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Background: Network meta-analysis (NMA) produces complex outputs as

many comparisons between interventions are of interest. The estimated rela-

tive treatment effects are usually displayed in a forest plot or in a league table

and several ranking metrics are calculated and presented.

Methods: In this article, we estimate relative treatment effects of each competing

treatment against a fictional treatment of average performance using the “deviation
from the means” coding that has been used to parametrize categorical covariates in

regression models. We then use this alternative parametrization of the NMA model

to present a ranking metric (PreTA: Preferable Than Average) interpreted as the prob-

ability that a treatment is better than a fictional treatment of average performance.

Results: We illustrate the alternative parametrization of the NMA model using

two networks of interventions, a network of 18 antidepressants for acute depres-

sion and a network of four interventions for heavy menstrual bleeding. We also

use these two networks to highlight differences among PreTA and existing rank-

ing metrics. We further examine the agreement between PreTA and existing

ranking metrics in 232 networks of interventions and conclude that their agree-

ment depends on the precision with which relative effects are estimated.

Conclusions: A forest plot with NMA relative treatment effects using “deviation
from means” coding could complement presentation of NMA results in large net-

works and in absence of an obvious reference treatment. PreTA is a viable alterna-

tive to existing probabilistic ranking metrics that naturally incorporates uncertainty.
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1 | INTRODUCTION

The output that necessarily needs to be presented in a
network meta-analysis (NMA) is a set of relative

treatment effects between all competing treatments.1,2

Such an output answers the primary question of NMA: to
compare the performance of “all versus all” alternative
treatment options for a healthcare condition. This output
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may be given in a forest plot against a common reference
treatment or in a league table, where the names of the
treatments are presented in the diagonal and each cell
contains the relative treatment effect.3 Such a table
allows the simultaneous presentation of two outcomes, or
of the results from pairwise and network meta-analysis,
below and above the diagonal. Additionally, by-products
of relative treatment effects are often presented as rank-
ing metrics of the included treatments. Results from
NMA are often used to inform health-care decision-mak-
ing4,5 and ranking metrics constitute an attempt to pre-
sent such results in a coherent and understandable way.

Several ranking metrics have been proposed to pre-
sent NMA results, each one answering a different ques-
tion. Ranking probabilities of each treatment being at
each possible rank are calculated using simulation or
resampling techniques either in a Bayesian or in a
frequentist framework. Other ranking metrics include
the surface under the cumulative ranking curve
(SUCRA), that averages across all ranking probabilities
for each treatment, and its frequentist analogue, P-score,
which is calculated analytically.6,7 SUCRA and P-score
can be interpreted as the mean extent of certainty that a
treatment is better than all the other treatments. As
authors of6 point out, however, “it is impossible to tell
what constitutes a modest or large difference in SUCRA
between two treatments, either statistically or clinically”.

In this paper, we present an alternative parametriza-
tion of the NMA model and we use it to develop a proba-
bilistic ranking metric that naturally incorporates
uncertainty and is a viable alternative to existing ranking
metrics. In section 2, we re-parametrize the NMA model
to derive treatment effects against a fictional treatment of
average performance using the deviation of means coding
that has been used to parametrize categorical covariates
in regression models.8 In section 3, we use the derived
treatment effects to compute the probability of each treat-
ment being better than the “average” treatment. This
ranking metric aids the interpretation of NMA results in
classifying treatments as superior, equivalent and inferior
to an imaginary 'average' treatment.

2 | REPARAMETRIZATION OF
THE NMA MODEL

2.1 | Deviation from means coding in
regression models

We start with a short description of the deviation from
means coding in regression models as described by
Hosmer and Lemeshow.8 This is an alternative

parametrization to the most common “reference cell cod-
ing” in order to avoid the use of a reference level.
According to the reference cell coding, a categorical inde-
pendent variable with C categories is expressed through
C − 1 dummy/indicator variables.

Consider, for example, that we aim to estimate the
effect of a covariate with four groups on the probability
of an event. We fit a logistic regression model

g p xð Þð Þ= γ0 + γ1x1 + γ2x2 + γ3x3

where x = (x1, x2, x3)0 are the dummy variables for the
covariate and g(p(x)) is the logit link function with p(x)
indicating the probability of event. According to the ref-
erence cell coding, the indicator variables are parame-
trized as shown in Table 1 and result into estimating
logarithms of the relative odds ratios (logOR) between
the categories represented by the values 0 and 1 in these
indicator variables.

According to the alternative deviation from means
coding, the indicator variables express effects as devia-
tions between each category mean (here the logit of the
outcome in that category) from the overall (grand) mean
(here the average logit outcome over all categories) as
shown in Table 1. The model results in estimating the
coefficients, interpreted as the relative effects among
groups vs the average effect across all groups. Note that
the exponential of the coefficients are not odds ratios
because in the denominator is the average odds that
includes the odds of the numerator. For further informa-
tion and examples on the deviation from means cod-
ing, see.8

2.2 | Notation for the NMA model

In this section, we introduce some general notation for
the NMA model. Let the entire evidence base consist of
i = 1, …, n studies forming a set of treatments, denoted as
k = 1, …, K. The number of treatments in study i is den-
oted as Ki. Index j denotes a treatment contrast. A core
assumption in NMA is that of transitivity, which implies
that in a network of K treatments, and subsequently
K

2

� �
possible relative treatment effects, only K− 1 need

to be estimated and the rest are derived as linear combi-
nations of those.9,10 The target parameter is therefore a
vector μ of K− 1 relative treatment effects μ2, μ3, … μK,
called the vector of basic parameters.11,12

With arm-level data, we can model arm level parame-
ters, for example the event probability for a binary
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outcome, in study i and treatment arm k denoted as
yik(13). A link function g(yik) maps the parameters of
interest onto a scale ranging from minus to plus infinity
and ui are the trial-specific baselines. For an overview of
commonly used link functions in meta-analysis see.13 All
arm-level parameters yik across studies are collected in a

vector ya of length
Pn
i=1

Ki , where superscript a stands for

'arm-level'.

With contrast-level data we model trial specific sum-
maries, for example logOR, log risk ratio, mean differ-
ence or standardized mean difference.14 Let yij be the
observed effect size for treatment contrast j in study i.
The vector of the estimated contrasts across all studies is

denoted as yc and is of length
Pn
i=1

Ki−1ð Þ. The superscript
c indicates the fact that “contrast-level” data are modeled.

