
s
o
u
r
c
e
:

h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
1
4
7
6
7
1

|

d
o
w
n
l
o
a
d
e
d
:

1
8
.
4
.
2
0
2
4

BLOOM FILTER-BASED CONTENT

DISCOVERY AND RETRIEVAL FOR

INFORMATION-CENTRIC NETWORKS

Inauguraldissertation

der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Sayed Ali Marandi

von Iran

Leiter der Arbeit:

Professor Dr. Torsten Braun

Institut für Informatik

Original document saved on the web server of the University Library of Bern

This work is licensed under a Creative Commons Attribution-Non-Commercial-No derivative works 2.5

Switzerland licence. To see the licence go to http://creativecommons.org/licenses/by-nc-nd/2.5/ch/

or write to Creative Commons, 171 Second Street, Suite 300, San Francisco, California 94105, USA.

BLOOM FILTER-BASED CONTENT

DISCOVERY AND RETRIEVAL FOR

INFORMATION-CENTRIC NETWORKS

Inauguraldissertation

der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Sayed Ali Marandi

von Iran

Leiter der Arbeit:

Professor Dr. Torsten Braun

Institut für Informatik

Von der Philosophisch-naturwissenschaftlichen Fakultät angenommen.

Der Dekan:

Bern, November, 2020 Prof. Dr. Zoltan Balogh

Copyright Notice

This document is licensed under the Creative Commons Attribution-Non-Commercial-

No derivative works 2.5 Switzerland. http://creativecommons.org/licenses/by-nc-

nd/2.5/ch/

You are free:

to copy, distribute, display, and perform the work

Under the following conditions:

Attribution. You must give the original author credit.

Non-Commercial. You may not use this work for commercial purposes.

No derivative works. You may not alter, transform, or build upon this work.

For any reuse or distribution, you must take clear to others the license terms of this

work.

Any of these conditions can be waived if you get permission from the copyright holder.

Nothing in this license impairs or restricts the author’s moral rights according to Swiss

law.

The detailed license agreement can be found at:

http://creativecommons.org/licenses/by-nc-nd/2.5/ch/legalcode.de

Dedicated to my mother. . .

Acknowledgements

During my doctoral studies, several people have given me guidance and support. In

the following, I would like to gratefully acknowledge their guidance and support.

I would like to thank my thesis director, Prof. Dr. Torsten Braun, for the opportunity to

pursue my studies towards a Ph.D. at the Communications and Distributed Systems

lab (CDS) of the University of Bern. I express my sincere gratitude to you for the advice,

feedback, and corrections that improved the quality of my work and papers until the

completion of this thesis.

I would like to express my deepest gratitude to Prof. Dr. Nikolaos Thomos (Nikos), for

all the discussions, support, ideas, and motivation he has given me. Nikos, I would like

to thank you very much for all the fruitful discussions, for all the detailed comments

and corrections that improved the quality of my work.

I would like to also express my deep and sincere gratitude to Prof. Dr. Kavé Salamatian

(Kavé). Thank you very much Kavé, for all the discussions, and for all that I have

learned from you over the years.

I gratefully thank Mrs. Daniela Schroth for all her support. Thank you very much

Daniela, for your kind help and support at the beginning of my doctoral studies that I

needed a lot of information to settle in Switzerland, and during my work for all the

administrative letters, and your help and support when I came to the office asking

questions or having requests.

I would like to thank my colleagues at CDS, for the good time we spent together and

for all the discussions and support.

I gratefully thank my family for all the unconditional love and support they gave me.

Although they were far from me, their thoughts and wishes were always with me.

Bern, 1 September 2019 A. Marandi

i

Abstract

Named Data Networking (NDN) requires routing protocols that use content object

names for routing clients’ requests. In this thesis, we develop routing protocols for

NDN based on content advertisements that we compress using Bloom filters (BF).

We propose push-based Bloom Filter-based Routing (BFR) and pull-based BFR for

NDN. Push-based BFR advertises all provided content object names, while pull-based

BFR only advertises the requested content object names. Therefore, pull-based BFR

outperforms push-based BFR in terms of the required communication and storage

overhead for content advertisements. To reduce content retrieval delay, we propose to

use Network Coding (NC)-based content retrieval. We use the BF-based information

distributed for content discovery to select network codes. The proposed NC-based

protocol uses a constraint on the equation system size and BF-based feedbacks to

control codeblock size. We show that the proposed NC-based protocol achieves lower

average content block retrieval delay than push-based and pull-based BFR. Service-

Centric Networking [21] requires load balancing mechanisms to route service requests.

To address this requirement, Layered-Service Centric Networking (L-SCN) [31] pro-

posed to divide nodes into domains where each domain of nodes is managed by a

supernode. However, L-SCN lacks algorithms to select supernodes in the network

topology. We present supernode selection algorithms based on the construction of

Dominating Sets (DS) and Connected Dominating Sets (CDS) over the network topol-

ogy. Then, we propose intra-domain and inter-domain BF-based routing protocols for

routing service requests. We show that our CDS-based routing protocols require much

less bandwidth overhead for routing than both DS-based routing and NDN multicast

strategy. Further, we show that both DS-based and CDS-based routing protocols

achieve significantly less service retrieval delay than the NDN multicast strategy.

Keywords: Named Data Networking, Routing, Bloom Filters, Network Coding, Service-

Centric Networking, Dominating Sets.

iii

Contents

Acknowledgements i

Abstract iii

Contents v

List of Figures ix

1 Introduction 1

1.1 Information-Centric Networking . 1

1.2 Research Questions . 6

1.3 Thesis Contributions . 6

1.3.1 Push-based Bloom Filter-based Routing for Named Data Net-

working . 6

1.3.2 Pull-based Bloom Filter-based Routing for Named Data Networking 8

1.3.3 Network Coding-based Content Retrieval based on Bloom Filter-

based Content Discovery . 8

1.3.4 Bloom Filter-based Routing for Dominating Set-based Service-

Centric Networking . 9

1.4 Thesis Outline . 10

2 State of the Art 11

2.1 Overview . 11

2.2 Information-Centric Networking . 11

2.2.1 Data-Oriented Network Architecture 12

2.2.2 Publish-Subscribe Internet Technology 12

2.2.3 Network of Information . 13

2.2.4 MobilityFirst . 13

2.2.5 Content-Centric Networking . 14

v

Contents

2.2.6 Named Data Networking . 15

2.3 Routing . 17

2.4 Network Coding-based Content Retrieval 24

2.5 Service-Centric Networking . 27

2.6 Dominating Sets . 30

2.7 Conclusions . 31

3 Push-based Bloom Filter-based Routing 33

3.1 Introduction . 33

3.2 Push-based Bloom Filter-based Routing 34

3.2.1 Representation of Content Objects Using BFs 35

3.2.2 BF-based Content Advertisement 36

3.2.3 FIB Population and Content Retrieval 38

3.3 Discussion . 41

3.3.1 Impact of False Positive Errors on Push-based BFR Operation . . 41

3.3.2 Robustness to Topology Changes 42

3.3.3 Handling of Content Migration . 43

3.4 Performance Evaluation . 44

3.4.1 Simulation Settings . 44

3.4.2 Content Advertisement Overhead 47

3.4.3 Normalized Communication Overhead 47

3.4.4 Total Communication Overhead for Interests 50

3.4.5 Average Round-trip Delay . 52

3.4.6 Robustness to Topology Changes 54

3.4.7 Mean Hit Distance . 55

3.4.8 Average Memory Needed for Storing Routing Information 57

3.4.9 Impact of False Positive Errors on Routing 58

3.5 Conclusions . 59

4 Pull-based Bloom Filter-based Routing 61

4.1 Introduction . 61

4.2 Pull-based Bloom Filter-based Routing 62

4.2.1 Pull-based BFR’s Operation . 64

4.2.2 Bloom Filter Aggregation . 66

4.2.3 The Impact of False Positive Errors on Pull-based BFR’s Operation 67

4.3 Performance Evaluation . 67

4.3.1 Simulation Settings . 68

vi

Contents

4.3.2 Content Advertisement Overhead 68

4.3.3 Storage Space Requirements for Storing Routing Information . . 70

4.3.4 Average Round-trip Delay . 72

4.3.5 Impact of False Positive Errors on Routing 74

4.4 Conclusions . 75

5 Network Coding-based Content Retrieval based on Bloom Filter-based Con-

tent Discovery 77

5.1 Introduction . 77

5.2 Network Coding Model . 78

5.3 Bloom Filter-based Content Discovery 79

5.4 Network Code Selection for Content Forwarding 83

5.5 Received Data Message Processing . 85

5.6 Performance Evaluation . 86

5.6.1 Simulation Settings . 86

5.6.2 Content Discovery Overhead . 87

5.6.3 Average Content Block Retrieval Delay 89

5.7 Conclusions . 91

6 Bloom Filter-based Routing for Dominating Set-based Service-Centric Net-

works 93

6.1 Introduction . 93

6.2 Clustering Network Nodes . 94

6.2.1 Dominating Set Construction . 94

6.2.2 Connected Dominating Set Construction 97

6.3 Routing in a Dominating Set . 100

6.3.1 Service and Resource Discovery 100

6.3.2 Intra-Domain Routing . 102

6.3.3 Inter-Domain Routing for DS-based Clustering 104

6.4 Routing in a Connected Dominating Set 104

6.5 Performance Evaluation . 104

6.5.1 Simulation Settings . 105

6.5.2 Bandwidth Overhead of Clustering 106

6.5.3 Bandwidth Overhead of Routing 106

6.5.4 Average Service Retrieval Time . 107

6.6 Conclusions . 109

vii

Contents

7 Conclusions 111

7.1 Summary . 111

7.2 Main Contributions . 112

7.3 Future Research Directions . 114

8 List of Acronyms 117

Bibliography 121

Declaration of Consent 131

Curriculum Vitæ 133

viii

List of Figures

1.1 A topology to describe NDN . 2

1.2 PIT of router R1 . 3

1.3 FIB of router R1 . 3

1.4 CS of router R1 . 4

1.5 A topology to describe routing in SCN . 5

2.1 NDN message structures . 16

2.2 Data message processing . 17

2.3 Interest message processing . 17

2.4 PIT entry structure . 18

2.5 A topology for describing Flooding-assisted Routing 19

2.6 A BF with three hash functions . 20

2.7 An insertion operation for an SBF with parameter set {m = 15,k = 3,d =
3, p = 5} . 21

2.8 A topology for describing BFR and COBRA 22

2.9 BF-based Interest message processing . 26

2.10 Domains and supernodes . 29

2.11 DIM structure . 29

2.12 Different Dominating Sets. Dominator nodes are grey, Dominated nodes

are white. 30

3.1 An example for content advertisement BF and related hash functions . 35

3.2 CAI message . 37

3.3 Content advertisement . 39

3.4 Content retrieval . 40

3.5 False positive error in content advertisement BFs 41

3.6 Geant topology and connected endpoints 45

ix

List of Figures

3.7 Grid topology and attached clients and servers 46

3.8 A comparison of content advertisement communication overhead vs.

false positive probability for the grid and GEANT topologies 48

3.9 Results for normalized communication overhead with different values

of Æ . 49

3.10 Results for total communication overhead for different values of Æ . . . 51

3.11 Results for average round-trip delay . 53

3.12 Results for the impact of link failures on Interest unsatisfaction for dif-

ferent values of Æ . 55

3.13 Results for mean hit distance for different values of Æ. 56

3.14 Impact of false positive reports on push-based BFR routing for different

values of p f pp and Æ . 58

4.1 CAR and CA transmissions . 63

4.2 Results for content advertisement overhead for different values of ± . . 69

4.3 Results for content advertisement overhead for different values of Æ . . 70

4.4 Results for storage space requirements for storing routing information

for different values of Æ . 71

4.5 Results for storage space requirements for storing routing information

per file name for different values of Æ . 72

4.6 Results for average round-trip delay . 73

4.7 Perormance for different values of Æ in terms of the impact of false

positive reports on routing . 74

5.1 Neighborhood state array for router R4. 79

5.2 A topology for describing our NC-based protocol. 80

5.3 AIM structure. 81

5.4 FIM structure. 82

5.5 Content discovery overhead with different Æ values for our NC protocol

and pull-based BFR. 88

5.6 Content discovery overhead for push-based BFR. 88

5.7 Content block retrieval delay for the proposed NC protocol with full link

capacities. 89

5.8 Content block retrieval delay for the proposed NC protocol with 50% of

link capacities. 90

5.9 Content block retrieval delay for the proposed NC protocol with 20% of

link capacities. 90

x

List of Figures

5.10 Content block retrieval delay for the proposed NC protocol with 10% of

link capacities. 91

6.1 The clustering algorithm described with a part of the GEANT network. 96

6.2 The CDS construction algorithm . 98

6.3 Pulling service and resource availability 101

6.4 Intra-domain routing . 103

6.5 Inter-domain routing for CDS-based clustering. 105

6.6 Results in terms of bandwidth overhead for DS and CDS construction. 107

6.7 Total bandwidth overhead for service request routing 108

6.8 Results in terms of service retrieval time. 109

xi

1
Introduction

In this chapter, we introduce Information-Centric Networking (ICN) [11]. Then, we

discuss the research questions and the thesis contributions to answer the research

questions. Finally, we outline the thesis structure.

1.1 Information-Centric Networking

Content retrieval is location-dependent in the current Internet. When a client requests

a content object, the request has to reach the server that stores the requested content

object. This means that content objects are coupled with the locations of the servers

that are identified by IP addresses. With the growth of content objects, the Internet has

become a content distribution network. In a content distribution network, clients do

not care about the location of the requested content objects. Rather, they care about

retrieving them with low delay and with satisfactory quality when the communication

involves multimedia services. Therefore, the location-dependent content retrieval

in the current Internet does not match with the clients’ perspective. Furthermore,

location-dependent content retrieval does not use the storage resources provided by

1

Chapter 1. Introduction

Figure 1.1: A topology to describe NDN

intermediate routers, increases the load on servers, and creates congestion towards

servers. To cope with the shortcomings of the location-dependent content retrieval of

the Internet, ICN [11] has been proposed. Different ICN projects led to a variety of

ICN architectures [37,41,73,88], which are designed based on the following principles:

1) named content objects, 2) in-network caching, and 3) content-based security. In

this thesis, we focus on Named Data Networking (NDN) [88] as it is one of the most

prominent ICN architectures.

In NDN, hierarchical names are assigned to content objects. For instance, the name

/cds.unibe.ch/publications/theses/marandi.pdf describes the hierarchical name for the

PDF file of this thesis cached at the University of Bern’s repository. Further, the name

of a content object might describe its attributes, e.g., the type of the content object

(video, image, etc.), the quality, sequence number, etc.

NDN classifies nodes into the following three types: 1) clients, 2) servers, and 3)

routers. In the network topology in Fig. 1.1, there is a client C , five routers R1, R2, R3,

R4, R5, and two servers S1, S2. The links that connect network nodes are called faces.

For example, in Fig. 1.1, router R1 is connected to routers R2 and R3 through faces 1

and 2, respectively.

NDN defines two types of messages, namely Interest and Data messages. NDN di-

vides each content object into many segments, which are identified by sequence

numbers. To retrieve each segment, a client requires to send an Interest message.

Each node maintains the following tables: 1) Pending Interest Table (PIT), 2) Content

Store (CS), and 3) Forwarding Information Base (FIB). PITs store the received Interest

messages and keep records of the faces over which Interest messages have been re-

ceived or forwarded, CSs store the received Data messages, and FIBs store the next

hop faces for different name prefixes. To describe Interest message forwarding and

2

1.1. Information-Centric Networking

Figure 1.2: PIT of router R1

Figure 1.3: FIB of router R1

Data message retrieval, in Fig. 1.1 we assume that client C requires to retrieve a Data

message with name /cd s.uni be.ch/publ i cati ons/theses/mar andi .pd f /1, which

is the first segment for the file of this thesis. Client C has to send an Interest message I

with the above name. Since client C is connected to router R1 via a single face, client

C forwards Interest message I to router R1. Router R1 receives Interest message I over

face 3 and stores this Interest in its PIT, which is shown in Fig. 1.2. Then, router R1 has

to decide over which face(s), i.e., face 1, face 2, or both, to forward Interest message I .

To make this decision, router R1 has to look up its FIB table, which is shown in Fig. 1.3,

to decide the next hop face over which Interest message I has to be forwarded.

NDN performs longest prefix match operations on Interest names for FIB lookup

operations. As Fig. 1.3 shows, the FIB table of router R1 indicates that the next hop

face for name prefix /cd s.uni be.ch/publ i cati ons/theses/ is face 1. Thus, router

R1 forwards Interest message I over face 1. Then router R2 receives Interest mes-

sage I , checks its FIB table, and forwards Interest message I to router R3, which

finally forwards Interest message I to server S1 that stores the Data message for name

/cd s.uni be.ch/publ i cati ons/theses/mar andi .pd f /1.

To reply to Interest message I , server S1 will return a Data message D to router R3,

router R3 will forward the Data message D to router R2, R2 will forward D to R1, and

eventually R1 will deliver D to client C that initially requested it. From this example,

we learn that Data messages travel over the reverse paths of their corresponding

Interest messages.

When Data messages pass by routers, those might leave a copy of them in their CS

tables. This feature of NDN is called in-network caching. For the above example, Fig.

3

Chapter 1. Introduction

Figure 1.4: CS of router R1

1.4 shows the CS of router R1. In-network caching is one of the advantages of NDN

over IP networks. In IP networks, if a client wants to request a content object, it has to

forward a request message for the requested content object up to the content provider

server. Since many clients request popular content objects for which the requests

have to always reach servers, servers might be overloaded and high traffic towards

them might lead to congestion that increases the content retrieval delay and degrades

the quality of experience for users. In contrast, NDN allows in-network caching. As a

result, content objects will be cached closer to the clients. Further, in-network caching

leads to the support of multicast communications.

Another advantage of NDN is content-centric security [88]. IP systems rely on the loca-

tion of content objects to provide an end-to-end secure tunnel between the requester

and the server. On the contrary, NDN proposes to design location-independent secu-

rity mechanisms by securing the content objects rather than the paths over which they

are communicated. Therefore, NDN mandates the servers to cryptographically sign

their Data messages for authenticity. Further, NDN permits encryption in case Data

messages require to be confidential [90]. Therefore, NDN creates Data authenticity

and Data confidentiality regardless of servers’ locations and regardless of communi-

cation paths [90]. In this thesis, we investigate routing and content retrieval in NDN.

Therefore, the research problems that are related to NDN security are beyond the

scope of this thesis.

Nowadays, users not only request content objects but they might request computed

content objects such as transcoded audio/video files, analyzed images, Google map

directions, etc. Such computed content objects are called services [21]. The work

in [21] proposed Service-Centric Networking (SCN) to enhance ICN so that it supports

services. In SCN, provided services are functions, e.g., transcode a video. Service

providers run the software for service functions. The existing implementation of SCN

is based on NDN architecture. Similar to NDN, SCN clients use Interest messages to

request services. When a service request reaches a service provider that can provide

the demanded service, the service provider runs a function to calculate the service

response, and, then places the service response in a Data message that is returned,

4

1.1. Information-Centric Networking

Figure 1.5: A topology to describe routing in SCN

over the reverse path of the service request, to the client.

To route service requests, SCN routing protocols require to discover the services that

servers provide and servers’ available resources (i.e., CPU, GPU, RAM). NDN routing

protocols forward Interest messages with the same names towards the same origin

servers to benefit from in-network caching. However, SCN routing protocols require

to balance the computational load among different servers. We use Fig. 1.5 to explain

the difference between routing in NDN and SCN with an example. In Fig. 1.5, we

consider the following two cases: 1) NDN routing, 2) SCN routing. In case 1), we

assume that client C1 sends an Interest message I1 to request a content object from

server S1. Server S1 will send a Data message in response to the Interest message I1,

which will be cached at router R2. If client C2 issues an Interest message I2 for the

same content object later, router R3 will forward Interest message I2 towards server

S1 again, and Interest message I2 will be satisfied at router R2 where holds a copy of

the requested content object. In case 2), we consider that client C1 sends a service

request SR1 towards server S1, and, later, client C2 issues another service request SR2.

In this case, it is better to forward SR2 towards server S2 provided that server S1 is busy

serving client C1’s service request to balance the computational load between servers

S1 and S2.

Layered-Service Centric Networking (L-SCN) [31] is proposed as a routing architecture

for SCN that aims to provide service discovery, resource discovery, and load balancing

mechanisms. For scalability reasons, L-SCN suggests clustering network nodes into

domains. Each domain is managed by one or more supernodes, which have significant

5

Chapter 1. Introduction

knowledge about the available services and resources in the domain. Before service

routing, L-SCN assumes that supernodes are already selected and the network nodes

are already clustered. Therefore, L-SCN lacks algorithms to select supernodes and to

cluster network nodes.

1.2 Research Questions

In the following, we pose the Research Questions (RQ) of this thesis.

RQ 1: How to route Interest messages in NDN?

RQ 2: How to reduce bandwidth and storage overhead of Bloom filter-based content

advertisements?

RQ 3: How to reduce content retrieval delay in NDN?

RQ 4: How to select supernodes in L-SCN?

1.3 Thesis Contributions

According to the RQs, in the following, we describe the thesis contributions.

1.3.1 Push-based Bloom Filter-based Routing for Named Data Net-

working

In Chapter 3, we answer RQ 1 by presenting push-based Bloom Filter-based Routing

(BFR) as a routing protocol for NDN. To route Interest messages, routing protocols

require to locate content objects to populate FIBs. If servers advertise the names

of their available content objects, clients and routers will be aware of the provided

name prefixes and the paths to reach them. Nevertheless, content objects have long

hierarchical names. For example, the average Uniform Resource Locators (URLs) size

in the realistic HTTP request database presented in [26] is 42.5 bytes. Therefore, if

servers decide to advertise content object names using regular arrays, it will consume

significant bandwidth and storage resources. To cope with this problem, servers

require to compress content advertisements so that they do not entail significant

bandwidth and storage overhead.

6

1.3. Thesis Contributions

To compress content advertisements, in Chapter 3, we argue that it is very promising

to use Bloom Filters (BFs). A BF is a well-known data structure for compact set

representation. A BF has a very simple structure consisting of a bit vector with size

m and k hash functions. There are two advantages of using a BF for representing a

set than a regular array: 1) compressed representation of the set, and 2) less complex

element search. The complexity of searching an element in a BF is O(1), whereas

the complexity of searching an element in a regular array with size n is O(n). BFs

have been used in IP networking for different purposes, e.g., finding Longest Prefix

Match, probabilistic routing algorithms, summary cache exchange, and matching

IP addresses [22, 54, 55]. In NDN, BFs have been used for similar purposes with IP

systems [48, 59, 60].

Motivated by the above advantages of using BFs for content advertisements, in Chap-

ter 3 we investigate routing based on BF-based content advertisements. Based on this

research, we present push-based BFR [50] as a fully distributed routing protocol for

NDN. Servers frequently represent and advertise the names of their provided content

objects using BFs. BF-based content advertisements significantly reduce the required

bandwidth for content advertisements. When clients and routers receive content

advertisements transmitted by the servers, they store them in the PIT tables and use

them for routing Interest messages. Push-based BFR does not rely on any IP-based

mechanism for routing, and, therefore, it is a fully content-oriented routing proto-

col. Moreover, push-based BFR does not require any information about the network

topology for routing.

We compared push-based BFR with flooding, shortest path, and COBRA [72] routing

protocols. Push-based BFR does not require additional protocols that demand high

bandwidth resources to calculate the shortest paths. We observed that push-based

BFR uses significantly less bandwidth resources for content advertisements compared

to the bandwidth resources used for calculating the shortest paths by shortest path

routing. Further, push-based BFR does not flood Interest messages. Our results made

clear that push-based BFR outperforms flooding and COBRA in terms of the required

bandwidth resources for routing and content retrieval, and the average round-trip

delay. We compared the performance of push-based BFR with COBRA, and we saw

from the results that using push-based BFR, network nodes require much less memory

for storing routing information. Therefore, for scenarios that nodes have restricted

memory (e.g., IoT scenarios), push-based BFR is a more appropriate routing protocol.

7

Chapter 1. Introduction

1.3.2 Pull-based Bloom Filter-based Routing for Named Data Net-

working

In Chapter 4, we answer RQ 2 by presenting pull-based BFR. Although push-based BFR

compresses content advertisements using BFs, in this protocol the servers advertise

all of their provided content objects. Therefore, the required bandwidth and storage

overhead of push-based BFR linearly increases with the content universe size, i.e.,

the total number of provided content objects. Thus, when the content universe is

large, advertising all the provided content objects demands considerable bandwidth

resources. Clients only request a small number of all content objects from the entire

content universe. Therefore, the proposed pull-based BFR protocol suggests that

servers only advertise the demanded content objects. Our results make clear that pull-

based BFR requires significantly less bandwidth and storage resources for propagating

and storing content advertisements. Further, pull-based BFR also achieves better

delay results than push-based BFR when there are restricted link capacities. Moreover,

we observed from the results that pull-based BFR is more robust to BF false positive

reports than push-based BFR [51].

1.3.3 Network Coding-based Content Retrieval based on Bloom

Filter-based Content Discovery

To answer RQ 3, in Chapter 5, we propose to use network coding [12] to reduce content

retrieval delay. For routing, we use a BF-based pull method similar to our previous

work titled “pull-based BFR” [51] in which clients map the hashed values of Interest

message names into Interest BFs and routers aggregate the Interest BFs similar to

the pull-based BFR routing protocol. When servers receive the Interest BFs, they do

not send content advertisement messages. Rather, servers select linear combinations

of the Data messages that are requested using Interest BFs and return these linear

combinations via network coded Data messages over the reverse path of the Interest

BFs.

When network coding is used, it is important to restrict the number of combined

variables. Otherwise, the nodes end up having equation systems in which the number

of variables is higher than the number of equations. In such a situation, nodes cannot

decode the stored network coded messages. To address this problem, we permit

each node to define a capacity constraint, i.e., the number of new variables that

8

1.3. Thesis Contributions

a node can accept in its equation system. Each node also has to signal the set of

variables that are already involved in its equation system. If a node has already

decoded some variables, it will prefer not to receive linear combinations that are

composed of those decoded variables. Hence, nodes can signal the sets of their

already decoded variables. We propose that each node frequently sends local feedback

messages containing its capacity constraint, a decodingBF representing the set of

variables involved in the equation system, and a decodedBF consisting of the variables

that the node has already decoded. Servers and routers use the information stored

in these local feedback messages to select network codes that do not violate the

capacity constraint of their neighbors. We compared the proposed network coding-

based protocol with push-based and pull-based BFR. The results made clear that the

proposed network coding-based protocol outperforms push-based and pull-based

BFR in terms of the required bandwidth resources for content discovery and average

content block retrieval delay [52].

1.3.4 Bloom Filter-based Routing for Dominating Set-based Service-

Centric Networking

To answer RQ 4, in Chapter 6, we propose to benefit from DS and CDS concepts [44]

to select supernodes. Therefore, in Chapter 6, we present distributed algorithms

to construct DSs and CDSs over an arbitrary network topology. Next, supernodes

implement BF-based pulling of the services available inside the domain; supernodes

also solicit information about the available resources (CPU, GPU, RAM). Finally, we

have proposed intra-domain and inter-domain routing algorithms for both DS-based

and CDS-based clustered networks to route service requests inside and between the

domains.

We implemented our clustering and routing algorithms over GEANT network topology

[2] as well as three instances of Rocketfuel topology [7] with different sizes. The results

show that the bandwidth required for constructing a DS or a CDS increases with

the topology size. Further, we compare the performance of the proposed DS and

CDS-based routing protocols with the NDN multicast strategy. The results make

clear that for large topologies, CDS-based routing entails significantly less bandwidth

overhead for routing service requests than both DS-based routing and NDN multicast

strategies. Finally, from the results, we see that the proposed DS and CDS-based

routing protocols achieve much less service retrieval time than the NDN multicast

9

Chapter 1. Introduction

strategy [53].

