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Abstract

The current properties of small bodies provide important clues to their origin

and history. However, how much small bodies were processed by past colli-

sions and to what extent they retain a record of processes that took place

during the formation and early evolution of the Solar System is still poorly

understood. Here we study the degree of collisional heating and compaction

by analysing the large set of previous simulations of small body break-ups

by Jutzi et al. (2019), which used porous targets of 50 - 400 km in diameter

and investigated a large range of impact velocities, angles as well as energies.

We find that the degree of impact processing is generally larger than found

in previous studies which considered smaller objects (e.g. Jutzi et al., 2017;

Schwartz et al., 2018). However, there is a clear dichotomy in terms of impact

processing: the escaping material always experiences stronger heating than

the material bound to the largest remnant. Assuming they originate from

the same parent body, some of the observed differences between the recently
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visited asteroids Ryugu and Bennu may be explained by a different location

of the material eventually forming these asteroids in the original parent body.

Our results also provide constraints on the initial size of cometary nuclei.

Keywords: Asteroids, collisions, Collisional physics
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1. Introduction

The various objects composing the different small body populations, such

as asteroids and comets, are the results of a billion-year-long collisional evolu-

tion of varying intensity. Their current properties provide important clues to

their origin and history, and therefore represent a window to the early stages

of the formation of the Solar System. Most asteroids smaller than about 50

km in diameter are the result of a break-up of a larger parent body (Bottke

et al., 2005). They have been modified by subsequent collisions and their

shapes, interior structure and spin state are determined to a large degree by

the last major (global scale) impact event. Collisional processes - ranging

from low-velocity mergers to catastrophic disruptions - have been proposed

to also play an important role in the evolution of Kuiper Belt Objects and

cometary nuclei (e.g. Durda and Stern, 2000; Morbidelli and Rickman, 2015),

although they are generally less frequent and less intensive than collisions be-

tween asteroids.

Important questions related to collisions are: at which level were small

bodies processed by past collisions and to what extent do they retain a

record of processes that took place during the formation and early evolu-

tion of the Solar System? By analysing the degree of material processing

(e.g. heating and compaction) during impacts, constraints for the origin and

evolution of the small body populations as a whole as well as of individual

objects - such as the recently visited asteroids Ryugu and Bennu or comet

67P/ChuryumovGerasimenko - can be determined. Here, we perform such

an analysis from a large data set of small body collisions produced in a previ-

ous study in which the focus was on the size and ejection speed distributions
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of resulting fragments (Jutzi et al., 2019), and not on thermodynamical and

physical state aspects.

Previous studies of impact heating in small body collisions (e.g. Davison

et al., 2010, 2013; Ciesla et al., 2013) have considered a limited range of con-

ditions, mainly focusing on head-on impacts. The effect of impact obliquity

was studied by Davison et al. (2014). However, these studies did not distin-

guish between heated material bound to the largest remnant and the heated

material which is escaping the system. Recently, Wakita and Genda (2019)

performed head-on impacts onto non-porous objects to specifically investi-

gate the fate of hydrous materials. The simulations of small body break-ups

by Jutzi et al. (2019), which are analysed here, used porous targets of 50 -

400 km in diameter and investigated a large range of impact velocities, angles

and energies. We investigate the heating and compaction produced in these

impacts and study how much processed material is retained (i.e., is bound

to the largest remnant).

In a recent study by Schwartz et al. (2018), it was found that not much

heating or compaction occurs during the disruption of comets of 10 km in

size, except for the small ejecta that do not contribute to the reaccumulation

process producing the hierarchy of aggregates composing the main fragment

distribution. Analysing the degree of material processing for bodies of 50 -

400 km in size allows us to understand how such a processing depends on scale

and to apply it to small comet formation as well as to the formation of aster-

oid families whose parent bodies were in this size range, with implications for

their physical properties. For instance, the NASA mission OSIRIS-REx and

the JAXA mission Hayabusa2 both found that their asteroid targets, Bennu

4



and Ryugu, have an hydration band, which is much deeper for Bennu than

for Ryugu (Hamilton et al., 2019; Kitazato et al., 2019). It is thought that

they come from asteroid families whose parent body is in the 100 km size

range (Walsh et al., 2013). When such an asteroid family is created, does

the material experience enough heating that any original hydrous material

would be lost? Answering this question puts important constraints on the

origin and evolution of small hydrated asteroids. In the context of comet

formation, the analysis of heating and compaction in break-ups of 50 - 400

km objects allows us to address the question whether or not comets were

born big (Youdin and Goodman, 2005; Johansen et al., 2007; Cuzzi et al.,

2010; Morbidelli et al., 2009)), and what is their maximal initial size. Can

small comets such as 67P originate from the disruption of such large bodies,

or must they come from smaller ones that experience less heating as found

in previous studies (Jutzi and Benz, 2017; Schwartz et al., 2018)?