We will first describe the arm-level (section 2.3) and
then the contrast-level (section 2.4) NMA models using
reference cell coding and the equivalent alternative devi-
ation from the means parametrization, which allows esti-
mation of all treatments vs a fictional treatment of
average performance. Sections 2.3 and 2.4 can be read
independently, that is, the reader can skip one of the two
sections. Alternatively, the reader already familiar with the
NMA models that use reference cell coding can skip 2.3.1
and 2.4.1. Table 2 can be used as a reference to the four
forms of the NMA model (arm-level and contrast level with
reference cell and deviation from the means coding), in
case parts of the remainder of section 2 are skipped.

We will exemplify the models using a hypothetical
network of three treatments, A, B and C examined in
four studies, one comparing A and B, one comparing A
and C, one comparing B and C and one three-arm study
comparing treatments A, B and C. The target vector of
basic parameters is usually taken to include the relative
effects of all treatments vs an arbitrary reference, here

treatment A, and hence is μ=
μAB
μAC

� �
. The transitivity

assumption implies consistency between relative treat-
ment effects; in particular, it holds that

μBC = μAC−μAB

2.3 | NMA with arm-level data

2.3.1 | Reference cell coding

The model for study 1, comparing treatments A and B
is shown in Table 2; δ1,AB denotes the random effect of
study 1 for the comparison AB and τ2 denotes hetero-
geneity. It is customary to assume that heterogeneity
is common across comparisons. The model is straight-
forwardly generalized for the other three studies
(Table 2).

In its general form, the NMA model using arm-based
analysis can be written as

g yað Þ=Zu+Xaμ+Wδ ð1Þ

where u is the vector of baselines ui of length n,
which can be assumed to be either fixed and unrelated to
each other, or exchangeable drawn from a normal distri-
bution.15 We assume fixed and unrelated baseline effects
for the remainder of this paper. Vector δ includes the
study random effects δi,j and follows the multivariate nor-
mal distribution

δ ~N 0,Σð Þ

Matrix Σ is a block-diagonal between-study variance-

covariance matrix of dimensions
Pn
i=1

Ki−1ð Þ
� �

×
Pn
i=1

Ki−1ð Þ
� �

. The matrices Z,Xa,W are design

TABLE 1 Illustration of

construction of dummy variables for

modelling a categorical variable with

four groups in regression using

reference cell coding and deviation

from means coding

Reference cell coding Deviation from means coding

Dummy variables Dummy variables

Covariate x1 x2 x3 Covariate x1 x2 x3

Group 1 0 0 0 Group 1 −1 -1 -1

Group 2 1 0 0 Group 2 1 0 0

Group 3 0 1 0 Group 3 0 1 0

Group 4 0 0 1 Group 4 0 0 1

Average* 0 0 0
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matrices linking the vector of baselines, basic parameters
and random effects respectively with g(ya). The construction
of these design matrices depends on the modeled arm-level
parameters yik and is exemplified in the following example.

For the example of Table 2, Equation 1 takes the form

g y1Að Þ
g y1Bð Þ
g y2Að Þ
g y2Cð Þ
g y3Bð Þ
g y3Cð Þ
g y4Að Þ
g y4Bð Þ
g y4Cð Þ

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

=

1 0 0 0

1 0 0 0

0 1 0 0

0 1 0 0

0 0 1 0

0 0 1 0

0 0 0 1

0 0 0 1

0 0 0 1

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

u1
u2
u3
u4

0
BBB@

1
CCCA+

0 0

1 0

0 0

0 1

0 0

−1 1

0 0

1 0

0 1

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

μAB
μAC

� �

+

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 1

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

δ1,AB

δ2,AC

δ3,BC

δ4,AB

δ4,AC

0
BBBBBB@

1
CCCCCCA

with

δ1,AB

δ2,AC

δ3,BC

δ4,AB

δ4,AC

0
BBBBBB@

1
CCCCCCA

~N

0

0

0

0

0

0
BBBBBB@

1
CCCCCCA
,

τ2 0 0 0 0

0 τ2 0 0 0

0 0 τ2 0 0

0 0 0 τ2 τ2=2

0 0 0 τ2=2 τ2

0
BBBBBB@

1
CCCCCCA

0
BBBBBB@

1
CCCCCCA

Matrix Xa indicates which elements of μ are estimated
by each g(yik). It contains one row per study arm and one
column per basic parameter. The first row corresponds to
treatment arm A of the first study taking the value 0 both
for μAB and μAC. The second row indicates that μAB is esti-
mated in treatment arm B of the first study. Similarly, the
construction of the next rows of Xa, as well as that of Z and
W, is implied by the arm-level data included in each study
and the subsequent elements of μ to be estimated (Table 2).

2.3.2 | Deviation from means coding

The above model in Equation 1 can be modified using
the deviation from means coding.8 The model will be

parametrized in such a way to estimate the effects of
each treatment vs the “average” treatment. The target
parameter of this model is a vector b that includes
K − 1 parameters bk with k = 2, …, K, which are the
effects of treatment k vs the average effect over all
treatments. One of the treatments—here treatment
1—is arbitrarily chosen to be excluded for
identifiability. Results do not depend on the choice of
this “reference” treatment.

For the deviation from means coding, the model
will be

g yað Þ=Zu+Xa*
b+Wδ ð2Þ

with Xa*
denoting the modified design matrix. The

matrices Z and W remain unchanged. The new design
matrix Xa*

will take values −1 for the arbitrarily chosen
treatment that is not included in vector b; all other
entries in the matrix are as in Xa.

Consider the example of Table 1 and the first two

rows of the Xa matrix,
0 0

1 0

� �
, corresponding to the

first study. According to the deviation from means coding
as illustrated in Table 1, we chose a treatment (here treat-

ment A) for which Xa*
will take −1 for both dummy vari-

ables (both columns of the design matrix) and the group
corresponding to treatment B takes 1 and 0 for the two
columns of the design matrix, as in Xa. Thus, the
respective part of the new design matrix will be
−1 −1

1 0

� �
. The model for study 1 with the alternative

parametrization is

g y1Að Þ= u1−bB−bC

g y1Bð Þ= u1 + bB + δ1,AB

δ1,AB �N 0,τ2
� �

where the parameters bB and bC denote the effects of B vs
average treatment and C vs average treatment respec-
tively. The effect of A vs the average treatment is
−bB − bC and the relative effect of B vs A for the study
1 is derived as

g y1Bð Þ−g y1Að Þ=2bB + bC + δ1,AB

The models for all studies are given in Table 2 and
the full model is written as
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g y1Að Þ
g y1Bð Þ
g y2Að Þ
g y2Cð Þ
g y3Bð Þ
g y3Cð Þ
g y4Að Þ
g y4Bð Þ
g y4Cð Þ

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

=

1 0 0 0

1 0 0 0

0 1 0 0

0 1 0 0

0 0 1 0

0 0 1 0

0 0 0 1

0 0 0 1

0 0 0 1

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

u1
u2
u3
u4

0
BBB@

1
CCCA+

−1 −1

1 0

−1 −1

0 1

1 0

0 1

−1 −1

1 0

0 1

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

bB
bC

� �

+

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 1

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

δ1,AB

δ2,AC

δ3,BC

δ4,AB

δ4,AC

0
BBBBBB@

1
CCCCCCA

Note that the reparametrization described using
the deviation from the means coding should not be
confused with different parametrizations of the
NMA model to produce relative treatment effects of
all treatments vs each other. We present in the
Additional file 1 an example of different parametri-
zations for specifying the means using reference cell
coding and deviation from means coding using arm-
level data.