1.4 Thesis Outline

The remainder of this thesis is structured as follows. Chapter 2 provides an overview of

the state-of-the-art on ICN architectures, routing protocols for ICN, BFs, and network

coding. Chapter 3 presents the proposed push-based BFR as a routing protocol for

NDN. Chapter 4 discusses the scalability issues of push-based BFR and proposes

pull-based BFR protocol that addresses those challenges. Chapter 5 describes a

network coding-based protocol that makes use of the information disseminated for

BF-based content discovery to select network codes for improving content retrieval

delay. Chapter 6 describes BF-based routing protocols for (C)DS-based SCNs. Finally,

Chapter 7 concludes the thesis and presents some future research directions.

10

2
State of the Art

2.1 Overview

NDN [88] is the most prominent ICN-based architecture. A large research community

is conducting research based on NDN using its open-source implementation. In

the Introduction, we posed the RQs related to NDN routing, network coding-based

content retrieval in NDN, and SCN routing. In this Chapter, we discuss the most

relevant previous works that relate to the RQs and the concepts that we use in the

rest of the thesis. We begin by introducing ICN and its more popular architectural

proposals. Next, we discuss the related works on NDN routing protocols. Then, we

discuss network coding and network coding-based ICN schemes. Finally, we briefly

discuss the research works that relate to SCN.

2.2 Information-Centric Networking

Different ICN architectures have been proposed based on different perspectives, for

example Data-Oriented Network Architecture (DONA) [41], Publish Subscribe Internet

11

Chapter 2. State of the Art

Technology (PURSUIT) [74], Network of Information (NetInf) [28], Mobility First [3],

Content-Centric Networking (CCN) [1], and NDN [4]. These architectures use content

names instead of endpoint identifiers but they differ from each other in naming

and content discovery protocols [16]. In the following, we briefly describe the above

ICN-based architectures. A more detailed description of the proposed ICN-based

structures is available in [11] and [85].

2.2.1 Data-Oriented Network Architecture

Data-Oriented Network Architecture (DONA) [41] was proposed as one of the first

architectures for ICN. DONA uses flat names in the form of P : L, where P is the

hashed value of the public key possessed by the content provider, and L is a unique

ID of one of the content objects provided by the same content provider. To perform

name resolution in DONA, some of the routers are appointed as Resolution Handlers

(RH), which are connected to each other for inter-domain routing. RHs distribute

information about new content objects registered by the local content providers so

that the other RHs know where to find those content objects. When a client wants to

request a content object, it sends a Find message to the RH it is associated with. The

associated RH then forwards the client’s request to the RH that is connected to the

content provider. Content objects can take the same route that their corresponding

Find message has traveled, or they can take a different route. RHs might cache the

content objects that pass through them while there are on their way to reach the

clients.

2.2.2 Publish-Subscribe Internet Technology

Publish Subscribe Internet Technology (PURSUIT) [74] replaces the IP protocol stack

with a publish/subscribe protocol stack. PURSUIT architecture has three main com-

ponents: 1) rendezvous, 2) topology manager, and 3) forwarding. The rendezvous

function is responsible for connecting subscribers to publishers. For name resolution,

a series of rendezvous nodes form a hierarchical Distributed Hash Table (DHT). When

a publisher is identified, rendezvous nodes ask the topology manager to specify a

route that connects the publisher and the subscriber to deliver the requested content

object. The topology manager uses BFs to compactly represent the routes that are

written into message headers. Some forwarding nodes read the routes encoded in

message headers and forward the requested content object over the specified route

12

2.2. Information-Centric Networking

until the requested content object is delivered to the subscriber. The naming style in

PURSUIT follows a scopeID:rendezvousID pattern. The role of scopeID is to keep items

of related information together, while rendezvousID identifies the content object.

2.2.3 Network of Information

Network of Information (NetInf) [10] is an architecture that inherits features from

both PURSUIT [74] and NDN [88]. NetInf has a hierarchical naming style, where

Longest Prefix Matching (LPM) is performed for routing operations (similar to NDN).

Nevertheless, to bind a subscription to a publication, it requires to have an exact

name matching (similar to PURSUIT). NetInf has a hybrid name resolution approach.

That is, first a multi-level Distributed Hash Table (DHT) is used to acquire informa-

tion about the publisher locator, and to route the request to an area, where more

information is available about the publisher locator. After, content routers perform

name-based routing until the request reaches its destination. In NetInf, content

providers announce their provided content objects using a PUBLISH message. These

messages are used to route the requests towards content providers. Clients use GET

messages to solicit content objects. Apart from GET messages, clients can also send

SEARCH messages containing keywords to receive names of some content objects

that match the request as well as the location that the matching content objects are

stored.

2.2.4 MobilityFirst

MobilityFirst [3] is an ICN project that focuses on users’ mobility. MobilityFirst identi-

fies all users, devices, and content objects using unique 160-bits flat IDs. These unique

IDs do not depend on network addresses. Nevertheless, it is possible to translate each

unique ID to one or several network addresses. This is useful to be able to re-route

the messages according to the mobility patterns of devices or content objects. To

find the current location of a unique ID, one can contact the name resolution service.

In MobilityFirst, the role of the name resolution service is to map the unique IDs to

network addresses. Thus, messages are routed according to network addresses.

13

Chapter 2. State of the Art

2.2.5 Content-Centric Networking

Content-Centric Networking (CCN) [37] was proposed as a fully content-oriented and

fully distributed ICN architecture. CCN identifies content objects with names. When

a client wants to request a content object, it issues an Interest message with the name

of the requested content object. An Interest message travels in the network until it

reaches a node that stores the requested content object. Then, the node who has the

requested content object creates a Data message containing the requested content

object and sends it back to the client. A Data message is forwarded over the reverse

path that the corresponding Interest has traveled. An important feature of CCN is

in-network caching, i.e., CCN permits the intermediate routers to cache the Data

messages that pass through them to reach the clients. Therefore, future repetitive

Interest messages could be retrieved from closer caches.

In 2009, PARC developed an open-source software in C called CCNx 0.1 [1] to imple-

ment CCN [37]. In 2010, National Science Foundation (NSF) funded ten institutions,

including PARC, to continue protocol design and software development of the CCN

architecture, but the project was renamed to Named Data Networking (NDN) [4].

From 2010 to 2013, the NDN project used CCNx (versions 0.3 to 0.8) as its imple-

mentations. In 2013, PARC decided to continue developing CCNx as a closed-source

software for commercial use. However, the NDN project team aimed to develop a

framework for research with open-source software. Therefore, the NDN project team

separated its software development activities and implemented: 1) NDN C++ library

with eXperimental eXtensions (NDN-CXX) [56], and 2) NDN forwarding Daemon

(NFD) [8]. NDN-CXX implements NDN primitives, i.e., name, Interest, Data, face, and

signature. NFD implements the forwarder of NDN. Therefore, NDN-CXX and NFD

form the open-source software of NDN.

NDN and CCNx are designed with the same set of principles, e.g., 1) named-based

routing, 2) in-network caching, and 3) content-oriented security [36]. Nevertheless,

there are minor differences between CCNx and NDN [61]. For example, when CCNx

routers want to check matching Data messages, they perform exact matching oper-

ations, while in NDN, when a client issues an Interest message, it might permit the

Interest name to be a prefix or the exact name of the requested Data message. NDN

uses random nonce values for loop detection, while CCNx does not provide loop

detection capabilities. [36] describes a detailed description of the commonalities and

differences between NDN and CCN.

14

2.2. Information-Centric Networking

To run simulations based on CCNx, users need to use CCNx with the NS-3 Direct

Code Execution (DCE) project [6]. DCE is an NS-3 module, which aims to run network

protocol implementations in the NS-3 simulator [5]. NDN project team provides

ndnSIM [56] as an open-source simulator, which is based on NS-3. In this thesis, we

focus on NDN [88] and we implement our protocols in ndnSIM [56].

2.2.6 Named Data Networking

Fig. 2.1a shows the Data message structure. A Data message requires a hierarchical

Name for identification and a Signature for verifiability. However, a Data message

might contain optional information, namely: 1) FreshnessPeriod, 2) FinalBlockId, 3)

Content. Servers sign their Data messages using their secret keys. Therefore, clients

can verify the Signature of a received Data message using the public key of the server

that provides the received Data. If a content provider writes a FreshnessPeriod into a

Data message, the Data message will become non-fresh after that period. A non-fresh

Data is still a valid Data and FreshnessPeriod simply means that the server might have

generated a newer Data after this time period. If a client receives a Data message that

has the FinalBlockId enabled, the client considers the received Data message as the

final segment of a data block. Finally, Content is an arbitrary sequence of bytes that

the server might have written into the Data message as its content. FreshnessPeriod

and FinalBlockId are not present by default, and the default value for Content is 1024

bytes. In this thesis, we consider the default settings for optional information.

Figs. 2.1b shows the Interest message components. It is mandatory for an Interest

message to have a Name of a requested Data. However, an Interest message might

contain optional information, namely: 1) canBePrefix, 2) MustBeFresh, 3) Nonce, 4)

Lifetime, 5) HopLimit. If canBePrefix is disabled, Interest name has to fully match the

Data name. However, if canBePrefix is enabled, the Interest name could partly or fully

match the Data message. If MustBeFresh is enabled in an Interest, the Interest could

be satisfied only with fresh Data messages. The Nonce is a randomly generated 4-bytes

value. The combination of Interest Name and the Nonce value uniquely identifies

an Interest message and is used for detecting loops. The Lifetime indicates the time

period that an Interest message is stored in the PIT after its reception. The HopLimit

is a 1-byte value, which defines the maximum number of hops that the Interest can

travel. When a node receives an Interest, the node decreases the HopLimit value by 1,

and if the resulting HopLimit is zero, the node will satisfy the Interest from the CS if

15

Chapter 2. State of the Art

(a) Data message (b) Interest message

Figure 2.1: NDN message structures

possible and drops the Interest, otherwise. CanBePrefix, MustBeFresh, and HopLimit

are not used by default. Nonce carries a randomly generated 4-byte value by default,

and the default value of Lifetime is 4 seconds. We use these default settings in our

simulations.

Fig. 2.2 depicts NDN Data message processing. NDN data forwarding is receiver-

driven, i.e., Data messages are only sent in response to the received Interest messages;

a received Data message for which no Interest message is stored will be considered

unsolicited and will be discarded. In NDN, when a solicited Data message passes

through a router, the router caches it. The cached Data messages are used to serve

future matching Interest messages. To deal with the limited sizes of CS’s, it is possible

to use different content replacement strategies, such as Least Recently Used (LRU),

Least Frequently Used (LFU), and Random [88].

Fig. 2.3 illustrates Interest message processing. This figure shows that when a router

receives an Interest message, it checks whether the requested Data message exists

in the CS. If there is a CS hit, the Data message will be returned. Otherwise, the

router checks whether the Interest message is stored in the PIT and has been received

before. If the PIT stores the Interest, the router aggregates the Interest message.

Otherwise, the router checks the FIB to see whether next hop face(s) are available

for the Interest. If the FIB has the next hop face(s) information for the Interest, the

router dispatches the Interest to the forwarding strategy. The decision whether to

forward an Interest message over each next hop face specified by a FIB is made by

the forwarding strategy. NDN provides Multicast, Best route, and Random forwarding

strategies [88]. Multicast forwarding strategy forwards Interest messages over multiple

next hop faces to support multi-path content retrieval. Best Rote forwarding strategy

forwards the Interest messages over the face with the lowest routing cost. Routing

16

2.3. Routing

Figure 2.2: Data message processing

Figure 2.3: Interest message processing

cost for a face could be defined according to a metric, e.g., hop count to the requested

content object. When the Random forwarding strategy is responsible for forwarding

an Interest message, it randomly chooses one of the faces that are available for the

Interest in the FIB and forwards the Interest message over the selected face.

NDN provides loop detection for Interest messages using random nonce values. Since

Data messages travel over the reverse path of their corresponding Interest messages,

Data messages will not be in loops. As Fig. 2.4 shows, each PIT entry maintains

two data structures called in-record and out-record. In-records contain information

regarding the faces over which the Interest message has been received as well as

the last nonce value received over each face, and out-records contain information

regarding the faces over which the Interest has been forwarded as well as the last

nonce value forwarded over each face.

2.3 Routing

From among ICN architectures, DONA [41], PURSUIT [74], and NetInf [28] use name

resolution for content discovery. Resolution-based content discovery maps the con-

tent requesters with content providers at rendezvous points [27, 63, 70, 79]. For this

purpose, resolution-based content discovery solutions require complete informa-

17

Chapter 2. State of the Art

Figure 2.4: PIT entry structure

tion about the topology of the network as well as the distribution of content objects

in the network. However, the maintenance of this information is not scalable [78].

Routing-based content discovery solutions mostly do not require full knowledge of

the topology and the content distribution, and, therefore, routing-based content dis-

covery solutions are more scalable [78]. CCN [37] and NDN [88] use routing-based

solutions for content discovery [88].

In recent years, many routing protocols have been proposed for NDN [24, 35, 45, 49,

72, 77, 80, 86]. Wang et al. propose OSPFN [77], which is an extension to Open Shortest

Path First (OSPF), as a routing protocol for NDN. OSPFN makes use of OSPF’s Opaque

(Link-State Advertisements) LSAs [15] for advertising name prefixes in the routing

messages. OSPFN considers the best next hop for each name prefix. However, it can

consider alternative next hops as well. OSPFN has the following shortcomings: 1) it

requires IP addresses to identify routers, and 2) it is a single-path routing protocol.

The work in [35] proposes Named-data Link State Routing (NLSR) as a link-state

routing protocol for NDN, which uses LSA messages to exchange information about

the available name prefixes as well as the topology of the network. In NLSR, each

node runs Dijkstra’s algorithm to find the shortest paths from each of the faces for any

incoming Interest using full information about the topology and the content object

name prefixes that exist in the network. NLSR proposes a hierarchical trust model to

verify the authenticity of LSA messages in a single domain.

The works in [64, 68] use a Flooding-assisted Routing (FaR) strategy to find Data

message delivery paths. FaR floods an Interest message when there is no routing

information available for its name prefix (this is especially the case in the beginning

of network operation). Therefore, clients and routers flood the Interest messages so

18

2.3. Routing

Figure 2.5: A topology for describing Flooding-assisted Routing

that they reach origin servers. When origin servers return Data messages, clients and

routers receive them and populate the FIBs for the name prefixes of the received Data

messages. Let us explain FaR with the help of Fig. 2.5. In Fig. 2.5, we assume that client

C1 issues an Interest message I1 to demand a content object with name N1 provided

by server S1. However, client C1 does not have any information about the provider of

content object N1. Thus, client C1 floods Interest message I1 and waits for the Data

message with name N1. Since server S1 provides the Data message with name N1,

client C1 receives this Data message over the path S1 °R6 °R5 °R1 °C1. When the

Data message passes through routers R6, R5, and R1, each of these routers populates

the FIB for name N1. For example, when router R1 receives the Data message over

face 3, router R1 populates the FIB for name N1 and considers face 3 as the only next

hop face for name N1 in the FIB.

The work in [80] proposes to use BFs for content advertisements from routers and to

use an IP-based fall-back mechanism (possibly IP-based) to complement this scheme.

Nevertheless, in CCN and NDN, temporary copies of content objects are cached en-

route to the permanent copies, thus it is enough to only advertise permanent copies

of content objects. In [39], it is assumed that initially Interest messages are flooded.

However, when an Interest reaches a router that holds a copy of the demanded content

object, the router piggybacks a BF containing the file names cached locally to the Data

message and forwards the Data message back towards the requester node. The nodes

that receive this Data message retrieve the BF from the Data message and use the BF

for routing future incoming Interest messages.

19

Chapter 2. State of the Art

Figure 2.6: A BF with three hash functions

SCAN [45] is a BF-based routing protocol for ICN, but it is not a fully content-oriented

routing protocol, because it uses IP routing as a fall-back approach. SCAN uses BFs

to represent the content objects’ names passing through each interface. The main

drawback of this approach is that the number of elements inserted to the BF associated

with the interface increases with the number of content objects passing through each

interface. This will result in all the BF bits to be set to 1. Thus, the BF will not represent

the elements that have passed over the interface correctly. To cope with this problem,

COntent-oriented intra-domain Bloom filter-based Routing Algorithm (COBRA) [72]

proposed Stable Bloom Filters (SBFs) [29] to represent the content objects’ names

passing through each interface. SBFs need much more storage overhead compared

to standard BFs. However, they maintain only the names of the content objects that

recently passed through each interface and discard the names of older content objects

randomly.

To the best of our knowledge, BFR and COBRA are the only BF-based routing ap-

proaches proposed for NDN that are fully content-oriented and do not need any

fall-back routing schemes as a complementary component of the routing process.

Thus, in Chapter 3 we will compare BFR and COBRA. In the following, we describe

BFs, SBFs, and COBRA operations.

Bloom Filter: BF is a space-efficient data structure to represent sets compactly and

to support membership queries. When one represents a set with a BF, false positive

probability impacts the performance of the BF, i.e., the probability that an element

that is not in the set is wrongly reported by a BF as being in the set. In [17], the false

positive probability is expressed as a function of the length of bit table m, the length of

20

2.3. Routing

(a) Before the insertion operation

(b) After the insertion operation

Figure 2.7: An insertion operation for an SBF with parameter set {m = 15,k = 3,d =
3, p = 5}

the original set represented by BF n, and the number of hash functions k. According

to [17], when one wants to insert n elements in a BF and can afford a false positive

probability p, the required size for the bit table m and the number of hash functions k

are respectively given as: 8
<

:
m =°nln(p)

(ln2)2

k = m
n ln2

(2.1)

Fig. 2.6 shows a BF with a 15-bits table and three hash functions. The BF’s bit table

is initialized by zero. The insertion operation of an NDN name consists of giving the

NDN name as an input to the three hash functions to receive three positions in the bit

table and set all the bits at those positions to 1.

Stable Bloom Filter: In contrast to BF that is a table of bits, SBF is a table of counters.

Assume that an SBF consists of n counters SBF [1], ..,SBF [n] and the length of each

counter is d bits. Thus, the minimum and the maximum values for each counter are

0 and 2d °1, respectively. SBF is a variant of BF, which also uses hash functions for

insertion and query operations. Like in standard BF, SBF’s table is also initialized by

zero. However, the insertion operation for SBF differs from the insertion process of BF.

When one wants to insert an element into an SBF, it gives the element to the k hash

functions and the k counters indexed by the outputs of the k hash functions are set

21

Chapter 2. State of the Art

Figure 2.8: A topology for describing BFR and COBRA

to their maximum values (2d °1). Then, p counters are randomly selected and their

values are decremented. Fig. 2.7 illustrates the insertion operation for an NDN name

into an SBF with parameter set {m = 15,k = 3,d = 3, p = 5}. This figure also shows

the states of the SBF before (i.e., Fig. 2.7(a)) and after (i.e., Fig. 2.7(b)) the insertion

operation, respectively. This insertion mechanism aims at keeping the elements that

have been recently inserted into the SBF and removing elements that were previously

inserted in the SBF randomly.

COBRA Operation: COBRA equips nodes with SBFs. Each node maintains as many

SBFs as it has interfaces. When a content segment travels over a path towards a client,

each node located on this path receives the content segment over an interface and

stores the name of the content object as well as all the name prefixes of it into the

SBF associated with the interface. This leads to storing a trace of the retrieval path for

the content object at all nodes located on the retrieval path of the content object. In

the beginning of the network operation, all SBFs of all nodes are empty because no

content objects have been retrieved yet. Therefore, nodes do not have route traces

stored in SBFs. Thus, nodes end up in flooding all the Interests until the SBFs learn

the route traces. This phase is called learning phase. Flooding Interests during the

learning phase does not scale well with increasing size of the content universe. In

Fig. 2.8, assume that at time instance t1, client CY issues an Interest to demand a

content object segment named /uni be.ch/i mag es/ f i leN ame1/0, which is stored

at server S A. When the SBFs are empty, both client CY and router R3, as well as the

other routers have to flood the Interest until it reaches server S A. Then, this server

sends the demanded Data message backward to client CY . Since the Interest has

been flooded, the corresponding Data message comes back over different paths (e.g.,

22

2.3. Routing

path S A °R8 °R6 °R3 °CY (blue in Fig. 2.8), path S A °R8 °R5 °R2 °R4 °R3 °CY

(red n Fig. 2.8)). Therefore, for router R8, name /uni be.ch/i mag es/ f i leN ame1

and all its name prefixes are inserted into the SBF of interface 1. But for router R6,

the same name prefixes are inserted into the SBFs of interfaces 1, 2, and 3. This is

because router R8 receives the Data message only from server S A, while router R6

receives the Data message from routers R8, R5, and R9. After storing the route traces

for name /uni be.ch/i mag es/ f i leN ame1/0 and its name prefixes, client CY and all

the routers that stored these name prefixes in their SBFs, do not need to flood anymore

the Interests that come for the subsequent segments of the same file name.

When SBFs are not empty for a name prefix, another phase of COBRA routing

called interface ranking takes place. Let us explain this phase with the help of

the topology in Fig. 2.8. Let us assume that at time instance t2, when the route

traces for name /uni be.ch/i mag es/ f i leN ame1 are stored in SBFs, client CY

issues Interest I1 to demand the subsequent segment of the same file name, i.e.,

/uni be.ch/i mag es/ f i leN ame1/1. Client CY checks the full name against the SBF

of interface 1. The SBF of interface 1 does not contain the full name. Thus, client

CY increases the routing cost (initialized by zero) and eliminates the last name

component. Then, client CY checks the resulting name against the SBF of interface

1. Since the SBF of this interface contains the name, client CY assigns the current

routing cost in the FIB to interface 1. Client CY does not have any more interfaces.

Thus, it forwards the Interest over interface 1 towards router R3.

When router R3 receives the Interest, it checks the full name against the SBFs of all the

interfaces except the incoming one. Since the SBFs of interfaces 1 and 2 do not contain

the full name, router R3 increases the routing cost (initialized by zero) and eliminates

the last name component. Then, router R3 checks the resulting name against the

SBFs of interfaces 1 and 2. Both of these SBFs contain the name. Thus, interfaces 1

and 2 are ranked with the current routing cost. The same process continues at the

other routers until one of the following conditions happens: 1) all the interfaces of the

router are ranked; 2) the last component of the Interest is eliminated and still one or

more interfaces are not ranked. In the latter case, the router assigns the maximum

routing cost to those not yet ranked interfaces.

To deal with link failures, COBRA permits nodes to reset the SBF(s) associated with

a failed link upon detecting a link failure, i.e., setting all the bits of the SBF(s) to

zero. Following this reset strategy, the nodes that are directly connected to the failed

23

Chapter 2. State of the Art

link know that no content object is reachable through the failed link. Thus, they

avoid forwarding any Interest messages over the failed link. When a link recovery is

detected, COBRA allows nodes to set the values of all the counters of the associated

SBF(s) to the maximum value. This strategy encourages the nodes that are directly

connected to the recovered link to forward all Interests through the recovered link.

The forwarding through the recovered link is temporary. When new content object

names are inserted into the SBFs associated with the newly recovered link, the route

traces will be corrected in the SBFs.

If content migration takes place, the route traces stored in SBFs should be corrected,

because the location of permanent copies of the migrated content objects has changed

and the temporary cached copies might be evicted due to a caching policy, e.g, LRU.

With COBRA, clients and routers are not explicitly informed about a content migra-

tion event. However, they consider Interest retransmissions as indications of wrong

forwarding decisions made in the past. Thus, when a node observes an Interest re-

transmission event, it retransmits the Interest not only over the interface with the

smallest routing cost, but also over the interface(s) with higher routing cost(s) to

increase the probability that the retransmitted Interest reaches the right server.

COBRA floods all the Interest messages during the learning phase. When Data mes-

sages are received, COBRA updates the route traces in SBFs. If route traces for an

Interest’s name prefix is stored in SBFs, COBRA avoids flooding the Interest and routes

the Interest according to the route trace information.

2.4 Network Coding-based Content Retrieval

In their seminal work on Network Coding (NC), Ahlswede et al. [12] showed that the

broadcast capacity of a network can only be reached with NC. This still holds true if the

nodes restrict themselves to linear encoding functions [47]. Besides throughput gains,

NC provides a minimum-energy multicast with a polynomial-time solution [83], which

is NP-complete for classical routing. Optimal centralized NC algorithms have been the

subject of several publications [38, 40]. [91] proposed a distributed implementation

of global optimization in centralized NC. [81] showed that by choosing encoding

functions randomly [25, 34], NC becomes very suitable for wireless ad-hoc networks.

However, these approaches need to have a priori knowledge of the topology to be

applicable [52].

24

2.4. Network Coding-based Content Retrieval

Linear Network Coding (LNC) [47] is proposed as a means of code design to achieve

the max-flow bound on the information transmission rate for multicast in networks.

Nodes implementing LNC may send messages containing linear P combinations of

earlier received information, i.e., y j =
P

i Æi xi where the packets xi 2 {0,1}N (N bits

packets). All coefficientsÆi are generally numbers in a finite field (generally the Galois

field GF (2k)). Upon receiving a network coded packet, a node can retrieve the linear

equation contained in the packet and reconstruct a linear equation system to solve.

We say that a packet received by a node and containing a linear combination of packets

is innovative if it increases the rank of the set of received packets at this node. Random

Linear Network Coding (RLNC) [33] suggests that nodes choose the coefficients Æi

randomly and independently inside a large enough Galois field [38]. When a node

receives m linear combinations of n packets, it can decode them provided that the

set of combinations has a rank n. If nodes use RLNC and select the coefficients Æi

randomly in a finite field, the above condition will occur with a high probability for

m = n [38]. This appealing property of RLNC makes it interesting for decentralized

networks [25, 34].

Several works have studied NC-based content retrieval in ICN. The work in [65] pro-

poses NetCodCCN as an NC-based content retrieval protocol for CCN and discusses

that, when we have multiple servers, multiple clients, and multi-path communica-

tions, NC-based content retrieval increases the throughput and resiliency to packet

losses. Nevertheless, [65] evaluates a scenario that clients are only interested in a

single file and all the links have the same capacity of 12 Mbps. On the contrary, in this

thesis, we assume that clients are interested in different files and different links have

different capacities. Further, [65] considers single-session NC [30], i.e., routers can

only combine packets that belong to the same content object. Nonetheless, multi-

session NC [19] permits network nodes to combine packets that belong to different

content objects into network coded packets. Differently from [65], in this thesis, we

propose a protocol that leverages BF-based information that has been propagated for

content discovery to design multi-session network codes for content retrieval.

Video streaming is an application of ICN. Dynamic Adaptive Streaming over HTTP

(DASH) [69] is an efficient video delivery protocol. When DASH is used, servers

have to encode the videos in different representations (i.e., bitrate and resolution).

When clients request videos, they decide the representation of their requested videos

according to their available network and display resources. Therefore, clients start

and control video streaming using the DASH protocol. Similar to DASH, content

25

Chapter 2. State of the Art

Figure 2.9: BF-based Interest message processing

retrieval is also client-driven in NDN. This interesting similarity between DASH and

NDN motivated the work in [66] to propose a DASH-based video streaming protocol

for NDN.

The work in [65] showed the NC gains in terms of throughput, delay, and resiliency,

for multi-path communications scenarios in NDN. Therefore, the work in [66] imple-

ments NetCodNDN-DASH as a DASH-based video streaming protocol based on the

NetCodCCN protocol [65]. The work in [66] shows that NetCodNDN-DASH achieves

increased cache hit rate and reduced content traffic load on servers than the DASH

protocol based on vanilla NDN, called NDN-DASH protocol. Further, if NetCodNDN-

DASH is used, the number of clients that can receive the requested video with the

highest available quality is significantly higher than of NDN-DASH [66].

