Facchin, Laura; Schöne, Cornelia; Mensen, Armand; Bandarabadi, Mojtaba; Pilotto, Federica; Saxena, Smita; Libourel, Paul Antoine; Bassetti, Claudio L. A.; Adamantidis, Antoine R. (2020). Slow waves promote sleep-dependent plasticity and functional recovery after stroke. Journal of neuroscience, 40(45), pp. 8637-8651. Society for Neuroscience 10.1523/JNEUROSCI.0373-20.2020
|
Text
Facchin, 2020, Slow waves promote sleep_dependent plasticity and recovery after stroke.pdf - Accepted Version Available under License Creative Commons: Attribution (CC-BY). Download (6MB) | Preview |
Functional recovery after stroke is associated with a remapping of neural circuits. This reorganization is often associated with low frequency high amplitude oscillations in the peri-infarct zone in both rodents and humans. These oscillations are reminiscent of sleep slow waves (SW) and suggestive of a role for sleep in brain plasticity that occur during stroke recovery, however, direct evidence is missing. Using a stroke model in male mice, we showed that stroke was followed by a transient increase in NREM sleep accompanied by reduced amplitude and slope of ipsilateral NREM sleep SW. We next used 5 ms optical activation of Channelrhodopsin 2-expressing pyramidal neurons, or 200 ms silencing of Archeorhodopsin T-expressing pyramidal neurons, to generate local cortical UP, or DOWN, states, respectively, both sharing similarities with spontaneous NREM SW in freely-moving mice. Importantly, we found that single optogenetically-evoked SW (SWopto) in the peri-infarct zone, randomly distributed during sleep, significantly improved fine motor movements of the limb corresponding to the sensorimotor stroke lesion site, as compared to spontaneous recovery and control conditions, while motor strength remained unchanged. In contrast, SWopto during wakefulness had no effect. Furthermore, chronic SWopto during sleep were associated with local axonal sprouting as revealed by the increase of anatomical pre- and post-synaptic markers in the peri-infarct zone and corresponding contra-lesional areas to cortical circuit reorganization during stroke recovery. These results support a role for sleep SW in cortical circuit plasticity and sensorimotor recovery after stroke and provide a clinically-relevant framework for rehabilitation strategies using neuromodulation during sleep.SIGNIFICANCE STATEMENTBrain stroke is one of the leading causes of death and major disabilities in elderly worldwide. A better understanding of the pathophysiological mechanisms underlying spontaneous brain plasticity after stroke, together with an optimization of rehabilitative strategies, are essential to improve stroke treatments. Here, we investigate the role of optogenetically-induced sleep slow waves in an animal model of ischemic stroke and identify sleep as a window for post-stroke intervention that promotes neuroplasticity and facilitates sensorimotor recovery.
Item Type: |
Journal Article (Original Article) |
---|---|
Division/Institute: |
04 Faculty of Medicine > Department of Head Organs and Neurology (DKNS) > Clinic of Neurology |
UniBE Contributor: |
Facchin, Laura, Schöne, Cornelia, Mensen, Armand, Bandarabadi, Mojtaba, Pilotto, Federica, Saxena, Smita, Bassetti, Claudio L.A., Adamantidis, Antoine Roger |
Subjects: |
600 Technology > 610 Medicine & health |
ISSN: |
0270-6474 |
Publisher: |
Society for Neuroscience |
Language: |
English |
Submitter: |
Chantal Kottler |
Date Deposited: |
06 Nov 2020 11:58 |
Last Modified: |
09 Jan 2024 00:54 |
Publisher DOI: |
10.1523/JNEUROSCI.0373-20.2020 |
PubMed ID: |
33087472 |
BORIS DOI: |
10.7892/boris.147448 |
URI: |
https://boris.unibe.ch/id/eprint/147448 |