2.4 | NMA with contrast-level data

2.4.1 | Reference cell coding

In the contrast-level NMA, data from Ki − 1 contrasts for
each study are modeled. The model for study i and treat-
ment contrast j is written as

yij = μj + εij + δij

εij �N 0,s2ij
� 	

δij �N 0,τ2
� �

with εij being the random error for study i and treat-
ment contrast j where s2ij is the sample variance of yij.
The random effect δij is defined as in the NMA with
arm-level data. For example, for the first study the
model is

y1,AB = μAB + ε1,AB + δ1,AB

ε1,AB ~N 0,s21,AB
� �

δ1,AB ~N 0,τ2
� �

and, similarly, for the other studies the models are given
in Table 2.

The contrast-based NMA model in its general form is
then written as

yc =Xcμ+ δ+ ε ð3Þ

with the vector of random effects δ having the distri-
bution given in the arm-level NMA model and the vector
of random errors being distributed as

ε�N 0,Sð Þ

where S is the block-diagonal within-study variance-
covariance matrix of the same dimensions as Σ. The

design matrix Xc has dimensions
Pn
i=1

Ki−1ð Þ× ðK−1 ).

The entries in each row describe the relationship between
the vector of basic parameters μ and the vector of
observed contrast-level data yc.

For example, in the illustrative network of three treat-
ments and four studies, the full model is written as

y1,AB
y2,AC
y3,BC
y4,AB
y4,AC

0
BBBBBB@

1
CCCCCCA

=

1 0

0 1

−1 1

1 0

0 1

0
BBBBBB@

1
CCCCCCA

μAB
μAC

� �
+

δ1,AB

δ2,AC

δ3,BC

δ4,AB

δ4,AC

0
BBBBBB@

1
CCCCCCA

+

ε1,AB

ε2,AC

ε3,BC

ε4,AB

ε4,AC

0
BBBBBB@

1
CCCCCCA

The first row of the Xc matrix indicates that the first
two-arm study estimates μAB. Note that the arm-level
model using reference cell coding for study 1 implies that

g y1Bð Þ−g y1Að Þ= μAB + δ1,AB

and, consequently, the first row of the Xc matrix results as
the subtraction of the second minus the first row of Xa.

2.4.2 | Deviation from means coding

The reparametrized model will differ from that presented
in Equation 3 in two ways; the target parameter to be
estimated, which again are the relative effects b against
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an “average” treatment, and the design matrix Xc* . The
matrix Xc* can be easily obtained from Xa* by subtracting
its rows within each study contrast.

In its general form, the model is

yc =Xc*b+ δ+ ε ð4Þ

Consider in our example the part of Xa* corresponding to

study 1,
−1 −1

1 0

� �
, then the row of Xc* corresponding to

that first study will be (2 1), which is the subtraction of the
two rows. This is also evident considering that

g y1Bð Þ−g y1Að Þ=2bB + bC + δ1,AB

according to the arm-based model using the deviation
from means coding.

The models for studies 1 to 4 are given in Table 2 and
can be written as

y1,AB
y2,AC
y3,BC
y4,AB
y4,AC

0
BBBBBB@

1
CCCCCCA

=

2 1

1 2

−1 1

2 1

1 2

0
BBBBBB@

1
CCCCCCA

bB
bC

� �
+

δ1,AB

δ2,AC

δ3,BC

δ4,AB

δ4,AC

0
BBBBBB@

1
CCCCCCA

+

ε1,AB

ε2,AC

ε3,BC

ε4,AB

ε4,AC

0
BBBBBB@

1
CCCCCCA

The estimation of b in the contrast-based NMA model
using deviation from means coding (Equation 4) is

b̂ = Xc*
� 	0

S+ Σ̂
� �−1

Xc*
� 	−1

Xc*
� 	0

S+ Σ̂
� �−1

yc

with variance-covariance matrix

var b̂
� 	

= Xc*
� 	0

S+ Σ̂
� �−1

Xc*
� 	−1

Vector b̂ includes the estimation of the K− 1 parame-
ters bk for k = 2, …, K. The estimation of the effect of
treatment k = 1, which was chosen to be excluded for
identifiability, vs the average effect is given as

b̂1 =
XK

k=2
− b̂k
� 	

with variance
PK
k=2

var b̂k
� 	

+
PK

k≠l,k< l,k>1, l>1
2cov b̂k, b̂l

� 	
.

Note that results do not depend on the choice of refer-
ence treatment.

Network estimates μ̂N can be derived as linear combi-
nations of b̂

μ̂N =Y *b̂

with variance-covariance matrix

var μ̂N
� �

=Y * Xc*
� 	0

S+ Σ̂
� �−1

Xc*
� 	−1

Y *� �0

and are equivalent to the network estimates derived
using reference cell coding. Matrix Y* of dimensions
K

2

� �
× K−1ð Þ is constructed similarly to Xc* and con-

nects b̂ with network estimates μ̂N . We can use several
methods for estimating Σ such as likelihood-based
methods and an extension of the DerSimonian and Laird
method.11,16 For the worked example, it holds that

μ̂NAB
μ̂NAC
μ̂NBC

0
B@

1
CA=

2 1

1 2

−1 1

0
B@

1
CA b̂B

b̂C

 !
=

2b̂B + b̂C
b̂B +2b̂C
− b̂B + b̂C

0
B@

1
CA

The contrast-level NMA model can be written as a
two-stage model, as first described in,11,17,18 where results
of separate pairwise meta-analyses are used instead of yc

in the model described in Equation 3. Constructing the
respective design matrix follows the logic of constructing
Xc and its modification to parametrize the model using
the deviation from means coding is straightforward.