Scalable Video Coding (SVC) [67] is another video streaming technique, which as-

sumes that each video is encoded into different layers. In SVC, the lower layers have

more importance than higher layers. Therefore, the first layer (base layer) has the

highest importance, and users have to receive it before the higher layers. When a user

receives the base layer of a video, the user can retrieve the lowest quality of the video.

The more layers of a video a user receives, the higher is the quality of the video the

user can retrieve.

Motivated by the NC gains in multi-path communication scenarios, the work in

[20] proposes an architecture that makes use of NC techniques for SVC-based video

retrieval [67] in NDN. [20] formulates a rate allocation problem to decide an optimal

rate of Interest message transmission by clients to maximize the average quality of the

scalable videos received by clients. If SVC is used, the users will have diverse requests in

terms of video quality, and videos are divided into layers with inequal importance [67].

Therefore, to apply NC techniques to scalable videos, Prioritized Random Linear

26

2.5. Service-Centric Networking

Network Coding (PRLNC) was proposed to address the requirements of SVC in terms

of video layers with inequal importance [43,71]. Since the NC method proposed in [20]

is designed for SVC-based video delivery, it also uses PRLNC techniques [43, 71] to

combine video packets.

Fig. 2.9 describes the Interest message processing proposed in [20]. In Fig. 2.9, we

assume that client A issues two identical Interest messages I (t) and I (t +1) to request

two linear combinations, with the same name prefix, at times t and t +1, respectively.

As Fig. 2.9 shows, these Interest messages travel over the two green paths to reach

server G . When vanilla NDN is used, if I (t) reaches router E earlier than I (t +1), then

router E will assume that I (t +1) is identical with I (t), and, thus, router E will not

forward I (t+1) to server G . However, client A issued Interest messages I (t) and I (t+1)

to receive two innovative network coded packets. To cope with this problem, the work

in 2.9 suggests that both Interest messages I (t) and I (t +1) carry a BF containing the

ID of client A. Then, when router E receives I (t +1) after I (t), router E will forward

both I (t) and I (t +1), respectively, to server G . As a result, server G will return two

innovative network coded packets to client A.

Although the work in [20] proposes to use BFs for Interest message processing, this

work does not discuss the practical parameters and mechanisms related to BFs. The

trade-off between BF size and the required bandwidth and storage resources, which we

have clarified in this thesis, is not discussed in [20]. Further, the work in [20] permits

intermediate routers to perform union operations on the BFs of Interest messages

that have the same name prefix. Nevertheless, to permit BF union operations, it is

highly important to design practical strategies that prevent BFs from overflowing after

continuous union operations, which are not considered in [20]. In Chapter 4, we

design practical BF aggregation strategies, which we also use in Chapter 5.

2.5 Service-Centric Networking

Service-Centric Networking (SCN) [21] is as an extension of ICN that permits clients

to request services, which require service providers to perform computations on

content objects. For example, a client might request a service provider to transcode

a video as a service. SCN builds on top of CCN and the main principles of these

architectures are the same. Specifically, in both architectures: 1) service request flow

goes towards upstream, 2) service response flow returns over the reverse path of the

27

Chapter 2. State of the Art

request flow to downstream. In SCN, service providers need to apply functions to

users’ or servers’ data during processing time to generate the service requested by

users. In the following, we briefly describe some of the related works on SCN.

Named Function Networking (NFN) [75, 76] proposes a service-centric architecture

based on CCN [1]. NFN architecture is composed of an NFN layer that is responsible

for forwarding decisions, and a service layer that runs the NFN engine (a.k.a. lambda

engine) to perform computations on content objects. When a client wants to request

computations on a content object, it sends the content object together with a function

that has to be run on the content object. If an idle service provider receives a service

request, it will perform the requested computations on the received content object and

it will return the results. However, if a busy service provider receives a service request, it

might forward the service request to other peers. Some of the SCN applications require

to create a context and perform a series of operations in the created context. For

example, communication parties might require to establish a session for exchanging

symmetric encryption [18] keys before data communications and processes. However,

NFN does not provide session support. To cope with this issue, the work in [32]

proposes a session support mechanism for SCN. NFN does not have a hierarchical

naming method. Thus, NFN names are hard to read especially when there are multiple

function calls. To address this problem, [42] proposes the Named Function as a Service

(NFaaS) architecture. NFaaS uses a hierarchical naming method rather than a lambda

expression-based naming method. Further, NFaaS uses virtual machines, which could

be implemented on any node, to implement functions. The developers of NFaaS

claim that function migration is possible according to users’ requests, however, the

developers do not discuss the complexities related to function migration.

Similar to NFN, SOPHIA [82] makes use of a layered architecture for communications.

A network layer forwards service data messages using IP addresses, and a service layer

provides sessions for service processing. Before service provision, SOPHIA requires

session establishments. When sessions are established, the network layer handles

IP-based communications through the established sessions. The major shortcoming

of SOPHIA is that it depends on IP-based communications, which does not comply

with SCN design principles.

Differently from SOPHIA, Layered architecture for Service-Centric Networking (L-

SCN) [31] presents a layered routing architecture for SCN, which is fully content-

oriented and does not leverage IP addresses for routing. L-SCN designs intra and

28

2.5. Service-Centric Networking

Figure 2.10: Domains and supernodes

Figure 2.11: DIM structure

inter-domain communication mechanisms for service routing. For scalability reasons,

L-SCN assumes that nodes are grouped into domains where each domain is managed

by a special node called supernode. The supernode of each domain stores significant

knowledge about the available services and resources of the domain. Further, the

supernode of each domain is responsible for inter-domain communication with

other domains. A supernode of a domain has to be connected with at least another

supernode of another domain. Fig. 2.10 shows domains 1 and 2, where nodes C

and G are their supernodes, respectively. If domain 1 requires information about the

available services and resources in domain 2, supernode C has to request supernode

G for this information.

For service routing, L-SCN suggests that in each domain, the supernode frequently

requests the other nodes of the domain about the available services and resources.

For example, in Fig. 2.10, supernode C sends an Interest Information Message (IIM)

to ask the nodes of domain 1 (i.e., A, B, D, and E) about their available services and

resources. When the nodes of domain 1 receive this IIM message, they reply with

Data Information Messages (DIM) that contain the information about their available

services and resources. As Fig. 2.11 shows, a DIM message stores a BF containing the

names of the available services and also the information about the available resources.

Although L-SCN proposes to use BFs for service discovery, it does not discuss the

practical details that are related to using BFs, e.g., BF size and its required bandwidth

overhead, or false positive probability and its impact on routing. Further, L-SCN

does not propose any method for grouping nodes into domains and for selecting

29

Chapter 2. State of the Art

(a) DS (b) MDS (c) CDS (d) MCDS

Figure 2.12: Different Dominating Sets. Dominator nodes are grey, Dominated nodes
are white.

and connecting supernodes. In Chapter 6, we describe the practical parameters

of the BFs and their impact on the performance. Further, we leverage dominating

sets and connected dominating sets [44] to propose a solution for grouping nodes

into domains, supernode selection, and supernode connection. In the following, we

describe dominating sets and connected dominating sets.

2.6 Dominating Sets

For a graph G =< V ,E >, where V is the set of vertices and E is the set of edges, a

set D µV is called a Dominating Set (DS) provided that each vertex of V is either an

element of set D or it is directly connected to an element of set D . The elements of a

DS are called dominators and the direct neighbors of dominators are called dominated

nodes. The DS with the minimum possible cardinality is called Minimum DS (MDS).

Given a DS C µ D , if any vertex vi 2C can reach any other vertex v j 2C using a path

that does not leave set C , the latter set is called Connected Dominating Set (CDS). A

CDS with the minimum possible number of elements is called Minimum CDS (MCDS).

In Fig. 2.12, we illustrate examples of DS, MDS, CDS, and MCDS over a graph. The

determination of MDS and MCDS are NP-hard problems [23].

DS and CDS find applications in several networking problems, e.g., creating a virtual

backbone for routing in ad-hoc networks [13, 23, 46, 84, 92]. As finding an MCDS is

NP-hard, the work in [23] proposed to approximate MCDSs, by finding dominating

sets slightly larger than a dominating set with the fewest possible number of nodes.

This set is used as virtual backbones for wireless ad-hoc networks in a unit-disk graph

to alleviate broadcast storms. The authors of [23] present a distributed algorithm to

approximate MCDS, which first finds the maximal independent set and then uses

a Steiner tree to connect the vertices in this set. The work in [13] proposes another

distributed algorithm that does not depend on spanning trees. This algorithm main-

30

2.7. Conclusions

tains the same approximation ratio after topology changes, but needs a leader node

to operate. If a leader node is not given, leader election should take place which

adds time and message complexity to the algorithm. In [92], a fully localized and

distributed algorithm called r-CDS is proposed, which does neither require to build a

tree nor to select a leader. The work in [46] examines distributed algorithms proposed

for MCDS approximations and presents distributed construction of an approximate

MCDS, for unit disk graphs.

The work in [84] uses DSs to provide a solution for collaborative caching in ICN. It

leverages DSs for efficient collaborative caching to reduce caching redundancy in the

network. It combines routing and caching strategies with a CDS. In [84], the most

popular content objects are cached at the core routers. The benefit of having a CDS

for the core routers is much simpler routing, as every core router is directly connected

to at least another core router, and, therefore, routing can be done solely through core

routers. To the best of our knowledge, the work in [84] is the only that makes use of

DSs to provide a solution for ICN-based networks, but it uses a centralized clustering

algorithm and requires the network topology as well as the number of neighbors

for each node to be known a priori. The main problem with the work in [84] is that

even if the CDS construction methodology can operate easily for small topologies, its

complexity increases fast with the size of the network topology [53].

In [13, 23, 46, 92], the presented solutions are for wireless ad-hoc networks, modeled

as unit disk graphs. Differently from these works, in Chapter 6, we focus on using DS

and CDS for intra-domain and inter-domain routing and propose a fully distributed

algorithms to construct these sets for any arbitrary network topology.

2.7 Conclusions

In this Chapter, we described the concepts that we use in the remainder of the thesis.

Section 2.2 introduced different ICN architectures. We mentioned that we focus on

NDN [88] as the most prominent ICN architecture and we use ndnSIM [56], which

is the open source NDN simulator, for implementing our protocols. Next, in Section

2.3, we described the related works on routing in NDN and also introduced BFs

that are space-efficient data structures to represent sets compactly. In the following

Chapters, we make use of BFs for compressing the routing information in NDN and

SCN. Then, Section 2.4 described network coding-based content retrieval and the

31

Chapter 2. State of the Art

previous works on network coding-based protocols for ICN. In Chapter 5, we propose

a novel NC-based protocol for reducing content retrieval delay. After, Section 2.5

introduced SCN and summarized its related works. Finally, Section 2.6 introduced DS

and CDS concepts. In Chapter 6, we focus on SCN and we make use of the DS and

CDS concepts for dividing network nodes into different domains, which is required

before implementing intra-domain and inter-domain routing.

32

3
Push-based Bloom Filter-based Routing

3.1 Introduction

In this Chapter, we attempt to answer RQ 1 posed in the Introduction section that

is related to the design of efficient protocols for routing Interest messages in NDN.

To route Interest messages, routing protocols require to populate FIBs. Therefore,

the development of strategies that optimally populate FIBs is vital for NDN [50]. The

Interest flooding method is inefficient as it wastes significant bandwidth resources.

Differently from flooding, shortest path routing solutions forward each Interest only

over the shortest path to the origin server of the demanded content object. These

routing solutions require full knowledge of the topology as well as the location of

origin servers for all the existing name prefixes in the network that entails a large

overhead.

To avoid wasting network resources through Interest flooding, an alternative approach

is to permit origin servers advertising their content offers frequently, i.e., whenever

new content objects are available in repositories. Therefore, origin servers could use

BFs to compactly represent their content offers. This leads to smaller overhead needed

33

Chapter 3. Push-based Bloom Filter-based Routing

for the propagation of content advertisements. Due to these appealing features of

BF-based content advertisement, in this Chapter we propose BFR, a routing protocol

that uses BFs for content advertisements from origin servers for FIB population.

In NDN, temporary copies of a content object might be cached en-route to the nodes

that provide the permanent copies of the content object. This possibility of in-network

caching enables clients to retrieve content objects from the caches that are closer to

them rather than from possibly distant servers. In our scheme, only origin servers

perform BF-based content advertisements. Nevertheless, nodes receive the content

advertisements of an origin server over all the paths en-route from the origin server

and populate their FIBs accordingly. Further, we adopt the multicast forwarding

strategy for forwarding Interests. Therefore, BFR forwards each Interest in parallel

through all the paths towards the origin server of its demanded content object. The

Interest could be satisfied with the caches before reaching the origin server. Hence, it

is unnecessary for routers to explicitly advertise their cached content objects, like the

scheme proposed in [39], and incur higher advertisement overhead.

Push-based BFR is topology oblivious. Hence, it does not need to propagate and store

information about the topology that entails overhead. Further, push-based BFR uses

BFs to reduce storage and signaling overhead of content advertisements. Finally, it

does not adopt any IP-based routing protocol as a primary or fallback mechanism.

This makes push-based BFR fully content-oriented and removes any dependencies

on IP-based communication models.

The remainder of this Chapter is organized as follows. Section 3.2 describes the

proposed push-based BFR method. Then, Section 3.3 discusses the impact of false

positive errors on push-based BFR operation, robustness to topology changes, and

handling of content migration. Afterwards, we present in Section 3.4 a simulation-

based comparative analysis of the proposed push-based BFR against flooding, shortest

path, and COBRA [72] routing protocols to illustrate push-based BFR advantages in

practice. Finally, Section 3.5 concludes the Chapter.

3.2 Push-based Bloom Filter-based Routing

In push-based BFR, origin servers represent and advertise their content objects using

BFs. In summary, push-based BFR consists of three phases: a) Representation of

content objects using BFs, b) BF-based content advertisement, and c) FIB population

34

3.2. Push-based Bloom Filter-based Routing

8
>><

>>:

e1 = /uni be.ch/,

e2 = /uni be.ch/i mag es/,

e3 = /uni be.ch/i mag es/ f i leN ame1

Figure 3.1: An example for content advertisement BF and related hash functions

and content retrieval. In the following, we describe each phase in detail.

3.2.1 Representation of Content Objects Using BFs

In push-based BFR, when an origin server has content objects to offer, it generates an

empty BF for which all the bits of the bit array are set to zero. Then, the origin server

maps the names of its content objects into the generated BF. An example of inserting

three URLs into a BF with a parameter set {m = 15,n = 3,k = 3} is presented in Fig. 3.1

(we defined m, n, and k in Eq. (2.1)). As Fig. 3.1 shows, the insertion process consists

of feeding each URL to the three hash functions to get three positions in the bit array

and set all the bits at these positions to 1.

In push-based BFR, each origin server maps the names of its content objects as well

as their name prefixes in its BF. For example, as Fig. 3.1 shows, the full name (e.g.,

/uni be.ch/i mag es/ f i leN ame1) as well as the name prefixes (e.g.,/uni be.ch/ and

/uni be.ch/i mag es/) are inserted into the BF. In Section 3.2.3, we discuss the reasons

behind inserting name prefixes into BFs in detail.

To show the savings resulting from using BFs for representing a set of content objects,

we provide an example. Consider that an origin server stores 200 content objects,

which are each divided into a number of segments. To represent the content objects,

35

Chapter 3. Push-based Bloom Filter-based Routing

the server creates a BF by setting n = 200, and targets a false positive error probability

of 2% (approximately four names per BF). Thus, the server needs a BF of size m =
1628.47 bits and k = 5.64 hash functions. Aligning the bit table size to byte order and

rounding these values, the server requires 203.5 bytes, i.e., approximately one byte

per named content object. For larger BFs, i.e., larger values of m and n, and the same

false positive probability, the required space for inserting each URL into the BF stays

constant, i.e., one byte. In NDN, names are URLs. To evaluate our routing approach,

we consider a realistic URL catalogue [26] with the average URL size equal to 42.45

bytes. For this setting, a server needs 8490 bytes to advertise a list of 200 URLs without

BF, while it needs only 2.4% of this size, i.e., 203.5 bytes, in case it uses BF. Therefore,

the use of BFs results in high compression for representing a set of content objects.

3.2.2 BF-based Content Advertisement

When an origin server creates a BF that contains the names of its content objects, it

requires to propagate this BF to advertise its content objects. We introduce a new

type of Interest packet called Content Advertisement Interest (CAI) that carries con-

tent advertisement BFs. Hence, push-based BFR propagates CAI messages carrying

the content advertisement BFs. The NDN Interest forwarding pipeline detects and

discards duplicate CAI messages and ensures loop freedom for these messages. It

is important to note that the only purpose for the propagation of CAI messages is

content advertisement and no Data packet is sent as a response to CAI messages.

Fig. 3.2 illustrates the structure of a CAI message, which is identified by the name

prefix /Content Ad ver t i sement . To distinguish the CAI messages issued by different

origin servers, we allow each origin server to append its unique ID as the second name

component to the name of the CAI messages that it issues. In the forthcoming, we

describe the reasons behind this choice in detail. As Fig. 3.2 shows, each CAI message

similar to Interest messages exploits a random nonce to ensure loop freedom. The

nodes that receive CAI messages store them in their PITs. CAI messages should expire

like other packet types stored in nodes’ PITs. Since no Data is coming back in response

to the CAI messages, they stay in PITs until their timeout. Hence, it is necessary to

add to the CAI message a lifetime field, which indicates when it expires. To this aim,

we reuse the Interest lifetime field to indicate the lifetime of CAI messages. Origin

servers refresh the CAI messages to keep nodes informed about their content offers.

Further, the content advertisement applications do not re-express CAI messages. We

should emphasize that this work aims at proposing a BF-based content advertisement

36

3.2. Push-based Bloom Filter-based Routing

Figure 3.2: CAI message

strategy fully compatible with the original NDN and not to present an NDN variation.

The last components for a CAI message are the needed information to retrieve the

content advertisement BF consists of the calculated bit array, the size of the bit array,

and a salt count value that is needed to retrieve the same content advertisement BF at

the nodes that receive the CAI message. Here, we assume that all the origin servers

generate their hash functions with a universal random seed and operate with the same

set of hash functions.

To permit nodes to propagate CAI messages, we add a FIB entry for name prefix

/Content Ad ver t i sement in the FIBs of all the nodes and add all the faces as next

hops for this name prefix at each node. Further, we adopt the multicast strategy for

forwarding the /Content Ad ver t i sement name prefix. Therefore, when an origin

server issues a CAI message, this message is forwarded to all the nodes that are

located in one hop distance and those nodes forward it over all the faces except the

incoming one. Each node that receives the CAI message broadcasts it, while the

Interest forwarding pipeline of the NDN Forwarding Daemon (NFD) ensures loop

freedom and discards duplicate CAI messages. Therefore, all the nodes will eventually

receive the CAI message.

The nodes that receive CAI messages record in their PITs the faces over which they

receive each CAI message. In Chapter 2, we explained that, the faces over which an

Interest is received are stored in the in-records of the related PIT entry. Therefore, to

record the faces over which a CAI message is received, we use in-records.

All the CAI messages share the same name prefix, i.e., /Content Ad ver t i sement .

Nevertheless, we let origin servers append their uni queI Ds as the second name com-

ponent to the name of the CAI message. For example, in Fig. 3.3a server S1 generates a

CAI message with name /Content Ad ver t i sement/S1 and server S2 a CAI message

37

Chapter 3. Push-based Bloom Filter-based Routing

with name prefix /Content Ad ver t i sement/S2. In general, servers could append

any kind of unique ID (e.g., their MAC addresses) as the second name component

to ensure name uniqueness. Let us provide an example to explain the reason be-

hind appending ser ver I Ds as the second name component for CAI messages. In

Fig. 3.3a, assume servers S1 and S2 do not append their unique IDs as the second

name component to CAI messages. In such a case, server S1 sends a CAI message

with name /Content Ad ver t i sement , and router R1 receives it. If at a later time

instant, server S2 sends a CAI message with the same name, which is received also by

router R1, the NFD Interest forwarding pipeline will consider the second CAI message

received by router R1 as redundant because both messages have the same name. This

will lead router R1 to only record the incoming face of the CAI message issued by

server S2 in the PIT entry for name prefix /Content Ad ver t i sement and to discard it.

This approach makes router R1 to discard the content advertisement BF of server S2.

Hence, router R1 will be unaware of the content offers from server S2. To avoid this

problem, in push-based BFR origin servers append their uni queI Ds to the name of

CAI messages.

Fig. 3.3b illustrates the content advertisement process. We assume that in Fig. 3.3a

server S1 advertises its content objects by sending a CAI message to router R3. Router

R3 receives and stores this message in its PIT, and forwards it to router R2. Router R2

also stores the CAI message in its PIT and forwards it to router R1. This is done until

all the nodes obtain the CAI message. At the end of this process, all the nodes receive

the CAI message issued by server S1. Fig. 3.3b also shows the content advertisement

process of server S2. In general, CAI messages could flood the network, or could be

sent using random walk. Although the random walk strategy incurs less bandwidth

and storage overhead, we did not follow this strategy because not all the nodes will be

aware of the content objects offered by all the origin servers.

3.2.3 FIB Population and Content Retrieval

Push-based BFR combines FIB population and content retrieval processes. To de-

scribe the FIB population process, assume that server S2 in Fig. 3.3a also adver-

tises its content offers. After the completion of the content advertisement propaga-

tion from servers S1 and S2 at time instant t2, all the nodes store the CAI messages

/Content Ad ver t i sement/S1 and /Content Ad ver t i sement/S2 in their PITs. The

PIT of client C is presented in Table 3.1. This Table shows the CAI messages in the

38

3.2. Push-based Bloom Filter-based Routing

(a) A topology to describe push-based BFR

(b) CAI transmissions

Figure 3.3: Content advertisement

upper rows of the PIT to indicate that the CAI messages are distributed proactively. In

push-based BFR, nodes use the received CAI messages for FIB population. When a

client issues an Interest to retrieve some Data, FIB population occurs hop by hop at

all the nodes that are placed on paths en-route to the origin server of the demanded

Data.

Let us describe FIB population, by considering the topology presented in Fig. 3.3a

and assuming that at time t3, client C issues the first transmission of the Inter-

est /uni be.ch/i mag es/ f i leN ame1/01 to retrieve the first segment of content ob-

ject /uni be.ch/i mag es/ f i leN ame1 that is offered by server S1. To populate its

FIB, client C eliminates the sequence number from the name of the issued Inter-

est and checks whether the BFs of the stored CAI messages contain name prefix

39

Chapter 3. Push-based Bloom Filter-based Routing

Table 3.1: PIT table of C

/Content Ad ver t i sement/S1

/Content Ad ver t i sement/S2

/uni be.ch/i mag es/ f i leN ame1/01

Figure 3.4: Content retrieval

/uni be.ch/i mag es/ f i leN ame1.

In this case, the demanded content object is produced by server S1, so the BF

stored in /Content Ad ver t i sement/S1 verifies that it contains the name prefix

/uni be.ch/i mag es/ f i leN ame1. Now, client C can add the face(s) over which it has

received content advertisement /Content Ad ver t i sement/S1 as the next hop faces

for name prefix /uni be.ch/i mag es/ f i leN ame1 into the FIB. Therefore, if no FIB en-

try exists for this name prefix, client C creates a FIB entry for this name prefix and adds

the face(s) stored in the in-records for the CAI message /Content Ad ver t i sement/S1

as the next hop face(s) for the FIB entry. After client C has populated its FIB for name

prefix /uni be.ch/i mag es/ f i leN ame1, it forwards the Interest for this name prefix

to router R1. Router R1 runs the same process as client C and checks the Interest

name without the sequence number, i.e., /uni be.ch/i mag es/ f i leN ame1 in the

BF of CAI messages stored in its PIT. Router R1 forwards the Interest to router R2,

then router R2 forwards the Interest to router R3, and, finally, router R3 forwards the

Interest to server S1 and the demanded content object is retrieved. Fig. 3.4 shows

the described Interest and Data message flows. The first transmission of Interest

/uni be.ch/i mag es/ f i leN ame1/01 in the network should reach server S1 to retrieve

40

3.3. Discussion

Figure 3.5: False positive error in content advertisement BFs

the demanded content object. The next transmissions of this Interest may retrieve

the content object from closer caches at routers situated en-route the upstream

path towards server S1. We select the multicast forwarding strategy that forwards

the received Interests over all the next hops specified in the FIB for their names and

design push-based BFR to work with this strategy to benefit from the existence of

multiple paths between the clients and the content servers. This approach is very

efficient in case of topology changes, i.e., unexpected link failures or link recoveries,

or when the shortest paths are congested, thus not able to return Data packets fast

enough.

3.3 Discussion

In the following, we discuss the impact of false positive errors on push-based BFR

operation, robustness to topology changes, and handling of content migration.

3.3.1 Impact of False Positive Errors on Push-based BFR Operation

When we use BFs, false negative errors cannot happen. However, false positive

errors are possible and might affect the performance of the system. We assume

that all the content advertisement BFs operate with the false positive probability

of P f pp and use Fig. 3.5 to discuss the impact of false positive errors on push-

41

Chapter 3. Push-based Bloom Filter-based Routing

based BFR operation. In Fig. 3.5, client C issues Interest Ip for name prefix p =
/uni be.ch/i mag es/ f i leN ame1, while server S2 possesses the content objects for

this name prefix. Client C forwards Interest Ip to router R1. Router R1 receives the

Interest for name prefix p from client C . At this router, the content advertisement BF

of CAI message /Content Ad ver t i sement/S2 correctly verifies that it contains name

prefix p and, therefore, router R1 forwards the Interest for this name prefix towards

server S2. However, at the same router, the content advertisement BF of CAI message

/Content Ad ver t i sement/S1 might give a false positive report for name prefix p.

Therefore, router R1 might forward the Interest for name prefix p towards server S1 as

well. Since false negative errors are impossible with BFs, routers R4 and R5 continue

forwarding Interest Ip towards Server S2. Hence, Interest Ip will be eventually satisfied

because server S2 stores the requested content object. If false positive errors happen

at both R2 and R3, these routers wrongly forward Interest Ip up to server S1, which

does not provide the requested content object. In Section 3.4.9, we present results to

show the impact of false positive errors on push-based BFR routing in practice.

3.3.2 Robustness to Topology Changes

To combat link failures, routing protocols should be resilient to link failures and should

adapt to link recoveries. When a link failure is detected, the nodes connected to the

failed link should prevent Interests from passing through this link until it recovers.

This is done in push-based BFR by taking the following actions, when a node detects a

link failure: a) the node removes the face associated with the failed link from all the

in-records of all the CAI messages that exist in the PIT, and b) the node removes the

face associated with the failed link from all the FIB entries.

When detecting a recovered link, the nodes connected to this link force all the Interests

to pass through it as it is a newly allocated network resource. In push-based BFR, the

nodes connected to a recovered link perform the following actions: a) they add the

face associated to the recovered link to all the in-records of all the CAI messages that

exist in the PIT, and b) they add the face associated to the recovered link as a next hop

face in all the FIB entries. The Interests pass through a recovered link for a short time

because by receiving fresh CAI messages, all the routes will be automatically updated.

42

3.3. Discussion

3.3.3 Handling of Content Migration

Content migration, i.e., moving a number of content objects stored in the repository

of a server to the repository of another server, may occur. When content migration

happens, it is necessary to propagate new CAI messages and to immediately inform

the network about the changes in the servers’ repositories so that nodes remove the

stale CAI messages stored in PITs. For this purpose, we present a strategy, which aims

at removing stale CAI messages from PITs upon detecting a content migration event.

Let us explain our strategy by considering again the topology illustrated in Fig. 3.3a.

