the relations obtained from the hadron exchange model (normal style) and
the relation obtain from the Bystricky procedure (in bold) (see subsection IV.4.2 and subsection IV.4.3).

In what follows, N represents a nucleon, ∆ a Delta particle, B a nucleon or a Delta particle, Y a
hyperon, π a pion, K a kaon (excluding K0 and K−), and K an antikaon.

The reliability of the shown equations are discussed in chapter IV. In summary, bold equations
(coming from the Bystricky procedure) are highly reliable. Normal style equations (coming from the
hadron exchange model) often use debatable hypotheses, which can produce surprising results but there
are always consistent with equations in bold.

Reaction type: NK(K,Λ)→ NK(K,Λ)

The reactions NK → NK, NK → NK, and NΛ → NΛ do not have symmetries, except the
trivial ones. They also have threshold effects, therefore the hadron exchange model is not applicable for
these reactions.

Reaction type: NN → NYK

σ(pp→ pΛK+) = σ(nn→ nΛK0)
σ(pn→ pΛK0) = σ(pn→ nΛK+)

4σ(pp→ pΣ+K0) = 4σ(nn→ nΣ−K+) = 8σ(pp→ pΣ0K+) = 8σ(nn→ nΣ0K0)

= σ(pp→ nΣ+K+) = σ(nn→ pΣ−K0) = 8
5σ(pn→ pΣ0K0) = 8

5σ(pn→ nΣ0K+)

= 4σ(pn→ pΣ−K+) = 4σ(pn→ nΣ+K0)

σ(pn→ pΣ−K+) + σ(pp→ nΣ+K+) + σ(pp→ pΣ+K0)
= 2σ(pn→ pΣ0K0) + 2σ(pp→ pΣ0K+)
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PROCEDURES.

Reaction type: NN → NYKπ

Calculation are based on NN → ∆Y K → NYKπ.

4
9σ(pp→ pΛK0π+) = 4

9σ(nn→ nΛK+π−) = 2σ(pp→ pΛK+π0) = 2σ(nn→ nΛK0π0)

= 4σ(pp→ nΛK+π+) = 4σ(nn→ pΛK0π−) = 2σ(pn→ pΛK+π−) = 2σ(pn→ nΛK0π+)
= σ(pn→ pΛK0π0) = σ(pn→ nΛK+π0)

σ(pn→ pΛK+π−) + σ(pp→ nΛK+π+) + σ(pp→ pΛK0π+)
= 2σ(pn→ pΛK0π0) + 2σ(pp→ pΛK+π0)

σ(pn→ pΣ−K+π0) + σ(pp→ nΣ+K+π0) + σ(pp→ pΣ+K0π0)
= σ(pn→ pΣ0K+π−) + σ(pp→ nΣ0K+π+) + σ(pp→ pΣ0K0π+)

σ(pn→ pΣ−K0π+) + σ(pn→ pΣ+K0π−) + σ(pp→ nΣ+K0π+)
+σ(pp→ pΣ−K+π+) + σ(pp→ pΣ+K+π−)

= σ(pn→ pΣ0K+π−) + 2σ(pn→ pΣ0K0π0) + σ(pp→ nΣ0K+π+)
+2σ(pp→ pΣ0K+π0) + σ(pp→ pΣ0K0π+)

σ(pp→ pΣ+K0π0) = σ(nn→ nΣ−K+π0) = 2σ(pp→ nΣ+K0π+) = 2σ(nn→ pΣ−K+π−)
= σ(pp→ nΣ+K+π0) = σ(nn→ pΣ−K0π0) = 2σ(pp→ pΣ+K+π−) = 2σ(nn→ nΣ−K0π+)
= σ(pp→ pΣ0K+π0) = σ(nn→ nΣ0K0π0) = 2σ(pp→ nΣ0K+π+) = 2σ(nn→ pΣ0K0π−)

= 4
9σ(pp→ pΣ0K0π+) = 4

9σ(nn→ nΣ0K+π−) = 4
9σ(pp→ pΣ−K+π+) = 4

9σ(nn→ nΣ+K0π−)

= 4
9σ(pn→ pΣ−K0π+) = 4

9σ(pn→ nΣ+K+π−) = 2σ(pn→ pΣ0K0π0) = 2σ(pn→ nΣ0K+π0)

= 4σ(pn→ pΣ0K+π−) = 4σ(pn→ nΣ0K0π+) = σ(pn→ pΣ−K+π0) = σ(pn→ nΣ+K0π0)
= 2σ(pn→ pΣ+K0π−) = 2σ(pn→ nΣ−K+π+)

Reaction type: NN → NNKK

4σ(pp→ ppK+K−) = 4σ(nn→ nnK0K
0) = 4σ(pp→ ppK0K

0) = 4σ(nn→ nnK+K−)

= σ(pp→ pnK+K
0) = σ(nn→ pnK0K−) = σ(pn→ ppK0K−) = σ(pn→ nnK+K

0)

= 4/9 σ(pn→ pnK+K−) = 4/9 σ(pn→ pnK0K
0)

No solution found with the Bystricky procedure
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Reaction type: NK → NKπ

0.83σ(pK+ → pK+π0) = 0.83σ(nK0 → nK0π0) = 1
3σ(pK+ → pK0π+) = 1

3σ(nK0 → nK+π−)

= 1.25σ(pK+ → nK+π+) = 1.25σ(nK0 → pK0π−) = σ(pK0 → pK+π−) = σ(nK+ → nK0π+)
= 1.18σ(pK0 → pK0π0) = 1.18σ(nK+ → nK+π0) = 0.68σ(pK0 → nK+π0) = 0.68σ(nK+ → pK0π0)

= 0.45σ(pK0 → nK0π+) = 0.45σ(nK+ → pK+π−)

σ(pK0 → nK0π+) + σ(pK0 → pK+π−) + σ(pK+ → nK+π+) + σ(pK+ → pK0π+)
= 2σ(pK0 → nK+π0) + 2σ(pK0 → pK0π0) + 2σ(pK+ → pK+π0)

Reaction type: NK → NKππ

σ(pK+ → pK+π+π−) = σ(nK0 → nK0π+π−) = 8σ(pK+ → pK+π0π0) = 8σ(nK0 → nK0π0π0)
= σ(pK+ → pK0π+π0) = σ(nK0 → nK+π0π−) = 2σ(pK+ → nK+π+π0) = 2σ(nK0 → pK0π0π−)

= 4σ(pK+ → nK0π+π+) = 4σ(nK0 → pK+π−π−) = σ(pK0 → pK+π0π−) = σ(nK+ → nK0π+π0)
= σ(pK0 → pK0π+π−) = σ(nK+ → nK+π+π−) = 8σ(pK0 → pK0π0π0) = 8σ(nK+ → nK+π0π0)

= 4σ(pK0 → nK+π+π−) = 4σ(nK+ → pK0π+π−) = 4σ(pK0 → nK+π0π0) = 4σ(nK+ → pK0π0π0)
= 2σ(pK0 → nK0π+π0) = 2σ(nK+ → pK+π0π−)

σ(pK0 → nK0π+π0) + 4σ(pK0 → nK+π0π0) + 4σ(pK0 → pK0π0π0) + σ(pK0 → pK+π0π−)
+σ(pK+ → nK+π+π0) + σ(pK+ → pK0π+π0) + 4σ(pK+ → pK+π0π0) = 2σ(pK0 → nK+π+π−)

+2σ(pK0 → pK0π+π−) + 2σ(pK+ → nK0π+π+) + 2σ(pK+ → pK+π+π−)

Reaction type: NK → NKπ

12σ(pK0 → pK
0
π0) = 12σ(nK− → nK−π0) = 6σ(pK0 → pK−π+) = 6σ(nK− → nK

0
π−)

= 12σ(pK0 → nK
0
π+) = 12σ(nK− → pK−π−) = 9σ(pK− → pK

0
π−) = 9σ(nK0 → nK−π+)

= 12σ(pK− → pK−π0) = 12σ(nK0 → nK
0
π0) = 3σ(pK− → nK

0
π0) = 3σ(nK0 → pK−π0)

= 8σ(pK− → nK−π+) = 8σ(nK0 → pK
0
π−)

σ(pK− → nK−π+) + σ(pK− → pK
0
π−) + σ(pK0 → nK

0
π+) + σ(pK0 → pK−π+)