3 | PRETA: PROBABILITY OF A
TREATMENT BEING PREFERABLE
THAN THE AVERAGE TREATMENT

Applying the deviation from means coding in NMA models
results in the derivation of the effects of each treatment
against a fictional treatment of 'average' performance. In
this section we use the K estimated parameters b̂k to com-
pute the probability of each treatment being better than
the average treatment. To do so, we follow similar steps
as those followed by Rücker and Schwarzer who derived
the frequentist analogue of SUCRA, P-score.7

Intermediate to the calculation of P-scores is the deri-
vation of the probability that treatment k is better than
treatment l, calculated as

Pkl =P μ̂Nkl >0
� �

=Φ
μ̂Nklffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var μ̂Nkl
� �q

0
B@

1
CA
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assuming that higher values represent a better outcome.
Accordingly, the probability that treatment k is better
than the fictional treatment of average performance
(PreTA) can be derived as

PreTAk =P b̂k >0
� 	

=Φ
b̂kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var b̂k
� 	r

0
BB@

1
CCA

The range of values for PreTAk is (0.5, 1) if b̂k >0, and

(0, 0.5) if b̂k <0. As it is the case with P-scores, the mean
of PreTAk across all treatments is 0.5; this means that
across all treatments, the mean extent of certainty that a
treatment is better than the fictional treatment of average

performance is 0.5. Alternatively, the z-score b̂kffiffiffiffiffiffiffiffiffiffiffiffi
var b̂kð Þp can

be used to classify treatments according to their “dis-
tance” from the fictional treatment.

Of note is that the above calculations assume normal-
ity of the estimated parameters b̂k . However, as b̂k are not
effect sizes expressed for example as logOR or mean differ-
ences, using them for hypothesis testing is not meaningful.
Despite that, drawing b̂k along with the associated 95%
confidence intervals can be useful in capturing uncer-
tainty around the ranking produced by relative treatment
effects.

3.1 | Comparison of PreTAs with
existing ranking metrics: theoretical
considerations and empirical analysis

The, usually called, probability of being the best (pBV) is a
popular ranking metric, usually calculated as the frequency
that a particular treatment ranks in the first place, compared
to the other alternative treatment options. pBV is interpreted
as the probability of producing the best outcome value in a
network of interventions (eg, large effects for a beneficial out-
come, or small effects for a harmful outcome). While its deri-
vation might be sensible in some cases, we should not
overlook the fact that it only takes into account one tail of
the treatment effects' distributions; for example, it does not
account for the probability to produce a small effect on a
beneficial outcome. SUCRAs and P-scores are useful summa-
ries of the entire ranking distributions; suggested interpreta-
tions include “the average proportion of competing treatments,
which produce outcome values worse than treatment k” and
“the mean extent of certainty that treatment k produces better
values than all other treatments”.7,19

We performed an empirical comparison of the treat-
ment hierarchies obtained with PreTA, pBV and SUCRA,

calculated using parametric bootstrap in a frequentist
framework. The agreement between ranking metrics was
measured using Kendall's tau. We used a previously
described database of NMAs published until 2015 includ-
ing networks of four or more interventions.4 We included
networks with available outcome data in arm-level for-
mat, for which the primary outcome was analysed either
as binary or as continuous. We used the effect measure
used in the original review. Details about the inclusion
criteria of the NMAs included in the database can be
found in.4 The empirical analysis was performed with the
use of the nmadb package in R.20

Results of the empirical analysis are presented in sec-
tion 5. In the following section, we illustrate our method
in two networks of interventions, for which at least some
disagreements between pBV, SUCRAs and PreTAs occur.

4 | WORKED EXAMPLES

4.1 | Network of antidepressants

We illustrate the derivation of the method using as an
example a recently published NMA comparing the effec-
tiveness of antidepressants for major depression.21 The pri-
mary efficacy outcome was response measured as 50% or
greater reduction in the symptoms scales between baseline
and 8 weeks of follow up and results were presented as
ORs. The authors aimed at comparing active antidepres-
sants and considered the inclusion of both head-to-head
and placebo-controlled trials. The network comprised
522 double-blind, parallel, RCTs comparing 21 antidepres-
sants or placebo. In line with previous empirical
evidence,22,23 the authors have found evidence that the
probability of receiving placebo decreases the overall
response rate in a trial and dilutes differences between
active compounds.24 Based on this ground, authors of this
NMA21 synthesized only head-to-head studies separately to
estimate the relative efficacy of active interventions. Here,
we will focus on the latter network that included 179 head-
to-head studies comparing 18 antidepressants (Figure 1A).

Authors presented relative treatment effects between
all pairs of the 18 antidepressants in a league table (figure
4 in21). When effect sizes are used to rank treatments,
selecting a reference treatment against which to draw a
forest plot of NMA effects is of particular importance.
Although the choice of reference does not affect the esti-
mates obtained, the uncertainty around NMA effects
depends on the precision with which the selected refer-
ence treatment is associated. Figure 2 shows the relative
treatment effects against fluoxetine and vortioxetine, the
treatments that have been studied most and least respec-
tively. While results are equivalent, choosing to present
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one over the other forest plot might implicitly lead to dif-
ferent interpretations on the similarity between the drugs
based on visually inspecting the overlap of the confidence
intervals.

Figure 2 also shows the derived odds of each treat-
ment vs the odds of a fictional treatment of average
response with their confidence intervals. The line of no
effect is included in the graph for illustration reasons,
although eb̂k are not suited for hypothesis testing. Pre-
senting eb̂k with their confidence intervals offers a solu-
tion to the ambiguity of selecting a reference treatment,
in terms of the uncertainty around them and the

consequent conclusions about similarity of treatments.
This example shows that presenting the effects vs a fic-
tional treatment of average performance in a forest plot,
in addition to a league table presenting all relative effects,
might be a viable option in networks with many treat-
ments and in absence of a “natural” reference treatment.