Assume that client C maintains CAI messages from servers S1 and S2 in the PIT. If

server S1 migrates content objects to server S2, these servers immediately propagate

new CAI messages to inform all the network nodes about this event. However, servers

S1 and S2 should not only update the nodes with new CAI messages, but they should

also signal them to discard the CAI messages received before. For this reason, we

enable servers to do this by adding a new flag called discardOldAdverts to the new CAI

messages. Therefore, servers S1 and S2 activate the discardOldAdverts flag for the new

CAI messages and propagate them. When client C receives the new CAI messages in

which the discardOldAdverts flag has been activated, it removes all the CAI messages

received in the past, which have been issued by S1 and S2 from its PIT, and stores the

new CAI messages.

When an origin server replicates content objects to cache servers, these cache servers

also should advertise their content objects. If the content advertisement BF of a cache

server is identical with a content advertisement BF of an origin server, the nodes that

receive these identical BFs can aggregate them. Origin servers might add or remove

content objects to/from their repositories. If an origin server adds content objects to

the repository, it advertises the fresh content objects at the next content advertisement

round. If an origin server removes content objects from the repository, the removed

content objects will not be inserted in the content advertisement BF next time that

the origin server advertises its content objects. In case an origin server receives an

Interest for a content object that it has removed recently, the origin server returns a

“No Data” NACK [87] to announce the removal of the demanded content object.

43

Chapter 3. Push-based Bloom Filter-based Routing

3.4 Performance Evaluation

We compare push-based BFR with three other routing approaches: 1) flooding, where

an incoming Interest is forwarded to all the faces except the incoming one, 2) shortest

path, where the Dijkstra algorithm is employed to calculate the shortest paths, in

terms of least number of hops to the origin servers, and 3) COBRA [72]. In Chapter 2,

we described COBRA [72] and we mentioned that push-based BFR and COBRA [72] are

the only BF-based routing protocols proposed for NDN that are fully content-oriented,

topology oblivious, and distributed. Push-based BFR routes Interests according to

push-based content advertisements, whereas COBRA routes Interests according to

path traces left from previously retrieved content objects. In this Chapter, we show that

even if push-based BFR requires nodes to exchange BF-based routing information, it

still incurs much less communication overhead than COBRA, because in COBRA the

nodes flood with Interests the network during the learning phase. Further, we show

that in COBRA nodes need significantly more memory for storing routing information

than push-based BFR. This is problematic if nodes have limited memory space. We

implemented push-based BFR, flooding, shortest path routing, and COBRA in the

ndnSIM2.1 [56] environment.

3.4.1 Simulation Settings

To evaluate all the schemes, we use two topologies: 1) the GEANT network topology

depicted in Fig. 3.6, and 2) a 10£10 grid topology depicted in Fig. 3.7. The GEANT

network topology [2] interconnects Europe’s National Research and Education Net-

works (NREN) and provides research network services across the continent. Since the

GEANT topology is tree-like, we also use the grid topology to assess the performance

of all routing protocols when the topology is more connected. In the GEANT and the

grid topologies, we distribute the endpoints, i.e., clients and origin servers, randomly

in each simulation. There are five origin servers, which we randomly place in the

GEANT and the grid topologies for each simulation. As for the clients, we attach a

variable number of nodes (between three to six nodes) to each randomly selected

router. Our GEANT and grid topologies contain 56 and 25 clients, respectively. Thus,

the considered GEANT topology has 101 nodes, and the grid topology has 131 nodes.

We use a dataset of URLs extracted from real traces of HTTP requests [26]. We consider

a content universe, i.e., the set of produced files at origin servers, that includes 100,000

44

3.4. Performance Evaluation

Figure 3.6: Geant topology and connected endpoints

file names in total. Each file has 100 segments. Thus, we generate 107 unique segments.

We assume that the content popularity follows the Zipf-Mandelbrot law [58], which is

shown in Eq. (3.1), where M denotes the cardinality of a content catalogue and Æ is

the skewness of the popularity function (larger Æ values correspond to fewer popular

content objects).

P (x = i) = 1/iÆ
PM

j=1 1/ jÆ
(3.1)

For performance evaluation, we consider values of Æ in the [0.8,1.4] interval. All

the results are averaged over ten simulations, each lasted for 100,000 seconds. We

report the average measured values over these simulations. The reported mean

values have 95% confidence intervals. For BFs, we use the parameters n = 1000 and

p f pp = 0.0638, where n denotes the number of inserted elements in the BF and p f pp

denotes the false positive errors’ probability. Therefore, the size of each advertised

BF is roughly 716 bytes for advertising 1000 URLs. To create SBFs, we use parameter

set {n = 106, p f pp = 0.0638,d = 3}. Similar to BFs, n and p f pp denote to the number

45

Chapter 3. Push-based Bloom Filter-based Routing

Figure 3.7: Grid topology and attached clients and servers

of inserted elements and false positive errors’ probability, and d denotes the length

of SBF counters. Therefore, we obtain SBFs of size m = 2.05 Mbytes with k = 4 hash

functions.

For routing, push-based BFR requires BF-based content advertisements, while short-

est path routing requires to communicate information about the provided content

objects and the network topology. In the following, we compare push-based BFR’s

content advertisement overhead with the communication overhead that is required to

calculate the shortest paths. Then, we evaluate all the schemes based on the following

performance metrics: 1) normalized communication overhead, 2) average round-trip

delay, 3) mean hit distance. We also compare push-based BFR and COBRA in terms

of the average memory needed for storing BFs and SBFs. Further, we present results

concerning the impact of false positive reports from BFs on push-based BFR routing

for different levels of the false positive error. In the following, we discuss results for

these metrics.

46

3.4. Performance Evaluation

Table 3.2: False positive error probability under various m/n and k combinations

m/n k p f pp

3 2 28.3%
3 2 23.7%
4 3 16.0%
6 4 6.38%
8 5 2.29%

3.4.2 Content Advertisement Overhead

Fig. 3.8 illustrates the total communication overhead needed for propagating content

advertisements in push-based BFR for different levels of false positive error probability

as well as the required communication overhead for calculating the shortest paths in

the shortest path approach. For push-based BFR, we consider four sets of parameters

for content advertisement BFs as shown in Table 3.2. From Table 3.2, it is evident the

trade-offs between different numbers of hash functions (k), different overhead values

per inserted element (m/n), and different values of false positive error probability. As

Fig. 3.8 shows, the communication overhead required for calculating shortest paths

in shortest path routing is on average approximately three times and five times higher

than the communication overhead required for propagating content advertisements

in push-based BFR using the GEANT and the grid topologies, respectively. When the

grid topology is used, Fig. 3.8 shows that push-based BFR has approximately twice the

content advertisement overhead of when GEANT topology is used. From Fig. 3.8, we

observe that with the grid topology, shortest path routing requires roughly 3.4 times

more communication overhead for calculating the shortest paths than with GEANT

topology.

3.4.3 Normalized Communication Overhead

Figs. 3.9a and 3.9b compare results for normalized communication overhead, i.e., the

total bandwidth used to forward all Interests and Data packets divided by the number

of retrieved Data packets, for GEANT and grid topologies, respectively. From Figs.

3.9a and 3.9b, we observe the very high communication overhead for flooding. This

is due to the forwarding of each incoming Interest to all the available faces except

the incoming one. We also see from Fig. 3.9a that push-based BFR and shortest path

47

Chapter 3. Push-based Bloom Filter-based Routing

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2.29 6.38 16 23.7 28.3

C
o
n
te

n
t

ad
v
er

ti
se

m
en

t
o
v
er

h
ea

d
 [

M
B

y
te

s]

False positive error rate

Push-based BFR GEANT
Push-based BFR Grid
Shortest path calculations GEANT
Shortest path calculations Grid

Figure 3.8: A comparison of content advertisement communication overhead vs. false
positive probability for the grid and GEANT topologies

routing have quite close normalized communication overhead using GEANT topology.

However, when the grid topology is used, Fig. 3.9b shows a larger difference between

shortest path routing and push-based BFR in terms of normalized communication

overhead because the grid topology is more connected and push-based BFR uses

multi-path forwarding strategy, which entails higher communication overhead than

forwarding Interests only over the shortest paths. From Figs. 3.9a and 3.9b, we observe

that push-based BFR needs much less communication overhead to retrieve a Data

packet than COBRA. The reason is that during the learning phase SBFs are empty

and COBRA needs to flood the Interests, which incurs significant communication

overhead. On the other hand, push-based BFR nodes do not flood the Interests and

nodes forward each Interest over the paths en-route to the server(s) that provide

the demanded content object. Thus, push-based BFR shows much less normalized

communication overhead compared to COBRA. For push-based BFR, when the grid

topology is used, Fig. 3.9b shows that the normalized communication overhead for

all values of the Zipf’s power parameter is approximately twice than when GEANT

topology is used. Further, Figs. 3.9a and 3.9b show that flooding and COBRA entail

roughly three times higher communication overhead when the grid topology is used

48

3.4. Performance Evaluation

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.8 1 1.2 1.4

N
o
rm

al
iz

ed
 c

o
m

m
u
n
ic

at
io

n
o
v
er

h
ea

d
 [

K
B

y
te

s]

Zipf’s power parameter

Push-based BFR
Flooding
Shortest path
COBRA

(a) Normalized communication overhead using GEANT topology

 0

 10

 20

 30

 40

 50

 60

 0.8 1 1.2 1.4

N
o
rm

al
iz

ed
 c

o
m

m
u
n
ic

at
io

n
o
v
er

h
ea

d
 [

K
B

y
te

s]

Zipf’s power parameter

(b) Normalized communication overhead using gird topology

Figure 3.9: Results for normalized communication overhead with different values of Æ

49

Chapter 3. Push-based Bloom Filter-based Routing

rather than GEANT topology. This behaviour is expected because the grid topology is

more connected than the GEANT topology.

3.4.4 Total Communication Overhead for Interests

Figs. 3.10a and 3.10b illustrate results in terms of total communication overhead

needed for sending Interests for different values of Æ for GEANT and grid topologies,

respectively. Figs. 3.10a and 3.10b show that flooding entails the highest communica-

tion overhead due to broadcasting Interests. From Figs. 3.10a and 3.10b, it is clear that

the total communication overhead for sending Interests is much higher for COBRA

than for push-based BFR. This is because COBRA needs to flood Interests during the

learning phase when SBFs are empty. Nevertheless, the gap between the curves of

COBRA Interest overhead and push-based BFR Interest overhead is much bigger in

Fig. 3.10b than in Fig. 3.10a, because the number of links is much higher in the grid

topology than in the GEANT topology. Thus, it leads to much higher communication

overhead for forwarding the Interests, specifically during the learning phase when

COBRA floods the Interests. For COBRA, if we increase the value of Æ, we observe

that the total communication overhead decreases significantly. The reason is that

by increasing the value of Æ, the cardinality of the set of popular content objects

decreases. Thus, the number of Interest floodings during the learning phase also

decreases significantly.

In Figs. 3.10a and 3.10b, for push-based BFR, we see results in terms of (Interest+CA)

overhead, i.e., the sum of the values of total communication overhead needed for

sending Interests and the total communication overhead needed for propagating

content advertisements in push-based BFR. We still observe a big gap between the

curves of COBRA Interest overhead and push-based BFR (Interest+CA) overhead in

both Figs. 3.10a and 3.10b. In Fig. 3.10a, we observe this gap at least if Æ= 0.8 or Æ= 1.

If Æ= 1.4, Fig. 3.10a shows that COBRA needs much less communication overhead for

flooding Interests during the learning phase because the number of popular content

objects is much smaller and the topology is tree-like, thus having less number of links.

In Fig. 3.10b, we observe a bigger gap between the curves of COBRA Interest overhead

and push-based BFR (Interest+CA) overhead than the gap between these curves in

Fig. 3.10a. This is due to the higher impact of Interest floodings in COBRA during the

learning phase, with a more connected topology.

50

3.4. Performance Evaluation

 0

 100

 200

 300

 400

 500

 600

 700

 0.8 1 1.2 1.4

T
o
ta

l
co

m
m

u
n
ic

at
io

n
o
v
er

h
ea

d
 [

M
B

y
te

s]

Zipf’s power parameter

Push-based BFR Interest overhead
Push-based BFR (Interest+CA) overhead
Flooding Interest overhead
Shortest path Interest overhead
COBRA Interest overhead

(a) Total communication overhead using GEANT topology

 0

 500

 1000

 1500

 2000

 0.8 1 1.2 1.4

T
o
ta

l
co

m
m

u
n
ic

at
io

n
o
v
er

h
ea

d
 [

M
B

y
te

s]

Zipf’s power parameter

Push-based BFR Interest overhead
Push-based BFR (Interest+CA) overhead
Flooding Interest overhead
Shortest path Interest overhead
COBRA Interest overhead

(b) Total communication overhead using gird topology

Figure 3.10: Results for total communication overhead for different values of Æ
51

Chapter 3. Push-based Bloom Filter-based Routing

3.4.5 Average Round-trip Delay

We evaluate the performance of all the schemes under comparison in terms of average

round-trip delay, i.e., the average delay from the time instant clients send Interests un-

til the time they retrieve the demanded content objects. To better show the behaviour

of all the considered schemes in the presence of topology changes, we also measure

the average round-trip delay in the presence of link failures for all the schemes. We

schedule three link failures at time instants 50000 s, 150000 s, and 250000 s. These links

recover at time instants 100000 s, 200000 s, and 300000 s, respectively.

Figs. 3.11a and 3.11b illustrate the results in terms of average round-trip delays.

From Figs. 3.11a and 3.11b, we observe that flooding shows the highest delay in the

absence of link failures. The reason is that flooding all the Interests creates bottlenecks

and results in high delays. The shortest path approach has a lower average delay

compared to flooding because it forwards each Interest only through the face that has

the shortest path to the origin server. This is not always efficient as the shortest path

is not always the “best” path. In [14], the authors show that the “best” path is the one

with the highest throughput or the least congested path in other words. Push-based

BFR benefits from multi-path forwarding and hence transmits Interests through all

the faces that the demanded content object can be reached with high probability.

When the shortest paths are congested, push-based BFR also exploits longer, but less

congested paths for sending the Interests and thus performs better than shortest path

routing in terms of delay. From Figs. 3.11a and 3.11b, we observe that push-based BFR

outperforms COBRA without link failures. The reason is that when COBRA routers

insert new Data names into the SBFs, they decrease the values of some randomly

selected SBF counters, which could lead to the removal of some route traces from the

SBFs. Therefore, in contrast to push-based BFR, COBRA does not always use all the

available paths to the origin server of the demanded content object.

In the presence of link failures, Figs. 3.11a and 3.11b confirm the resilience of flooding

to the link failures because it broadcasts the Interests and forwards them over all the

paths. These figures show that push-based BFR is also resilient to link failures in terms

of delay. This is due to the fact that push-based BFR benefits from the existence of

multiple paths towards origin servers and does not forward the Interests over a single

path. From Figs. 3.11a and 3.11b, we also observe that shortest path routing is the

less resilient approach to link failures. This is because it always relies on a single path

and forwards the Interests over this path to the origin server of the demanded content

52

3.4. Performance Evaluation

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.8 1 1.2 1.4

A
v
er

ag
e

d
el

ay
 [

S
ec

o
n
d
s]

Zipf’s power parameter

Flooding
Shortest path
Flooding + failure
Shortest path + failure
Push-based BFR

Push-based BFR + failure
COBRA
COBRA + failure
Push-based BFR + migration
COBRA + migration

(a) Average round-trip delay using GEANT topology

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.8 1 1.2 1.4

A
v
er

ag
e

d
el

ay
 [

S
ec

o
n
d
s]

Zipf’s power parameter

(b) Average round-trip delay using gird topology

Figure 3.11: Results for average round-trip delay

53

Chapter 3. Push-based Bloom Filter-based Routing

objects, while a link failure might occur on that path. In the presence of link failures,

both push-based BFR and COBRA routing protocols avoid sending an Interest through

the path over which a link has failed. However, push-based BFR forwards the Interest

over the rest of the paths towards the server that provides the demanded content

object, while with COBRA, nodes do not always benefit from all the paths towards the

demanded content objects. We see in Fig. 3.11b a smaller impact of link failures on

push-based BFR’s performance in terms of average round-trip delay than in Fig. 3.11a.

This means that push-based BFR is more resilient to link failures when the topology is

more connected.

We also examine the performance of push-based BFR and COBRA with content mi-

gration. We schedule a random number of content migration events (between 2 to 4

content migration events) between randomly selected servers at random time instants.

We observe from Figs. 3.11a and 3.11b that with push-based BFR, content migration

events have a slight impact on the average round-trip delay. The reason is that, when

a content migration happens and push-based BFR is used, servers immediately propa-

gate new CAI messages to inform clients and routers about this event, thus clients and

routers update routes once they receive new CAI messages. However, with COBRA,

clients and routers are unaware of content migration events until they detect Interest

retransmissions. Therefore, for COBRA, we see from Figs. 3.11a and 3.11b a much

higher impact of content migration events on the average round-trip delay.

3.4.6 Robustness to Topology Changes

Fig. 3.12 compares the performance of all the considered schemes in terms of the

impact of link failures on the percentage of unsatisfied Interests for different values

of Æ. Fig. 3.12 shows that all the Interests are satisfied in the presence of link failures

when flooding is used, with both GEANT and gird topologies, because the flooding

approach broadcasts the Interests and does not rely only on the paths on which links

have failed. Using push-based BFR, the maximum rate of unsatisfied Interests is only

0.93% with GEANT topology, while all Interests are satisfied with the grid topology.

This is attributed to the fact that the grid topology is more connected. Therefore,

push-based BFR is more robust to link failures using the grid topology. From Fig. 3.12,

we can see that the maximum rate of unsatisfied Interests for shortest path routing

is approximately 6.4%, when GEANT topology is used. The performance of shortest

path routing degrades in the presence of link failures because it always relies on the

54

3.4. Performance Evaluation

 0

 1

 2

 3

 4

 5

 6

 7

 0.8 1 1.2 1.4

U
n
sa

ti
sf

ac
ti

o
n
 d

u
e

to

li
n
k
 f

ai
lu

re
(%

)

Zipf’s power parameter

Push-based BFR-GEANT
Flooding-GEANT
Shortest path-GEANT
COBRA-GEANT

Push-based BFR-Grid
Flooding-Grid
Shortest path-Grid
COBRA-Grid

Figure 3.12: Results for the impact of link failures on Interest unsatisfaction for differ-
ent values of Æ

shortest path towards the origin server of the demanded content object on which

links might fail. Nevertheless, with the grid topology, shortest path routing shows

lower rates of unsatisfied Interests, i.e., a maximum of 3.93%, which is due to the

higher connectivity of the grid topology. Fig. 3.12 shows that with both GEANT and

grid topologies, push-based BFR is more robust to link failures than COBRA because

using COBRA, routers randomly remove some of the route traces from the SBFs, while

push-based BFR always benefits from all available paths to the origin server(s) of the

demanded content objects.

3.4.7 Mean Hit Distance

We present the results in Figs. 3.13a and 3.13b concerning the mean hit distance, i.e.,

the mean path length an Interest message requires traveling to reach the demanded

content object, for GEANT and grid topologies, respectively. The first transmission

of each Interest in the network has to reach the server that provides the demanded

content object. However, subsequent transmissions of the Interest can be retrieved

55

Chapter 3. Push-based Bloom Filter-based Routing

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0.8 1 1.2 1.4

M
ea

n
 h

it
 d

is
ta

n
ce

 [
H

o
p
s]

��
�;

Zipf’s power parameter

Push-based BFR
Flooding
Shortest path
COBRA

(a) Mean hit distance using GEANT topology

 0

 2

 4

 6

 8

 10

 0.8 1 1.2 1.4

M
ea

n
 h

it
 d

is
ta

n
ce

 [
H

o
p
s]

��
�;

Zipf’s power parameter

(b) Mean hit distance using gird topology

Figure 3.13: Results for mean hit distance for different values of Æ.

56

3.4. Performance Evaluation

Table 3.3: Average memory needed for storing routing information at each node with
different false positive error rates.

Average allocated memory per node (KBytes)
p f pp (%) COBRA COBRA Push-based BFR

(GEANT) (Grid) (Any topology)
28.30% 6235.392 14725.121 32.072
23.70% 7111.619 16783.365 36.579
16.00% 9052.344 21370.883 46.561
6.38% 13594.010 32880.641 69.921
2.29% 18655.232 44042.242 95.954

from routers’ caches. Figs. 3.13a and 3.13b show that the flooding approach has a

slightly better performance for Æ= 0.8 and Æ= 1. However, for Æ= 1.2 and Æ= 1.4,

flooding and push-based BFR perform approximately equal in terms of mean hit

distance. We see from Figs. 3.13a and 3.13b smaller values of mean hit distance for

push-based BFR than for COBRA, which does not exceed 0.45 hops.

3.4.8 Average Memory Needed for Storing Routing Information

Table 3.3 compares push-based BFR and COBRA in terms of the average memory

space that each node needs to store routing information. In push-based BFR, routing

information consists of the content advertisement information that servers propagate.

Thus, the storage overhead for routing information is not related to the structure of

the topology. However, in COBRA, routing information consists of the route traces

stored in the SBFs. In COBRA, each node stores as many SBFs as the number of its

interfaces. Therefore, the number of SBFs is directly proportional to the number of

links. Thus, the more connected the topology is, the higher is the storage overhead

COBRA requires to store SBFs. To better understand this, we compare the average

memory needed for storing SBFs in COBRA for GEANT and grid topologies in Table

3.3. For COBRA, columns 2 and 3 of Table 3.3 show that in the grid topology each

node needs approximately 2.36 times more memory to store SBFs than in the GEANT

topology. Nevertheless, we observe a significant difference between the values of

columns 2 and 4. This means that even if the GEANT topology is used, push-based

BFR needs several magnitudes less memory space for storing routing information

than COBRA. Therefore, when nodes have restricted memory capacity (e.g., sensors in

IoT scenarios with constrained nodes), it is more appropriate to use push-based BFR

than COBRA.

57

Chapter 3. Push-based Bloom Filter-based Routing

 0

 0.5

 1

 1.5

 2

 2.29 6.38 16 23.7 28.3

W
ro

n
g
ly

 r
o
u
te

d
 I

n
te

re
st

s
(%

)

Theoretic value for false positive error (%)

Zipf’s parameter = 0.8
Zipf’s parameter = 1.0

Zipf’s parameter = 1.2
Zipf’s parameter = 1.4

Figure 3.14: Impact of false positive reports on push-based BFR routing for different
values of p f pp and Æ

3.4.9 Impact of False Positive Errors on Routing

We present results concerning the impact of false positive errors on push-based BFR

operation in terms of percentage of Interests that have been routed towards both

correct and wrong origin servers for different values of p f pp shown in Table 3.2. For

COBRA, false positive errors are not the only cause of routing Interests towards wrong

origin servers, but Interests might reach wrong origin servers due to Interest floodings.

Fig. 3.14 shows that the higher the probability of false positive error is, the higher

are the number of Interests that not only have been routed towards correct origin

servers, but have reached wrong origin servers as well. Further, Fig. 3.14 shows the

impact of increasing the value of Æ on the percentage of Interests that are also routed

towards wrong origin servers. We note that when the value of Æ is higher, a smaller set

of content objects are popular and this results in measuring less false positive reports

in practice. We observe the highest impact of false positive reports on push-based BFR

routing for p f pp = 28.3% and Æ = 0.8, when only 1.73% of Interests are routed also

towards wrong origin servers. Note that all the Interests are satisfied in the presence

58

3.5. Conclusions

of false positive reports and the only practical impact of false positive reports is that

a very small number of Interests reach wrong origin servers, i.e., the origin servers

that do not provide the demanded content objects, while all the Interests are routed

towards correct origin servers, i.e., the origin servers that provide the demanded

content objects.

3.5 Conclusions

In this Chapter, we presented push-based BFR, a BF-based, fully distributed, content-

oriented, and topology agnostic routing protocol at the intra-domain level for NDN.

Push-based BFR is based on the propagation of content advertisements from origin

servers using BFs. We compared push-based BFR with flooding, shortest path, and

COBRA. Push-based BFR outperforms flooding, shortest path routing, and COBRA in

terms of communication cost, and average round-trip delay. In terms of robustness to

topology changes, push-based BFR strongly outperforms the shortest path approach.

In contrast to schemes based on shortest path routing, push-based BFR does not

require any auxiliary routing protocols for calculating the best paths. Therefore, push-

based BFR entails significantly less content advertisement overhead than the shortest

path protocol. Push-based BFR outperforms COBRA in terms of the average memory

needed for storing routing information. Therefore, it is more appropriate to use push-

based BFR than COBRA when network nodes have restricted memory capacity (e.g.,

IoT scenarios with sensor networks). In the next Chapter, we focus on reducing the

communication and storage overhead of BF-based content advertisements.

59

4
Pull-based Bloom Filter-based Routing

4.1 Introduction

Chapter 3 presented push-based BFR as a routing protocol for NDN, which is fully

distributed, topology oblivious, and fully content-oriented without any dependency

in IP addresses. In Chapter 3, we showed that using BFs, we can compress content

advertisements. In this Chapter, we attempt to answer RQ 2 of the thesis Introduction

that is related to further reducing the required bandwidth and storage resources for

BF-based content advertisements.

Although there are too many content objects available, users are not interested in

retrieving all the content objects. In contrast, in real-world scenarios, most of the

users are usually interested in downloading popular content objects. Thus, it is not

necessary to advertise all the names of the entire content universe (i.e., all provided

content objects). Therefore, we design a BF-based routing protocol, which only

advertises the names of the requested content objects.

We propose pull-based BFR [51] as a BF-based routing protocol that primarily informs

61

Chapter 4. Pull-based Bloom Filter-based Routing

the servers about the content object names that are requested. For this purpose,

when clients issue Interest messages, they store their Interest message names into

BFs and propagate the BFs using Content Advertisement Request (CAR) messages.

When routers receive CAR messages, they aggregate them and proceed with a CAR

propagation process so that CAR messages reach the servers. When a server receives

CAR messages, it uses the BF-based information stored in these messages to populate

a list of the requested content object names. Then, the server compresses the list of

the requested content object names via a BF and advertises this BF using Content

Advertisement (CA) messages. Note that routers have to aggregate the received CA

messages and proceed with propagating them so that clients receive CA messages.

When clients receive the CA messages, they can populate their FIBs and can forward

their pending Interest messages to retrieve their requested content objects. In this

Chapter, we propose novel and practical BF aggregation methods to aggregate CAR

messages as well as CA messages.

In the following, we describe the proposed pull-based BFR, and we compare its perfor-

mance with push-based BFR using different content universe sizes. Our performance

evaluation results show that pull-based BFR has several advantages compared to

push-based BFR, namely: 1) significantly less bandwidth consumption for propagat-

ing content advertisements, 2) significantly less storage space requirements for clients

and routers to store content advertisements, 3) better average round-trip delay when

fewer content objects are popular, and 4) more robustness to false positive reports

from BFs.

The rest of this Chapter is organized as follows. Section 4.2 describes the proposed

pull-based BFR protocol. Then, Section 4.3 presents the performance evaluation of

the proposed pull-based BFR and compares it with push-based BFR and FaR [68]

approaches. Finally, Section 4.4 concludes the Chapter.

4.2 Pull-based Bloom Filter-based Routing

The rationale behind designing a pull-based BFR method is to advertise only the

demanded content objects. When servers only advertise the demanded content

objects, it is expected that: 1) a significant amount of bandwidth will be saved, and 2)

other network nodes (clients and routers) will need significantly less memory space

to store content advertisement information. This content advertisement strategy can

62

4.2. Pull-based Bloom Filter-based Routing

(a) A topology for describing pull-based BFR

(b) CAR transmissions

(c) CA transmissions

Figure 4.1: CAR and CA transmissions

resolve scalability issues of push-based BFR, as in push-based BFR servers advertise

all the file names of the content universe. The main difficulty arising from advertising

only the demanded content objects is that servers do not know a priori which content

objects will be demanded. To overcome this problem, in pull-based BFR, we follow a

BF-based strategy to inform the servers about the demanded file names, which we

will explain in the next sub-section.