= 2σ(pK− → nK
0
π0) + 2σ(pK− → pK−π0) + 2σ(pK0 → pK

0
π0)
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Reaction type: NK → NKππ

σ(pK0 → pK
0
π+π−) = σ(nK− → nK−π+π−) = 4σ(pK0 → pK

0
π0π0) = 4σ(nK− → nK−π0π0)

= σ(pK0 → pK−π+π0) = σ(nK− → nK
0
π0π−) = σ(pK0 → nK

0
π+π0) = σ(nK− → pK−π0π−)

= σ(pK0 → nK−π+π+) = σ(nK− → pK
0
π−π−) = σ(pK− → pK

0
π0π−) = σ(nK0 → nK−π+π0)

= σ(pK− → pK−π+π−) = σ(nK0 → nK
0
π+π−) = 4σ(pK− → pK−π0π0) = 4σ(nK0 → nK

0
π0π0)

= σ(pK− → nK
0
π+π−) = σ(nK0 → pK−π+π−) = 2σ(pK− → nK

0
π0π0) = 2σ(nK0 → pK−π0π0)

= σ(pK− → nK−π+π0) = σ(nK0 → pK
0
π0π−)

σ(pK− → nK−π+π0) + 4σ(pK− → nK
0
π0π0) + 4σ(pK− → pK−π0π0)

+σ(pK− → pK
0
π0π−) + σ(pK0 → nK

0
π+π0)

+σ(pK0 → pK−π+π0) + 4σ(pK0 → pK
0
π0π0)

= 2σ(pK− → nK
0
π+π−) + 2σ(pK− → pK−π+π−)

+2σ(pK0 → nK−π+π+) + 2σ(pK0 → pK
0
π+π−)

Reaction type: NK → Y π

σ(pK0 → Λπ+) = σ(nK− → Λπ−) = 2σ(pK− → Λπ0) = 2σ(nK0 → Λπ0)

σ(pK0 → Λπ+) = 2σ(pK− → Λπ0)

σ(pK0 → Σ+π0) = σ(nK− → Σ−π0) = σ(pK0 → Σ0π+) = σ(nK− → Σ0π−)

= 3
4σ(pK− → Σ+π−) = 3

4σ(nK0 → Σ−π+) = 3
2σ(pK− → Σ0π0) = 3

2σ(nK0 → Σ0π0)

= σ(pK− → Σ−π+) = σ(nK0 → Σ+π−)

σ(pK0 → Σ+π0) = σ(pK0 → Σ0π+)

σ(pK− → Σ−π+) + σ(pK− → Σ+π−) = 2σ(pK− → Σ0π0) + σ(pK0 → Σ+π0)

Reaction type: NK → Y ππ

σ(pK0 → Λπ+π0) = σ(nK− → Λπ0π−) = σ(pK− → Λπ+π−) = σ(nK0 → Λπ+π−)

= 4σ(pK− → Λπ0π0) = 4σ(nK0 → Λπ0π0)

4σ(pK− → Λπ0π0) + σ(pK0 → Λπ+π0) = 2σ(pK− → Λπ+π−)
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3
2σ(pK0 → Σ+π+π−) = 3

2σ(nK− → Σ−π+π−) = 4σ(pK0 → Σ+π0π0) = 4σ(nK− → Σ−π0π0)

= 6
5σ(pK0 → Σ0π+π0) = 6

5σ(nK− → Σ0π0π−) = 3
2σ(pK0 → Σ−π+π+) = 3

2σ(nK− → Σ+π−π−)

= σ(pK− → Σ+π0π−) = σ(nK0 → Σ−π+π0) = 3
2σ(pK− → Σ0π+π−) = 3

2σ(nK0 → Σ0π+π−)

= 8σ(pK− → Σ0π0π0) = 8σ(nK0 → Σ0π0π0) = 3
2σ(pK− → Σ−π+π0) = 3

2σ(nK0 → Σ+π0π−)

σ(pK− → Σ−π+π0) + σ(pK− → Σ+π0π−) + 2σ(pK0 → Σ+π0π0)

= 2σ(pK− → Σ0π+π−) + σ(pK0 → Σ0π+π0)

σ(pK0 → Σ−π+π+) + σ(pK0 → Σ+π+π−)

= 2σ(pK− → Σ0π0π0) + σ(pK0 → Σ0π+π0) + σ(pK0 → Σ+π0π0)

Reaction type: NY → N ′Y ′

2σ(pΛ→ pΣ0) = 2σ(nΛ→ nΣ0) = σ(pΛ→ nΣ+) = σ(nΛ→ pΣ−)

σ(pΛ→ nΣ+) = 2σ(pΛ→ pΣ0)

2σ(pΣ0 → pΛ) = 2σ(nΣ0 → nΛ) = σ(pΣ− → nΛ) = σ(nΣ+ → pΛ)

σ(pΣ− → nΛ) = 2σ(pΣ0 → pΛ)

σ(pΣ− → pΣ−) = σ(nΣ+ → nΣ+) = σ(pΣ+ → pΣ+) = σ(nΣ− → nΣ−)
σ(pΣ0 → nΣ+) = σ(nΣ0 → pΣ−) = σ(pΣ0 → pΣ0) = σ(nΣ0 → nΣ0)

Reaction type: ∆N → NNKK

σ(∆++p→ ppK+K
0) = σ(∆−n→ nnK0K−) = 2σ(∆++n→ ppK+K−) = 2σ(∆−p→ nnK0K

0)

= 2σ(∆++n→ pnK+K
0) = 2σ(∆−p→ npK0K−) = 2σ(∆++n→ ppK0K

0) = 2σ(∆−p→ nnK+K−)

= 2σ(∆+p→ ppK+K−) = 2σ(∆0n→ nnK0K
0) = 6σ(∆+p→ ppK0K

0) = 6σ(∆0n→ nnK+K−)

= 2σ(∆+p→ pnK+K
0) = 2σ(∆0n→ npK0K−) = 3σ(∆+n→ ppK0K−) = 3σ(∆0p→ nnK+K

0)

= 6σ(∆+n→ pnK+K−) = 6σ(∆0p→ npK0K
0) = 3σ(∆+n→ pnK0K

0) = 3σ(∆0p→ npK+K−)

= 2σ(∆+n→ nnK+K
0) = 2σ(∆0p→ ppK0K−)
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3σ(∆+n→ nnK+K
0) = 2σ(∆++n→ pnK+K

0)

3σ(∆+n→ pnK0K
0) + σ(∆++n→ pnK+K

0)

= 3σ(∆+p→ ppK+K−) + σ(∆++n→ ppK0K
0)

3σ(∆+n→ pnK+K−) + σ(∆++n→ pnK+K
0)

= 3σ(∆+p→ ppK0K
0) + σ(∆++n→ ppK+K−)

3σ(∆+n→ ppK0K−) + 3σ(∆+p→ ppK0K
0) + 3σ(∆+p→ ppK+K−)

= 2σ(∆++n→ pnK+K
0) + σ(∆++n→ ppK0K

0)

+σ(∆++n→ ppK+K−) + σ(∆++p→ ppK+K
0)

3σ(∆+p→ pnK+K
0) + 3σ(∆+p→ ppK0K

0) + 3σ(∆+p→ ppK+K−)

= σ(∆++n→ pnK+K
0) + σ(∆++n→ ppK0K

0)

+σ(∆++n→ ppK+K−) + 2σ(∆++p→ ppK+K
0)

Reaction type: ∆N → BYK

σ(∆++n→ pΛK+) = σ(∆−p→ nΛK0) = 3σ(∆+p→ pΛK+) = 3σ(∆0n→ nΛK0)
= 3σ(∆+n→ pΛK0) = 3σ(∆0p→ nΛK+) = 3σ(∆+n→ nΛK+) = 3σ(∆0p→ pΛK0)

σ(∆++n→ pΛK+) = 3σ(∆+p→ pΛK+) = 3σ(∆+p→ pΛK0) = 3σ(∆+n→ pΛK+)