Figure 3 shows the PreTAs for the 18 antidepressants;
treatments around 0.5 are the treatments closest to the
fictional treatment. Vortioxetine has the largest point
estimate against the fictional treatment but its estimation
comes with great uncertainty. Escitalopram vs fictional is
more precisely estimated in favor of escitalopram and it

FIGURE 1 A, Network plot of

head-to-head randomized control trials

comparing 18 antidepressants. B,

Network plot of head-to-head

randomized control trials comparing

4 interventions for heavy menstrual

bleeding. First and second generation

interventions refer to endometrial

destruction. Nodes and edges are

unweighted [Colour figure can be

viewed at wileyonlinelibrary.com]
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is associated with the greatest PreTA (97%). Duloxetine
and milnacipran are the treatments closest to the fic-
tional treatment. The point estimate of nefazodone vs the
average treatment is slightly smaller than that of
duloxetine. Due to the associated uncertainty, however,
there is 34% probability that nefazodone is superior to the
fictional treatment, compared to 52% of duloxetine. Flu-
oxetine, clomipramine, fluvoxamine, trazodone and
reboxetine are among the worst treatments in the net-
work, either because of their point estimates against the
fictional treatment or because of the respective precision
in the estimation. It should be noted that the hierarchy
illustrated in Figure 3 refers only to one outcome and
does not take into account more complex hierarchy
questions.

Table 3 summarizes the ranking metrics for the net-
work of antidepressants; pBV, the SUCRA and PreTAs

FIGURE 2 Odds ratios of each treatment versus fluoxetine,

odds of each treatment versus odds of a fictional treatment of

average response exp b̂k
� 	

and odds ratios vs vortioxetine in the

network of head-to-head studies comparing 18 antidepressants. CI,

confidence interval; OR, odds ratio

FIGURE 3 Classifier of interventions for the network of

18 antidepressants according to the probability of being preferable

than average (PreTA) [Colour figure can be viewed at

wileyonlinelibrary.com]
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are presented.6,7 Escitalopram, which is the first treat-
ment according to PreTA, ranks second according to
SUCRA and third according to pBV. The disagreement
between PreTA and pBV is explained by the fact that
pBV favours vortioxetine and bupropion over
escitalopram because of the mass under the right tail of

the treatment effects' distribution. The small disagree-
ment between PreTA and SUCRA reflects their different
interpretations: vortioxetine, ranked first according to
SUCRA, beats on average a larger proportion of treat-
ments compared to escitalopram (0.90 vs 0.83) but
escitalopram has a larger probability to be better than the
fictional average treatment compared to vortioxetine
(0.93 vs 0.87). Similarly, fluoxetine ranks last according
to PreTA whereas it is followed by trazodone and
reboxetine according to SUCRA. This disagreement arises
from the fact that the smaller var b̂k

� 	
for fluoxetine

leads in a greater certainty that it is worse than the fic-
tional treatment.

4.2 | Network of interventions for heavy
menstrual bleeding

We use as a second example a network of interventions
for the treatment of heavy menstrual bleeding. The fol-
lowing four interventions were compared: levenorgestel-
releasing intrauterine system (Mirena), first generation
endometrial destruction, second generation endometrial
destruction and hysterectomy.25 The primary outcome
was patients' dissatisfaction at 12 months and the net-
work included 20 studies (Figure 1B).

Figure 4 shows the treatment effects of the four
treatments compared to a fictional average treatment
and Figure S1 illustrates the relative position of each
treatment according to its probability of being supe-
rior (green) or inferior (red) than the average treat-
ment. There is a clear advantage of hysterectomy
compared to the other three treatments with no treat-
ment lying close to the “average treatment area” (0.5
of PreTA).

TABLE 3 Ranking metrics for the network of antidepressants

and ranks according to each ranking metric in parentheses

pBV SUCRA PreTA

Agomelatine 0.01 (6) 0.64 (6) 0.74 (8)

Amitriptyline 0.01 (7) 0.71 (5) 0.88 (4)

Bupropion 0.20 (2) 0.80 (3) 0.87 (5)

Citalopram 0.00 (17.5) 0.37 (13) 0.24 (13)

Clomipramine 0.00 (15) 0.26 (14) 0.10 (14.5)

Duloxetine 0.01 (9) 0.52 (9) 0.52 (9)

Escitalopram 0.07 (3) 0.83 (2) 0.97 (1)

Fluoxetine 0.00 (17.5) 0.23 (16) 0.01 (18)

Fluvoxamine 0.00 (12.5) 0.25 (15) 0.10 (14.5)

Milnacipran 0.01 (8) 0.48 (10) 0.46 (10)

Mirtazapine 0.03 (4) 0.75 (4) 0.91 (3)

Nefazodone 0.02 (5) 0.38 (12) 0.33 (12)

Paroxetine 0.00 (10) 0.62 (7) 0.82 (6)

Reboxetine 0.00 (15) 0.09 (18) 0.02 (16.5)

Sertraline 0.00 (11) 0.46 (11) 0.38 (11)

Trazodone 0.00 (15) 0.12 (17) 0.02 (16.5)

Venlafaxine 0.00 (12.5) 0.61 (8) 0.78 (7)

Vortioxetine 0.64 (1) 0.90 (1) 0.93 (2)

Abbreviations: pBV, probability of producing the best value; PreTA,
preferable than average; SUCRA, surface under the cumulative
ranking curve.

FIGURE 4 Odds of each treatment vs odds of a fictional treatment of average response exp b̂k
� 	

, probability of each treatment being

better than the average (PreTA), probability of producing the best value (pBV) and SUCRA in the network of head-to-head studies

comparing four interventions for heavy menstrual bleeding. Numbers in parentheses under PreTA, pBV and SUCRA represent ranks. CI,

confidence interval; PreTA, preferable than average; pBV, probability of producing the best value; SUCRA, surface under the cumulative

ranking curve
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In this example, hysterectomy outperforms the other
three treatments and ranks first according to all ranking
metrics (PreTA: 0.99, pBV: 0.97, SUCRA: 0.99, Figure 4).
Similarly, all ranking metrics agree that first generation
endometrial destruction is the least preferable option
(PreTA: 0.01, pBV: 0.00, SUCRA: 0.17, Figure 4). The dis-
agreement between ranking metrics occurs for the second
and third position between Mirena and second genera-
tion endometrial destruction. The two interventions are
similar according to the point estimates but second gen-
eration is more precise. This leads to a greater certainty
that second generation is worse than the average treat-
ment compared to Mirena, resulting in a smaller PreTA
(0.12). However, second generation beats on average
more treatments than Mirena does since the relative
effect of second generation is larger than that of Mirena;
this results in a larger SUCRA for second generation
(0.47) than for Mirena (0.37).