63

Chapter 4. Pull-based Bloom Filter-based Routing

4.2.1 Pull-based BFR’s Operation

Content advertisement in pull-based BFR is performed in two consecutive phases: 1)

clients and routers use a BF-based strategy to inform the servers about the demanded

file names, and 2) servers proceed with the advertisement of these names using CA

messages. Upon reception of CA messages, clients and routers store the content

advertisement information and populate the FIBs for pending Interests to route

them. To summarize, pull-based BFR’s operation is done in three stages: 1) pulling

content advertisements, 2) content advertisement, and 3) FIB population and content

retrieval.

Let us explain our BF-based method of informing servers about the demanded file

names with the help of Fig. 4.1, where Fig. 4.1a depicts a topology for describing CAR

and CA transmissions, Fig. 4.1b illustrates CAR transmissions, and 4.1c shows CA

transmissions.

In Fig. 4.1a, we assume that client C1 issues Interest I1 to retrieve a segment of file

name N1 under the following conditions: 1) there is no FIB entry for N1 or a name

prefix of it, and 2) there is no stored content advertisement BF that contains N1 or a

name prefix of it. Thus, client C1 avoids forwarding Interest I1 and keeps it as pending.

Nevertheless, client C1 informs the servers that file name N1 is demanded to pull

the content advertisement information for it. For this purpose, client C1 creates a

BF, which contains file name N1 as well as all its name prefixes and creates a CAR

message of type Interest called C ARC1 with name /C AR/C1/sequenceNumber that

encapsulates the BF. Then, client C1 broadcasts C ARC1 to inform the servers about

the demanded file names and to pull the needed content advertisements.

When a router receives a CAR message, it waits for an aggregation threshold time

± to receive other CAR messages issued by other clients. Assume that client C2

issues Interest I2 to demand a segment of file name N2 for which no FIB entry

and no content advertisement information is available. Thus, client C2 broadcasts

a CAR message called C ARC2 with name /C AR/C2/sequenceNumber carrying

a BF that contains file name N2 as well as all its name prefixes. If router R3 re-

ceives the CAR messages of clients C1 and C2, within a time interval ±, it forwards

C ARC1 and C ARC2 over faces 1 and 2, respectively. At the same time, router R3

forwards the aggregation of C ARC1 and C ARC2 over face 3. To aggregate C ARC1

and C ARC2 , router R3 makes a union of their BFs and puts the resulting BF into a

64

4.2. Pull-based Bloom Filter-based Routing

new CAR message with name /C AR/ag g r eg ated/R3/sequenceNumber . Then

router R3 forwards this message over face 3. When router R3 forwards message

/C AR/ag g r eg ated/R3/sequenceNumber over face 3, router R3 updates the out-

records of both messages C ARC1 and C ARC2 by adding face 3 to record that both

these messages have been forwarded over face 3. Further, router R3 will not use

message /C AR/ag g r eg ated/R3/sequenceNumber in future aggregations, because

the third name component specifies that this message is created by router R3 itself

and has not been received from other nodes. Routers R4, R5, and R6 follow the same

forwarding process for CAR messages. Nodes make use of a sequence number counter

for calculating the sequence numbers of CAR messages.

To permit BF union operations, we assume that all nodes create the BFs of the CAR

messages with the same size, and that they generate the hash functions using a

universal seed, i.e., all nodes use the same set of hash functions for BFs. In Eq. (2.1),

if we assign a constant value to m and we specify the value of p, we will derive the

maximum optimal value for n, which estimates the maximum number of requested

file names that can be inserted into the BF. It is not a problem that all nodes use a

universal seed to generate the hash functions for the BFs of all CAR messages, as all

nodes can use a well-known word, e.g., NDN as the universal seed to generate hash

functions.

When servers S1 and S2 receive a CAR message, they check all the produced file names

against the BF of the received CAR message (we assume that servers have multi-core

processors and can check multiple names against multiple BFs in parallel. Thus, this

does not create a performance issue). The file names that exist in the BF of the CAR

message are the demanded file names that should be advertised. Thus, both servers

S1 and S2 first create a list of these file names called toBeAdvertisedList and then a

BF called toBeAdvertisedBF with size equal to that of the received CAR message’s BF.

When a server notes that a produced file name exists in the BF of the CAR message,

it inserts the file name into the BF toBeAdvertisedBF. Then, the server creates a CA

message, from type Interest with name prefix /C A/ser ver I D/sequenceNumber

carrying the toBeAdvertisedBF. The server broadcasts the CA message to the net-

work to advertise the demanded content object and not to demand any content

objects. In our example, if router R4 receives the CA messages of servers S1 and

S2, namely, C AS1 and C AS2 , which have the names /C A/S1/sequenceNumber and

/C A/S2/sequenceNumber , respectively, within a time interval ±, Router R4 forwards

C AS1 and C AS2 over faces 1 and 2, respectively. Router R4 aggregates C AS1 and C AS2

65

Chapter 4. Pull-based Bloom Filter-based Routing

unioning their BFs and places the resulting BF into an aggregated message, which has

the name /C A/ag g r eg ated/R4/sequenceNumber and forwards this message over

face 3.

When clients C1 and C2 receive the CA message, they can populate their FIBs for name

prefixes N1 and N2, which allows them to route Interests I1 and I2. When routers

receive Interests I1 and I2 from the clients, they also populate the FIBs using the stored

CA messages and continue routing the Interests until the demanded content objects

are retrieved.

4.2.2 Bloom Filter Aggregation

If a router makes a union of the BFs BF1 and BF2, which are not subset or equal to

each other, i.e., (BF1 * BF2)^ (BF2 * BF1), the number of 1 bits in the bit vector of

the resulting BF BFuni on will be greater than the number of 1 bits in each of BF1 and

BF2. Thus, if routers do not stop unioning BFs that are not subset or equal to each

other, at some point all the bits of the bit vector of the resulting BF will be set to 1.

Such a BF does not function properly because it falsely claims that it contains all the

existing names. Therefore, routers should stop unioning the BFs of both CAR and

CA messages according to the maximum capacity of BFs. As we explained before, we

consider a constant size of m and a probability of false positive error p for the BFs of

CAR messages. Then, using Eq. (2.1), we calculate n, which is the maximum capacity

of the BF.

To describe the BF aggregation process, in Fig. 4.1a, we assume that router R3 receives

two CAR messages C AR1 and C AR2 from routers R1 and R2, respectively. C AR1 and

C AR2 contain two BFs BF1 and BF2, which have inserted element counts |BF1| and

|BF2|, respectively. If router R3 wants to aggregate BF1 and BF2, it first checks whether

BF1 and BF2 are identical. For this purpose, router R3 makes an XOR of the bit vectors

of BF1 and BF2. If all the bits of the resulting bit vector are zero, BF1 and BF2 are

identical. In such a case, there is no need to make a union of them. The second check

is to examine whether the following proposition is true (BF1 Ω BF2)_ (BF2 Ω BF1).

For this purpose, router R3 calculates BFi nter sect i on = BF1 \BF2. If the resulting

bit vector is identical with the bit vector of BF1, it means that BF1 [BF2 = BF2. In

this case, again router R3 does not need to calculate the union of BF1 and BF2. If

(BF1 * BF2)^ (BF2 * BF1), then router R3 makes a union of BF1 and BF2. In this

case, if BFuni on = BF1 [BF2 and BFi nter sect i on = BF1 \BF2, theoretically we have

66

4.3. Performance Evaluation

|BFuni on | = |BF1|+ |BF2|° |BFi nter sect i on |. However, practically it is not possible to

calculate |BFi nter sect i on |, precisely. Therefore, router R3 sets |BFuni on | = |BF1|+ |BF2|,
which is a conservative upper bound. If |BF1|+ |BF2| < n, router R3 will aggregate BF1

and BF2. Otherwise, router R3 avoids aggregating these BFs.

4.2.3 The Impact of False Positive Errors on Pull-based BFR’s Oper-

ation

The impact of false positive errors on the operation of pull-based BFR should be

considered in two cases: 1) if servers check the produced file names against the CAR

messages BFs, 2) if clients or routers check the pending Interest names against the CA

messages BFs. Consider in Fig. 4.1a that server S1 receives a CAR message carrying

a BF, which contains names N1 and N2. If server S1 checks file name N3 against the

received BF and the BF gives a false positive report, server S1 will insert name N3

into the BF of the CA message /C A/S1 and advertises this message. Therefore, the CA

message /C A/S1 advertises file name N3, which has not been demanded. This is not a

problem because it is guaranteed that no false negative errors happen using BFs, and,

therefore, servers advertise the produced file names that are demanded anyways.

Let us again examine Fig. 4.1a to discuss the impact of false positive reports from the

BFs of CA messages, when clients or routers check the Interest names against these

BFs for FIB population and routing purposes. In Fig. 4.1a, we assume that router R4

checks the name Ni for Interest i against the BF of CA message C AS1 issued by server

S1. If the BF gives a false positive report, router R4 will forward the Interest i over

face 1. Consequently, Interest i will be routed towards a wrong server, i.e., server S1.

When server S1 receives Interest i , it sends back a “No Data” Nack message [87] to

inform router R4 that server S1 does not store the Data that Interest i requests. When

router R4 receives the Nack message, it will remove from the FIB the incorrect next hop

information corresponding to name Ni . Further, if Interest i is not satisfied yet, router

R4 will send a CAR message containing Ni to receive the correct routing information.

4.3 Performance Evaluation

We consider the following metrics for assessing the performance of pull-based and

push-based BFR: 1) content advertisement overhead, 2) storage space requirements

for storing routing information, and 3) the impact of false positive errors of BFs on

67

Chapter 4. Pull-based Bloom Filter-based Routing

routing. We also evaluate the performance of push-based and pull-based BFR in terms

of average round-trip delay. Further, we compare push-based and pull-based BFR

with FaR [68] in terms of average round-trip delay to have a more complete analysis.

We implemented all protocols in ndnSIM2.1 [56].

4.3.1 Simulation Settings

To compare the performance of the protocols under comparison, we use the GEANT

topology [2, 50] illustrated in Fig. 3.6. The topology is built by randomly placing

10 servers and 50 clients in the GEANT topology, which connects 40 routers. Thus,

the resulting topology consists 100 nodes. We assume that the content popularity

follows Zipf-Mandelbrot distribution (we showed the Zipf-Mandelbrot probability

distribution formula in Eq. (3.2)). We consider the values of Æ in the [0.6,2] interval.

We use a URL dataset extracted from real HTTP request traces [26]. We assume that the

content universe has 100,000 file names and that each is divided into 100 segments.

Therefore, there are 107 unique segments. For the BFs of CAR and CA messages, we

set m = 716 Bytes and P f pp = 0.0638. Recall, that m is the BF’s bit vector size and P f pp

represents the false positive probability. Hence, using Eq. (2.1), the maximum value of

n will be 1000.

4.3.2 Content Advertisement Overhead

For pull-based BFR, Fig. 4.2 shows the content advertisement overhead, i.e., the total

communication overhead required for forwarding CAR and CA messages in terms of

forwarding rate of routing messages, which is defined as 1
± . Higher forwarding rate

of routing messages results in more frequent forwarding of CAR and CA messages,

i.e., less aggregation of CAR and CA messages. We set the ± values in the [0.1,6.4]

interval measured in milliseconds. This results in the forwarding rate of routing

messages in the [0.16,10] interval in terms of kilohertz. From Fig. 4.2, we observe that

for pull-based BFR, the content advertisement overhead increases by increasing the

forwarding rate of routing messages, for all Æ values. For push-based BFR, the total

communication overhead needed for content advertisements depends on the content

universe size, because servers advertise all the file names they produce. However,

in pull-based BFR, servers do not advertise the file names that are not demanded.

The number of popular files is controlled by the value of Æ (higher Æ means less

content objects are requested). We observe from Fig. 4.2 that for pull-based BFR, the

68

4.3. Performance Evaluation

 0

 5

 10

 15

 20

 25

 30

 35

 0.16 0.62 2.5 10

C
o
n
te

n
t

ad
v
er

ti
se

m
en

t
 o

v
er

h
ea

d
 [

G
B

y
te

s]

Content advertisement
 forward rate (1/δ) [kHz]

α=0.6
α=0.8

α=1.0
α=1.2

α=1.4
α=1.6

α=1.8
α=2.0

Figure 4.2: Results for content advertisement overhead for different values of ±

communication overhead needed for content advertisements significantly decreases

with higher Æ values. This is due to the fact that when the value of Æ increases, less

content objects are popular and thus are demanded. Therefore, clients propagate a

smaller number of CAR messages, because they require less CA information. For push-

based BFR, Fig. 4.3 shows the required communication overhead for propagating

content advertisements in terms of content advertisement refresh rate (fr), i.e., the

frequency that servers refresh CA messages.

From Fig. 4.3, we observe that for push-based BFR, the communication overhead

required for propagating content advertisements increases by increasing fr . When we

compare Figs. 4.2 and 4.3, we observe that pull-based BFR requires significantly less

communication overhead for propagating content advertisements compared to push-

based BFR. For example, in Fig. 4.3, push-based BFR requires the least communication

overhead for propagating content advertisements if fr = 0.017H z, however, even

in this case, push-based BFR requires significantly more communication overhead

for propagating content advertisements compared to pull-based BFR except when
1
± = 10kH z and Æ is in the [0.6,0.8] interval. Note that when pull-based BFR is used

69

Chapter 4. Pull-based Bloom Filter-based Routing

 0

 20

 40

 60

 80

 100

 120

 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
o
n
te

n
t

ad
v
er

ti
se

m
en

t
 o

v
er

h
ea

d
 [

G
B

y
te

s]

Zipf’s power parameter

Push-based BFR (fr = 0.017 Hz)
Push-based BFR (fr = 0.033 Hz)
Push-based BFR (fr = 0.067 Hz)

Figure 4.3: Results for content advertisement overhead for different values of Æ

and 1
± = 10kH z, nodes perform very little aggregation, which is not in our interest.

Therefore, in the rest of results, for pull-based BFR, we use 1
± = 2.5kH z and for push-

based BFR, we use fr = 0.017H z. For push-based BFR, we use 1
fr

as the lifetime of CA

messages. For pull-based BFR, we set the lifetime of CAR and CA messages to 4secs

and 10secs, respectively.

4.3.3 Storage Space Requirements for Storing Routing Information

Routing information for push-based BFR consists of CA messages, while for pull-based

BFR, routing information includes both CA and CAR messages. Fig. 4.4 compares pull-

based and push-based BFR in terms of average storage space a node requires to store

routing information per second. For push-based BFR, we observe from Fig. 4.4 that

the storage space requirements for storing routing information significantly increases

with the size of the Content Universe (CU). As explained before, the reason is that

using push-based BFR, clients and routers require to store the routing information

for the entire CU. However, using pull-based BFR, the nodes only store the routing

information for the demanded file names. Therefore, from Fig. 4.4 we observe that

70

4.3. Performance Evaluation

 1x10
6

 1x10
7

 1x10
8

 1x10
9

 0.6 0.8 1 1.2 1.4 1.6 1.8 2

A
v
er

ag
e

st
o
ra

g
e

sp
ac

e
re

q
u
ir

em
en

ts
[B

y
te

s
p
er

 s
ec

o
n
d
]

Zipf’s power parameter

pull-based BFR (CU=10
5
)

pull-based BFR (CU=10
7
)

push-based BFR (CU=10
5
)

push-based BFR (CU=10
7
)

Figure 4.4: Results for storage space requirements for storing routing information for
different values of Æ

the storage space requirements for pull-based BFR slightly grows when we increase

CU size from 105 to 107. Fig. 4.4 also shows that the storage space requirements for

pull-based BFR are controlled by the value ofÆ, meaning that for higherÆ values, pull-

based BFR has less storage space requirements, while the storage space requirements

for push-based BFR only depends on the CU size. Fig. 4.4 shows that for both CU = 105

and CU = 107, pull-based BFR requires significantly less storage space for storing

routing information compared to push-based BFR. Nevertheless, we observe from Fig.

4.4 that when the CU size grows from 105 to 107, pull-based BFR outperforms push-

based BFR more significantly. Fig. 4.5 compares pull-based and push-based BFR in

terms of the average storage space that a node needs to store routing information for

one file name per second. We observe from Fig. 4.5 that pull-based BFR outperforms

push-based BFR for both CU = 105 and CU = 107. If the CU size grows from 105 to 107,

Fig. 4.5 shows that pull-based BFR outperforms push-based BFR more significantly.

71

Chapter 4. Pull-based Bloom Filter-based Routing

 0.01

 0.1

 1

 10

 100

 0.6 0.8 1 1.2 1.4 1.6 1.8 2

A
v
er

ag
e

st
o
ra

g
e

sp
ac

e
re

q
u
ir

em
en

ts
 p

er
 f

il
e

n
am

e
[B

y
te

s
p
er

 s
ec

o
n
d
]

Zipf’s power parameter

pull-based BFR (CU=10
5
)

pull-based BFR (CU=10
7
)

push-based BFR

Figure 4.5: Results for storage space requirements for storing routing information per
file name for different values of Æ

4.3.4 Average Round-trip Delay

Figs. 4.6a and 4.6b present the results in terms of average round-trip delay, i.e.,

the average delay that a client experiences from the time it issues an Interest to

the time it retrieves the demanded Data packet. We measure this delay for all the

studied protocols in two scenarios: 1) when links have full capacity, and 2) when

links have only 20% of the original capacity. When users can make use of the full

network capacity, Fig. 4.6a shows that if Æ is in the [0.6,1] interval, push-based

BFR performs slightly better than pull-based BFR because the cardinality of the set

of popular content objects is bigger for smaller values of Æ. Thus, pulling content

advertisement and CAR aggregation at routers have more impact on the average

round-trip delay for pull-based BFR. Nevertheless, when Æ is in the [1.2,2] interval,

pull-based BFR and push-based BFR perform very closely to each other, because

much less content objects are popular. Thus, clients need to pull much less CA

information and each demanded content object will be cached close to the client

that demanded it after its first retrieval. Therefore, in this case, the delay caused by

pulling content advertisements and aggregating CARs and CAs has less impact on

72

4.3. Performance Evaluation

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.6 0.8 1 1.2 1.4 1.6 1.8 2

A
v
er

ag
e

d
el

ay
 [

S
ec

o
n
d
s]

Zipf’s power parameter

Pull-based BFR
Push-based BFR
FaR

(a) Average round-trip delay when links have maximum capacities

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.6 0.8 1 1.2 1.4 1.6 1.8 2

A
v
er

ag
e

d
el

ay
 [

S
ec

o
n
d
s]

Zipf’s power parameter

(b) Average round-trip delay when links have 20% of their maximum capacities

Figure 4.6: Results for average round-trip delay

73

Chapter 4. Pull-based Bloom Filter-based Routing

 0

 0.5

 1

 1.5

 2

 2.5

 0.6 0.8 1 1.2 1.4 1.6 1.8 2

In
co

rr
ec

t
ro

u
ti

n
g
 [

%
]

Zipf’s power parameter

Pull-based BFR-6.38%
Push-based BFR-6.38%
Pull-based BFR-12.76%

Push-based BFR-12.76%
Pull-based BFR-25.52%
Push-based BFR-25.52%

Figure 4.7: Perormance for different values of Æ in terms of the impact of false positive
reports on routing

the overall average round-trip delay. When the links of the GEANT topology [2] have

100% of their capacities and Æ is in the [0.6,1] interval, FaR [68] performs close to pull-

based BFR. However, when Æ is in the [1.2,2] interval, pull-based BFR outperforms

FaR. We observe from Fig. 4.6b that by reducing link capacity, push-based BFR and

FaR protocols are more affected, while we observe the smallest impact of limited

link capacity on the performance of pull-based BFR. The reason is that pull-based

BFR aggregates CAR and CA messages and, therefore, it has a much less number of

transmissions than push-based BFR and FaR.

4.3.5 Impact of False Positive Errors on Routing

We analyze the impact of false positive reports on the performance of pull-based and

push-based BFR. Fig. 4.7 compares these protocols in terms of the impact of false

positive reports on routing. Using (2.1), we conducted experiments with n = 1000 and

three different rates for p from set F = {6.38%,12.76%,25.52%} to observe the impact

of false positive reports on the operation of our considered routing protocols. Fig.

4.7 shows the percentage of Interest messages that have reached wrong servers due

74

4.4. Conclusions

to false positive reports from the BFs of CA messages at routers and clients. From

Fig. 4.7, we understand that the higher the value of p is, the higher the percentage

of incorrect routings is, for both pull-based and push-based BFR. The reason is that

when we increase the value of p for BFs, the probability that a false positive error

occurs in practice is higher. Fig. 4.7 shows that the highest percentage of incorrect

routing corresponds to p = 25.52%. However, even in this case, only 2.25% of Interest

messages have been routed towards the wrong server(s). In practice, one will not use

p = 25.52% because it results in a high risk of false positive reports. Fig. 4.7 makes

clear that false positive reports have less impact on the operation of pull-based BFR

compared to push-based BFR. The reason is that push-based BFR stores CA messages

for the entire content universe. Hence, push-based BFR stores more CA messages

compared to pull-based BFR, thus, more number of BFs have to be checked. Further,

from Fig. 4.7, we observe that with higher Æ values, false positive reports have a

smaller impact on the performance of both pull-based and push-based BFR. This is

due to the fact that if the value of Æ is higher, a smaller number of names are popular

and, therefore, a smaller number of names are checked against BFs, which results in

less number of false positive reports.

4.4 Conclusions

In this Chapter, we proposed pull-based BFR as a new routing protocol for NDN. Pull-

based BFR has the following advantages compared to push-based BFR: 1) significantly

less communication overhead for propagating content advertisements, 2) BF-based

aggregation mechanism for CAR and CA messages, 3) better average round-trip delay

when Æ is in the [1.2,2] interval, 4) less storage space requirements for clients and

routers to store content advertisements, and 5) more robustness to false positive

reports from BFs. Similarly to push-based BFR, pull-based BFR is fully distributed,

topology agnostic, content-oriented, and does not need any IP-based routing protocol

as a fall-back or primary routing mechanism. In the next Chapter, we benefit from pull-

based BFR for content discovery, and we propose a network coding-based protocol to

accelerate content retrieval.

75

5
Network Coding-based Content

Retrieval based on Bloom Filter-based

Content Discovery

5.1 Introduction

In Chapter 4, we described pull-based BFR and showed that it requires significantly

less storage and bandwidth resources for content advertisements than push-based

BFR. In this Chapter, we investigate RQ 3 of the thesis Introduction that requires

to reduce content retrieval delay. Push-based and pull-based BFR forward Interest

messages over multiple paths towards origin servers. Thus, there are potentially

several reverse paths over which corresponding Data messages might be transmitted.

As Data messages are forwarded over multiple paths, Network Coding (NC)-based

forwarding can be used to maximize throughput and to reduce content retrieval

delay [25]. Therefore, in this Chapter, we use our pull-based BFR for content discovery

and we propose an NC-based protocol to reduce content retrieval delay. In Chapter

77

Chapter 5. Network Coding-based Content Retrieval based on Bloom Filter-based
Content Discovery

2, we mentioned that the works in [20, 65, 66] proposed single-session NC-based

protocols for content retrieval in NDN. Differently, in this Chapter, we propose a

multi-session NC-based protocol for content retrieval in NDN.

Applying multi-session NC in NDN is not trivial as we need to control the multi-

session codeblock size. This has not been addressed in [20, 65, 66]. In this Chapter,

we propose an NC-based protocol to address this problem. Our NC-based protocol

leverages BF-based pull-based content discovery to build a distributed NC protocol

based on Random Linear Network Coding (RLNC) [33] achieving a multipath Data

message diffusion protocol. To manage the multi-session codeblock size, i.e., the

number of linearly combined variables, the proposed NC protocol uses a maximal

capacity constraint and a local feedback mechanism. To assess the performance of

the proposed NC protocol, we compare it with our push-based BFR and pull-based

BFR protocols that we described in Chapters 3 and 4, respectively. From the results,

we observe that the proposed cooperative NC protocol achieves lower content block

retrieval delay than the schemes under comparison. Further, the results reveal that

the proposed NC protocol requires less bandwidth resources for content discovery

than push-based and pull-based BFR.

The rest of the Chapter is structured as follows. Section 5.2 presents the proposed

NC model as well as some preliminaries and definitions. Next, we describe our BF-

based content discovery mechanism in Section 5.3. Then, Section 5.4 presents the

proposed network code selection and content forwarding protocol. After, we discuss

the received Data message processing method in Section 5.5. Finally, Section 5.6

discusses performance evaluation and Section 5.7 concludes the chapter.

5.2 Network Coding Model

Let V be the set of nodes in the network with S[U [R =V , where S is the set of source

nodes (servers), U is the set of clients, and R is the set of routers. Each node v 2 V

has at time t a set of neighbors Nt (v). Finally, let x j
i be the i th original Data segments

generated at source s j , j = 1, ...,m.

A network coded Data message contains the identities of n variables Pi , i 2 [1,n] as

well as the coding coefficients. If a variable is not yet decoded at a node, we call it a

decoding variable for that node. For simplicity, we assume that node v divides its CS

memory space into two buffers: a decoded buffer Bv containing all Data messages

78

5.3. Bloom Filter-based Content Discovery

Figure 5.1: Neighborhood state array for router R4.

that have been decoded by this node and a decoding buffer A v containing mv linear

combinations of decoding variables. We use in the following the notation xi 2 A v

to indicate that the decoding variable xi is used in a linear combination stored in

the decoding buffer. We consider that a node v can accept only up to C v decoding

variables in its equation system, with C v forming the capacity constraint. Therefore,

node v discards a received Data message that results in having more than C v decoding

variables in its equation system. In Section 5.4, we discuss the important operational

purpose of this capacity constraint for multi-session codeblock size management. Our

NC-based content forwarding protocol requires each node to maintain the state of

all its neighbors consisting of the sets of decoded and decoding variables. Each node

updates its neighbors by transmitting information about its state at both BF-based

content discovery and BF-based local feedback Interest transmissions phases, which

we describe in the following. Fig. 5.1 shows the structure of neighborhood state array

for router R4 in Fig. 5.2. In the following, we explain how nodes receive and update

their neighbor state information.

5.3 Bloom Filter-based Content Discovery

Our BF-based content discovery is inspired by the BF-based pulling of the required

content advertisements we used in pull-based BFR protocol [51]. The main differ-

ence is that pull-based BFR transmits BF-based aggregated Interest messages to pull

the required content advertisements, while in this Chapter, clients send BF-based

aggregated Interest messages to pull network coded Data messages.

To explain the BF-based content discovery protocol, we assume that in Fig. 5.2 clients

CX and CY create Interests I (N1) and I (N2) to request two Data messages with names

N1 and N2, respectively. Clients CX and CY store Interests I (N1) and I (N2) in their PITs.

Nonetheless, client CX keeps I (N1) pending and creates a BF called Interest Bloom

Filter (IBF) containing the hashed value of N1 and stores this IBF in an Aggregated

79

Chapter 5. Network Coding-based Content Retrieval based on Bloom Filter-based
Content Discovery

Figure 5.2: A topology for describing our NC-based protocol.

Interest Message (AIM) called AI MCX with name prefix /AI M/CX . Client CY follows

the same procedure and keeps I (N2) pending creating an IBF containing the hashed

value of N2 stored into another AIM called AI MCY with name prefix /AI M/CY . Fig.