Here we concentrate on the processing of 1) material that remains bound

to the largest remnant of a collisional disruption and 2) all the escaping ma-

terial. In a future study, we will analyze the formation of aggregates and

the fraction of heated and compacted material in these aggregates using a

N-body code as in Schwartz et al. (2018). This will allow for a more com-

plete understanding of how heated and compacted materials are distributed

in the whole set of fragments (reaccumulated and escaping ones) produced

by a large disruption. The possible modification of the interiors by early

thermal evolution is investigated in a separate study (Golabek and Jutzi, in

preparation).

In Sec. 2, we outline our modeling approach and in Sec. 3, we present
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the results of our analyses of the whole set of impact simulations covering a

wide range of impact energies and angles. The implications of the results are

discussed in Section 4.

2. Model approach

The numerical scheme that was used to produce the data set of simula-

tions that is analysed here is described in detail in paper I (Jutzi et al., 2019).

Here we provide a short summary of our collision modeling and present our

approach to calculate the degree of heating and compaction in the largest

collisional remnant and the escaping fragments.

2.1. Collision modeling

To model an asteroid disruption and subsequent reaccumulations, Jutzi

et al. (2019) used an SPH / N-body approach as introduced by Michel et al.

(2001, 2003). The early phases of the collisions were simulated using an SPH

impact code (Benz and Asphaug, 1994, 1995; Nyffeler, 2004; Jutzi et al., 2008;

Jutzi, 2015) that includes self-gravity as well as material models including

strength, friction and porosity. The N-body code pkdgrav was then used to

compute the dynamical evolution of the system to late time.

Jutzi et al. (2019) used porous parent bodies with a nominal diameter of

D = 100 km. To study the scale-dependence of the results, they additionally

investigated D = 50, 150 and 400 km targets. For the D = 100 km objects,

the same matrix of impact conditions as used in Durda et al. (2007) and

Benavidez et al. (2012) was explored covering a wide range of impact speeds
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(from 3 to 7 km/s), impact angles (from 15◦ to 75◦ with 15◦ increments)1

and impactor diameters, allowing a comparison with those two studies. In

these studies, reaccumulating N-body particles were simply merged, as the

main focus was on the fragment size and ejection speed distributions. The

resulting shapes, the compaction of material and the distribution of heat

were not investigated.

Here we focus on the degree of heating and compaction produced by the

impact, which are all part of the outcome of the SPH simulations. In our

analysis, we distinguish between the largest remnant and material not bound

to this remnant. The properties of the individual smaller fragments will be

investigated in a future study.

2.2. Determination of largest remnant and unbound fragments

We analyse the simulation data obtained by Jutzi et al. (2019) in a post-

processing step in terms of heating and compaction of the largest remnant

and the escaping fragments. The simulations performed in Jutzi et al. (2019)

did not track the particle IDs in the N-body calculations, which would be

required to follow the individual history of the fragments. Therefore, we

compute the mass of the largest remnant Mlr and the corresponding mass of

the unbound fragments Mf at the end of the impact phase using an iterative

energy balance approach (Benz and Asphaug, 1999; Jutzi et al., 2010). This

approach was demonstrated in previous studies to be consistent with the

1We note that for a random impact in 3 dimensions, the probability function dP for

the impact angle θ is given by dP = sin(2θ)dθ, giving a maximum probability of impact

at θ = 45◦. For a discussion of quasi 2-dimensional systems (e.g. flat disks), see Leleu

et al. (2018)
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outcome of N-body simulations of the gravitational phase, as long as Mlr

is larger than a few 10% (Jutzi et al., 2010) of the total mass. We apply

this scheme to the simulations with specific impact energies Q smaller than

2 times the catastrophic disruption threshold Q∗
D. For the small subset of

simulations which have higher energies, we do not distinguish between largest

remnant and smaller fragments.