σ(∆++p→ pΣ+K+) = σ(∆−n→ nΣ−K0) = 2σ(∆++n→ pΣ+K0) = 2σ(∆−p→ nΣ−K+)
= 2σ(∆++n→ pΣ0K+) = 2σ(∆−p→ nΣ0K0) = 2σ(∆++n→ nΣ+K+) = 2σ(∆−p→ pΣ−K0)
= 3σ(∆+p→ pΣ+K0) = 3σ(∆0n→ nΣ−K+) = 3σ(∆+p→ pΣ0K+) = 3σ(∆0n→ nΣ0K0)
= 2σ(∆+p→ nΣ+K+) = 2σ(∆0n→ pΣ−K0) = 2σ(∆+n→ pΣ0K0) = 2σ(∆0p→ nΣ0K+)
= 3σ(∆+n→ pΣ−K+) = 3σ(∆0p→ nΣ+K0) = 3σ(∆+n→ nΣ+K0) = 3σ(∆0p→ pΣ−K+)

= 3σ(∆+n→ nΣ0K+) = 3σ(∆0p→ pΣ0K0)

3σ(∆+n→ nΣ0K+) + σ(∆++n→ pΣ0K+) = 3σ(∆+p→ pΣ+K0) + σ(∆++n→ nΣ+K+)

3σ(∆+n→ nΣ+K0) + σ(∆++p→ pΣ+K+) = 3σ(∆+p→ pΣ0K+) + σ(∆++n→ pΣ0K+)
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3σ(∆+n→ pΣ−K+) = 2σ(∆++n→ pΣ0K+)

3σ(∆+n→ pΣ0K0) + 3σ(∆+p→ pΣ0K+) + 3σ(∆+p→ pΣ+K0)
= σ(∆++n→ nΣ+K+) + 2σ(∆++n→ pΣ+K0) + 2σ(∆++p→ pΣ+K+)

3σ(∆+p→ nΣ+K+) + 3σ(∆+p→ pΣ0K+) + 3σ(∆+p→ pΣ+K0)
= σ(∆++n→ nΣ+K+) + σ(∆++n→ pΣ0K+)

+σ(∆++n→ pΣ+K0) + 2σ(∆++p→ pΣ+K+)

3σ(∆++p→ ΛK+∆++) = 3σ(∆−n→ ΛK0∆−) = 4σ(∆++n→ ΛK+∆+) = 4σ(∆−p→ ΛK0∆0)
= 3σ(∆++n→ ΛK0∆++) = 3σ(∆−p→ ΛK+∆−) = 4σ(∆+p→ ΛK+∆+) = 4σ(∆0n→ ΛK0∆0)

= 6σ(∆+p→ ΛK0∆++) = 6σ(∆0n→ ΛK+∆−) = 3σ(∆+n→ ΛK+∆0) = 3σ(∆0p→ ΛK0∆+)
= 6σ(∆+n→ ΛK0∆+) = 6σ(∆0p→ ΛK+∆0)

3σ(∆+n→ ΛK0∆+) + 2σ(∆++n→ ΛK+∆+) = 2σ(∆++n→ ΛK0∆++) + σ(∆++p→ ΛK+∆++)

3σ(∆+n→ ΛK+∆0) = 4σ(∆++n→ ΛK+∆+)

3σ(∆+p→ ΛK+∆+) + 2σ(∆++n→ ΛK+∆+) = σ(∆++n→ ΛK0∆++) + 2σ(∆++p→ ΛK+∆++)

6σ(∆++p→ Σ0K+∆++) = 6σ(∆−n→ Σ0K0∆−) = 6σ(∆++n→ Σ0K+∆+) = 6σ(∆−p→ Σ0K0∆0)
= 12σ(∆++p→ Σ+K0∆++) = 12σ(∆−n→ Σ−K+∆−) = 12σ(∆++n→ Σ0K0∆++) = 12σ(∆−p→ Σ0K+∆−)

= 2σ(∆++n→ Σ+K+∆0) = 2σ(∆−p→ Σ−K0∆+) = 2σ(∆++n→ Σ+K0∆+) = 2σ(∆−p→ Σ−K+∆0)
= 3σ(∆++n→ Σ−K+∆++) = 3σ(∆−p→ Σ+K0∆−) = 3σ(∆+p→ Σ0K0∆++) = 3σ(∆0n→ Σ0K+∆−)

= 6σ(∆+p→ Σ+K+∆0) = 6σ(∆0n→ Σ−K0∆+) = 6σ(∆+p→ Σ−K+∆++) = 6σ(∆0n→ Σ+K0∆−)
= 12σ(∆+p→ Σ0K+∆+) = 12σ(∆0n→ Σ0K0∆0) = 12σ(∆+n→ Σ0K0∆+) = 12σ(∆0p→ Σ0K+∆0)

= 6σ(∆+p→ Σ+K0∆+) = 6σ(∆0n→ Σ−K+∆0) = 6σ(∆+n→ Σ+K+∆−) = 6σ(∆0p→ Σ−K0∆++)
= 3σ(∆+n→ Σ0K+∆0) = 3σ(∆0p→ Σ0K0∆+) = 6σ(∆+n→ Σ−K+∆+) = 6σ(∆0p→ Σ+K0∆0)

= 6σ(∆+n→ Σ+K0∆0) = 6σ(∆0p→ Σ−K+∆+) = 6σ(∆+n→ Σ−K0∆++) = 6σ(∆0p→ Σ+K+∆−)

2σ(∆+n→ Σ−K0∆++) + 2σ(∆++p→ Σ+K+∆+)
= 3σ(∆+p→ Σ+K+∆0) + σ(∆++n→ Σ+K+∆0)

12σ(∆+n→ Σ0K0∆+) + 15σ(∆+p→ Σ+K+∆0) + 2σ(∆++n→ Σ+K0∆+)
+2σ(∆++n→ Σ−K+∆++) + 9σ(∆++n→ Σ+K+∆0) + 2σ(∆++p→ Σ+K0∆++)

+4σ(∆++p→ Σ0K+∆++) = 18σ(∆+p→ Σ0K+∆+)
+6σ(∆++n→ Σ0K0∆++) + 8σ(∆++n→ Σ0K+∆+) + 18σ(∆++p→ Σ+K+∆+)
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6σ(∆+n→ Σ+K0∆0) + 9σ(∆+p→ Σ+K+∆0) + 2σ(∆++n→ Σ−K+∆++)
+9σ(∆++n→ Σ+K+∆0) + 2σ(∆++p→ Σ+K0∆++)

= 6σ(∆+p→ Σ0K+∆+) + 2σ(∆++n→ Σ0K0∆++) + 6σ(∆++n→ Σ+K0∆+)
+8σ(∆++n→ Σ0K+∆+) + 10σ(∆++p→ Σ+K+∆+)

12σ(∆+n→ Σ−K+∆+) + 18σ(∆+p→ Σ0K+∆+) + 6σ(∆++n→ Σ+K0∆+)
+16σ(∆++n→ Σ0K+∆+) + 18σ(∆++p→ Σ+K+∆+)

= 9σ(∆+p→ Σ+K+∆0) + 2σ(∆++n→ Σ0K0∆++) + 10σ(∆++n→ Σ−K+∆++)
+15σ(∆++n→ Σ+K+∆0) + 6σ(∆++p→ Σ+K0∆++) + 8σ(∆++p→ Σ0K+∆++)

6σ(∆+n→ Σ0K+∆0) + 6σ(∆+p→ Σ0K+∆+) + 2σ(∆++n→ Σ0K0∆++)
+2σ(∆++p→ Σ+K+∆+) = 3σ(∆+p→ Σ+K+∆0) + 2σ(∆++n→ Σ+K0∆+)

+2σ(∆++n→ Σ−K+∆++) + σ(∆++n→ Σ+K+∆0) + 2σ(∆++p→ Σ+K0∆++)

4σ(∆+p→ Σ0K0∆++) + 6σ(∆+p→ Σ0K+∆+) + 2σ(∆++n→ Σ0K0∆++)
+4σ(∆++n→ Σ0K+∆+) + 2σ(∆++p→ Σ+K+∆+)

= 3σ(∆+p→ Σ+K+∆0) + 2σ(∆++n→ Σ+K0∆+) + 2σ(∆++n→ Σ−K+∆++)
+5σ(∆++n→ Σ+K+∆0) + 2σ(∆++p→ Σ+K0∆++)