5 | RESULTS OF THE EMPIRICAL
ANALYSIS

We ended up with 232 networks to be included in the
empirical analysis. There was strong agreement between
hierarchies obtained by PreTAs and SUCRAs, shown by
a median Kendall's tau (in the following called “correla-
tion”) of 0.94 with interquartile range (IQR) 0.86 to 1.00).
Almost half of the networks (101, 44%) had correlation of
1, while only two networks (1%) had correlation less than
0.6. The network with the smallest correlation (0.4) is
shown in Figure S226; it is network of five treatments,
where four of them have similar treatment effects com-
pared to the fifth one. Thus, uncertainty in the produced
treatment hierarchy is high and results in disagreement
between PreTA and SUCRA rankings. The agreement
between PreTAs and pBV was lower with a median corre-
lation of 0.74 (IQR 0.61 to 0.89) and 49 networks (21%)
having correlation less than 0.6 (Figure S3).

As with all ranking metrics, any disagreements
between PreTAs and pBV or SUCRAs are attributed to
the different ways they incorporate uncertainty in the
estimation. Among treatments with similar point esti-
mates, pBV favors treatments associated with uncer-
tainty, as the tail of the distribution of treatments with
uncertain effects is larger compared to the tail of the dis-
tribution for treatments with similar point estimate but
high precision. The probability Pkl tends to 0.5 with
increased var μ̂Nkl

� �
; consequently, the greater the uncer-

tainty associated with a treatment, the more its P-score
tends to 0.5. A recent empirical analysis investigates the
role of uncertainty in the agreement between ranking
metrics and a research paper describing theoretically the

interpretation and the role of uncertainty in the various
ranking metrics is in preparation.19,27

6 | DISCUSSION

In this paper, we derived the relative treatment effects of
all treatments vs a fictional treatment of average perfor-
mance. To that aim, we applied the alternative deviation
from means coding to the construction of design matrices
in NMA models. The application of the resulted coeffi-
cients is 2-fold. First, they can be used to conveniently
present NMA results in large networks without an obvi-
ous reference treatment. Such a presentation would by
no means substitute the presentation of a league table, or
any other way of presenting all NMA relative treatment
effects, in the main manuscript or in the appendix of an
NMA application. On the contrary, it may only serve as a
complementary presentational tool for a quick grasp of
evidence. Second, we developed a new ranking metric,
PreTA, interpreted as the probability of each treatment
being preferable than a fictional treatment of average per-
formance. PreTAs can be produced in all NMAs as long
as the eligibility of treatments is well justified. The notion
of the average treatment refers to the average absolute
efficacy among the treatments included in the systematic
review. Thus, as with all ranking metrics, the interpreta-
tion of PreTAs is subject to the set of treatments
compared.

The usefulness of the interpretation of the b̂k coeffi-
cients depends on whether the notion of an 'average'
treatment makes sense. This challenge in interpreting the
coefficients, and subsequently PreTA, however, may be
less pronounced in NMA compared to other applications
of regression models. This is because for most categorical
explanatory variables the average category is meaning-
less. A category of “average” (eg, sex or ethnicity) is
impossible to have and difficult to interpret and this is
likely the reason that the “deviation from means” coding
is very rarely used in practice. In NMA, however, treat-
ment effects are distributed on a continuous scale and
therefore the average treatment effect is a possible value
that in theory a treatment could take. A further limita-
tion of our method is that researchers may be inclined to
use hypothesis testing when interpreting the b̂k coeffi-
cients, which is not suitable. Moreover, the coloring of
Figure 3 and Figure S1 may lead to overinterpretation of
the treatment hierarchy based on the dichotomy of being
better or worse than the fictional average treatment. It
should be noted that being better or worse than the aver-
age treatment does not necessarily mean that a treatment
is good or bad; treatments may be more or less similar
between them and the entire treatment effects'
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distributions is the only way to get all the information
about all possible comparisons.

In the presence of a reference treatment, for example,
placebo, a simple and intuitive non-probabilistic ranking
metric can be obtained by ranking all relative effects against
placebo. Authors of NMA often present estimated treatment
effects against placebo or standard care in a forest plot, pro-
viding implicitly or explicitly a treatment hierarchy. While
such a hierarchy might be appropriate in many settings,
they assume that treatment effects against placebo are of
primary interest for the analysis. This might not be the case
in other healthcare areas where one or more established
therapies exists28 or where researchers are concerned about
the quality of the evidence from placebo-controlled stud-
ies29-31 and choose to, exclusively or complementary, ana-
lyse a network without placebo. Moreover, it should be
taken into account that the amount of data associated with
the reference treatment might have an impact on the judge-
ment regarding the similarity of the treatments, when such
a judgement is made by visually inspecting a forest plot of
NMA effects. Point estimates against the fictional average
treatment provide a solution to this ambiguity.

Alternative methods to avoid the reference group cod-
ing have been suggested in the literature. The application
of quasi-variances,32 independently proposed as “floating
absolute risks” in epidemiology,33 do avoid setting a ref-
erence group. However, the scope of their use pertains to
approximating a set of variances of the model contrasts
such that the variances between any linear combination
of contrasts can be derived without the disposal of the
covariance matrix.34 Thus, quasi-variances approaches
target a different problem from the model described in
this paper and the relevance of the estimated quantities
to NMA is not clear.

Producing a treatment hierarchy in NMA is popular,
with 43% of published NMAs presenting at least one
ranking metric,4 but also debatable. Recent developments
tackle common criticisms against ranking metrics, per-
taining to arguments that they are unstable,35,36

uncertain,37 do not differentiate between clinically
important and unimportant differences,2,38 do not
account for multiple outcomes39 and are not accompa-
nied by a measure of uncertainty.40 In particular, recent
developments include extensions of P-scores for two or
more outcomes,41 incorporation of clinically important
values in their calculation,41 application of multiple-
criteria decision analysis42 and partial ordering of inter-
ventions according to multiple outcomes.43 PreTAs can
be easily extended to incorporate clinically important
values as shown in41; such probabilities will then be
interpreted as the probability of a treatment being better
than the average by at least a certain value.

PreTA is a viable alternative to existing ranking met-
rics, that can be interpreted as a probability and takes
into account the entire ranking distribution. As it is also
the case with PreTA, all existing ranking metrics use the
distribution of NMA treatment effects to produce a hier-
archy of the treatments. This hierarchy can be based
either on probabilities like “which is the probability that
each treatment produces the best outcome value” or
“which is the probability of treatment A beating treat-
ment B" or summaries of these probabilities. Rankograms
visualise the entire ranking distributions for each treat-
ment and SUCRAs, P-scores and mean ranks summarise
these probabilities in a single number for each treatment.
The interpretation of these summaries is, however, not
always straightforward. The development of PreTAs
enriches the decision-making arsenal with a presenta-
tional and ranking tool, which can be interpreted in a
clinically meaningful way.

