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1 ARCHITECTURE DETAILS

1.1 Base Architecture and Adaptations

We used a common base architecture to analyze the different uncertainty estimation methods. Its building
blocks, dimensions, and channel numbers are listed in Table S1. The 2D blocks consist of a 1×3×3
convolution, dropout (p = 0.05), batch normalization, and ReLU activation. In the 3D blocks, the 1×3×3
convolution is followed by a 3×1×1 convolution, expressing the 3D convolution by a separable axial
in-plane (2D) and out-plane (1D) convolution. In-plane and out-plane convolutions use same and valid
border modes, respectively. Max-pooling and upsampling are performed in-plane (1×2×2) where the latter
is implemented as trilinear interpolation. The input of the network is a subvolume of five consecutive axial
slices of all four MR images. Only subvolumes containing information of the skull-stipped brain were
used for training. If required, the subvolumes at the upper- and lowermost slices are zero-padded. The
output consists of a separate probability map for each of the three hierarchical labels (WT, TC, ET) and
corresponds to the subvolume’s center slice.

Building block Dimensions (Z × Y × X) Channels
Input 5×240×240 4
2D block, 3D block, max-pool 3×120×120 32
2D block, 3D block, max-pool 1×60×60 64
2D block, 2D block, max-pool 1×30×30 128
2D block, 2D block, max-pool 1×15×15 256
2D block, 2D block 1×15×15 256
Upsample, 2D block, 2D block 1×30×30 128
Upsample, 2D block, 2D block 1×60×60 64
Upsample, 2D block, 2D block 1×120×120 32
Upsample, 2D block, 2D block 1×240×240 32
1x1 convolution 1×240×240 3
Channel-wise sigmoid 1×240×240 3

Table S1. Building blocks, dimensions, and channel numbers of the base architecture. 2D blocks consist of 1×3×3 convolution, dropout (p = 0.05), batch
normalization, and ReLU activation. 3D blocks insert an additional 3×1×1 convolution after the initial convolution. Each output channel corresponds to one of
the hierarchical labels (whole tumor, tumor core, and enhancing tumor).

Modifications of this base architecture are required for the different dropout strategies (center/+MC,
center low/+MC, and concrete/+MC) and for the aleatoric method. The center strategies apply dropout
directly before the max-pooling and after the upsampling instead in each 2D and 3D block. Center/+MC
does this for all pooling/upsampling levels and center low/+MC only for the two lowermost levels (i.e.
at dimensions 1×60×60 and 1×30×30). Concrete/+MC replaces all dropout from the base architecture
by concrete dropout. The modification required for the aleatoric method are three additional outputs (six
in total) corresponding to the variance maps of each hierarchical label. These additional outputs possess
a separate 1×1 convolution layer and do not use any sigmoid classification layer. Figure S1 shows the
structure of the base architecture and the modifications for the individual uncertainty estimation methods.
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Figure S1. Structure of the base architecture including the modifications for the individual uncertainty
estimation methods. The particularities for each method are color-coded.

1.2 Auxiliary Network Architectures

The auxiliary methods use the segmentations obtained from the base architecture (described in Section 1.1)
to learn to predict the segmentation errors. To do so, auxiliary segm. employs a architecture equal to the
base architecture but operates solely on slices (no 3D blocks) and consists of an input of seven channels.
These channels correspond to the four MR images and three label maps (WT, TC, ET) produced by the
base segmentation architecture. Table S2 lists the building blocks, dimensions, and channel numbers of the
auxiliary feat. architecture. It is a lot simpler than the auxiliary segm. architecture since it employs direct
feature information, in contrast to the label maps, of the base segmentation network. It consists of three
consecutive 2D blocks, each comprising a 1×1 convolution, batch normalization, and ReLU activation.
Figure S2 shows the structure of both auxiliary architectures.

Besides possessing different architectures, the two auxiliary methods also differ in the computation of
their training data. While auxiliary feat. was trained on the errors that the segmentation network made
on the training data, auxiliary segm. used the segmented label maps of a five-fold cross-validation of the
training set. This cross-validation ensures that auxiliary segm. is trained on errors produced on held out
(test) splits of the training data rather than training set errors.