2.3. Heating analysis

The shock physics code calculations of the collisions were performed in

Jutzi et al. (2019) using the relatively simple Tillotson equation of state which

does not allow for a direct computation of a thermodynamically consistent

temperature. However, we can still approximately compute the temperature

increase dT caused by an impact by analysing the increase in specific internal

energy. As shown recently, this approach leads to temperatures comparable

to the ones computed via the more sophisticated ANEOS equation of state,

as long as vaporisation is negligible (Emsenhuber et al., 2018). In Schwartz

et al. (2018), it was assumed that the heat capacity is constant, while in

reality it depends on temperature. To improve the realism, here we use a

temperature dependent heat capacity to compute the temperature increase

for rocky as well as cometary-like materials:

T = T0 + ∆ui/c(T ) (1)

where T0 is the initial temperature, ∆ui the increase in specific energy and

c(T ) the heat capacity. We then take into account the temperature depen-
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dence of the heat capacity by using the simple relation:

c(T ) = b+ aT (2)

defined by the parameters a and b. Using the equations (1) and (2) we obtain

the following relation for the temperature as a function of specific internal

energy:

T = T0 +
∆ui
c(∆ui)

(3)

with

c(∆ui) =
1

2
T0a+

1

2
b+

1

2

√
T 2
0 a

2 + 2T0ab+ b2 + 4∆uia (4)

For rocky asteroids, we compute crock = c(∆ui) with a = 2.5 and b =

0, which provides a rough approximation to laboratory measurements of the

heat capacity of forsterite at temperatures below 400 K (Robie et al., 1982).

These parameters, together with T0 = 50 K, result in crock = 1000 J/(kg K)

at T = 400 K (corresponding to ∆ui = 3.5 105 J/kg). For T > 400 K, we

use a constant crock = 1000 J/(kg K).

For our analysis of cometary-like material we use a weight-averaged heat

capacity (Davidsson et al., 2016):

cmix = frockcrock + ficecice (5)

where fice = 1 − frock, frock = mr,rock−ice/(1 + mr,rock−ice) and we assume a

rock-to-ice mass ratio of mr,rock−ice = 2. The heat capacity of water ice cice is

computed using the parameters a = 7.49, b = 90 Ws/kg/K (Klinger, 1981).

In this analysis we also compute the mass fraction of sublimated water-ice

for T > 180 K as

f = (∆ui − ucrit)/uvap (6)
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where ucrit = 188 kJ/kg is the specific energy at T = 180 K (using T0 = 50

K) and uvap = 3000 kJ/kg is the heat of vaporization (Ahrens and O’Keefe,

1984).

2.4. Compaction

In the collision calculations by Jutzi et al. (2019), porosity was modeled

using a sub-resolution approach based on the P-alpha model (Jutzi et al.,

2008). The material properties (crush-curve) of the porous target used in

this study were those that provided the best match to impact experiments

on pumice targets (Jutzi et al., 2009). The porosity model takes into account

the enhanced dissipation of energy during compaction of porous materials.

In order to compute the degree of compaction caused by the collision, we

consider the relative change of porosity, defined as

p0 − p

p0
=

α0 − α

α(α0 − 1)
(7)

where p0 = 1 − 1/α0 is the initial porosity, p = 1 − 1/α is the post-impact

porosity, and α0 and α are the initial and post-impact distention, respectively.

For full compaction, (p0 − p)/p0 = 1 while in the case of no compaction,

(p0 − p)/p0 = 0.

3. Results

3.1. Impact heating of rocky material

The degree of impact heating of rocky material computed according to

Eq. (3) is shown in Fig. 1 for D = 100 km targets as a function of the

normalized specific impact energy for three different impact velocities and two
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impact angles (15◦ and 45◦). For this computation we use the post-impact

state of the largest remnant and the unbound material, 400 s after the impact,

i.e. when the shock wave has long passed (see section 3.1.1). The temperature

increase is computed via Eq. (3) using crock. Also displayed by the black and

gray curves are the mass fraction of the largest remnant Mlr/Mtot, the mass

fraction of the escaping material Mesc/Mtot = 1 −Mlr/Mtot as well as the

fraction of thermal energy contained in the largest remnant and the ejected

material, respectively.