CONFLICTS OF INTEREST

TAF reports personal fees fromMitsubishi-Tanabe, MSD and
Shionogi and a grant from Mitsubishi-Tanabe, outside the
submittedwork; TAFhas a patent 2018-177 688 pending.

AUTHORS' CONTRIBUTIONS

AN conceived the idea, contributed to the modelling, pro-
duced the results and wrote the R code and the first draft
of the manuscript. VC contributed to the analysis. TP
contributed to the modelling and to the R code. DM, TAF
and GS contributed to the modelling, reviewed the R
code and contributed to the writing. All authors read and
approved the final manuscript.

DATA AVAILABILITY STATEMENT
Outcome data and the code for applying our methods are
available in https://github.com/esmispm-unibe-ch/
alternativenma.

ORCID
Adriani Nikolakopoulou https://orcid.org/0000-0001-
5884-4319
Dimitris Mavridis https://orcid.org/0000-0003-1041-
4592
Virginia Chiocchia https://orcid.org/0000-0002-6196-
3308
Theodoros Papakonstantinou https://orcid.org/0000-
0002-6630-6817

NIKOLAKOPOULOU ET AL. 173

https://github.com/esmispm-unibe-ch/alternativenma
https://github.com/esmispm-unibe-ch/alternativenma
https://orcid.org/0000-0001-5884-4319
https://orcid.org/0000-0001-5884-4319
https://orcid.org/0000-0001-5884-4319
https://orcid.org/0000-0003-1041-4592
https://orcid.org/0000-0003-1041-4592
https://orcid.org/0000-0003-1041-4592
https://orcid.org/0000-0002-6196-3308
https://orcid.org/0000-0002-6196-3308
https://orcid.org/0000-0002-6196-3308
https://orcid.org/0000-0002-6630-6817
https://orcid.org/0000-0002-6630-6817
https://orcid.org/0000-0002-6630-6817


REFERENCES
1. Higgins JPT, Welton NJ. Network meta-analysis: a norm for

comparative effectiveness? Lancet Lond Engl. 2015 Aug 15;386
(9994):628-630.

2. Cipriani A, Higgins JPT, Geddes JR, Salanti G. Conceptual and
technical challenges in network meta-analysis. Ann Intern
Med. 2013;159(2):130-137.

3. Tan SH, Cooper NJ, Bujkiewicz S, Welton NJ, Caldwell DM,
Sutton AJ. Novel presentational approaches were developed for
reporting network meta-analysis. J Clin Epidemiol. 2014;67(6):
672-680.

4. Petropoulou M, Nikolakopoulou A, Veroniki A-A, et al. Biblio-
graphic study showed improving statistical methodology of net-
work meta-analyses published between 1999 and 2015. J Clin
Epidemiol. 2016;82:20-28.

5. Kanters S, Ford N, Druyts E, Thorlund K, Mills EJ,
Bansback N. Use of network meta-analysis in clinical guide-
lines. Bull World Health Organ. 2016;94(10):782-784.

6. Salanti G, Ades AE, Ioannidis JPA. Graphical methods and
numerical summaries for presenting results from multiple-
treatment meta-analysis: an overview and tutorial. J Clin
Epidemiol. 2011;64(2):163-171.

7. Rücker G, Schwarzer G. Ranking treatments in frequentist net-
work meta-analysis works without resampling methods. BMC
Med Res Methodol. 2015;15:58.

8. Hosmer DW, Lemeshow S. Interpretation of the fitted logistic
regression model. Applied Logistic Regression. United States of
America: John Wiley & Sons; 2005:47-90.

9. Salanti G. Indirect and mixed-treatment comparison, network,
or multiple-treatments meta-analysis: many names, many ben-
efits, many concerns for the next generation evidence synthesis
tool. Res Synth Meth. 2012;3(2):80-97.

10. Jansen JP, Naci H. Is network meta-analysis as valid as stan-
dard pairwise meta-analysis? It all depends on the distribution
of effect modifiers. BMC Med. 2013;11:159.

11. Lu G, Welton NJ, Higgins JPT, White IR, Ades AE. Linear
inference for mixed treatment comparison meta-analysis: a
two-stage approach. ResSynthMeth. 2011;2(1):43-60.

12. Lu G, Ades AE. Assessing evidence inconsistency in mixed
treatment comparisons. J Am Stat Assoc. 2006;101(474):
447-459.

13. Dias S, Sutton AJ, Ades AE, Welton NJ. Evidence synthesis for
decision making 2: a generalized linear modeling framework
for pairwise and network meta-analysis of randomized con-
trolled trials. Med Decis Mak Int J Soc Med Decis Mak. 2013;33
(5):607-617.

14. Salanti G, Higgins JPT, Ades AE, Ioannidis JPA. Evaluation of
networks of randomized trials. Stat Methods Med Res. 2008;17
(3):279-301.

15. Jackson D, Law M, Stijnen T, Viechtbauer W, White IR. A
comparison of seven random-effects models for meta-analyses
that estimate the summary odds ratio. Stat Med. 2018;37(7):
1059-1085.

16. van Houwelingen HC, Arends LR, Stijnen T. Advanced
methods in meta-analysis: multivariate approach and meta-
regression. Stat Med. 2002;21(4):589-624.

17. Rücker G. Network meta-analysis, electrical networks and
graph theory. Res Syn Meth. 2012;3(4):312-324.

18. Rücker G, Schwarzer G. Reduce dimension or reduce weights?
Comparing two approaches to multi-arm studies in network
meta-analysis. Stat Med. 2014;33(25):4353-4369.

19. Salanti G, Nikolakopoulou A, Efthimiou O, Egger M,
Mavridis D, White IR. What works best? Obtaining a treatment
hierarchy from network meta-analysis (in preparation).

20. Papakonstantinou T. nmadb: Network Meta-Analysis Database
API [Internet]. 2019. Available from: https://CRAN.R-project.
org/package=nmadb

21. Cipriani A, Furukawa TA, Salanti G, et al. Comparative effi-
cacy and acceptability of 21 antidepressant drugs for the acute
treatment of adults with major depressive disorder: a system-
atic review and network meta-analysis. Lancet Lond Engl. 2018;
391(10128):1357-1366.

22. Papakostas GI, Fava M. Does the probability of receiving pla-
cebo influence clinical trial outcome? A meta-regression of
double-blind, randomized clinical trials in MDD. Eur Neuro-
psychopharmacol J Eur Coll Neuropsychopharmacol. 2009;19
(1):34-40.