As for the base architecture, we used Adam optimizer (learning rate: 10−4, β1: 0.9, β2: 0.999, ε: 10−8) to
optimize the cross-entropy loss in mini-batches of 24.

Building block Dimensions (Y × X) Channels
Input 240×240 32
2D block 240×240 32
2D block 240×240 32
2D block 240×240 32
1x1 convolution 240×240 3
Channel-wise sigmoid 240×240 3

Table S2. Building blocks, dimensions, and channel numbers of the architecture used for auxiliary feat. method. 2D blocks consist of 1×3×3 convolution,
batch normalization, and ReLU activation. Each output channel corresponds to the uncertainty of one of the hierarchical labels (whole tumor, tumor core, and
enhancing tumor).
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Figure S2. Structure of the auxiliary segm. and auxiliary feat. architectures. The modifications of the
auxiliary segm. architecture compared to the base architecture are shown in brown.

2 AGGREGATION METHODS

2.1 Prior Knowledge Aggregation

We used three types of voxel-wise uncertainty weighting during aggregation with prior knowledge: (a)
boundary weighting, (b) distance weighting, and (c) volume weighting. Boundary weighing excludes
uncertainties at the segmentation boundary, which we defined as a three-voxel band (i.e., boundary and
voxels next to the boundary). Distance weighting weights the uncertainties by the Euclidean distance to
the segmentation boundary in voxels (i.e., distance increases by one for each voxel). Volume weighting
inversely weights the overall uncertainty by the volume of the segmentation. We combined these three
weighting methods with three simple aggregation operations: mean, sum, and logsum aggregation. Table S3
lists the nine combinations we considered.

Type Description

mean Average of the voxel-wise uncertainties of a subject
logsum Sum of the voxel-wise log uncertainties of a subject
volume weighted sum Sum of the voxel-wise uncertainties divided by the

segmentation volume
masked mean Mean of the uncertainties masked by the

segmentation boundary
masked logsum Logsum of the uncertainties masked by the

segmentation boundary
dist. w. mean Mean of the distance weighted uncertainties
dist. w. logsum Logsum of the distance weighted uncertainties
dist. w. masked mean Mean of the distance weighted and boundary masked

uncertainties
dist. w. masked logsum Logsum of the distance weighted and boundary

masked uncertainties
Table S3. List of the nine different uncertainty aggregations with prior knowledge.
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2.2 Automatically Extracted Features

As mentioned in the main text, we used PyRadiomics (version 2.2.0) to automatically extract features
from the voxel-wise uncertainty estimates. We defined the region of interest by thresholding the uncertainty
with the thresholds that achieved the best validation set performance for the U-E metric (same thresholds as
used to calculate the U-E metric). We extracted the 102 default PyRadiomics features consisting of 14
shape features, 18 first-order statistic features, 24 gray level1 co-occurrence matrix features, 16 gray level
run length matrix features, 16 gray level size zone matrix features, and 14 gray level dependence matrix
features. The default settings were used for the extraction (image type: original, bin width: 25). For details
on the features groups and individual features we refer to the PyRadiomics website2.

2.3 Random Forest Regressor

To predict the Dice coefficient of the segmentations from the uncertainty features (aggregated by prior
knowledge or automatically extracted), we used the random forest regressor from scikit-learn3

(version 0.21.2) with the default settings (n estimators: 10, criterion: ’mse’ max depth: None). To train the
random forest, we applied a five-fold cross-validation on the 160 subjects of the test set and repeated this
process five times. The final prediction and features importances were obtained by averaging the results of
the five repetitions. Note that we purposely did not tune any parameters in this cross-validation.

3 VISUAL EXAMPLES OF UNCERTAINTY ESTIMATES

Figure S3 and S4 show the uncertainty estimates for the tumor core and enhancing tumor labels produced
by the selected methods on underconfident, overconfident, and well-calibrated subjects.

4 ADDITIONAL VOXEL-WISE METRICS

We computed additional metrics that complement the expected calibration error (ECE) and the uncertainty-
error overlap (U-E) from the main text.

ACE. The average calibration error (ACE) aims at distilling the information of a reliability diagram into
one scalar value. In contrast to the ECE, the absolute calibration error between the confidence and accuracy
bins, cm and am respectively, is equally weighted in the ACE. With M being the number of non-empty
bins, the ACE is given by

ACE =
1

M

M∑
m

|cm − am| ,

and ranges from 0 to 1, where a lower value represents a better calibration. As for the ECE, we report the
mean subject ACE.