We find that the fraction of thermal energy in the largest remnant is al-

ways (much) smaller than the mass fraction of the largest remnant, while

for the escaping material it is the opposite. In other words, there is a clear

dichotomy in terms of impact processing: the escaping material always expe-

riences stronger heating than the material bound to the largest remnant. It

is worth pointing out that this is not only the case for small ratios of Q/Q∗D
(cratering regime), but also in catastrophic or super-catastrophic collisions,

where more than half of the initial mass is dispersed. As can be seen in

Fig. 1, the differences are larger for more oblique impact angles.

Interestingly, for a given impact angle and velocity, the temperature in-

crease experienced by the escaping material is roughly constant, as larger

projectiles heat a larger region of the target, but at the same time eject a

larger amount of target material. The heating of the bound material (largest

remnant) increases with increasing impact energy, but is less than the heat-

ing of the escaping material. For the bound material, there is a maximum

heating (which depends on impact angle and velocity) because the relative

fraction of thermal heat contained in the largest remnant decreases faster
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with impact energy than its relative mass fraction (gray vs. black lines with

filled symbols in Fig. 1). In other words, a larger fraction of heated material

escapes at high impact energies. We also compute the mass fractions expe-

riencing a specific temperature increase of dT > 400 K for a range of impact

parameters (Fig. 2 and 3), which confirms these observations.

3.1.1. Convergence tests

To quantify the dependence of our results on numerical parameters, the

degree of impact heating and the mass of largest remnant are shown in Fig. 4

as a function of numerical resolution for the case with 45◦ impact angle and

velocity of 3 km/s using different projectile sizes and corresponding specific

impact energies.

The dependence of the results on the time of the analysis is shown in

Fig. 5.

Overall, there is a reasonable convergence of the investigated quantities,

especially given the potentially much larger effects of material properties,

impact geometries, target structures and shapes, etc.

3.2. Compaction

The degree of compaction (Fig. 6) shows very similar characteristics as the

degree of heating. The escaping material experiences a relatively high degree

of compaction, independent of the impact energy, while the compaction of

the bound material increases with increasing impact energy, but is much less

significant. Figure 7 shows the mass fraction of material compacted by more

than 50% for specific cases. What is not taken into account in this analysis

is the addition of macro-porosity by the reaccumulation process, which can
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again increase the overall porosity (as studied in Jutzi and Benz (2017)).

3.3. Impact heating of cometary-like material

We also compute the temperature increase that a cometary-like material

would experience due to impacts. To do this we use the heat capacity for a

rock-ice mixture as defined in Eq. (5). Figure 8 shows the mass fractions of

material heated by dT > 80 K for the cases with 3 km/s impact velocity and

varying impact angles.

Most of the simulations in Jutzi et al. (2019) were performed using D =

100 km targets. However, a subset of impact parameters were studied using

a range of targets sizes (50 - 400 km). These runs are used here to investigate

the size dependence of the degree of heating and compaction. The results

are summarised in Table 4.2 and displayed in Figs. 9 and 10.

The mass fraction of sublimated water-ice computed according to Eq. (6)

is shown in Fig. 11. Except in the cases of the most energetic, super-

catastrophic collisions, the impacts cause only little vaporization.

4. Discussion and perspectives

The results of our analysis of compaction and heating effects in collisional

break-ups of 50 - 400 km sized bodies have important implications regarding

the formation (initial size) and evolution of small solar system bodies.

4.1. Constraints for the formation of asteroids Ryugu and Bennu

The asteroids Rygu and Bennu have been suggested to have originated

from the Polana/Eulalia family forming events (Walsh et al., 2013; Sugita

et al., 2019). With parent body sizes in the range of D = 100 km, the
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masses of these subkm-sized objects are only ∼ 10−6 of the parent body

mass. Current hybrid SPH–N-body simulations can therefore not properly

resolve explicitly the formation of such small fragments (reaccumulated rub-

ble piles), as they would only be represented by only 1-10 SPH particles in

the original D ∼ 100 km parent body. However, our results (Fig. 2 and 3)

suggest that the different degree of hydration observed on Ruygu and Bennu

(Sugita et al., 2019; Lauretta et al., 2019) does not necessarily mean that

they come from different parent bodies, or that they experienced different

degrees of dehydration after their formation, due for instance to their dif-

ferent perihelion histories. It could rather be due to the different degree

of heating of the material that reaccumulated to form both of them in a

single disruption event. In effect, depending on impact velocity and angle,

up to 20% of unbound material is heated > 400 K (i.e., Ryugu could have

been reaccumulated from this material), while the rest is heated less (i.e.

this could be Bennu forming material). We note that given the small size

of Ryugu and Bennu compared to the parent body, they are likely sourced

from localized regions, which would be consistent with the uniform degree of

hydration suggested by the spectral observations.