23. Sinyor M, Levitt AJ, Cheung AH, et al. Does inclusion of a pla-
cebo arm influence response to active antidepressant treatment
in randomized controlled trials? Results from pooled and meta-
analyses. J Clin Psychiatry. 2010;71(3):270-279.

24. Salanti G, Chaimani A, Furukawa TA, et al. Impact of placebo
arms on outcomes in antidepressant trials: systematic review
and meta-regression analysis. Int J Epidemiol. 2018;47(5):1454-
1464.

25. Middleton LJ, Champaneria R, Daniels JP, et al. Hysterectomy,
endometrial destruction, and levonorgestrel releasing intrauter-
ine system (Mirena) for heavy menstrual bleeding: systematic
review and meta-analysis of data from individual patients.
BMJ. 2010;341:c3929.

26. Wang L, Baser O, Kutikova L, Page JH, Barron R. The impact
of primary prophylaxis with granulocyte colony-stimulating
factors on febrile neutropenia during chemotherapy: a system-
atic review and meta-analysis of randomized controlled trials.
Support care cancer off J Multinatl Assoc. Support Care Cancer.
2015;23(11):3131-3140.

27. Chiocchia V, Nikolakopoulou A, Papakonstantinou T, Egger M,
Salanti G. Agreement between ranking metrics in network meta-
analysis: an empirical study. BMJ Open. 2020;10(8):e037744.

28. Batra S, Howick J. Empirical evidence against placebo controls.
J Med Ethics. 2017;43:707-713.

29. Turner EH, Knoepflmacher D, Shapley L. Publication bias in
antipsychotic trials: an analysis of efficacy comparing the publi-
shed literature to the US Food and Drug Administration data-
base. PLoS Med. 2012;9(3):e1001189.

30. Ioannidis JPA, Karassa FB. The need to consider the wider
agenda in systematic reviews and meta-analyses: breadth,
timing, and depth of the evidence. BMJ. 2010;341:c4875.

31. Lee K, Bacchetti P, Sim I. Publication of clinical trials
supporting successful new drug applications: a literature analy-
sis. PLoS Med. 2008;5(9):e191.

32. Ridout MS. Summarizing the results of fitting generalized lin-
ear models to data from designed experiments. Statistical
Modelling. New York, NY: Springer; 1989:262-269.

33. Easton DF, Peto J, Babiker AG a G. Floating absolute risk: an
alternative to relative risk in survival and case-control analysis

174 NIKOLAKOPOULOU ET AL.

https://cran.r-project.org/package=nmadb
https://cran.r-project.org/package=nmadb


avoiding an arbitrary reference group. Stat Med. 1991;10(7):
1025-1035.

34. Firth D, Menezes D, Quasi-variances XR. Quasi-variances. Bio-
metrika. 2004;91(1):65-80.

35. Kibret T, Richer D, Beyene J. Bias in identification of the
best treatment in a Bayesian network meta-analysis for
binary outcome: a simulation study. Clin Epidemiol. 2014;6:
451-460.

36. Mills EJ, Kanters S, Thorlund K, Chaimani A, Veroniki A-A,
Ioannidis JPA. The effects of excluding treatments from net-
work meta-analyses: survey. BMJ. 2013;347:f5195.

37. Trinquart L, Attiche N, Bafeta A, Porcher R, Ravaud P. Uncer-
tainty in treatment rankings: reanalysis of network meta-
analyses of randomized trials. Ann Intern Med. 2016;164(10):
666-673.

38. Brignardello-Petersen R, Johnston BC, Jadad AR,
Tomlinson G. Using decision thresholds for ranking treatments
in network meta-analysis results in more informative rankings.
J Clin Epidemiol. 2018;98:62-69.

39. Mbuagbaw L, Rochwerg B, Jaeschke R, et al. Approaches to
interpreting and choosing the best treatments in network
meta-analyses. Syst Rev. 2017;6(1):79.

40. Veroniki AA, Straus SE, Rücker G, Tricco AC. Is providing
uncertainty intervals in treatment ranking helpful in a network
meta-analysis? J Clin Epidemiol. 2018;100:122-129.

41. Mavridis D, Porcher R, Nikolakopoulou A, Salanti G,
Ravaud P. Extensions of the probabilistic ranking metrics of

competing treatments in network meta-analysis to reflect clini-
cally important relative differences on many outcomes. Biom J.
2019;62(2):375-385.

42. Tervonen T, Naci H, van Valkenhoef G, et al. Applying multi-
ple criteria decision analysis to comparative benefit-risk assess-
ment: choosing among statins in primary prevention. Med
Decis Mak Int J Soc. Med Decis Mak. 2015;35(7):859-871.

43. Rücker G, Schwarzer G. Resolve conflicting rankings of out-
comes in network meta-analysis: partial ordering of treatments.
Res Syn Meth. 2017;8(4):526-536.

SUPPORTING INFORMATION
Additional supporting information may be found online
in the Supporting Information section at the end of this
article.

How to cite this article: Nikolakopoulou A,
Mavridis D, Chiocchia V, Papakonstantinou T,
Furukawa TA, Salanti G. Network meta-analysis
results against a fictional treatment of average
performance: Treatment effects and ranking
metric. Res Syn Meth. 2021;12:161–175. https://doi.
org/10.1002/jrsm.1463

NIKOLAKOPOULOU ET AL. 175

https://doi.org/10.1002/jrsm.1463
https://doi.org/10.1002/jrsm.1463

	Network meta-analysis results against a fictional treatment of average performance: Treatment effects and ranking metric
	1  INTRODUCTION
	2  REPARAMETRIZATION OF THE NMA MODEL
	2.1  Deviation from means coding in regression models
	2.2  Notation for the NMA model
	2.3  NMA with arm-level data
	2.3.1  Reference cell coding
	2.3.2  Deviation from means coding

	2.4  NMA with contrast-level data
	2.4.1  Reference cell coding
	2.4.2  Deviation from means coding


	3  PRETA: PROBABILITY OF A TREATMENT BEING PREFERABLE THAN THE AVERAGE TREATMENT
	3.1  Comparison of PreTAs with existing ranking metrics: theoretical considerations and empirical analysis

	4  WORKED EXAMPLES
	4.1  Network of antidepressants
	4.2  Network of interventions for heavy menstrual bleeding

	5  RESULTS OF THE EMPIRICAL ANALYSIS
	6  DISCUSSION
	  CONFLICTS OF INTEREST
	  AUTHORS' CONTRIBUTIONS
	  DATA AVAILABILITY STATEMENT

	REFERENCES