6σ(∆+p→ Σ+K0∆+) + 6σ(∆+p→ Σ0K+∆+) + 4σ(∆++n→ Σ+K0∆+)
+4σ(∆++n→ Σ0K+∆+) + 8σ(∆++p→ Σ+K+∆+)

= 3σ(∆+p→ Σ+K+∆0) + 2σ(∆++n→ Σ0K0∆++) + 2σ(∆++n→ Σ−K+∆++)
+5σ(∆++n→ Σ+K+∆0) + 4σ(∆++p→ Σ+K0∆++) + 4σ(∆++p→ Σ0K+∆++)

4σ(∆+p→ Σ−K+∆++) + 9σ(∆+p→ Σ+K+∆0) + 2σ(∆++n→ Σ−K+∆++)
+7σ(∆++n→ Σ+K+∆0) + 2σ(∆++p→ Σ+K0∆++)

= 6σ(∆+p→ Σ0K+∆+) + 2σ(∆++n→ Σ0K0∆++) + 2σ(∆++n→ Σ+K0∆+)
+8σ(∆++n→ Σ0K+∆+) + 10σ(∆++p→ Σ+K+∆+)

Reaction type: πN → Y K

2σ(π0p→ ΛK+) = 2σ(π0n→ ΛK0) = σ(π−p→ ΛK0) = σ(π+n→ ΛK+)

σ(π−p→ ΛK0) = 2σ(π0p→ ΛK+)

The case of the reaction πN → ΣK is given is some detail in subsection IV.4.3.
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Reaction type: πN → Y Kπ

σ(π+p→ ΛK+π+) = σ(π−n→ ΛK0π−) = σ(π0p→ ΛK0π+) = σ(π−p→ ΛK0π0)
= σ(π+n→ ΛK+π0) = σ(π0n→ ΛK+π−) = 2σ(π0p→ ΛK+π0) = 2σ(π0n→ ΛK0π0)

= σ(π−p→ ΛK+π−) = σ(π+n→ ΛK0π+)

σ(π0p→ ΛK0π+) = σ(π−p→ ΛK0π0)

σ(π−p→ Λπ−K+) + σ(π+p→ Λπ+K+) = 2σ(π0p→ Λπ0K+) + σ(π0p→ Λπ+K0)

4
5σ(π+p→ Σ+K0π+) = 4

5σ(π−n→ Σ−K+π−) = 4
3σ(π+p→ Σ+K+π0) = 4

3σ(π−n→ Σ−K0π0)

= 4σ(π+p→ Σ0K+π+) = 4σ(π−n→ Σ0K0π−) = 2σ(π0p→ Σ+K0π0) = 2σ(π0n→ Σ−K+π0)

= 2σ(π0p→ Σ+K+π−) = 2σ(π0n→ Σ−K0π+) = 4
3σ(π0p→ Σ0K0π+) = 4

3σ(π0n→ Σ0K+π−)

= 8
3σ(π0p→ Σ0K+π0) = 8

3σ(π0n→ Σ0K0π0) = 2σ(π0p→ Σ−K+π+) = 2σ(π0n→ Σ+K0π−)

= 8
3σ(π−p→ Σ+K0π−) = 8

3σ(π+n→ Σ−K+π+) = 8
5σ(π−p→ Σ0K0π0) = 8

5σ(π+n→ Σ0K+π0)

= 8
5σ(π−p→ Σ0K+π−) = 8

5σ(π+n→ Σ0K0π+) = σ(π−p→ Σ−K0π+) = σ(π+n→ Σ+K+π−)

= 8
3σ(π−p→ Σ−K+π0) = 8

3σ(π+n→ Σ+K0π0)

σ(π−p→ Σ−π0K+) + σ(π−p→ Σ0π0K0) + σ(π+p→ Σ+π0K+)
= σ(π0p→ Σ−π+K+) + σ(π0p→ Σ0π+K0) + σ(π0p→ Σ+π−K+)

σ(π−p→ Σ−π+K0) + σ(π−p→ Σ+π−K0) + σ(π+p→ Σ+π+K0)
= σ(π−p→ Σ0π0K0) + 2σ(π0p→ Σ0π0K+) + σ(π0p→ Σ0π+K0) + σ(π0p→ Σ+π0K0)

σ(π−p→ Σ0π−K+) + σ(π−p→ Σ0π0K0) + σ(π+p→ Σ0π+K+)
= σ(π0p→ Σ−π+K+) + σ(π0p→ Σ+π−K+) + σ(π0p→ Σ+π0K0)
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Reaction type: πN → NKK

2σ(π+p→ pK+K
0) = 2σ(π−n→ nK0K−) = 4σ(π0p→ pK+K−) = 4σ(π0n→ nK0K

0)

= 4σ(π0p→ pK0K
0) = 4σ(π0n→ nK+K−) = σ(π0p→ nK+K

0) = σ(π0n→ pK0K−)

= 2σ(π−p→ pK0K−) = 2σ(π+n→ nK+K
0) = σ(π−p→ nK+K−) = σ(π+n→ pK0K

0)

= σ(π−p→ nK0K
0) = σ(π+n→ pK+K−)

σ(π−p→ nK0K
0) + σ(π−p→ nK+K−) + σ(π−p→ pK0K−) + σ(π+p→ pK+K

0)

= 2σ(π0p→ nK+K
0) + 2σ(π0p→ pK0K

0) + 2σ(π0p→ pK+K−)

Reaction type: πN → Y Kππ

σ(π+p→ ΛK0π+π+) = σ(π−n→ ΛK+π−π−) = σ(π+p→ ΛK+π+π0) = σ(π−n→ ΛK0π0π−)
= 2σ(π0p→ ΛK0π+π0) = 2σ(π0n→ ΛK+π0π−) = σ(π0p→ ΛK+π+π−) = σ(π0n→ ΛK0π+π−)
= 4σ(π0p→ ΛK+π0π0) = 4σ(π0n→ ΛK0π0π0) = σ(π−p→ ΛK0π+π−) = σ(π+n→ ΛK+π+π−)
= 2σ(π−p→ ΛK0π0π0) = 2σ(π+n→ ΛK+π0π0) = σ(π−p→ ΛK+π0π−) = σ(π+n→ ΛK0π+π0)

σ(π−p→ ΛK+π0π−) + 2σ(π−p→ ΛK0π+π−)
+σ(π+p→ ΛK+π+π0) + 2σ(π+p→ ΛK0π+π+)

= 4σ(π0p→ ΛK+π0π0) + 2σ(π0p→ ΛK+π+π−) + 3σ(π0p→ ΛK0π+π0)

σ(π−p→ΛK0π0π0) + 2σ(π0p→ ΛK+π0π0) + σ(π0p→ ΛK0π+π0)
= σ(π−p→ ΛK0π+π−) + σ(π+p→ ΛK0π+π+)

σ(π+p→ Σ+K+π+π−) = σ(π−n→ Σ−K0π+π−) = 4σ(π+p→ Σ+K+π0π0)
= 4σ(π−n→ Σ−K0π0π0) = 2σ(π+p→ Σ0K+π+π0) = 2σ(π−n→ Σ0K0π0π−)

= 4σ(π+p→ Σ−K+π+π+) = 4σ(π−n→ Σ+K0π−π−) = σ(π+p→ Σ+K0π+π0)
= σ(π−n→ Σ−K+π0π−) = 4σ(π+p→ Σ0K0π+π+) = 4σ(π−n→ Σ0K+π−π−)
= 2σ(π0p→ Σ+K+π0π−) = 2σ(π0n→ Σ−K0π+π0) = 2σ(π0p→ Σ0K+π+π−)
= 2σ(π0n→ Σ0K0π+π−) = 4σ(π0p→ Σ0K+π0π0) = 4σ(π0n→ Σ0K0π0π0)
= 4σ(π0p→ Σ−K+π+π0) = 4σ(π0n→ Σ+K0π0π−) = σ(π0p→ Σ+K0π+π−)
= σ(π0n→ Σ−K+π+π−) = 4σ(π0p→ Σ+K0π0π0) = 4σ(π0n→ Σ−K+π0π0)
= 4σ(π0p→ Σ0K0π+π0) = 4σ(π0n→ Σ0K+π0π−) = 2σ(π0p→ Σ−K0π+π+)