AUC-PR. Complementary to the uncertainty-error overlap, we also report the area under the curve of the
precision-recall curve (AUC-PR). The AUC-PR summarizes the precision and recall performance of the
overlap between uncertainty and segmentation error at different thresholds. We used the same thresholds
as for determining the best U-E. The AUC-PR ranges from 0 to 1, where higher AUC-PR values indicate
better performance.

1 In our case the gray levels are the uncertainty levels
2 https://pyradiomics.readthedocs.io
3 https://scikit-learn.org/stable/index.html
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WT TC ET
ACE% AUC-PR ACE% AUC-PR ACE% AUC-PR

baseline 16.995 0.249 17.905 0.243 19.951 0.23
concrete 15.65 0.251 17.77 0.253 19.118 0.229
center low 15.569 0.251 17.667 0.25 19.493 0.234
center 19.886 0.238 18.998 0.247 19.532 0.22
baseline + MC 16.505 0.248 16.997 0.24 18.598 0.221
concrete + MC 15.571 0.249 17.554 0.251 18.759 0.227
center low + MC 15.346 0.244 17.523 0.248 19.076 0.231
center + MC 13.553 0.205 17.257 0.213 17.827 0.19
ensemble 15.702 0.24 16.719 0.23 18.164 0.219
aleatoric 15.518 0.004 10.412 0.202 14.51 0.029
auxiliary segm. 17.677 0.298 20.252 0.249 21.416 0.284
auxiliary feat. 17.278 0.301 17.918 0.276 21.033 0.344

Table S4. Performances of the different uncertainty estimation methods in terms of average calibration error (ACE) and area under the curve of the precision-
recall curve (AUC-PR). Both metrics range from 0 to 1, but the ACE is reported in %. Lower ACE values are better as well as higher AUC-PR values. Bold
values indicate best performances. Horizontal separations group types of uncertainty methods and WT, TC, and ET indicate the tumor regions whole tumor,
tumor core, and enhancing tumor.

Table S4 lists the results obtained for the ACE and AUC-PR metrics. The main differences of the ACE
results compared to the ECE results (see Table 1 in the main text) are the good ACE results obtained by the
aleatoric method. This is mainly due to the empty bins, which are ignored for the ACE. We also observe
good ACE results for the center+MC method. We expect this to be due to a more equal distribution of the
samples among the bins compared to the other methods. In terms of AUC-PR we observe a benefit of the
auxiliary methods. The reason might be related to their training, in which are optimized to find the overlap
between the automated segmentation and the reference segmentation. Also, the +MC versions consistently
perform worse than their counterparts.

5 DETAILS ON AGGREGATION RESULTS

5.1 ROC Curves

Figure S5 shows the receiver operating characteristic (ROC) curves of the uncertainty estimation methods
for the three aggregation methods and three tumor regions.

5.2 Metric Values

Table S5 presents the details of the obtained failure detection (AUC-ROC, Youden’s accuracy) and the
correlation to the Dice coefficient (Spearman’s rank correlation) for the three aggregation methods: (a)
mean aggregation, (b) aggregation with prior knowledge, and (c) aggregation with automatically extracted
features.
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AUC-ROC ρ Youden
WT TC ET WT TC ET WT TC ET

M
ea

n

baseline 0.443 0.575 0.336 -0.067 0.145 -0.220 0.712 0.700 0.675
concrete 0.619 0.568 0.244 0.126 0.193 -0.407 0.781 0.725 0.656
center low 0.565 0.570 0.241 0.073 0.213 -0.424 0.781 0.738 0.350
center 0.450 0.516 0.366 -0.128 -0.030 -0.220 0.588 0.644 0.425

baseline + MC 0.483 0.562 0.338 0.001 0.146 -0.232 0.738 0.712 0.669
concrete + MC 0.598 0.580 0.242 0.155 0.226 -0.398 0.788 0.625 0.681
center low + MC 0.612 0.570 0.252 0.131 0.220 -0.400 0.712 0.731 0.350
center + MC 0.438 0.497 0.434 0.010 0.004 -0.176 0.725 0.644 0.594

ensemble 0.498 0.607 0.318 0.070 0.196 -0.210 0.756 0.562 0.706

aleatoric 0.413 0.655 0.501 -0.177 0.266 -0.134 0.312 0.675 0.444

auxiliary segm. 0.475 0.601 0.229 -0.009 0.183 -0.404 0.725 0.694 0.331
auxiliary feat. 0.464 0.591 0.267 -0.035 0.175 -0.334 0.694 0.706 0.338