A more detailed analysis investigating the degree of heating in individual

fragments and a discussion in the context of the formation of Ryugu and

Bennu, including their shape, is presented in Michel et al. (2020).

4.2. Contraints for the formation of comeatry nuclei

Previous studies (e.g. Jutzi and Benz, 2017; Jutzi et al., 2017; Schwartz

et al., 2018) found that at small < 10 km scales, even catastrophic disruptions

do not cause significant heating of the largest fragments. The collisions be-
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tween ∼ 100 km sized objects analysed here take place at significantly larger

scales. Because of the size-dependence of the catastrophic disruption energy,

there is significantly increased heating (as Q∗
D strongly increases with in-

creasing size). According to the scaling law Q∗
D = aR3µV 2−3µ using µ = 0.42

(Jutzi et al., 2017) and a constant velocity, Q∗
D,R=50km/Q

∗
D,R=3.5km ∼ 30, we

can expect an overall increase of heating (compared to Schwartz et al. (2018))

by the same factor. Indeed, our results (e.g., Fig. 8) show significantly more

heating than found by Schwartz et al. (2018) at smaller scales for comparable

impact velocities (up to 1 km/s) and impact angles2. However, as discussed

above, there is also a clear dichotomy in the degree of heating between the

bound and unbound material.

For instance in the case of a 3 km/s impact with 45◦ angle and Q/Q∗
D ∼

1.1, we find that ∼ 4% of the bound material experiences a temperature

increase dT > 80 K (i.e., 96% is heated by less than 80 K). On the other hand,

around 60% of the unbound material experiences a temperature increase

dT > 80 K. For less disruptive impacts in the cratering regime with Q/Q∗
D ∼

0.01, we find that only ∼ 1% of the bound material experiences a temperature

increase dT > 80 K, while still ∼ 40% of unbound material has dT > 80 K.

The analysis of the size dependence of these processes in collisional dis-

ruptions (Fig. 9 and 10 ; Table 4.2) indicates that for bodies smaller than

about R = 25 km, the heating as well as the compaction of the bound ma-

terial become negligible. This may suggest that the maximal initial size of

cometary nuclei - assuming that comets were born big - must have been in

2We note that Schwartz et al. (2018) used the same impact code, but slightly different

material parameters, such as a lower density and crushing pressures.
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this size range, in order for small comets resulting from the disruption of

these bodies to keep their primitive properties.

However, the distribution of heat as a function of fragment size will require

a more detailed analysis, following explicitly the evolution of the unbound

material with a N-body code, as done by Schwartz et al. (2018) and Michel

et al. (2020), which will be performed more generally in a subsequent study.

Another important aspect is the possible modification of the comet pre-

cursors’ interiors by early thermal evolution (Golabek and Jutzi, in prepara-

tion).

The complete understanding of small body heating needs to account for

many aspects, and our study on impact heating and compaction, indicat-

ing in which case such processes are expected, provides direction for future

investigations.
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R (km) State Q/Q∗
D f>80K f>50%