= 2σ(π0n→ Σ+K+π−π−) = 4σ(π−p→ Σ+K+π−π−) = 4σ(π+n→ Σ−K0π+π+)
= 2σ(π−p→ Σ0K+π0π−) = 2σ(π+n→ Σ0K0π+π0) = 4σ(π−p→ Σ−K+π+π−)

= 4σ(π+n→ Σ+K0π+π−) = 4σ(π−p→ Σ−K+π0π0) = 4σ(π+n→ Σ+K0π0π0)
= 2σ(π−p→ Σ+K0π0π−) = 2σ(π+n→ Σ−K+π+π0) = σ(π−p→ Σ0K0π+π−)
= σ(π+n→ Σ0K+π+π−) = 2σ(π−p→ Σ0K0π0π0) = 2σ(π+n→ Σ0K+π0π0)
= 2σ(π−p→ Σ−K0π+π0) = 2σ(π+n→ Σ+K+π0π−)
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σ(π−p→ Σ−K0π+π0) + σ(π−p→ Σ+K0π0π−) + σ(π−p→ Σ−K+π0π0)
+σ(π−p→ Σ−K+π+π−) + σ(π−p→ Σ+K+π−π−) + σ(π+p→ Σ+K0π+π0)
+σ(π+p→ Σ−K+π+π+) + σ(π+p→ Σ+K+π0π0) + σ(π+p→ Σ+K+π+π−)
= σ(π0p→ Σ−K0π+π+) + 2σ(π0p→ Σ0K0π+π0) + σ(π0p→ Σ+K0π0π0)
+σ(π0p→ Σ+K0π+π−) + σ(π0p→ Σ−K+π+π0) + 2σ(π0p→ Σ0K+π0π0)

+2σ(π0p→Σ0K+π+π−) + σ(π0p→ Σ+K+π0π−)

σ(π−p→ Σ−K+π+π−) + σ(π−p→ Σ+K+π−π−) + σ(π0p→ Σ−K0π+π+)
+σ(π0p→ Σ+K0π+π−) + σ(π+p→ Σ−K+π+π+) + σ(π+p→ Σ+K+π+π−)

= 2σ(π−p→ Σ0K0π0π0) + σ(π−p→ Σ−K+π0π0) + σ(π−p→ Σ0K+π0π−)
+σ(π0p→ Σ0K0π+π0) + σ(π0p→ Σ+K0π0π0) + 2σ(π0p→ Σ0K+π0π0)

+σ(π+p→Σ0K+π+π0) + σ(π+p→ Σ+K+π0π0)

σ(π−p→ Σ−K+π0π0) + σ(π0p→ Σ−K0π+π+) + σ(π0p→ Σ0K0π+π0)
+3σ(π0p→ Σ+K0π0π0) + σ(π0p→ Σ+K0π+π−) + 2σ(π0p→ Σ−K+π+π0)
+2σ(π0p→ Σ0K+π0π0) + 2σ(π0p→ Σ+K+π0π−) + σ(π+p→ Σ+K+π0π0)

= 2σ(π−p→ Σ0K0π+π−) + σ(π−p→ Σ−K+π+π−) + σ(π−p→ Σ0K+π0π−)
+σ(π−p→ Σ+K+π−π−) + 2σ(π+p→ Σ0K0π+π+) + σ(π+p→ Σ−K+π+π+)

+σ(π+p→Σ0K+π+π0) + σ(π+p→ Σ+K+π+π−)
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PROCEDURES.
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Appendix C

The π+p→ K+Σ+ Legendre coefficients
with pπ from 1282 up to 2473 MeV/c

Table C.1 summarises the 9 first Legendre coefficients extracted from the differential cross sections
published in [98]. The reaction studied is π+p→ K+Σ+ with the pion momentum ranging from 1282 to
2473 MeV/c. The coefficients were determined using a ROOT minimisation with a smoothness constraint.

Table C.1: Legendre coefficients extracted from differential cross sections published in [98].

Plab
(MeV/c) A0 A1 A2 A3 A4 A5 A6 A7 A8 χ2/NDF

1282 0.120 -0.030 -0.011 0.121 -0.001 -0.012 -0.026 0.008 -0.008 1.476
1328 0.144 -0.029 -0.014 0.135 0.018 0.007 -0.020 -0.004 -0.003 1.665
1377 0.175 -0.033 0.006 0.168 0.032 0.010 -0.003 0.016 -0.004 1.240
1419 0.203 -0.023 0.004 0.201 0.058 0.031 -0.025 -0.005 -0.028 1.330
1490 0.247 -0.042 0.111 0.174 0.142 -0.015 0.059 -0.027 -0.004 1.289
1518 0.264 -0.043 0.142 0.189 0.175 -0.003 0.089 -0.055 -0.023 0.861
1582 0.247 -0.018 0.138 0.176 0.161 0.008 0.084 -0.031 -0.008 1.177
1614 0.266 -0.007 0.174 0.181 0.195 0.039 0.118 -0.003 -0.039 1.094
1687 0.259 0.015 0.170 0.165 0.211 0.075 0.162 -0.036 -0.009 1.155
1712 0.261 0.021 0.199 0.158 0.252 0.088 0.192 -0.003 -0.018 1.781
1775 0.267 0.037 0.226 0.133 0.260 0.107 0.170 -0.003 -0.007 1.201
1808 0.256 0.066 0.231 0.108 0.269 0.104 0.180 -0.020 0.030 1.033
1879 0.230 0.076 0.220 0.102 0.249 0.072 0.153 -0.063 0.002 1.914
1906 0.262 0.065 0.202 0.110 0.233 0.082 0.185 -0.025 -0.031 1.194
1971 0.265 0.085 0.218 0.100 0.263 0.131 0.165 -0.048 -0.015 1.108
1997 0.238 0.085 0.207 0.056 0.224 0.122 0 .154 -0.009 -0.027 0.981
2067 0.259 0.103 0.186 0.081 0.203 0.181 0.148 -0.008 -0.063 1.011
2099 0.246 0.158 0.183 0.112 0.200 0.200 0.114 0.001 -0.085 0.779
2152 0.242 0.121 0.224 0.064 0.209 0.188 0.174 0.041 -0.086 1.339
2197 0.248 0.101 0.230 0.051 0.218 0.223 0.211 -0.013 -0.058 1.491
2241 0.252 0.121 0.246 0.061 0.186 0.199 0.161 0.044 -0.070 1.129
2291 0.254 0.154 0.235 0.125 0.170 0.269 0.208 0.092 -0.071 1.324
2344 0.264 0.144 0.279 0.110 0.242 0.254 0.215 0.087 -0.040 0.911
2379 0.245 0.172 0.246 0.114 0.206 0.278 0.237 0.133 -0.040 1.239
2437 0.262 0.167 0.315 0.106 0.286 0.249 0.281 0.150 0.016 1.308
2473 0.281 0.158 0.347 0.095 0.344 0.230 0.345 0.083 0.088 1.306
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Appendix D

Variance minimisation

One of the main theorems used in chapter V is that minimal uncertainties for a given number of events
are achieved when all the importances of strange particles are equal. Two approaches have been proposed
to calculate the uncertainties: the natural approach via calculating the variance and a simplified approach
with a direct calculation of relative uncertainties.

In this annexe, the proof of this theorem is given.

D.1 Variance

We start with the definition of the variance and the expected value proposed in chapter V, i.e.,

E(X) =
∑M
i=1wixi
M

, (D.1)

V (X) =
∑M
i=1(wixi − E(X))2

N
, (D.2)

with wi the importance of the ith observation xi of the observable X and N the number of events.
The summation is over all particles, i.e., xi = 0 or 1. Therefore, a set of data will be of the shape:

W =



w1
...
wm
wm+1

...
wM


and X =



1
...
1
0
...
0


(D.3)

with W the set of weights associated to the set of observation X. Here, xi = 1 for i ≤ m and xi = 0
otherwise.

An important constraint is that the expected value E(X) must remain unchanged.