Pr
io

r
kn

ow
le

dg
e

baseline 0.734 0.817 0.811 0.438 0.660 0.550 0.706 0.744 0.794
concrete 0.794 0.841 0.833 0.540 0.631 0.496 0.675 0.731 0.762
center low 0.754 0.821 0.852 0.479 0.612 0.635 0.700 0.794 0.756
center 0.708 0.754 0.776 0.351 0.469 0.514 0.656 0.738 0.719

baseline + MC 0.749 0.832 0.762 0.510 0.631 0.462 0.644 0.756 0.688
concrete + MC 0.818 0.811 0.818 0.549 0.579 0.550 0.688 0.700 0.775
center low + MC 0.777 0.801 0.829 0.489 0.611 0.606 0.738 0.769 0.750
center + MC 0.719 0.689 0.792 0.333 0.381 0.565 0.594 0.644 0.731

ensemble 0.770 0.858 0.822 0.500 0.666 0.480 0.712 0.794 0.800

aleatoric 0.556 0.642 0.649 0.185 0.284 0.301 0.700 0.662 0.669

auxiliary segm. 0.812 0.822 0.804 0.633 0.648 0.510 0.712 0.731 0.762
auxiliary feat. 0.859 0.840 0.817 0.619 0.714 0.525 0.756 0.756 0.738

A
ut

o.
ex

tr
ac

te
d

fe
at

ur
es

baseline 0.928 0.939 0.895 0.771 0.882 0.701 0.888 0.894 0.800
concrete 0.879 0.946 0.911 0.752 0.882 0.732 0.831 0.856 0.875
center low 0.892 0.940 0.920 0.716 0.867 0.748 0.856 0.888 0.856
center 0.893 0.899 0.843 0.737 0.784 0.656 0.869 0.812 0.812

baseline + MC 0.934 0.954 0.890 0.791 0.887 0.706 0.888 0.856 0.838
concrete + MC 0.912 0.956 0.924 0.765 0.893 0.752 0.875 0.819 0.869
center low + MC 0.902 0.946 0.920 0.748 0.883 0.744 0.825 0.912 0.844
center + MC 0.891 0.879 0.869 0.731 0.792 0.717 0.881 0.769 0.806

ensemble 0.919 0.961 0.893 0.765 0.883 0.640 0.806 0.919 0.819

aleatoric 0.586 0.373 0.719 0.260 -0.174 0.454 0.531 0.612 0.750

auxiliary segm. 0.911 0.909 0.880 0.817 0.835 0.704 0.856 0.838 0.825
auxiliary feat. 0.907 0.941 0.871 0.725 0.884 0.690 0.862 0.831 0.731

Table S5. Aggregation results obtained by the three aggregation methods: mean aggregation, aggregation with prior knowledge, and aggregation with
automatically extracted features. The area under the curve of the receiver operating characteristic (AUC-ROC) and Youden’s accuracy indicate the goodness of
failure detection and Spearman’s rank (ρ) shows the correlations to the achieved Dice coefficient. WT, TC, and ET indicate the tumor regions whole tumor,
tumor core, and enhancing tumor.

6



Supplementary Material

Figure S3. Visual examples of the tumor core uncertainty produced by the different uncertainty estimation
methods. The columns correspond to underconfident, overconfident, and well-calibrated subjects.
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Figure S4. Visual examples of the enhancing tumor uncertainty produced by the different uncertainty
estimation methods. The columns correspond to underconfident, overconfident, and well-calibrated subjects.
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Figure S5. Receiver operating characteristic (ROC) curves of the selected uncertainty estimation methods.
The columns represent the aggregation methods: mean aggregation, aggregation with prior knowledge, and
aggregation with automatically extracted features. The rows indicate the three tumor regions.
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