5.3 shows the AIM structure. Note that all the nodes use a hash function with the

same seed for calculating the hashed values of names. Then, client CX sends AI MCX

to router R1 and client CY sends AI MCY to router R2. In general, we assume that

each client has only one outgoing face to the only router connected to it. When a

router receives an AIM, it waits for a short time interval tag g r to collect other AIMs

sent by other nodes (tag g r is of msecs scale). After waiting tag g r , router R1 does not

receive any other AIMs from other clients. Thus, R1 sends AI MCX over faces 1 and

2 to R5 and R3. The same procedure takes place at R2 and this router sends AI MCY

to R3 and R6. We assume that R3 receives AI MCX and AI MCY within a time interval

t ∑ tag g r so that R3 can aggregate AI MCX and AI MCY and sends the aggregation of

these messages called AI MR3 with name prefix /AI M/R3 over face 3. To aggregate

AI MCX and AI MCY , router R3 makes a union of the IBFs of these messages. At the

same time, R3 sends AI MCX over face 2 and sends AI MCY over face 1. In general, if

a router has received AIMs over a set of faces F = { f1, f2, ..., fk } and I BF f1 is the IBF

calculated for an AIM that will be sent over face f1 2 F , the IBF of face f1 is calculated

from (5.1).

I BF f1 = {
[

8k2F
|k 6= f1} (5.1)

After IBF aggregation, R3 sends AI MR3 over face 3. Note that R3 adds face 3 to the

out-records of both messages AI MCX and AI MCY to record that both messages have

been sent over face 3. For future aggregations, R3 will not use the AIMs that it had

issued itself. It can figure this out by checking the second name component of the

AIMs. Though we discussed only R3, all other routers pursue the same aggregation

and forwarding strategies for the received AIMs.

80

5.3. Bloom Filter-based Content Discovery

Figure 5.3: AIM structure.

To have practical IBF aggregation operations, we assume that all the nodes create IBFs

with equal sizes. In Eq. (2.1), if we specify the values of m and p, we will derive the

maximum value for n. The maximum value of n is the maximum number of elements

that could be inserted into the IBF. Note that in distributed systems, we can have

such rules that nodes use the same word, “ICN”, for example, to generate the hash

functions or using the same value for m. This is in analogy to what happens in IP

networks where the IP address size is the same constant value for all the nodes. It is

important to emphasize that a node can make a union of two IBFs provided that the

number of inserted elements into the resulting IBF does not exceed its capacity. In

Chapter 4, we proposed practical BF aggregation strategies to this aim, which we use

also in this Chapter.

For content discovery, clients issue AIMs and routers aggregate them on their paths

towards the servers. However, besides this content discovery method, we assume

that each node frequently sends local feedback information to its neighbors about

its state, i.e., the identities of the variables stored in the decoding and the decoded

buffers, as well as the remaining capacity for accepting new variables in the linear

combinations (packets) that will be received in the future. Besides updating the

neighborhood about state information, a node sends local feedback transmissions

to enquire neighbors whether they have information that can help it to decode its

current decoding variables faster by returning useful linear combinations. Let us

explain this process for router R4 using Fig. 5.2. In this figure, we assume that router

R4 has two sets at any time instant t , namely: 1) the set of decoding variables for

node R4, called RR4,t characterized by the BF ©R4,t
R (.), which contains all variables

that exist in linear combinations stored by node R4 up to time t ; and 2) the set of

decoded variables DR4,t characterized by the BF©R4,t
D (.), which contains all variables

that node R4 has decoded up to time t . ©R4,t
D (.) is a big BF obtained over the set of

last W decoded variables that are chosen in the order of 200 variables and©R4,t
R (.) is

81

Chapter 5. Network Coding-based Content Retrieval based on Bloom Filter-based
Content Discovery

Figure 5.4: FIM structure.

a small BF with a size of about 20 that is the maximum capacity constraint for each

router. These two BFs are updated every time new variables are decoded by removing

the oldest decoded variables to allow the insertion of new variables. Besides these

BFs, node R4 has an available capacity cR4 (t) ∑C R4 for accepting new variables that

node R4 neither has decoded nor has stored them as decoding variables up to time t .

When node R4 wants to transmit a local feedback, it creates an Interest message called

Feedback Interest Message (FIM) that carries cR4 (t) value as well as both BFs©R4,t
R (.)

and ©R4,t
D (.). Fig. 5.4 shows the FIM structure. When router R4 creates this FIM, it

sends it over each face i (i = 1,2,3) with name prefix /F I M/R4/ fi . The second name

component of the FIM corresponds to the sender node ID (R4) and the third name

component indicates the face ID over which the FIM is sent. Note that each node

sends FIMs frequently (e.g., every 1 sec) to announce its state to the neighborhood

and FIMs do not travel more than one hop. When a node receives an FIM, it selects

a network code according to the information signaled by the received FIM and it

encapsulates the calculated network code into a Data message called Feedback Data

Message (FDM) that is returned in response to the received FIM. We describe the

network code design algorithm in Section 5.4.

Any node v that wants to forward an AIM, stores its BF ©v,t
R (.) into the sent AIMs

because by sending ©v,t
R (.) with AIMs, node v signals its decoding variables more

frequently. As mentioned earlier,©v,t
R (.) is a small BF, which requires small bandwidth

resources for transmission.

If at time instant t node v receives from neighbor ni an FIM or an AIM over face f j ,

node v updates the feedback information, received in the FIMs or AIMs, for face f j in

the neighborhood array state.

82

5.4. Network Code Selection for Content Forwarding

5.4 Network Code Selection for Content Forwarding

Network code selection, i.e., choosing the variables for a linear combination, takes

place when: 1) a source node receives an AIM and has to reply with a network coded

Data message, or 2) a node receives an FIM and has to reply with a network coded

FDM. We develop a model to calculate the utility of each variable to be used in network

codes. When a node calculates the utilities for its stored variables, the node solves an

instance of a linear program to calculate the probabilities of selecting variables for the

linear combination to forward so that the objective of sending the maximum requested

information is reached. Therefore, the content forwarding algorithm is responsible to

decide the variables to combine among all variables stored in decoding and decoded

buffers. We assume that the nodes are non-selfish and behave cooperatively. When

a node v receives an AIM/FIM over a face f , node v aims to combine the maximum

amount of the information that has been requested over face f into the returned

network coded Data message/FDM. As previously mentioned, the capacity constraints

of neighbors should not be violated. To this end, each node uses the neighbors’ states

gathered inside an array and updated by node feedback piggybacked in received AIMs

and FIMs.

With this goal in mind, let us define for each variable xi in node v (regardless of the

fact that it is in decoded or decoding buffer) an expected utility ui w (t) for combining

this variable into a linear combination that is going to be returned to the neighbor

w . Based on the feedback information received from neighbor w and stored in the

neighborhood array, we calculate the ui w (t) values as follows.

• If variable xi did not exist in the last IBF received from neighbor w , then it is con-

sidered as an unsolicited variable. Therefore, the utility of combining variable

xi in the Data message/FDM returned to neighbor w is zero, i.e., ui w (t) = 0.

• If variable xi has been decoded by node w (i 2Bw (t)), the utility of combining

this variable in the Data message returned to node w is zero and ui w (t) = 0.

• If variable xi has not been received by node w (i ›Bw (t)[A w (t)) and node w

has still capacity to accept new variables, combining this message will result

in spreading a new solicited variable to node w , and there is a non-zero utility

in combining this variable. Therefore, the expected benefit of combining the

variable xi to forward to node w is set as ui w (t) = 1.

83

Chapter 5. Network Coding-based Content Retrieval based on Bloom Filter-based
Content Discovery

• If the variable xi is a decoding variable for node w (i 2 A w (t)), the utility of

combining this variable depends on the number of places in the decoding

buffer that sending this variable can free because of the variables are retrieved

by means of decoding. These free spaces might be used in the next step to

spread new solicited variables, which is the main goal of a node in the network.

Adding a new equation in a system of mw (t) equations can lead at best to the

retrieval of mw (t)+1 variables. Therefore, an optimistic view will consider a

utility equal to ui w (t) = mw (t)+1.

In very general terms, a large spectrum of utility values might be used to account for

different application-related constraints; for example, reducing decoding delay at

clients, giving priority to the decoding of particular messages, node selfishness, etc.

However, as explained above, we assume non-selfish nodes that are willing to assist

the content retrieval process in the network.

Let us assume that the probability of choosing variable i in the returned linear combi-

nation is pi . The global expected utility of forwarding a linear combination carried by

the returned Data message/FDM from the sender node v to the receiver neighbor w

at time t could be defined as:

U v (t) =
X

xi2A v (t)[Bv (t)
pi ui w (t) (5.2)

The aim of node v is to maximize this global utility subject to the set of constraints

defined below:

maximize
pi

U v (t)

subject to cw (t)°
X

xi›Bw (t)[A w (t)
pi ∏ 0,

0 ∑ pi ∑ 1.

(5.3)

In Eqs. (5.2)-(5.3), the parameters ui w (t), A w (t) and Bw (t) could be obtained from

the feedback received from neighbor w . Therefore, they are known values, inde-

pendent of pi values. Thus, the optimization (5.3) is an instance of classical linear

programming that could be solved by the simplex method in polynomial time. Node

v solves the linear program to calculate the pi probabilities. Then, node v chooses the

84

5.5. Received Data Message Processing

Table 5.1: Reports from feedback BFs of node w for a variable Pi

Report from©w,t
D (.) Report from©w,t

R (.)
Negative Negative
Negative Positive
Positive Negative
Positive Positive

variables to be combined by sampling uniformly at random following the distribution

given by pi probabilities.

When node v wants to select network codes to send a Data message/FDM to node w ,

let us see the effect of false positive errors for a variable xi in BFs©w,t
D (.) and©w,t

R (.).

Table 5.1 shows all the four states of reports that might happen at these two BFs. The

first line of Table 5.1 corresponds to a state where both BFs report negative. When we

use BFs, false negative errors are impossible. Therefore, both reports from BFs©w,t
D (.)

and ©w,t
R (.) are definitely correct. The second line of Table 5.1 indicates a positive

report from ©w,t
R (.). If this is a false positive report, the worst case that can happen

is that a new variable will be combined and considered a decoding variable for the

receiver. Since receivers do not accept new variables more than their capacity, there is

no problem. If the state indicated at line 3 of Table 5.1 happens and the report from

©w,t
D (.) is a false positive report, then the worst case is that the sender assumes variable

xi as a decoded variable and does not combine it in the returned Data message. If the

state indicated in the fourth line of Table 5.1 happens, one of the reports from©w,t
R (.)

or©w,t
D (.) is a false positive report. In such a case, the sender combines variable xi in

the returned Data message to prevent any negative effect from the happened false

positive report.

5.5 Received Data Message Processing

Let us assume that node v has stored a set of m equations and n variables. Upon

reception of a new linear combination in a Data message/FDM, the node removes

from it the decoded variables that can be found in the decoded buffer. This results in

a new linear combination that only contains decoding or new variables. To enforce

the maximum capacity constraint, a linear combination containing k new variables

will be accepted and further processed only if n + k ∑ C v , otherwise the received

85

Chapter 5. Network Coding-based Content Retrieval based on Bloom Filter-based
Content Discovery

Data message/FDM is discarded. This simple mechanism ensures that the number

of variables does not increase out of control, and, therefore, manages multi-session

codeblock size.

When a linear combination is accepted, it is stored in the decoding buffer. The coeffi-

cients of the stored linear combination are extracted and are placed into a decoding

matrix Gv with the maxIimum size of C v £C v . A Gaussian elimination algorithm is

applied to matrix Gv and to the linear combinations stored in the decoding buffer to

construct a matrix in row echelon form Gv . Gaussian elimination could result in the

following situations.

1. The newly received linear combination results in an all-zero line. In this case,

the received packet is non-innovative and the packet is tagged as redundant.

This packet is removed from the decoding buffer and the rank of the linear

system does not change.

2. The newly received linear combination results in a line with a single non-zero

value. In this situation, at least a single variable has been retrieved. Replac-

ing this decoded variable in the previous equations and removing it from the

equation system reduces the rank by one.

3. The newly received linear combination reduces the rank of the system by one,

without any variable being decoded.

Whenever one or several variables are decoded, they are moved to the decoded buffer.

The capacity cv and the decoded and decoding BFs are updated accordingly.

5.6 Performance Evaluation

In this section, we evaluate the performance of the proposed NC-based protocol and

compare it with that of push-based and pull-based BFR. All schemes are implemented

in ndnSIM2.1 [56].

5.6.1 Simulation Settings

To compare the proposed NC-based protocol with push-based and pull-based BFR,

we use the GEANT topology [2] illustrated in Fig. 3.6. Then, we randomly connect

86

5.6. Performance Evaluation

10 servers and 50 clients as leaf nodes to it. Overall, the topology has 100 nodes. We

use real HTTP request traces [26] to extract a URL dataset and assume that content

popularity follows a Zipf-Mandelbrot distribution (we showed the Zipf-Mandelbrot

probability distribution formula in Eq. (3.2)) where we use Æ values from the [0.6,2]

interval. The content universe consists of 100,000 content objects, each is divided

into 100 segments. In Eq. (2.1), we use n = 100 for IBFs, n = 20 for decodingBFs,

and n = 200 for decodedBFs, respectively. We use p = 0.0638 as the false positive

probability of the BFs. The presented results are averaged over ten simulations and

the reported mean values have 95% confidence intervals. In the following, we analyze

the performance of the proposed NC protocol, the push-based BFR, and the pull-

based BFR based on two metrics: 1) content discovery overhead, and 2) average

content block retrieval delay.

5.6.2 Content Discovery Overhead

In Fig. 5.5, we show results in terms of the bandwidth used for content discovery with

different values of Zipf parameter Æ. Fig. 5.5 makes clear that as Æ value increases,

content discovery requires less bandwidth for both the proposed NC protocol and

pull-based BFR. This behavior is expected for pull-based BFR because when Æ value

is larger, less content objects are popular, and, therefore, clients need to pull content

advertisements for less content object names. With the proposed NC protocol, when

less content objects are popular, they will be decoded faster at caches that are close

to the clients, which results in smaller content discovery overhead. Fig. 5.5 makes

clear that for all Æ values, the proposed NC protocol uses much less bandwidth for

content discovery than for pull-based BFR. The reason for this is that the proposed

NC protocol excludes the content advertisement phase.

In Fig. 5.6, we show the content discovery overhead for push-based BFR with different

content advertisement refresh frequencies. From Fig. 5.6, we can see that push-based

BFR requires significantly higher bandwidth resources for content discovery than both

pull-based BFR and the proposed NC protocol. This happens because push-based

BFR needs to push the BF-based content advertisements for all the provided content

object names.

87

Chapter 5. Network Coding-based Content Retrieval based on Bloom Filter-based
Content Discovery

C
on

te
nt

 d
is

co
ve

ry
 o

ve
rh

ea
d

[G
B

yt
es

]

0

6

12

18

24

Zipf α
0.6 1 1.4 1.8

Pull-based BFR NC

Figure 5.5: Content discovery overhead with different Æ values for our NC protocol
and pull-based BFR.

C
on

te
nt

 d
is

co
ve

ry
 o

ve
rh

ea
d

[G
B

yt
es

]

0

27.5

55

82.5

110

Refresh frequency [Hz]
0.017 0.033 0.067

Push-based BFR

Figure 5.6: Content discovery overhead for push-based BFR.

88

5.6. Performance Evaluation

Figure 5.7: Content block retrieval delay for the proposed NC protocol with full link
capacities.

5.6.3 Average Content Block Retrieval Delay

We evaluate the performance of all the considered protocols in terms of average

content block retrieval delay, i.e., the average delay from the time clients send AIMs

until the time they retrieve a block of segments of the requested content objects.

We consider a block size of 20 segments, which is equal to the maximal capacity

constraint of the nodes. Although the GEANT testbed is a high-speed network, we

calculate average content block delays in four scenarios: 1) links have full capacities, 2)

links have 50% of their original capacities, 3) links have 20% of their original capacities,

and 4) links have 10% of their original capacities. This evaluation strategy helps us

observe the performance of all protocols in scenarios with ample and restricted link

capacities.

From Figs. 5.7 and 5.8, we show the delay for 100% and 50% link capacities and we

note that, the average content block retrieval delay decreases by increasing Æ value.

This is expected because, when Æ value is larger, fewer content objects are popular,

which will be soon cached (in non-NC scenarios) or decoded (in NC scenarios) closer

to the clients. Further, Figs. 5.7 and 5.8 make clear that when Æ is in [0.6,1], pull-based

BFR has much higher delay than push-based BFR and the proposed NC protocol. The

reason for this is that more content objects are popular for which pull-based BFR

89

Chapter 5. Network Coding-based Content Retrieval based on Bloom Filter-based
Content Discovery

Figure 5.8: Content block retrieval delay for the proposed NC protocol with 50% of
link capacities.

Figure 5.9: Content block retrieval delay for the proposed NC protocol with 20% of
link capacities.

90

5.7. Conclusions

Figure 5.10: Content block retrieval delay for the proposed NC protocol with 10% of
link capacities.

requires to pull the content advertisements that entails delay. When the Æ values

are in [1.4, 1.8], we see from Figs. 5.7 and 5.8 that pull-based BFR and the proposed

NC protocol achieve similar results due to the fact that mostly the requested content

objects are cached/decoded closer to the clients. When we reduce the link capacities

from 100% to 50% (Fig. 5.8), we note that, the performance of push-based BFR

starts to degrade. On the other hand, the performance of pull-based BFR and the

proposed NC protocol start to improve because they do not need to push the content

advertisements frequently. Figs. 5.9 and 5.10 present delay comparison when all the

links have 20% and 10% of their original capacities. We observe from these figures

that the proposed NC protocol significantly outperforms push-based BFR and pull-

based BFR. The results demonstrate that when link capacities are limited, NC-based

communications offer significant gains.

5.7 Conclusions

In this Chapter, we presented a cooperative NC-based content retrieval based on BF-

based content discovery for NDN. For content discovery, we used a BF-based protocol

similar to pull-based BFR that we described in Chapter 4. To retrieve content objects,

the proposed cooperative NC protocol uses the information received in AIMs and

FIMs to calculate the utility of variables and to design network codes. We evaluated

91

Chapter 5. Network Coding-based Content Retrieval based on Bloom Filter-based
Content Discovery

the performance of our NC protocol and compared it with that of push-based and

pull-based BFR, that we described in Chapters 3 and 4, respectively. The proposed

cooperative NC protocol requires significantly less bandwidth resources for content

discovery than both push-based and pull-based BFR. Further, the proposed protocol

achieves lower content block retrieval delay compared to that of push-based and

pull-based BFR. In this Chapter and the previous two Chapters, we proposed routing

and content retrieval protocols for NDN. The next Chapter investigates routing in SCN

and proposes clustering algorithms and BF-based routing protocols for L-SCN [31].

92

6
Bloom Filter-based Routing for

Dominating Set-based Service-Centric

Networks

6.1 Introduction

In Chapters 3 and 4, we presented BF-based routing protocols for NDN. In this Chapter,

we investigate routing in SCN. From the Introduction, we recall that, L-SCN presents a

layered routing architecture for SCN, where a so-called supernode (SN) is responsible

for managing its domain as well as for communicating with the SNs of other domains

to perform inter-domain routing. In the Introduction, we posed RQ 4 related to SN

selection for L-SCN. In this Chapter, we use Dominating Sets (DS) and Connected

Dominating Sets (CDS) [44] to select appropriate nodes as SNs in the network topology.

We propose fully distributed algorithms for constructing DS as well as CDS over the

network topology. When SNs are selected and nodes are clustered, the nodes of each

domain inform their SNs about their available service names and resources (e.g., CPU,

93

Chapter 6. Bloom Filter-based Routing for Dominating Set-based Service-Centric
Networks

RAM) to prepare routing information. To this aim, the nodes use BF which reduces

bandwidth and storage overhead.

We assess the performance of the proposed routing protocols over various real topolo-

gies [2, 7] and observe that: 1) the bandwidth overhead required to construct DS and

CDS increases with the topology size, 2) the proposed CDS construction algorithm

requires more bandwidth overhead than our DS construction algorithm, 3) for large

topologies, the proposed CDS-based routing protocol requires drastically less band-

width overhead to route service requests than both our DS-based routing protocol

and vanilla NDN with multicast strategy [89], and 4) we observe that the CDS-based

routing protocol achieves slightly better service retrieval time than DS-based rout-

ing, while both DS-based and CDS-based routing protocols have much less service

retrieval time compared to NDN with multicast strategy.

The rest of the Chapter is structured as follows. Section 6.2 discusses the proposed

algorithms for constructing both DS and CDS. Section 6.3 and Section 6.4 describe

routing in DS-based and CDS-based SCNs, respectively. In Section 6.5, we discuss

performance evaluation of our protocols and we conclude the Chapter in section 6.6.

6.2 Clustering Network Nodes

In this Chapter, we first propose an algorithm for constructing a DS. Then, we suggest

an algorithm for converting a DS to a CDS. In the following, we present our algorithms

for DS as well as CDS construction to cluster the nodes in the network topology.

6.2.1 Dominating Set Construction

Our DS construction algorithm enables the nodes to store the following parameters:

• snFlag: a flag that indicates whether a node is an SN or not.

• snFaceId: the face ID of the face over which the SN of the associated domain

can be reached.

To describe our algorithm, we use a part of the GEANT topology [2] illustrated in Fig.

6.1. In this topology, nodes represent core routers located in European countries. In

94

6.2. Clustering Network Nodes

Fig. 6.1, we focus on the node with label NL that represents the Netherlands and shows

the message exchanges needed for constructing a DS. Interest messages are shown

with blue arrows and Data messages with green arrows. We only show the messages

sent by N L, but the algorithm runs in parallel for each node.

1. The algorithm starts with node N L sending a Clustering Initializing Interest

(CII) message with name /C I I /N L/ f aceI D over each of its faces to ask each

of its neighbors to send back the number of its neighbors (Fig. 6.1a). The

neighbors of node N L store the received CII messages in their PIT tables.

2. In Fig. 6.1b, we show that when N L’s neighbors receive a CII message, they

respond with a Data message called Clustering Data (CD) message with the

same name containing the number of its neighbors as well as its node ID. When

the CD message arrives at the node that issued the corresponding CII message,

it is stored in the CS table. Then, the face ID through which the CD message

is received is stored in the CS entry associated with the received CD message.

In such a case, the PIT entries of the CII messages are satisfied and are deleted

from the PIT.

3. In Fig. 6.1b, node N L waits for a short time interval tw to receive CD messages

from all its neighbors. Then, node N L compares the number of its neighbors

with that reported by its neighbors (note that if node N L has more neighbors

than its neighbors, it appoints itself as an SN). Then, as Fig. 6.1c shows, node

N L sends a Supernode Selection Interest (SSI) message with name /SSI /N L to

its neighbor with the highest number of neighbors, which is node DE . If a node

has multiple neighbors that have the same highest number of neighbors, the

node randomly selects one of them and appoints it as an SN.

4. After node DE receives the SSI message from N L (see Fig. 6.1d), it appoints

itself as an SN and responds to N L’s SSI message with a Supernode Selection

Data (SSD) message. When node N L receives the SSD message, it sets its SN

face ID to the face ID over which the SSD message was received from node DE .

95

Chapter 6. Bloom Filter-based Routing for Dominating Set-based Service-Centric
Networks

(a) Node NL sends a CII message to its neighbors

(b) Each neighbor replies with a CD message carrying the
number of its neighbors

(c) Node NL sends an SSI message to node DE to select it as
an SN

(d) Node DE makes its snFlag true and acknowledges node NL
with an SSD message

Figure 6.1: The clustering algorithm described with a part of the GEANT network.

96

6.2. Clustering Network Nodes

6.2.2 Connected Dominating Set Construction

After running our DS construction algorithm (Section 6.2.1), we obtain a DS, where

every node is either a dominator, in our case an SN, or a dominated node, which we

call hereafter a regular node. This property assures that the distance between any

two SNs does not exceed three hops. Therefore, the maximum distance for a message

from an SN to reach at least another SN is also three hops. To construct a CDS, we

let every SN know its nearest SNs. Using this knowledge, each SN decides the nodes

to use for connecting the DS so that it will become a CDS (the nodes in between the

nearest SNs). Our protocol does not permit the messages sent for CDS construction

to travel more than three hops. In addition to the parameters snFlag and snFaceId

mentioned in Section 6.2.1, our CDS construction algorithm enables all SNs to also

store the following parameters:

• cFlag is a flag that indicates whether the associated SN has already run the

proposed CDS construction algorithm or not.

• snFaceList is a list containing the face ID(s) over which the associated SN can

reach other SNs.

We show a small topology, in Fig. 6.2a, to describe how the proposed CDS construction

algorithm connects the DS previously constructed by our DS construction algorithm.

For the sake of simplicity of presentation, we only show the messages sent by SN1, but

similar operations are applied in parallel for each SN.

1. The algorithm starts with SN1 sending over each face i a Supernode Connection

Interest (SNCI) message with name /SNC I /SN 1/i to all of its neighbors, as

shown in Fig. 6.2b.

2. In Fig. 6.2c, the neighbors of SN1 proceed with forwarding the received SNCI

messages until another SN is reached.

3. In Fig. 6.2d, when the SNCI message of SN1 reaches SN2, SN2 replies with

a Supernode Connection Data (SNCD) message. Then, SN2 drops any other

97

Chapter 6. Bloom Filter-based Routing for Dominating Set-based Service-Centric
Networks

(a) A topology to explain the CDS construction
algorithm

(b) SN1 transmits an SNCI

(c) SN1’s neighbors forward the received
SNCIs

(d) When SN1’s SNCI reaches SN2, it replies
with an SNCD

(e) Node N8 appoints itself as an SN and up-
dates its snFaceList

(f) SN1 updates its snFaceList

Figure 6.2: The CDS construction algorithm

98

6.2. Clustering Network Nodes

received SNCI messages issued by SN1, in this case, the one that is received

from node N5 because SN2 has already replied to SN1’s SNCI message before.

4. Every node that gets an SNCD message further forwards it, until it reaches the

issuing SN. Furthermore, in Fig. 6.2e, as the SNCD message has reached node

N8, N8 appoints itself as an SN and stores the face through which the SNCD

message was received in its snFaceList.

5. In Fig. 6.2f, when SN1 receives the SNCD message, it sets its cFlag to true status

and stores the face over which the SNCD message was received in its snFaceList.

SN1 and SN2 are now connected through N8.

We have to maintain DS and CDS in the following cases 1) when a new node joins

the network, or 2) when a node or a link fails. If a new node joins the network, the

maintenance of DS or CDS is quite simple. The new node simply requires to run the

DS and CDS construction algorithms described in Sections 6.2.1 and 6.2.2 to join

the DS or the CDS, respectively. To maintain DS and CDS when failures happen, we

consider two cases 1) regular failures (a regular node or a link connecting two regular

nodes fails), 2) SN failures (an SN or a link connected to an SN fails). When regular

failures happen, if the entire graph is still connected, the DS or CDS will not change.

Nevertheless, if an SN or a link connected to an SN fails, the node (or nodes) that were

connected to the SN need to be aware of this failure so that they run again the DS and

CDS construction algorithms (Sections 6.2.1 and 6.2.2).

So far, we have described distributed algorithms for DS and CDS construction. The

proposed DS construction algorithm requires fewer message exchanges than our CDS

construction algorithm. However, when the network topology is clustered using a DS,

SNs might not be directly connected. Hence, it requires multi-hop communication

through regular nodes so that SNs can reach each other. Therefore, the intuition is that

DS-based inter-domain routing requires more bandwidth overhead than CDS-based

inter-domain routing. Our algorithm only uses local communication with one-hop

neighbors to build a DS.

For routing, we consider two cases in Sections 6.3 and 6.4, respectively: 1) L-SCN

selects SNs using our DS construction algorithm described in Section 6.2.1, and 2)

L-SCN selects SNs using our CDS construction algorithm described in Section 6.2.2.

99

Chapter 6. Bloom Filter-based Routing for Dominating Set-based Service-Centric
Networks

Table 6.1: SRAD structure

Timestamp Generation time
Available service names BF bit vector, salt count value.