0 != ∂E(X) = 1
N

∂

(
M∑
i=1

wixi

)

= 1
N

∂

(
m∑
i=1

wi

)
(D.4)

129



APPENDIX D. VARIANCE MINIMISATION

Here, != stands for “must be equal”. eq. D.4 removes one degree of freedom for W . Here, we choose
wm:

∂wm
!= −

m−1∑
i=1

∂wi (D.5)

From this:
∂wm
∂wj

!= −1 ∀j ∈ [1,m− 1] (D.6)

The variance is at a local extremum if, and only if, any partial derivate of the variance is zero. It can
be written as:

0 != ∂V (X) ⇔ ∂V (X)
∂wj

= 0 ∀j ∈ [1,m− 1] ∪ [m+ 1,M ] (D.7)

It is trivial to show that:
∂V (X)
∂wj

= 0 ∀j ∈ [m+ 1,M ] (D.8)

Thus, the variance is at a local extremum when:

0 = ∂V (X)
∂wj

= 1
M

∂

∂wj

M∑
i=1

(wixi − E(X))2 ∀j ∈ [1,m− 1] (D.9)

Then, we have:

0 != ∂V (X)
∂wj

= 1
M

∂

∂wj

[
(wjxj − E(X))2 + (wmxm − E(X))2

]
∀j ∈ [1,m− 1]

= 1
M

(2xj(wjxj − E(X))− 2xm(wmxm − E(X))) (D.10)

xj(wjxj − E(X)) != xm(wmxm − E(X)) ∀j ∈ [1,m− 1] (D.11)

From eq. D.3, we know that: xj = 1 = xm. This leads to the conclusion that the variance is at a local
extremum when:

wj = wm ∀j ∈ [1,m− 1] (D.12)

The second derivate should be calculated to know if the extremum is a minimum or a maximum:

∂2V (X)
∂wj 2 = ∂

∂wj

( 1
M

(2xj(wjxj − E(X))− 2xm(wmxm − E(X)))
)

= 2
M

(
x2
j + x2

m

)
= 4
M

> 0 ∀j ∈ [1,m− 1] (D.13)

Therefore, wj = wm ∀j ∈ [1,m− 1] is a local minimum and, since it is the only one, we can conclude
that the minimal variance for a given number of events is achieved when all wj for j ≤ m, which are the
strange particle importances, are equal.

D.2 Relative uncertainties

The formula given in chapter V for the relative uncertainties is:

relat. uncer. = RU(X) =
√∑(wixi)2∑

wixi
, (D.1)
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D.2. RELATIVE UNCERTAINTIES

We restart from eq. D.7 changing V (X) by RU(X):

0 != ∂RU(X) ⇔ ∂RU(X)
∂wj

!= 0 ∀j ∈ [1,m− 1] ∪ [m+ 1,M ] (D.2)

Once again, it is trivial to show that:

∂RU(X)
∂wj

= 0 ∀j ∈ [m+ 1,M ] (D.3)

Thus, a relative uncertainty is at a local extremum when:

0 = ∂RU(X)
∂wj

= ∂

∂wj

√∑(wixi)2∑
wixi

= N

E(X)
∂

∂wj

√∑
(wixi)2

= N

2 E(X)

∂
∂wj

∑(wixi)2√∑(wixi)2

= N

E(X)
x2
jwj − x2

mwm√∑(wixi)2 ∀j ∈ [1,m− 1] (D.4)

Considering xk = 1 for k ≤ m, we deduce that the relative uncertainty is at a local extremum when:

wj = wm ∀j ∈ [1,m− 1] (D.5)

With the second derivative we get:

∂2RU(X)
∂wj 2 = N

E(X)
∂

∂wj

x2
jwj − x2

mwm√∑(wixi)2

= N

E(X)

√∑(wixi)2 ∂
∂wj

(x2
jwj − x2

mwm)− (x2
jwj − x2

mwm) ∂
∂wj

√∑(wixi)2∑(wixi)2

= N

E(X)
2√∑(wixi)2 > 0 ∀j ∈ [1,m− 1] (D.6)

Thus, wj = wm ∀j ∈ [1,m− 1] is once again a local minimum and the only one. Therefore, the
minimal relative uncertainty for a given number of events is achieved when all wj for j ≤ m, which are
the strange particle importances, are equal.
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Appendix E

Vertex cross section ratio

Here, some examples for calculations of cross section ratios are shown. This helps understanding the
biasing steps of the variance reduction scheme.

E.1 Example 1

In the first example (Figure E.1) I consider two successive binary collisions. The two non-strange
particles at the origin of the vertex A are considered without any history. Let us assume that the total
cross section for vertex A is 20 mb, with the reaction cross section for the production of strangeness is
0.1 mb and therefore the non-strangeness production cross section is 19.9 mb. Our goal is an increase of
the total strangeness production by a factor of 10 (= bias factor).

It is important to remember, to say that the probability of creation of a particle has been increased
by 10 is equivalent to say that its importance is W = 1/10 (see eq. V.1).

Because initial particles in A have no history, the probability of strangeness production at this time of
the cascade is directly proportional to the strangeness production cross section. This means, to increase
the probability of strangeness production by a factor of 10, the corresponding cross section should be
multiplied by 10. Therefore, the modified strangeness production cross section is 1 mb and, because the
total cross section should be conserved, the modified non-strangeness production cross section is 19 mb.

At this stage of the variance reduction scheme the cascade is biased. Now, the vertex cross section
ratio of vertex A should be determined. The vertex cross section ratio is the ratio of the event importance
before versus the same value after this vertex. This ratio is directly equal to the inverse of the cross

Figure E.1: Example of a basic intranuclear cascade represented as a time ordered graph. Circles and
arrows represent binary collisions and the particles propagating, respectively.
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APPENDIX E. VERTEX CROSS SECTION RATIO

section multiplying factor of the chosen channel. This means that the vertex cross section ratio will be
equal, in this case, to 0.1 mb/1 mb = 0.1 if strangeness is produced and equal to 19.9 mb/19 mb ' 1.047
otherwise. Let us assume that no strange particle is produced. At this stage, the probability of realisation
for this cascade is decreased by a factor 1.047 and the importances of outgoing particles are increased by
1.047. In INCL, the cross section ratio is registered for future uses.

Let us assume that one of the particles produced in vertex A collide with another non-strange particle
without history in vertex B. We want to increase the probability of creating strange particles by a factor
of 10. Therefore, the importance of a strange particle produced in vertex B should be W = 0.1. The
importance is the product of every cross section ratio on the path:

0.1 = W = CSR(A)× CSR(B). (E.1)

Therefore, if a strange particle is produced, the cross section ratio of vertex B should be CSR(B)S =
1/(10 × CSR(A)). This determines the modified strangeness production cross section of this vertex
(σ′S = σS/CSR(B)S), the modified non-strangeness production cross section (σ′NS = σtot − σ′S), and the
cross section ratio of vertex B in case of non-strangeness production (CSR(B)NS = σNS/σ

′
NS).

In the general case, the importance of a vertex following a set K of previous vertices and with strange
particles in its final state must be:

CSR(X) = 1
bias ratio×∏I∈K CSR(I) . (E.2)

E.2 Example 2

The second example in Figure E.2 illustrates the case of branch recombination. Here, a particle coming
from vertex B, itself induced by a particle from vertex A, collides with a particle directly produced by
vertex A.

Eq. E.2 gives the CSR(C) in case of strangeness production.

CSR(C) = 1
bias ratio× CSR(A)× CSR(B) . (E.1)

We also know CSR(B), which produced strangeness:

CSR(B) = 1
bias ratio× CSR(A) . (E.2)

Figure E.2: Same as Figure E.1 with three vertices and a branch recombination.
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Therefore CSR(C) = 1. In this case, the cross sections are not modified because the probability to
reach the initial state of vertex C has already been increased by a factor equal to the bias ratio.

E.3 Example 3

The last example in Figure E.3 is a more complex case of branch recombination. Let us assume no
strange particles were produced in vertices A and B but strangeness production occurred in vertex C.
CSR(A) and CSR(B) are determined as given in sect. E.1 in the case of non-strangeness production.
CSR(C) follows eq. E.2 because it produced strangeness:

CSR(C) = 1
bias ratio× CSR(A) . (E.1)

If strangeness is produced in vertex D, CSR(D) also follows the eq. E.2:

CSR(D) = 1
bias ratio× CSR(A)× CSR(B)× CSR(C)

= 1
CSR(B) . (E.2)

Figure E.3: Same as Figure E.2 with four vertices.
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Appendix F

Ellipsoidal meteoroid irradiation

One of the objectives of the CosmicTransmutation model developed during this PhD was the simulation
of the irradiation of ellipsoidal meteoroids. Therefore, an algorithm has been created to generate a
uniform irradiation for such type of meteoroids. This appendix details the mathematics associated to this
algorithm.