25 bound 1.08E-02 4.43E-03 4.81E-03

25 bound 2.76E+00 1.00E-04 5.76E-03

25 unbound 1.08E-02 2.50E-01 2.29E-01

25 unbound 2.76E+00 4.19E-01 5.83E-01

50 bound 4.21E-03 5.11E-03 5.59E-03

50 bound 1.09E-02 1.12E-02 1.52E-02

50 bound 2.77E-02 2.12E-02 3.32E-02

50 bound 6.95E-02 3.53E-02 6.19E-02

50 bound 1.74E-01 4.75E-02 9.34E-02

50 bound 4.41E-01 4.82E-02 1.14E-01

50 bound 1.11E+00 3.83E-02 1.20E-01

50 unbound 4.21E-03 4.23E-01 3.34E-01

50 unbound 1.09E-02 4.32E-01 4.65E-01

50 unbound 2.77E-02 5.07E-01 5.82E-01

50 unbound 6.95E-02 5.43E-01 6.52E-01

50 unbound 1.74E-01 5.68E-01 7.04E-01

50 unbound 4.41E-01 5.79E-01 7.40E-01

50 unbound 1.11E+00 6.10E-01 7.88E-01

100 bound 1.74E-03 5.73E-03 6.34E-03

100 bound 4.43E-01 1.46E-01 2.96E-01

100 unbound 1.74E-03 6.79E-01 4.76E-01

100 unbound 4.43E-01 8.09E-01 9.27E-01

200 bound 6.95E-04 5.70E-03 3.38E-01

200 bound 1.77E-01 2.25E-01 6.81E-01

200 unbound 6.95E-04 9.88E-01 7.33E-01

200 unbound 1.77E-01 8.84E-01 9.82E-01

Table 1: Fraction f of material heated by dT > 80 K (using cometary-like properties)

and compacted by > 50% as a function of normalized impact energy Q/Q∗
D. The data

corresponds to the simulations with a 45◦ impact angle, a velocity of 3 km/s and varying

target radii R.
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Figure 1: Degree of heating in simulations using D = 100 km targets, various impact

angles (15◦ and 45◦) and velocities (3, 5, 7 km/s). In each case the mass fraction of

material heated above a certain temperature for bound material (left column), all material

(middle column) and escaping fragments (right column) is shown. The left and right

columns are slightly shifted for a better visualisation. The x-axis corresponds to the

specific impact energy Q normalised by the catastrophic disruption threshold Q∗
D (which

is computed based on the data by Jutzi et al. (2019) for each combination of impact angle

and velocity). For Q/Q∗
D > 2, only the middle column is shown. The black line with filled

symbols indicates the mass fraction of the largest remnant, while the black line with open

symbols corresponds to the mass fraction of the escaping material. The gray lines show

the corresponding fraction of thermal heat (filled symbols: contained in largest remnant;

open symbols: contained in escaping material).
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Figure 2: Fraction of material heated by dT > 400 K. Shown are the simulations with 45◦

impact angle and velocities of 3, 5 and 7 km/s. The gray lines show the relative sizes of

the largest remnants.

25



 0.001

 0.01

 0.1

 1

 0.01  0.1  1

M
as

s 
fr

ac
tio

n 
he

at
ed

 >
 4

00
 K

Impact energy Q/Q*
D

15 deg, bound
unbound
30 deg, bound
unbound
45 deg, bound
unbound
60 deg, bound
unbound

Figure 3: Fraction of material heated by dT > 400 K. Shown are the simulations with

varying impact angles and a velocity 5 km/s. The gray lines show the relative sizes of the

largest remnants.
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Figure 4: Fraction of unbound material heated by dT > 400 K and relative size of largest

remnant (Mlr). Shown are the simulations with 45◦ impact angle and velocity of 3 km/s as

a function of impact energy, using different numerical resolutions: 100 k, 400 k (nominal)

and 1000 k SPH particles.
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Figure 5: Fraction of material heated by dT > 400 K. Shown is the simulation with a

45◦ impact angle, a velocity of 3 km/s and a projectile radius of 13.4 km, using different

times for the computation of the largest remnant and the degree of heating of the unbound

material.
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Figure 6: Same as Figure 1, but shown is the mass fraction of material compacted by a

certain percentage (1: fully compacted; 0: no compaction).
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Figure 7: Fraction of material compacted by more than 50%. Shown are simulations with

various impact angles and a velocity of 3 km/s.
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Figure 8: Fraction of material heated by dT > 80 K using cometary-like properties. Shown

are simulations with various impact angles and a velocity of 3 km/s.
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Figure 9: Fraction of material heated by dT > 80 K using cometary-like properties. Shown

are the simulations with a 45◦ impact angle, a velocity of 3 km/s and varying target sizes.

32



 0.001

 0.01

 0.1

 1

 0.001  0.01  0.1  1

M
as

s 
fr

ac
tio

n 
co

m
pa

ct
ed

 >
 5

0 
%

Impact energy Q/Q*
D

r = 25 km, bound
unbound
r = 50 km, bound
unbound
r = 100 km, bound
unbound
r = 200 km, bound
unbound

Figure 10: Fraction of material compacted by more than 50%. Shown are the simulations

with 45◦ impact angle, a velocity of 3 km/s and varying target sizes.
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Figure 11: Same as Figure 1, but shown is the fraction of material (assuming cometary-

like properties) with an ice vaporization fraction larger than a certain percentage (1: fully

vaporized; 0: no vaporization).
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