Available resources Available CPU, GPU, RAM,

6.3 Routing in a Dominating Set

The proposed DS and CDS-based clustering algorithms, presented in Section 6.2,

complement L-SCN by efficiently clustering the network topology, which is a require-

ment of L-SCN. After clustering the network topology, we focus on intra-domain and

inter-domain routing. At each domain, the associated SN is responsible for both

intra-domain and inter-domain routing. Intra-domain routing consists of routing

service requests towards service provider(s), which are in the same domain, while

inter-domain routing means routing a service request from a domain towards service

provider(s) in another domain. Therefore, before routing, each SN needs to know the

services and resources provided in its domain. According to this information, an SN

decides whether a requested service could be provided within the domain or whether

it requires inter-domain routing. Note that intra-domain routing is identical for both

DS-based and CDS-based clustered network topologies. However, inter-domain rout-

ing is different for DS-based and CDS-based clustered networks.

6.3.1 Service and Resource Discovery

To acquire knowledge about the provided services and resources (e.g., CPU, RAM),

each SN asks the nodes in its domain about their available services and resources

using the pull mechanism that we illustrate in Fig. 6.3. Fig 6.3a shows that the SN

sends over each face i a Service and Resource Availability Interest (SRAI) message

with name /SR AI /SN /i to pull information about available services and resources.

Each regular node (N1, N2, or N3) receives an SRAI message and stores in its PIT this

message as well as the information about the reception face for it (see Fig. 6.3a).

Then, each regular node replies with a Service and Resource Availability Data (SRAD)

message, with the same name of its corresponding SRAI message that carries a BF

containing its available service names as well as a field containing information about

its available processing and memory resources. Table 6.1 shows the structure of an

SRAD message, which includes the generation time of the SRAD message, a bit vector,

and a salt count value that are needed to retrieve the BF containing available service

100

6.3. Routing in a Dominating Set

(a) SRAI packet broadcast to pull available ser-
vices and resources

(b) SRAD packet forward by regular nodes containing BFs and resource information

Figure 6.3: Pulling service and resource availability

101

Chapter 6. Bloom Filter-based Routing for Dominating Set-based Service-Centric
Networks

names, and available processing and memory resources.

As Fig. 6.3b shows, the SN stores the received SRAD messages as well as the informa-

tion about their reception faces in its content store.

6.3.2 Intra-Domain Routing

Fig. 6.4 describes FIB population and intra-domain routing. When node N1

requires a service, it sends a Service Request (SR) message SR1 with name

/SR/N1/ser vi ceN ame to the SN (see Fig. 6.4a). When SN receives message

SR1, it stores this message in the PIT and checks the name prefix /serviceName

(last name component of message SR1) against all the BFs of the stored SRAD

messages (see Fig. 6.4b). Since only the BF of SR AD3 claims to contain name prefix

/serviceName, SN assigns in the FIB face ID 3 as the next hop face ID for /serviceName

and forwards message SR1 over this face towards node N3 (Fig. 6.4c). If multiple

BFs claim to contain a service name, SN checks the associated SRAD messages

for resource availability and forwards SR1 to the node with the highest available

resources. When node N3 receives message SR1, it replies with Service Data (SD)

message(s) with name(s) /SD/N3/ser vi ceN ame/sequenceNumber if it tends to

provide the demanded service. Otherwise, node N3 sends a Service Provision Refusal

(SPR) message with name /r e f usal /N3/ser vi ceN ame to the SN. If SN receives such

an SPR message from N3, it removes the FIB entry for name prefix /serviceName

and checks whether another regular node is available in the domain to provide the

demanded service. If no node in the domain provides a certain service, the requested

service requires inter-domain routing to be retrieved. In Fig. 6.4b, when SN checks the

BFs of its stored SRAD messages to reply to SR1, a false positive error might happen.

For example, if a false positive error happens at BF (SR AD1), SN forwards message

SR1 to N1. Since N1 does not provide the service requested by message SR1, N1

returns an SPR message to deny the provision of the requested service. Nevertheless,

false negative errors are impossible using BFs. Thus, SN will anyway forward message

SR1 towards the correct service provider, i.e., node N3. Therefore, the proposed

intra-domain routing mechanism is robust to false positive errors.

102

6.3. Routing in a Dominating Set

(a) Service request from N1 to SN (b) BF check at SN for name prefix
/ser vi ceN ame

(c) FIB population and forwarding SR to N3 (d) Service data follows the reverse path of the
service request

Figure 6.4: Intra-domain routing

103

Chapter 6. Bloom Filter-based Routing for Dominating Set-based Service-Centric
Networks

6.3.3 Inter-Domain Routing for DS-based Clustering

If an SN receives an SR message, it first checks the name of the SR message against

all the BFs of the SRAD messages stored in its CS table. If one of the BFs contains

the name of the SR message, the SR message is routed inside the domain (intra-

domain routing). Otherwise, the SR message is flooded until it reaches another SN

(As explained in Section 6.2, the distance between two SNs in a DS does not exceed

three hops). When another SN receives the SR message, it checks whether the service

requested by message SR is provided in its domain. If the requested service is not

available, the SN again floods the SR message until it reaches an SN that its domain

provides the requested service. In Section 6.5, we will observe that, due to these SR

message floodings, DS-based routing requires much more bandwidth overhead for

routing SR messages compared to CDS-based routing.

6.4 Routing in a Connected Dominating Set

When CDS is used for clustering, SNs are directly connected. Therefore, inter-domain

routing is different than DS-based routing. Fig. 6.5 shows an example CDS of four

SNs SN1,SN2,SN3 and SN4 inside the dotted area. We assume that each SN records

the face(s) over which it is connected to other SNs in a vector called snFaceList. For

example, snF aceLi st (SN2) = 1,2,4. In Fig. 6.5, when SN SN2 receives service request

message SR with name SRN from node N4, which is asking for a service not provided

in the domain of SN SN2, this SN checks its FIB for name SRN . If no FIB entry is

found, SN2 forwards message SR over all the faces 1,2 and 4 that exist in its snFaceList.

Later, if SN2 receives an SD message with name SRN over face 2, it populates the FIB

for name SRN with next hop face 2. This FIB population helps SN2 not to forward

future service requests with name SRN over all the faces of its snFaceList.

6.5 Performance Evaluation

To evaluate the performance of our protocols, we have implemented them in

ndnSIM2.1 [56]. We compare our protocols with NDN multicast forwarding strat-

egy [8].

104

6.5. Performance Evaluation

Figure 6.5: Inter-domain routing for CDS-based clustering.

6.5.1 Simulation Settings

For performance evaluation, we use GEANT [2], and Rocketfuel topologies [7]. GEANT

topology consists of 40 routers. From Rocketfuel topology traces [7], we use three

topologies with sizes 163, 624, and 1545 routers called RF-163, RF-624, and RF-1545,

respectively. We place 10 service providers and 20 clients randomly in all the topolo-

gies. We assume that service providers process the received service requests and the

processing time of a service request is uniformly distributed between 100 and 2000

milliseconds. If a client sends an SR message at time t1 and receives the processed

SD at time t2, the client considers t2 ° t1 the service retrieval time. Similar to [31], we

assume that SNs pull the available services and resources every 10 seconds, while

clients request services using a random function with exponential distribution with

the mean value of 2 seconds. We assume that the service universe (i.e., the set of all

available services) consists of 1000 unique services. The results are averaged over ten

simulations and the reported mean values have 95% confidence intervals.

In the following, we analyze the performance of our protocols according to three

metrics 1) the required bandwidth overhead for clustering, 2) the required bandwidth

overhead for routing, and 3) average service retrieval time.

105

Chapter 6. Bloom Filter-based Routing for Dominating Set-based Service-Centric
Networks

6.5.2 Bandwidth Overhead of Clustering

In Fig. 6.6a, we show the total bandwidth used for DS and CDS construction. From this

evaluation, we can see that when topology size (i.e., the number of nodes) increases,

the number of messages exchanged for DS and CDS construction also increases. Fur-

ther, Fig. 6.6a shows that for all of the considered topologies, the proposed CDS

construction algorithm requires more bandwidth overhead than the proposed DS

construction algorithm because it builds on top of the DS construction algorithm. Nev-

ertheless, from Fig. 6.6a we observe that for RF-624 and RF-1545, the proposed CDS

construction algorithm requires more than twice the bandwidth overhead that the DS

construction algorithm requires. This result confirms our intuition that when topology

size increases, the required bandwidth overhead for CDS construction compared to

that needed for DS construction also increases.

In Fig. 6.6b, we present the average bandwidth used for DS and CDS construction,

i.e., the total bandwidth used for DS and CDS construction divided bt the number of

network nodes. In Figs 6.6a and 6.6b, if we focus on each of the considered topologies

separately and compare DS-based and CDS-based clustering algorithms, we can note

the maximum difference between the orange and blue curves if RF-624 is used. This

is an important observation, which confirms the impact of topology structure on

the complexities of DS and CDS construction algorithms in terms of the required

bandwidth overhead.

6.5.3 Bandwidth Overhead of Routing

In Fig. 6.7, we compare our DS-based and CDS-based routing protocols with NDN

multicast forwarding strategy [8] in terms of bandwidth used for routing SR messages.

For all the considered topologies, we expected less overhead for service request routing

using a CDS. However, interestingly, we observe from Fig. 6.7 that for the GEANT

topology, we see less overhead for service request routing when a DS is used. This

result confirms the higher complexity of CDS-based routing compared to DS-based

routing in terms of bandwidth overhead using small topologies. For larger topologies,

the results are as expected and the CDS-based routing requires much less bandwidth

overhead for routing service requests. The CDS-based routing protocol uses up to

39% less overhead to route service request messages in the larger topologies.

106

6.5. Performance Evaluation

(a) Total bandwidth overhead for clustering algorithms

(b) Average transmitted bytes per node for clustering algorithms

Figure 6.6: Results in terms of bandwidth overhead for DS and CDS construction.

6.5.4 Average Service Retrieval Time

In Fig. 6.8, we show results in terms of average service retrieval time, i.e., the average

time that a client experiences from the time it issues an SR message to the time it

retrieves the requested service. From Fig. 6.8 we can see that NDN MultiCast (NDN-

MC) forwarding strategy has always significantly higher average service retrieval

107

Chapter 6. Bloom Filter-based Routing for Dominating Set-based Service-Centric
Networks

Figure 6.7: Total bandwidth overhead for service request routing

time than both DS and CDS-based routing. The reason is that NDN-MC floods SR

messages, which leads to overloading many service providers. Consequently, when

the NDN-MC strategy is employed, many SR messages are queued at overloaded

service providers until the service providers become idle to process them. This results

in a 69% shorter service retrieval time for our CDS approach compared to NDN-MC.

For small topologies, like GEANT, the DS approach performs around 17% faster, while

for large topologies, like RF-1545, the CDS approach performs 8% faster.

From Fig. 6.8b, we observe the impact of restricted link capacities (i.e., when all the

links have only 10% of their original capacities) on average service retrieval time. Fig.

6.8b makes clear that the bandwidth-hungry nature of the NDN-MC forwarding strat-

egy has a considerable impact on average service retrieval time. Overall, we observe

similar performance for DS and CDS-based routing in terms of average service re-

trieval time, while CDS-based routing performs slightly better than DS-based routing

when there are tight bandwidth resources, which is because of higher bandwidth

requirements for DS-based routing. Also, we note an even higher gain, compared to

NDN-MC with reduced link capacity. The service retrieval takes up to 73% less time

with our CDS-based routing. The CDS approach is also up to 24% faster than the DS

approach with reduced link capacities.

108

6.6. Conclusions

(a) Average service retrieval time with full link capacities

(b) Average service retrieval time with reduced link capacities

Figure 6.8: Results in terms of service retrieval time.

6.6 Conclusions

In this Chapter, we studied intra-domain and inter-domain routing of service requests

in SCNs. We proposed fully distributed algorithms for constructing DS and CDS to

109

Chapter 6. Bloom Filter-based Routing for Dominating Set-based Service-Centric
Networks

select SNs in the network topology. Next, we leveraged SNs to implement intra and

inter-domain service and resource discovery for SCNs. For service discovery, we used

BFs to reduce the required bandwidth overhead for service availability advertisements.

Using the information collected during the proposed service and resource discovery

method, we implemented BF-based and resource-aware intra-domain and inter-

domain routing protocols to route service requests.

We assessed the performance of our routing protocols for various topologies of differ-

ent sizes. From the results, we observed that with larger topologies, DS construction

requires much less bandwidth than CDS construction. We compared the proposed

DS-based and CDS-based routing protocols with NDN-MC. The results showed that

the DS-based routing protocol requires less bandwidth overhead for routing service

requests than the NDN-MC forwarding strategy, while the CDS-based routing proto-

col requires much less bandwidth overhead for service request routing compared to

DS-based routing protocol. Finally, we observed that both DS-based and CDS-based

routing protocols outperform NDN-MC in terms of service retrieval time. To the best

of our knowledge, this Chapter is the first work that leverages DS and CDS concepts

for BF-based and resource-aware intra and inter-domain routing in SCNs.

110

7
Conclusions

7.1 Summary

In the Introduction, we posed three RQs related to NDN. We mentioned that RQ 1

investigates how to route Interest messages in NDN. To answer RQ 1, In Chapter 3,

we presented a routing protocol called push-based BFR. RQ 2 investigates how to

reduce the required bandwidth and storage resources for push-based BFR’s content

advertisement messages. To address RQ 2, in Chapter 4, we described pull-based

BFR as another BF-based routing protocol for NDN and showed that pull-based BFR

requires significantly less bandwidth and storage resources for content advertisements

compared to push-based BFR. We posed RQ 3 related to reducing content retrieval

delay in NDN. To answer RQ 3, in Chapter 5, we presented a protocol based on multi-

session NC for content retrieval and showed that it achieves lower content retrieval

delay compared to push-based and pull-based BFR.

In the last part of this thesis, we studied routing in SCN [21]. In the Introduction, we

mentioned that L-SCN [31] was proposed as a routing architecture for SCN, which

addresses service discovery, resource discovery, and load balancing. However, L-SCN

111

Chapter 7. Conclusions

requires algorithms to select SNs before routing. Therefore, RQ 4 investigates how

to select SNs in L-SCN. In Chapter 6, we suggested to create DS and CDS over the

network topology and to select the dominator nodes as SNs. Therefore, we presented

distributed algorithms that create DS and CDS over the network topology and select

the SNs. Then, we implemented BF-based intra-domain and inter-domain routing

protocols for SCN.

In the next Sections, we first describe the main contributions of this thesis. Then, we

propose some future research directions.

7.2 Main Contributions

Routing protocols can route Interest messages by looking up the FIB tables. Therefore,

FIB population is a requirement for routing protocols. For FIB population, push-based

BFR permits servers to compactly represent the sets of their provided content object

names using BFs, and propagate the calculated BFs for content advertisements. When

clients and routers receive the content advertisement BFs, they can check the names

of the received Interest messages against the content advertisement BFs, populate

the FIBs, and, then, forward the Interest messages to retrieve the requested content

objects. We compared push-based BFR with flooding, shortest path, and COBRA [72].

We observed from the results that push-based BFR significantly outperforms shortest

path routing in terms of content advertisement overhead. Further, push-based BFR

outperforms flooding and COBRA in terms of communication overhead and the

average round-trip delay. Push-based BFR requires significantly less storage resources

for storing BFs compared to the storage space that COBRA needs for storing SBFs.

Therefore, if network nodes have memory space limitations (e.g., sensors in IoT

scenarios with constrained nodes), it is more appropriate to use push-based BFR than

COBRA.

Push-based BFR is an efficient routing protocol with the following features: 1) fully

distributed and content-oriented design, 2) topology oblivious, 3) robust to topology

changes. Nevertheless, due to the push-based content advertisements strategy of

push-based BFR, the bandwidth and storage resources required for content adver-

tisements linearly grows with the content universe size. Clients only demand a small

number of content objects from the entire content universe. Thus, it is sufficient if

servers only advertise the names of the demanded content objects. We designed pull-

112

7.2. Main Contributions

based BFR as a routing protocol that only advertises the demanded content objects. To

make servers aware of the demanded content objects, clients calculate BFs containing

the names of their Interest messages, put the BFs in CAR messages, and send the CAR

messages towards upstream. Routers that receive CAR messages, aggregate their BFs

using a practical BF aggregation strategy and continue sending them until they reach

the servers. Finally, when servers receive the CAR messages, they calculate BFs of

the demanded content object names, put the BFs in CA messages, and propagate the

CA messages for content advertisements. When clients and routers receive the CA

messages, they can populate the FIBs and route the Interest messages. We compared

pull-based BFR with push-based BFR and FaR [68] protocols. The results showed that

pull-based BFR significantly outperforms push-based BFR in terms of the required

bandwidth and storage resources for content advertisements. Further, from the re-

sults, we observed that pull-based BFR is more robust to BF false positive reports than

push-based BFR, and pull-based BFR outperforms both push-based BFR and FaR [68]

in terms of average round-trip delay.

In Chapter 5, we presented a multi-session NC protocol that benefits from the received

BFs sent during the pull-based content discovery phase to select network codes of the

requested Data messages. Further, to manage the multi-session codeblock size, we

let the nodes collaborate by sending local feedbacks about their available capacity

for accepting new variables in their equation systems, a BF containing their decoded

variables that they do not need to receive in linear combinations, and a BF containing

the variables that are involved in the equation system. These feedback messages allow

nodes to assign utility values to the available variables and solve an instance of a linear

program to select network codes.

In Chapter 6, we developed a routing protocol for SCN consisting of two phases. In

the first phase, the proposed protocol presented distributed and localized algorithms

to construct DS and CDS over the network topology. Running the algorithms the

dominator nodes play the role of SNs and the dominated nodes that are connected to

an SN are considered as the domain nodes. Then, we proposed BF-based intra-domain

and inter-domain routing protocols for both DS-based and CDS-based clustered

networks. We compared our DS-based and CDS-based routing protocols with NDN

multicast strategy and observed from the results that 1) the bandwidth overhead

for creating DS and CDS increases with topology size, 2) for large topologies, the

proposed CDS-based routing protocol requires drastically less bandwidth overhead

than both DS-based routing protocol and NDN-MC, 3) CDS-based routing protocol

113

Chapter 7. Conclusions

achieves slightly lower service retrieval time than DS-based routing protocol, while

both CDS-based routing protocol and DS-based routing protocol require much less

service retrieval time than NDN-MC strategy.

7.3 Future Research Directions

Although in this thesis we designed and evaluated BF-based routing protocols for

NDN and SCN, and a cooperative multi-session NC protocol for content retrieval in

NDN, as always, there are possibilities for extending the scope of the work. In this

Section, we mention some of the future research directions.

A future research direction could be related to the security of BF-based routing. Using

push-based BFR, origin servers propagate BFs for content advertisements. However,

malicious network nodes might pretend to be content providers and perform an attack

by injecting bogus content advertisement messages. To cope with this attack, it is

required to integrate security mechanisms for authenticating origin servers. Origin

servers might sign their content advertisement messages to indicate their authenticity.

When an origin server signs a content advertisement message, it has to share its public

key with the network nodes so that the network nodes can verify its signature. Origin

servers can share their public keys by storing them into a centralized server. However,

the centralized server will be a single point of failure. An alternative approach could

distribute the public keys over multiple servers that form a distributed system. Nev-

ertheless, each server might attack individually by modifying the stored public keys.

To cope with this problem, blockchain [57] is proposed as a distributed system that

any change in the stored content of a blockchain node has to be reported to the other

blockchain nodes and requires their approval. Therefore, blockchain provides trans-

parency to all the activities of the blockchain nodes. Due to these appealing features

of the blockchain, future research works could attempt to design novel protocols that

leverage a blockchain [57] to store origin servers’ public keys.

In pull-based BFR, when a router receives different CAR/CA messages, the router

could make a union of the received CAR/CA messages and aggregate them. However,

a malicious router might perform other bitwise operations, e.g., exclusive or (XOR), on

the received BFs to pollute them. When a malicious router pollutes a BF of a CAR/CA

message and forwards it, the polluted BF might be aggregated with the BFs of other

CAR/CA messages and makes them also polluted. Therefore, it is important to design

114

7.3. Future Research Directions

security mechanisms to detect pollution attacks on BFs and to discard the polluted

BFs. To the best of our knowledge, previous research works have investigated pollution

attacks with arithmetic operations (e.g, NC) [9, 62], but there is a gap in the literature

related to pollution attacks with bitwise operations, which could be a research topic

for the future.

We proposed a multi-session NC protocol that permits the routers to linearly combine

the network coded messages. However, a router could create a bogus network coded

message, which is not a linear combination of the original messages, and combine the

bogus network coded message with the received legitimate network coded messages

to perform a pollution attack. It is critical to cope with pollution attacks on network

codes because when a node forwards a polluted network coded message, the node that

receives the polluted network coded message combines it with other network coded

messages, and, therefore, the other network coded messages will be also polluted. To

cope with pollution attacks when NC is used, the work in [9] proposes to add Message

Authentication Codes (MAC) to the original messages that have the closure property

under linear NC operations. [9] assumes that the MACs of the original messages are

shared with the network nodes so that they can validate the MACs of the network

coded messages. However, sharing the MACs of all original messages would require

significant bandwidth and storage resources. Future research works might focus on

designing security schemes to tackle pollution attacks on network codes that require

less bandwidth and storage resources.

To select SNs, we suggested fully distributed methods that leverage DS and CDS con-

cepts. However, there are open security problems to investigate in the future. For

example, malicious clients could flood service requests to attack the SNs. Controlling

the service request injection rate could mitigate this problem. However, future re-

search works might provide more effective solutions to this problem. Another research

opportunity is to investigate how to cope with malicious SNs that might drop the

received service requests or might route them towards wrong service providers. L-SCN

requires to integrate trust mechanisms to significantly reduce the risk of malicious

activities by SNs.

115

8
List of Acronyms

BF Bloom Filter

BFR Bloom Filter-based Routing

CA Content Advertisement

CAI Content Advertisement Interest

CAR Content Advertisement Request

CD Clustering Data

CII Clustering Initializing Interest

CDS Connected Dominating Set

CCN Content-Centric Networking

COBRA COntent-oriented intra-domain Bloom filter-based Routing Algorithm

CS Content Store

117

Chapter 8. List of Acronyms

CU Content Universe

DONA Data-Oriented Network Architecture

DHT Distributed Hash Table

DS Dominating Set

DASH Dynamic Adaptive Streaming over HTTP

FDM Feedback Data Message

FIM Feedback Interest Message

FaR Flooding-assisted Routing

FIB Forwarding Information Base

ICN Information-Centric Networking

IoT Internet of Things

IP Internet Protocol

LFU Least Frequently Used

LNC Linear Network Coding

LRU Least Recently Used

LSA Link-State Advertisement

L-SCN Layered-Service Centric Networking

LPM Longest Prefix Matching

MCDS Minimum Connected Dominating Set

MDS Minimum Dominating Set

NDN Named Data Networking

NLSR Named-data Link State Routing

NFaaS Named Function as a Service

118

NFD NDN Forwarding Daemon

NFN Named Function Networking

NC Network Coding

NetInf Network of Information

NREN National Research and Education Network

PIT Pending Interest Table

PRLNC Prioritized Random Linear Network Coding

PURSUIT Publish Subscribe Internet Technology

RQ Research Question

RLNC Random Linear Network Coding

SVC Scalable Video Coding

SCN Service-Centric Networking

SD Service Data

SPR Service Provision Refusal

SR Service Request

SN Super Node

SNCD Supernode Connection Data

SNCI Supernode Connection Interest

SSD Supernode Selection Data

SSI Supernode Selection Interest

SRAD Service and Resource Availability Data

SRAI Service and Resource Availability Interest

SBF Stable Bloom Filter

URL Uniform Resource Locator

119

Bibliography

[1] “Content-Centric Networking Project.” http://www.ccnx.org/.

[2] “The GEANT Network,” http://www.topology-zoo.org/dataset.html, accessed:

2016-07-25.

[3] “Mobility First Project.” http://mobilityfirst.winlab.rutgers.edu/.

[4] “Named Data Networking Project.” http://www.named-data.net/.

[5] “Ns-3: a discrete-event network simulator for internet systems,” https://www.

nsnam.org/, accessed: 2019-07-20.

[6] “ns-3 Direct Code Execution (DCE) Manual,” http://www.topology-zoo.org/

dataset.html.

[7] “Rocketfuel: An ISP Topology Mapping Engine,” https://research.cs.washington.

edu/networking/rocketfuel/, accessed: 2019-07-20.

[8] A. Afanasyev et al., “NFD Developer’s Guide,” Named Data Networking project,

Technical Report NDN-0021 Revision 7, Oct. 2016.

[9] S. Agrawal and D. Boneh, “Homomorphic MACs: MAC-based Integrity for

Network Coding,” in Applied Cryptography and Network Security, M. Abdalla,

D. Pointcheval, P.-A. Fouque, and D. Vergnaud, Eds. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2009, pp. 292–305.

[10] B. Ahlgren, M. D’Ambrosio, M. Marchisio, I. Marsh, C. Dannewitz, B. Ohlman,

K. Pentikousis, O. Strandberg, R. Rembarz, and V. Vercellone, “Design Considera-

tions for a Network of Information,” in Proc. of ACM international Conference on

Emerging Networking Experiments and Technologies (CoNEXT), Madrid, Spain,

2008, pp. 1–6.

121

http://www.ccnx.org/.
http://www.topology-zoo.org/dataset.html
http://mobilityfirst.winlab.rutgers.edu/
http://www.named-%20data.net/.
https://www.nsnam.org/
https://www.nsnam.org/
http://www.topology-zoo.org/dataset.html
http://www.topology-zoo.org/dataset.html
https://research.cs.washington.edu/networking/rocketfuel/
https://research.cs.washington.edu/networking/rocketfuel/

Bibliography

[11] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman, “A Survey

of Information-Centric Networking,” IEEE Communications Magazine, vol. 50,

no. 7, pp. 26–36, Jul. 2012.

[12] R. Ahlswede, N. Cai, S. R. Li, and R. W. Yeung, “Network Information Flow,” IEEE

Trans. Information Theory, vol. 46, no. 4, pp. 1204–1216, 2000.

[13] K. M. Alzoubi, P.-J. Wan, and O. Frieder, “Message-Optimal Connected Domi-

nating Sets in Mobile Ad-hoc Networks,” in Proc. of the 3rd ACM international

symposium on Mobile ad hoc networking & computing, Lausanne, Switzerland,

2002, pp. 157–164.

[14] M. Badov, A. Seetharam, J. Kurose, V. Firoiu, and S. Nanda, “Congestion-aware

Caching and Search in Information-Centric Networks,” in Proc. of the ACM 1st

international conference on Information-Centric Networking, Paris, France, Sep.

2014, pp. 37–46.

[15] L. Berger, I. Bryskin, A. Zinin, and R. Coltun, “The OSPF Opaque LSA Option,”

RFC, vol. 5250, pp. 1–17, Jul. 2008.

[16] N. Blefari-Melazzi, A. Detti, M. Arumaithurai, and K. K. Ramakrishnan, “Inter-

names: A Name-to-Name Principle for the Future Internet,” in Proc. of the 10th

International Conference on Heterogeneous Networking for Quality, Reliability,

Security and Robustness, 2014, pp. 146–151.

[17] B. H. Bloom, “Space/time Trade-offs in Hash Coding with Allowable Errors,”

Communications of the ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970.

[18] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill, “Order-Preserving Symmetric

Encryption,” vol. 5479, pp. 224–241, 2009.

[19] E. Bourtsoulatze, N. Thomos, and P. Frossard, “Distributed Rate Allocation in

Inter-Session Network Coding,” IEEE Trans. Multimedia, vol. 16, no. 6, pp. 1752–

1765, 2014.

[20] E. Bourtsoulatze, N. Thomos, J. Saltarin, and T. Braun, “Content-Aware Delivery

of Scalable Video in Network Coding Enabled Named Data Networks,” IEEE

Trans. Multimedia, vol. 20, no. 6, pp. 1561–1575, 2018.