The algorithm is divided into three parts. The first part determines the geometrical cross section of
the ellipsoidal meteorite when seen from the point of view of a cosmic ray particle with a specific direction
of propagation −→n = (u, v, w). This gives the probability density to hit the meteoroid with this specific
direction. Next, the impact location for a uniform irradiation is determined. Finally, the initial position
and direction are chosen. In addition, symmetries are considered in order to improve the visualisation
in reducing the possibilities of irradiation direction but keeping outputs strictly equivalent to a uniform
irradiation.

In order to simplify the problem, the semi-axes of the ellipsoid defines the coordinate system Oxyz.
Therefore, the equation of a general ellipsoid oriented in the coordinate system Oxyz is:

E :
(
x

a

)2
+
(
y

b

)2
+
(
z

c

)2
= 1, (F.1)

with a, b, and c the norms of the semi-axes.
The probability density for a cosmic ray to hit a meteoroid is proportional to the apparent geometrical

cross section. Therefore, we want to know the area of the projection of a general ellipsoid on a plane
orthogonal to −→n = (u, v, w).

The orthogonal plane to the direction including the origin is:

P (−→n ) : ux+ vy + wz = 0. (F.2)

The direction will be normalised to be convenient. Therefore, the vector −→n can be reduced to two
parameters (θ, φ) as: 

u = sin(θ) cos(φ)
v = sin(θ) sin(φ)
w = cos(θ)

(F.3)

The generators of the full cylinder C circumscribed to the ellipsoid E , with the direction (θ, φ)
orthogonal to P are:

L :=


x = x0 + λ u

y = y0 + λ v

z = z0 + λ w

(F.4)
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with M0 (x0, y0, z0) a dot belonging to the ellipsoid which can be defined in term of (Θ,Φ) by:

M0(Θ,Φ) :=


x0 = a sin(Θ) cos(Φ)
y0 = b sin(Θ) sin(Φ)
z0 = c cos(Θ)

(F.5)

The equation of the plane tangent to the ellipsoid in M0 should be determined. The simplest way to
determine this equation is to find a vector orthogonal to the ellipsoid in M0. This vector can be easily
constructed by the vectorial product of two vectors tangent to E in M0, which are d

−→
M0
dΘ and d

−→
M0
dΦ .

−→er = d
−→
M0
dΘ ∧ d

−→
M0
dΦ =


a cos(Θ) cos(Φ)
b cos(Θ) sin(Φ)
− c sin(Θ)

 ∧

−a sin(Θ) sin(Φ)
b sin(Θ) cos(Φ)

0

 =


bc sin(Θ)2 cos(Φ)
ac sin(Θ)2 sin(Φ)
ab sin(Θ) cos(Θ)

 (F.6)

Only the direction of the vector is needed to determine the plane. Therefore, the vector −→er can be
scaled to simplify the notation as:

êr =


sin(Θ) cos(Φ)/a
sin(Θ) sin(Φ)/b
cos(Θ)/c

 =


x0/a

2

y0/b
2

z0/c
2

 (F.7)

Using êr, the equation of the tangent plane is given by:

T : xx0
a2 + yy0

b2
+ zz0

c2 = d (F.8)

with d as a parameter that must be determined.
We know that M0 ∈ T and M0 ∈ E ; therefore:

T : xx0
a2 + yy0

b2
+ zz0

c2 = 1 (F.9)

Now, the equation for S, the empty cylinder circumscribe to E , will be calculated. The generators of
S are the generators L of the full cylinder C, which belong to T . Combining eq. F.4 and eq. F.9, we get:

(x0 + λu)x0
a2 + (y0 + λv)y0

b2
+ (z0 + λw)z0

c2 = 1, (F.10)

which can be factorised as:

x2
0
a2 + y2

0
b2

+ z2
0
c2 + λ

(
ux0
a2 + vy0

b2
+ wz0

c2

)
= 1. (F.11)

This equation should always be true independent of the generator parameter λ for M0 ∈ S. Knowing
M0 ∈ E , we have:

ux0
a2 + vy0

b2
+ wz0

c2 = 0. (F.12)

The generators of C, the full cylinder, can be redefined as:

L :=


0 = x0 − x+ λ u

0 = y0 − y + λ v

0 = z0 − z + λ w

(F.13)
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This new definition therefore leads to the equation:

u(x0 − x+ λu)
a2 + v(y0 − y + λv)

b2
+ w(z0 − z + λw)

c2 = 0 (F.14)

Using eq. F.12, the generator parameter λ will be given by:

λ =
(
xu

a2 + yv

b2
+ zw

c2

)
/γ2, (F.15)

with:
γ2 = u2

a2 + v2

b2
+ w2

c2 . (F.16)

Knowing that M0 ∈ E , M0 ∈ S, eq. F.1, and eq. F.4, we have:

1 = x2
0
a2 + y2

0
b2

+ z2
0
c2

= (x− λu)2

a2 + (y − λv)2

b2
+ (z − λw)2

c2

= x2

a2 + y2

b2
+ z2

c2 − 2λ
(
xu

a2 + yv

b2
+ zw

c2

)
+ λ2

(
u2

a2 + v2

b2
+ w2

c2

)
(F.17)

Replacing λ using eq. F.15, we get the equation of the cylinder circumscribed to the ellipsoid that is
orthogonal to P:

S : 1 = x2

a2 + y2

b2
+ z2

c2 −
(
xu

a2 + yv

b2
+ zw

c2

)2
/γ2 (F.18)

The geometrical cross section of the ellipsoid corresponds to the area of the base of the cylinder. The
equation of the base is determined by the intersection of the cylinder S and the orthogonal plane P .
This is done in two steps. First, the equation of the intersection of the cylinder S with plane Oxy is
determined. Next, this intersection is projected on P to obtain the real intersection of S and P after a
change of reference frame.

The intersection of the cylinder S with the plane Oxy is given by:

E :=


z = 0

1 = x2

a2 + y2

b2
−
(
xu

a2 + yv

b2

)2
/γ2 (F.19)

The factorisation of x and y gives the following equation:

1 = x2
(

1
a2 −

u2

γ2a4

)
+ y2

(
1
b2
− v2

γ2b4

)
− 2xy uv

a2b2γ2 (F.20)

The general formula for a quadric equation can be written as:

XTAX +BX + C = 0 (F.21)

with X the position vector, A the symmetric matrix of the quadratic form, B a vector linked to the
translation, and C a scalar.

Here, A, B, and C are:

A =


1
a2 −

u2

γ2a4 − uv

a2b2γ2

− uv

a2b2γ2
1
b2
− v2

γ2b4

 ; B = (0, 0) ; C = −1. (F.22)
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APPENDIX F. ELLIPSOIDAL METEOROID IRRADIATION

Remark: the definition A01 = A10 forces the eigenvectors to be orthogonal. In addition to B = (0, 0)
and C = −1, this makes the eigenvalues of A corresponding to the squared of the inverse norm of the
semi-axes and the eigenvectors to the semi-axis directions. This can be proven with a diagonalisation of
the matrix A:

XTAX = 1
XTRDR−1X = 1 (F.23)

with D the diagonal matrix and R the matrix responsible for changes of reference frame.
Thereafter, the equation becomes:

λ1x
′2 + λ2y

′2 = 1, (F.24)

with λ1 and λ2 the eigenvalues of D and, by association, (x′, y′) a point in the new system of coordinate
defined by the transfer matrix R. This equation correspond to an oriented ellipse. Therefore, the lengths
ai of semi-axes can be associated to the eigenvalues as:

ai = 1√
λi
. (F.25)

Since the eigenvectors of A are orthogonal as for D, the transfer matrix is a simple matrix of rotation.
In addition, the semi-axes of an oriented ellipse are following the direction (1, 0) and (0, 1). These vectors
are also the eigenvectors of the matrix D since it is diagonal. Reversing the change of reference frame
with the reverse rotation matrix, the direction of the semi-axes of the original ellipse correspond to the
eigenvectors of A.