122

Bibliography

[21] T. Braun, V. Hilt, M. Hofmann, I. Rimac, M. Steiner, and M. Varvello, “Service-

Centric Networking,” in Proc. of the IEEE International Conference on Communi-

cations (ICC) Workshops, Kyoto, Japan, June 2011, pp. 1–6.

[22] A. Broder and M. Mitzenmacher, “Network Applications of Bloom Filters: A

Survey,” Internet mathematics, vol. 1, no. 4, pp. 485–509, 2004.

[23] M. Cardei, M. X. Cheng, X. Cheng, and D.-Z. Du, “Connected Domination in

Multihop Ad hoc Wireless Networks,” in Proc. of the 6th Joint Conference on

Information Science (JCIS), Mar. 2002, pp. 251–255.

[24] R. Chiocchetti, D. Perino, G. Carofiglio, D. Rossi, and G. Rossini, “Inform: A

Dynamic Interest Forwarding Mechanism for Information-Centric Networking,”

in Proc. of the ACM 3rd SIGCOMM workshop on Information-Centric Networking,

Hong Kong, China, Aug. 2013, pp. 9–14.

[25] P. A. Chou, Y. Wu, and K. Jain, “Practical Network Coding,” in Proc. of the Annual

Allerton Conference on Communication Control and Computing, vol. 41, no. 1,

2003, pp. 40–49.

[26] M. E. Crovella and A. Bestavros, “Self-Similarity in World Wide Web Traffic:

Evidence and Possible Causes,” IEEE/ACM Transactions on Networking (TON),

vol. 5, no. 6, pp. 835–846, Dec. 1997.

[27] M. D’Ambrosio, C. Dannewitz, H. Karl, and V. Vercellone, “MDHT: A Hierarchical

Name Resolution Service for Information-Centric Networks,” in Proc. of the ACM

SIGCOMM workshop on Information-Centric Networking (ICN), Toronto, Ontario,

Canada, Aug. 2011, pp. 7–12.

[28] C. Dannewitz, D. Kutscher, B. Ohlman, S. Farrell, B. Ahlgren, and H. Karl, “Net-

work of Information (NetInf)–An Information-Centric Networking Architecture,”

Computer Communications, vol. 36, no. 7, pp. 721–735, Apr. 2013.

[29] F. Deng and D. Rafiei, “Approximately Detecting Duplicates for Streaming Data

Using Stable Bloom Filters,” in Proc. of the ACM SIGMOD international conference

on Management of data, Chicago, IL, USA, Jun. 2006, pp. 25–36.

[30] C. Fragouli, J.-Y. Le Boudec, and J. Widmer, “Network Coding: An Instant Primer,”

ACM SIGCOMM Computer Communication Review, vol. 36, no. 1, pp. 63–68, Jan.

2006.

123

Bibliography

[31] M. Gasparyan, T. Braun, and E. Schiller, “L-SCN: Layered SCN Architecture with

Supernodes and Bloom Filters,” in Proc. of the 14th IEEE Annual Consumer

Communications Networking Conference (CCNC), Las Vegas, NV, USA, Jan 2017,

pp. 899–904.

[32] M. Gasparyan, G. Corsini, T. Braun, E. Schiller, and J. Saltarin, “Session Support

for SCN,” in 2017 IFIP Networking Conference and Workshops, Jun. 2017.

[33] T. Ho, M. Médard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and B. Leong, “A Ran-

dom Linear Network Coding Approach to Multicast,” IEEE Trans. on Information

Theory, vol. 52, no. 10, pp. 4413–4430, 2006.

[34] T. Ho, M. Medard, J. Shi, M. Effros, and D. R. Karger, “On Randomized Network

Coding,” in Proc. of the Annual Allerton Conference on Communication Control

and Computing, vol. 41, no. 1, 2003, pp. 11–20.

[35] A. K. M. Hoque, S. O. Amin, A. Alyyan, B. Zhang, L. Zhang, and L. Wang, “NLSR:

Named-data Link State Routing Protocol,” in Proc. of the 3rd ACM SIGCOMM

Workshop on Information-Centric Networking, Hong Kong, China, Aug. 2013, pp.

15–20.

[36] ICNRG, “Design Choices and Differences for NDN and CCNx 1.0 Im-

plementations of Information-Centric Networking,” https://icnrg.github.io/

draft-icnrg-harmonization/draft-icnrg-harmonization-00.txt, ICNRG, Jul. 2017.

[37] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, and R. L. Bray-

nard, “Networking Named Content,” in Proc. of the 5th International Conference

on Emerging Networking Experiments and Technologies (CoNEXT), Rome, Italy,

2009, pp. 1–12.

[38] S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner, K. Jain, and L. M. G. M. Tol-

huizen, “Polynomial Time Algorithms for Multicast Network Code Construction,”

IEEE Trans. Information Theory, vol. 51, no. 6, pp. 1973–1982, 2005.

[39] A. W. Kazi, “Prefetching Bloom Filters to Control Flooding in Content-Centric

Networks,” in Proc. of the ACM CoNEXT Student Workshop, Philadelphia, Penn-

sylvania, USA, Nov. 2010, p. 22.

[40] R. Koetter and M. Médard, “An Algebraic Approach to Network Coding,”

IEEE/ACM Trans. Netw., vol. 11, no. 5, pp. 782–795, 2003.

124

https://icnrg.github.io/draft-icnrg-harmonization/draft-icnrg-harmonization-00.txt
https://icnrg.github.io/draft-icnrg-harmonization/draft-icnrg-harmonization-00.txt

Bibliography

[41] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim, S. Shenker, and

I. Stoica, “A Data-oriented (and Beyond) Network Architecture,” in Proc. of the

Conference on Applications, Technologies, Architectures, and Protocols for Com-

puter Communications, Kyoto, Japan, Aug. 2007, pp. 181–192.

[42] M. Król and I. Psaras, “NFaaS: Named Function as a Service,” in Proc. of the 4th

ACM Conference on Information-Centric Networking (ICN), Berlin, Germany, Sep.

2017, pp. 134–144.

[43] E. Kurdoglu, N. Thomos, and P. Frossard, “Scalable Video Dissemination with

Prioritized Network Coding,” in Proc. of the IEEE International Conference on

Multimedia and Expo (ICME), Barcelona, Spain, Jul. 2011, pp. 1–6.

[44] R. Laskar and H. Walikar, “On Domination-related Concepts in Graph Theory,”

in Combinatorics and graph theory, 1981, pp. 308–320.

[45] M. Lee, K. Cho, K. Park, T. T. Kwon, and Y. Choi, “SCAN: Scalable Content Routing

for Content-aware Networking,” in Proc. of the IEEE international conference on

Communications (ICC), Kyoto, Japan, Jun. 2011, pp. 1–5.

[46] C. Lenzen, Y.-A. Pignolet, and R. Wattenhofer, “Distributed Minimum Dominat-

ing Set Approximations in Restricted Families of Graphs,” Distributed Computing,

vol. 33, 2013.

[47] S. R. Li, R. W. Yeung, and N. Cai, “Linear Network Coding,” IEEE Trans. Informa-

tion Theory, vol. 49, no. 2, pp. 371–381, 2003.

[48] Z. Li, K. Liu, Y. Zhao, and Y. Ma, “MaPIT: An Enhanced Pending Interest Table for

NDN With Mapping Bloom Filter,” IEEE Communications Letters, vol. 18, no. 11,

pp. 1915–1918, Nov. 2014.

[49] H. Liu, X. De Foy, and D. Zhang, “A Multi-level DHT Routing Framework with

Aggregation,” in Proc. of the ACM 2nd edition of the ICN Workshop on Information-

Centric Networking, Helsinki, Finland, Aug. 2012, pp. 43–48.

[50] A. Marandi, T. Braun, K. Salamatian, and N. Thomos, “BFR: A Bloom Filter-

based Routing Approach for Information-Centric Networks,” in Proc. of the 16th

International IFIP Networking Conference, Stockholm, Sweden, Jun. 2017, pp.

1–9.

125

Bibliography

[51] ——, “Pull-based Bloom Filter-based Routing for Information-Centric Networks,”

in Proc. of The 16th IEEE Consumer Communications and Networking Conference

(CCNC), Las Vegas, NV, USA, Jan. 2019, pp. 1–7.

[52] ——, “Network Coding-based Content Retrieval based on Bloom Filter-based

Content Discovery for ICN,” in Proc. of the 54th IEEE Conference on Communica-

tions (ICC), Dublin, Ireland, Jun. 2020.

[53] A. Marandi, V. Hofer, M. Gasparyan, T. Braun, and N. Thomos, “Bloom Filter-

based Routing for Dominating Set-based Service-Centric Networks,” in Proc. of

the IEEE/IFIP Network Operations and Management Symp. (NOMS), Budapest,

Hungary, Apr. 2020.

[54] A. Marandi, M. F. Imani, and K. Salamatian, “Optimization of Bloom

Filter Parameters for Practical Bloom Filter-based Epidemic Forwarding

in DTNs,” CoRR, vol. abs/1208.3871, 2012. [Online]. Available: http:

//arxiv.org/abs/1208.3871

[55] ——, “Practical Bloom Filter-based Epidemic Forwarding and Congestion Con-

trol in DTNs: A Comparative Analysis,” Computer Communications, vol. 48, pp.

98–110, 2014.

[56] S. Mastorakis, A. Afanasyev, I. Moiseenko, and L. Zhang, “ndnSIM 2.0: A New

Version of the NDN Simulator for NS-3,” Technical Report NDN-0003, Jan. 2015.

[57] A. A. Monrat, O. Schelén, and K. Andersson, “A survey of blockchain from the

perspectives of applications, challenges, and opportunities,” IEEE Access, vol. 7,

pp. 117 134–117 151, 2019.

[58] M. A. Montemurro, “Beyond the Zipf–Mandelbrot Law in Quantitative Linguis-

tics,” Physica A: Statistical Mechanics and its Applications, vol. 300, no. 3-4, pp.

567–578, 2001.

[59] J. H. Mun and H. Lim, “Cache Sharing Using Bloom Filters in Named Data

Networking,” Journal of Network and Computer Applications, vol. 90, pp. 74–82,

2017.

[60] C. Muñoz, L. Wang, E. Solana, and J. Crowcroft, “I(FIB)f: Iterated Bloom Filters

for Routing in Named Data Networks,” in Proc. of the International Conference

on Networked Systems (NetSys), Göttigen, Germany, 2017, pp. 1–8.

126

http://arxiv.org/abs/1208.3871
http://arxiv.org/abs/1208.3871

Bibliography

[61] L. Muscariello, “CCNx Project,” https://wiki.fd.io/view/Cicn#News, Jan. 2020.

[62] F. Oggier and H. Fathi, “An Authentication Code Against Pollution Attacks in

Network Coding,” IEEE/Acm Transactions On Networking, vol. 19, no. 6, pp. 1587–

1596, 2011.

[63] S. Roos, L. Wang, T. Strufe, and J. Kangasharju, “Enhancing Compact Routing

in CCN with Prefix Embedding and Topology-aware Hashing,” in Proc. of the

9th ACM Workshop on Mobility in the Evolving Internet Architecture (MobiArch),

Maui, Hawaii, USA, Sep. 2014, pp. 49–54.

[64] E. J. Rosensweig and J. Kurose, “Breadcrumbs: Efficient, Best-effort Content

Location in Cache Networks,” in Proc. of the IEEE International Conference on

Computer Communications (INFOCOM), Rio de Janeiro, Brazil, Apr. 2009, pp.

2631–2635.

[65] J. Saltarin, E. Bourtsoulatze, N. Thomos, and T. Braun, “NetCodCCN: A Network

Coding Approach for Content-Centric Networks,” in Proc. of the 35th Annual

IEEE International Conference on Computer Communications (INFOCOM), San

Francisco, CA, USA, Apr. 2016, pp. 1–9.

[66] ——, “Adaptive video streaming with network coding enabled named data net-

working,” IEEE Trans. Multimedia, vol. 19, no. 10, pp. 2182–2196, Oct. 2017.

[67] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the Scalable Video Coding

Extension of the H. 264/AVC Standard,” IEEE Trans. on Circuits and Systems for

Video Technology, vol. 17, no. 9, pp. 1103–1120, 2007.

[68] J. Shi, E. Newberry, and B. Zhang, “On broadcast-based self-learning in named

data networking,” in Proc. of the 16th International IFIP Networking Conference,

Stockholm, Sweden, Jun. 2017, pp. 1–9.

[69] T. Stockhammer, “Dynamic Adaptive Streaming over HTTP– Standards and De-

sign Principles,” in Proc. of the 2nd Annual ACM Conference on Multimedia

Systems, San Jose, CA, USA, Feb. 2011, pp. 133–144.

[70] D. G. Thaler and C. V. Ravishankar, “Using Name-based Mappings to Increase

Hit Rates,” IEEE/ACM Trans. Netw., vol. 6, no. 1, pp. 1–14, Feb. 1998.

127

https://wiki.fd.io/view/Cicn%23News

Bibliography

[71] N. Thomos, J. Chakareski, and P. Frossard, “Prioritized Distributed Video Delivery

with Randomized Network Coding,” IEEE Trans. on Multimedia, vol. 13, no. 4, pp.

776–787, 2011.

[72] M. Tortelli, L. A. Grieco, G. Boggia, and K. Pentikousisy, “COBRA: Lean Intra-

domain Routing in NDN,” in Proc. of the IEEE 11th Consumer Communications

and Networking Conference (CCNC), Las Vegas, NV, USA, Jan. 2014, pp. 839–844.

[73] D. Trossen and G. Parisis, “Designing and Realizing An Information-Centric

Internet,” IEEE Communications Magazine, vol. 50, no. 7, pp. 60–67, Jul. 2012.

[74] D. Trossen, G. Parisis, K. Visala, B. Gajic, J. Riihijarvi, P. Flegkas, P. Sarolahti,

P. Jokela, X. Vasilakos, C. Tsilopoulos et al., “Pursuit Conceptual Architecture:

Pinciples, Patterns and Sub-components Descriptions,” Technical Report NDN-

0003, May. 2011.

[75] C. Tschudin and M. Sifalakis, “Named Functions and Cached Computations,” in

Proc. of the IEEE 11th Consumer Communications and Networking Conference

(CCNC), Las Vegas, NV, USA, Jan 2014, pp. 851–857.

[76] C. F. Tschudin and M. Sifalakis, “Named Functions for Media Delivery Orchestra-

tion,” in Proc. of the 20th International Packet Video Workshop, PV, San Jose, CA,

USA, Dec. 2013, pp. 1–8.

[77] L. Wang, A. K. M. Mahmudul Hoque, C. Yi, A. Alyyan, and B. Zhang, “OSPFN: An

OSPF Based Routing Protocol for Named Data Networking,” Technical Report

NDN-0003, pp. 1–15, Jul. 2012.

[78] L. Wang, S. Bayhan, J. Ott, J. Kangasharju, A. Sathiaseelan, and J. Crowcroft, “Pro-

diluvian: Understanding Scoped-Flooding for Content Discovery in Information-

Centric Networking,” in Proc. of the ACM 2nd international conference on

Information-Centric Networking, San Francisco, CA, USA, Sep. 2015, pp. 9–18.

[79] L. Wang, O. Waltari, and J. Kangasharju, “MobiCCN: Mobility Support with Greedy

Routing in Content-Centric Networks,” in Proc. of the IEEE Global Communica-

tions Conference (GLOBECOM), Atlanta, GA, USA, Dec. 2013, pp. 2069–2075.

[80] Y. Wang, K. Lee, B. Venkataraman, R. L. Shamanna, I. Rhee, and S. Yang, “Adver-

tising Cached Contents in the Control Plane: Necessity and Feasibility,” in Proc.

of the IEEE Conference on Computer Communications Workshops (INFOCOM

WKSHPS), Orlando, FL, USA, Mar. 2012, pp. 286–291.

128

Bibliography

[81] J. Widmer, C. Fragouli, and J.-Y. Le Boudec, “Low-Complexity Energy-Efficient

Broadcasting in Wireless Ad-Hoc Networks Using Network Coding,” in Proc. of

the 1st Workshop on Network Coding, Theory, and Applications (NetCod), no.

LCA-CONF-2005-016, Riva del Garda, Italy, 2005.

[82] Q. Wu, Z. Li, J. Zhou, H. Jiang, Z. Hu, Y. Liu, and G. Xie, “SOFIA: Toward Service-

oriented Information-Centric Networking,” IEEE Network, vol. 28, no. 3, pp.

12–18, May 2014.

[83] Y. Wu, P. A. Chou, and S.-Y. Kung, “Minimum-Energy Multicast in Mobile Ad

Hoc Networks Using Network Coding,” IEEE Trans. on communications, vol. 53,

no. 11, pp. 1906–1918, 2005.

[84] Y. Xu, Y. Li, T. Lin, G. Zhang, Z. Wang, and S. Ci, “A Dominating-Set-based Col-

laborative Caching with Request Routing in Content-Centric Networking,” in

Proc. of the IEEE International Conference on Communications (ICC), Budapest,

Hungary, Jun. 2013.

[85] G. Xylomenos, C. N. Ververidis, V. A. Siris, N. Fotiou, C. Tsilopoulos, X. Vasilakos,

K. V. Katsaros, and G. C. Polyzos, “A Survey of Information-Centric Networking

Research,” IEEE Communications Surveys Tutorials, vol. 16, no. 2, pp. 1024–1049,

Feb. 2014.

[86] C. Yi, J. Abraham, A. Afanasyev, L. Wang, B. Zhang, and L. Zhang, “On The Role of

Routing in Named Data Networking,” in Proc. of the 1st international conference

on Information-Centric Networking, Paris, France, Sep. 2014, pp. 27–36.

[87] C. Yi, A. Afanasyev, I. Moiseenko, L. Wang, B. Zhang, and L. Zhang, “A Case

for Stateful Forwarding Plane,” Computer Communications, vol. 36, no. 7, pp.

779–791, Apr. 2013.

[88] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, kc claffy, P. Crowley, C. Papadopou-

los, L. Wang, and B. Zhang, “Named Data Networking,” Computer Communica-

tion Review, vol. 44, no. 3, pp. 66–73, Jul. 2014.

[89] L. Zhang, D. Estrin, J. Burke, V. Jacobson, J. D. Thornton, D. K. Smetters, B. Zhang,

G. Tsudik, D. Massey, C. Papadopoulos et al., “Named Data Networking (NDN)

Project,” Relatório Técnico NDN-0001, Xerox Palo Alto Research Center-PARC, vol.

157, p. 158, 2010.

129

Bibliography

[90] Z. Zhang, Y. Yu, A. Afanasyev, J. Burke, and L. Zhang, “NAC: Name-based Access

Control in Named Data Networking,” in Proc. of the 4th ACM Conference on

Information-Centric Networking, (ICN), Berlin, Germany, Sep. 2017, pp. 186–187.

[91] F. Zhao, D. S. Lun, M. Médard, and E. Ahmed, “Decentralized Algorithms for

Operating Coded Wireless Networks,” in Proc. of the IEEE Information Theory

Workshop, 2007, pp. 472–477.

[92] Y. L. S. Zhu and M. T. D.-Z. Du, “Localized Construction of Connected Dominating

Set in Wireless Networks,” in Proc. of the US National Science Foundation Inter-

national Workshop Theoritical Aspects of Wireless Ad Hoc, Sensor and Peer-to-Peer

Networks, 2004.

130

'HFODUDWLRQ�RI�FRQVHQW

RQ�WKH�EDVLV�RI ArWLFOH��� RI�WKH�3URP5�3KLO��QDW����

Name/)LUVW�1DPH:

5HJLVWUDWLRQ�1XPEHU:

6WXG\�SURJUDP:

Bachelor Master Dissertation

7LWOH�RI�WKH�WKHVLV:

6XSHUYLVRU:�

,�GHFODUH�KHUHZLWK�WKDW�WKLV�WKHVLV�LV�P\�RZQ�ZRUN�DQG�WKDW�,�KDYH�QRW�XVHG�DQ\�VRXUFHV�RWKHU�WKDQ�

WKRVH�VWDWHG��,�KDYH�LQGLFDWHG�WKH�DGRSWLRQ�RI�TXRWDWLRQV�DV�ZHOO�DV�WKRXJKWV�WDNHQ�IURP�RWKHU�DXWKRUV�

DV�VXFK�LQ�WKH�WKHVLV��,�DP�DZDUH�WKDW�WKH�6HQDWH�SXUVXDQW�WR�$UWLFOH����SDUDJUDSK���OLWHUD�U�RI�WKH�

8QLYHUVLW\�$FW�RI�6HSWHPEHU��WK�������DQG�$UWLFOH����RI�WKH�8QLYHUVLW\�6WDWXWH�RI�-XQH��WK�������LV�

DXWKRUL]HG�WR�UHYRNH�WKH�GRFWRUDO�GHJUHH�DZDUGHG�RQ�WKH�EDVLV�RI�WKLV�WKHVLV��

)RU�WKH�SXUSRVHV�RI�HYDOXDWLRQ�DQG�YHULILFDWLRQ�RI�FRPSOLDQFH�ZLWK�WKH�GHFODUDWLRQ�RI�RULJLQDOLW\�DQG�WKH�

UHJXODWLRQV�JRYHUQLQJ�SODJLDULVP��,�KHUHE\�JUDQW�WKH�8QLYHUVLW\�RI�%HUQ�WKH�ULJKW�WR�SURFHVV�P\�

SHUVRQDO�GDWD�DQG�WR�SHUIRUP�WKH�DFWV�RI�XVH�WKLV�UHTXLUHV��LQ�SDUWLFXODU��WR�UHSURGXFH�WKH�ZULWWHQ�WKHVLV�

DQG�WR�VWRUH�LW�SHUPDQHQWO\�LQ�D�GDWDEDVH��DQG�WR�XVH�VDLG�GDWDEDVH��RU�WR�PDNH�VDLG�GDWDEDVH�

DYDLODEOH��WR�HQDEOH�FRPSDULVRQ�ZLWK�WKHVHV�VXEPLWWHG�E\�RWKHUV�

6LJQDWXUH

3ODFH�'DWH

Ali Marandi (CV)
Academic email: ali.marandi@inf.unibe.ch

Personal email: marandi.ali62@gmail.com

Education

PhD in Computer Science 2015-2020
Institute of Informatics, the University of Bern, Switzerland

Dissertation title :
Bloom Filter-based Content Discovery and Retrieval in Information-Centric Networks

Research engineer 2013-2015
Université Paris-Est, France

Task :
Implementing data collection protocol for large-scale Wireless Sensor Networks

M.Sc. Computer Engineering 2012
Azad University, Iran

Dissertation title :
E�cient Information Dissemination in Delay Tolerant Networks

B.Sc. Computer Engineering, hardware design. 2009
Azad University, Iran

Publications in this Thesis

A. Marandi, T.Braun, K. Salamatian, and N.Thomos,“Network Coding-based Content Retrieval based
on Bloom Filter-based Content Discovery for NDN, in Proc. of the 54th IEEE Conference on Commu-
nications, 2020, Dublin, Ireland, Jun. 2020, pp. 1-7.

A. Marandi, T.Braun, K. Salamatian, and N.Thomos,“Bloom Filter-based Routing for Dominating Set-
based Service-Centric Networks, in Proc. of the IEEE/IFIP Network Operations and Management Sym-
posium, 2020, Budapest, Hungary, Apr. 2020, pp. 1-9.

M.Gasparyan, E.Schiller, A.Marandi, and T.Braun “Communication Mechanisms for Service-Centric
Networking, in Proc. of the 17th IEEE Consumer Communications and Networking Conference, Las Vegas,
NV, USA, Jan. 2020, pp. 1-9.

M.Gasparyan, A.Marandi, T.Braun, and E.Schiller, “Fault-Tolerant Session Support for Service-Centric
Networking, in Proc. of the 17th IFIP/IEEE International Symposium on Integrated Network , Arlington,
VA, USA, Apr. 2019, pp. 1-9.

A. Marandi, T.Braun, K. Salamatian, and N.Thomos, “Pull-based Bloom Filter-based Routing for In-
formation -Centric Networks, in Proc. of the 16th IEEE Consumer Communications and Networking Con-
ference, Las Vegas, NV, USA, Jan. 2019, pp. 1-7.

A. Marandi, T.Braun, K. Salamatian, and N.Thomos, “A Comparative Analysis of Bloom Filter-based
Routing Protocols for Information-Centric Networks, in Proc. of the 23th IEEE Symposium on Com-
puters and Communications, Natal, Brazil, Jun. 2018, pp. 1-7.

A. Marandi, T.Braun, K. Salamatian, and N.Thomos, “BFR: a Bloom Filter-based Routing Approach
for Information-Centric Networks, in Proc. of the 16th International IFIP Networking Conference, Stock-
holm, Sweden, Jun. 2017, pp. 1-9.

Awards

My CCNC 2019 paper titled “Pull-based Bloom Filter-based Routing for Information-Centric
Networks” was next to the runner-up paper and was the best of the track. The paper is avail-
able at https://arxiv.org/abs/1809.10948

1 133

	1
	Acknowledgements
	Abstract
	Contents
	List of Figures
	Introduction
	Information-Centric Networking
	Research Questions
	Thesis Contributions
	Push-based Bloom Filter-based Routing for Named Data Networking
	Pull-based Bloom Filter-based Routing for Named Data Networking
	Network Coding-based Content Retrieval based on Bloom Filter-based Content Discovery
	Bloom Filter-based Routing for Dominating Set-based Service-Centric Networking

	Thesis Outline

	State of the Art
	Overview
	Information-Centric Networking
	Data-Oriented Network Architecture
	Publish-Subscribe Internet Technology
	Network of Information
	MobilityFirst
	Content-Centric Networking
	Named Data Networking

	Routing
	Network Coding-based Content Retrieval
	Service-Centric Networking
	Dominating Sets
	Conclusions

	Push-based Bloom Filter-based Routing
	Introduction
	Push-based Bloom Filter-based Routing
	Representation of Content Objects Using BFs
	BF-based Content Advertisement
	FIB Population and Content Retrieval

	Discussion
	Impact of False Positive Errors on Push-based BFR Operation
	Robustness to Topology Changes
	Handling of Content Migration

	Performance Evaluation
	Simulation Settings
	Content Advertisement Overhead
	Normalized Communication Overhead
	Total Communication Overhead for Interests
	Average Round-trip Delay
	Robustness to Topology Changes
	Mean Hit Distance
	Average Memory Needed for Storing Routing Information
	Impact of False Positive Errors on Routing

	Conclusions

	Pull-based Bloom Filter-based Routing
	Introduction
	Pull-based Bloom Filter-based Routing
	Pull-based BFR's Operation
	Bloom Filter Aggregation
	The Impact of False Positive Errors on Pull-based BFR's Operation

	Performance Evaluation
	Simulation Settings
	Content Advertisement Overhead
	Storage Space Requirements for Storing Routing Information
	Average Round-trip Delay
	Impact of False Positive Errors on Routing

	Conclusions

	Network Coding-based Content Retrieval based on Bloom Filter-based Content Discovery
	Introduction
	Network Coding Model
	Bloom Filter-based Content Discovery
	Network Code Selection for Content Forwarding
	Received Data Message Processing
	Performance Evaluation
	Simulation Settings
	Content Discovery Overhead
	Average Content Block Retrieval Delay

	Conclusions

	Bloom Filter-based Routing for Dominating Set-based Service-Centric Networks
	Introduction
	Clustering Network Nodes
	Dominating Set Construction
	Connected Dominating Set Construction

	Routing in a Dominating Set
	Service and Resource Discovery
	Intra-Domain Routing
	Inter-Domain Routing for DS-based Clustering

	Routing in a Connected Dominating Set
	Performance Evaluation
	Simulation Settings
	Bandwidth Overhead of Clustering
	Bandwidth Overhead of Routing
	Average Service Retrieval Time

	Conclusions

	Conclusions
	Summary
	Main Contributions
	Future Research Directions

	List of Acronyms
	Bibliography
	Curriculum Vitæ