There follows, the area of the ellipse resulting of the intersection of S and Oxy is:

Area(E) = π × 1√
λ1
× 1√

λ2
= π√

Det(A)
= πabcγ

|w|
(F.26)

A |w| = 0 corresponds to a cylinder with a direction in the plane Oxy. In this case, the projection
plane can be on the planes Oxz or Oyz and will not change the final result.

This area must now be projected on the plane P . The angle θ′ between the two planes gives the
geometric cross section of the meteoroid using the formula:

σ = Area(E)× | cos(θ′)| = πabcγ, (F.27)

with σ the area of the ellipse resulting from the intersection of the cylinder S and the plane P . This
corresponds to the geometrical cross section of the ellipsoid when seen from the point of view of a cosmic
ray particle with a specific direction of propagation −→n = (u, v, w).

The previous equation is used in the algorithm developed in the CosmicTransmutation model. First,
a couple (cos(θi), φi) is generated uniformly in ([0, 1], [0, 2π[). Then, a random number r is generated in
[0, 1] and, if σ ≥ rσmax, the couple (cos(θi), φi) is kept for the generation of one cosmic ray.

The second part of the algorithm determines the impact location of the irradiation. Here, the inter-
section of P and S should be considered directly without intermediate projection. The equation of the
intersection is:

E := P ∩ S :



z =− ux+ vy

w

1 = x2
(

1
a2 + u2

c2w2 −
u2(c2 − a2)2

γ2a4c4

)
+ y2

(
1
b2

+ v2

c2w2 −
v2(c2 − b2)2

γ2b4c4

)

+ 2xy
(

uv

c2w2 −
uv(c2 − a2)(c2 − b2)

a2b2c4γ2

) (F.28)
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If w = 0, we get eq. F.19. Otherwise, a change of reference frame is implemented as: (∈ P )⇔ (Z = 0)
and X ∈ Oxy. This will lead to a two dimensional ellipse equation which will be used to determine the
semi-axes. The change of reference frame is written as:

X =− sin(φ)x+ cos(φ)y
Y =− cos(θ) cos(φ)x− cos(θ) sin(φ)y + sin(θ)z
Z = sin(θ) cos(φ)x+ sin(θ) sin(φ)y + cos(θ)z

(F.29)

and its reversion is: 
x =− sin(φ)X − cos(θ) cos(φ)Y + sin(θ) cos(φ)Z
y = cos(φ)X − cos(θ) sin(φ)Y + sin(θ) sin(φ)Z
z = sin(θ)Y + cos(θ)Z

(F.30)

The equation of the ellipse becomes:

E :



Z = 0

1 = (sin(φ)X + cos(θ) cos(φ)Y )2
(

1
a2 + u2

c2w2 −
u2(c2 − a2)2

γ2a4c4

)

+ (cos(φ)X − cos(θ) sin(φ)Y )2
(

1
b2

+ v2

c2w2 −
v2(c2 − b2)2

γ2b4c4

)

− 2(sin(φ)X + cos(θ) cos(φ)Y )(cos(φ)X − cos(θ) sin(φ)Y )
(

uv

c2w2 −
uv(c2 − a2)(c2 − b2)

a2b2c4γ2

)
(F.31)

After factorisation we have:

E :



Z = 0

1 = X2

sin2(φ)
a2 + cos2(φ)

b2
−
(

sin(θ) cos(φ) sin(φ)(b2 − a2)
γa2b2

)2


+ Y 2
(

cos2(θ)
(

cos2(φ)
a2 + sin2(φ)

b2

)
+ sin2(θ)

c2

−cos2(θ) sin2(θ)
γ2c4

(
cos2(φ)b2(c2 − a2) + sin2(φ)a2(c2 − b2)

a2b2

)2


+ 2XY
(sin(φ) cos(θ) cos(φ)

γ2a4b4

)(
(b2 − a2)a2b2(γ2 + sin2(θ)/c2)

+ sin2(θ)
[
a2b2(cos2(φ)− sin2(φ)) + sin2(φ)a4 − cos2(φ)b4

])

(F.32)

To simplify the notation, eq. F.32 is rewritten as:

E :
{
Z = 0
1 = X2AX2 + Y 2AY 2 + 2XY AXY

(F.33)

Therefore, the two dimensional symmetric matrix of the quadratic form is given by:

A =
(
AX2 AXY
AXY AY 2

)
(F.34)

The next steps have analytical solutions, which are well known, and therefore, will not be discussed
here. First, the eigenvectors −→v1 and −→v2 and eigenvalues λ′1 and λ′2 can be calculated. They give the
semi-axes in the plane P . Then, the change of the reference frame is reversed using eq. F.30.
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Next, the impact location on the ellipse E is determined. This impact location is characterised by two
parameters: Ψ, the angle with −→v1 , and r, the impact parameter. The probability density for a couple of
parameters is given by:

d2p(Ψ, r)
dΨdr ∝

√
cos2(Ψ)
λ′1

+ sin2(Ψ)
λ′2

× r = R(Ψ)× r (F.35)

with R(Ψ) as the radius of the ellipse along the axis defined by Ψ and with:{
Ψ ∈ [0, 2π[
r ∈ [0, 1[

(F.36)

Actually, both variables are independent and can be generated using the differential probabilities :

dp(Ψ)
dΨ ∝

√
cos2(Ψ)
λ′1

+ sin2(Ψ)
λ′2

= R(Ψ) (F.37)

dp(r)
dr

= 2r (F.38)

With these two formulae, the two parameters are generated easily in the CosmicTransmutation model.
The last step consists of a simple move back following the direction (u, v, w) to be sure the cosmic ray

particles are generated out of the meteoroid.
An additional constrained has been applied to the algorithm for visualisation reasons. Looking at the

symmetries of an oriented ellipsoid, the planes Oxy, Oxz, and Oyz are planes of symmetry. Then, the
couple (θ, φ) are generated in ([0, π/2[, [0, π/2[). This does not change the results of the irradiation but
the cosmic rays are generated only in directions with x, y, and z positive.
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Appendix G

Example of planet irradiation fluxes

In this appendix, some examples of the rigidity map are displayed.

G.1 Binning

In Figure G.1, I illustrate the impact of the binning of the zenith angle used in the algorithm deter-
mining the cut-off rigidity maps on the flux.

In the case not considering the funnel effect, the differences between the two curves are small. In
contrast, the case considering the funnel effect presents significant differences. Some of the bumps observed
with a binning of 10◦ are strongly reduced.

Considering the computational time, the final binning retained for the zenith angle is 5◦. The compu-
tation of the funnel effect is the longest part of the algorithm. In the case not considering the funnel effect,
the computational time is relatively short. Smaller bins would not significantly improve the description
of the cut-off rigidity map and a reduction will not result in a significant gain of time. On the other hand,
the precision obtained in the case considering the funnel effect seems correct keeping a reasonable com-
putation time with a binning of 5◦. An augmentation of the binning could remove the small unphysical
variations but the time lost is judged unreasonable considering the poor gain of precision for the final

Figure G.1: Comparison of the flux as a function of the rigidity for two different zenith angle binning
in the cases considering or not the funnel effect in the same configuration that Figure VII.4.
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results. Moreover, the known biases of the algorithm related to the binning makes the improvements
meaningless.

G.2 Variation with the latitude

Magnetic fields around planets are various. Moreover, the perception of these magnetic fields highly
depends on the location at the surface of the planet. Therefore, when a map of the allowed trajectories
is drawn for a specific location (see subsection VII.5.3), this map is not likely to be representative for the
other locations elsewhere on the same planet.

Here are plotted some example of cut-off maps for different latitudes.
The geometry used for the following figures is inspired by the Earth’s characteristics. It is a spherical

planet with a radius of 6378 km and an atmosphere 70 km thick. The magnetic field is a simple dipole
with an intensity of 30.2 µT at the top of the atmosphere.

Figure G.2: Comparison of the cut-off maps for latitude 0◦. Upper panel: map without considering the
funnel effect. Lower panel: map considering the funnel effect.
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G.2. VARIATION WITH THE LATITUDE

Figure G.3: Same as Figure G.2 for latitude 30◦
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Figure G.4: Same as Figure G.2 for latitude 60◦
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G.2. VARIATION WITH THE LATITUDE

Figure G.5: Same as Figure G.2 for latitude 90◦
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