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ABSTRACT 

 

Purpose: To investigate the repeatability and reproducibility of lung segmentation and their 

impact on the quantitative outcomes from functional pulmonary MRI. Additionally, to validate 

an artificial neural network (ANN) to accelerate whole-lung quantification. 

Method: Ten healthy children and twenty-five children with cystic fibrosis underwent matrix 

pencil decomposition MRI (MP-MRI). Impaired relative fractional ventilation (RFV) and relative 

perfusion (RQ) from MP-MRI were compared using whole-lung segmentation performed by a 

physician at two time-points (At1 and At2), by an MRI technician (B), and by an ANN (C). 

Repeatability and reproducibility were assess with dice similarity coefficient (DSC), paired t-

test and Intraclass-correlation-coefficient (ICC). 

Results: The repeatability within an observer (At1 vs At2) resulted in a DSC of 0.94 ± 0.01 

(mean ± SD), and an unsystematic difference of -0.01% for RFV (p=0.92) and +0.1% for RQ 

(p=0.21). The reproducibility between human observers (At1 vs B) resulted in a DSC of 0.88 ± 

0.02, and a systematic absolute difference of -0.81% (p<0.001) for RFV and -0.38% (p=0.037) 

for RQ. The reproducibility between human and the ANN (At1 vs C) resulted in a DSC of 0.89 ± 

0.03, and a systematic absolute difference of -0.36% for RFV (p=0.017), and -0.35% for RQ 

(p=0.002). The ICC was >0.98 for all variables and comparisons.  

Conclusions: Despite high overall agreement, there were systematic difference in lung 

segmentation between observers. This needs to be considered for longitudinal studies and 

could be overcome by using an ANN, which performs as good as human observers and fully 

automatizes MP-MRI post-processing. 
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INTRODUCTION 

Chronic pulmonary diseases remain one of the greatest public health challenges affecting both 

young and adult populations, severely reducing life quality and expectancy (1,2). Sensitive 

methods to diagnose and quantify early disease progression and treatment responses are 

crucial for effective respiratory medicine. In this regard, focus on the pediatric population is 

important as early respiratory events can impair lung development (3,4). Computed 

tomography (CT) represents the clinical gold standard for morphological lung assessment but 

the risk of cumulative radiation limits its application in longitudinal pediatric monitoring (5,6). 

Lung function tests such as the nitrogen multiple-breath washout technique (N2-MBW) may 

be sensitive to detect early ventilation inhomogeneity, but do not provide regional information 

which is needed to improve therapies and identify disease phenotypes (7-9). 

Magnetic resonance imaging (MRI) of the lung is transitioning from the research setting to 

clinical application (10-12). One advantage of MRI is the ability to image functional deficits 

relating to ventilation and perfusion in the lung, which may be a more sensitive method to 

detect early disease than structural imaging (13). Commonly, lung ventilation imaging is 

performed through the inhalation of hyperpolarized or fluorinated gases, which necessitates 

specific equipment and highly trained personnel only available in specialized centers (14). 

Lung perfusion imaging is performed clinically by using intravenous gadolinium-based contrast 

agents, which can cause patient discomfort, increase complications for imaging, and subject 

patients to rare adverse events and health risks (15,16). 

Recently, non-invasive proton-based (1H) functional imaging with Fourier decomposition (FD-

MRI) and improved techniques such as matrix pencil decomposition (MP-MRI) and phase-

resolved functional lung (PREFUL)-MRI allow simultaneous lung ventilation and perfusion 

assessment (17-19). These techniques require only free-breathing acquisitions and are 

therefore well tolerated and feasible in children. In patients with cystic fibrosis (CF), outcomes 

from the FD-MRI technique correlate with outcomes from spirometry and N2-MBW lung 

function tests (20-22). These associations were also reported in patients with chronic 

obstructive pulmonary disease (COPD), asthma, and bronchiectasis (23-25). Further, 

functional impairments observed on FD-MRI maps correlate with DCE and hyperpolarized 

helium-3 MRI (26,27).  With the current results and the lack of specialized equipment, proton-

based MRI has a high potential for clinical disease management. 

For widespread clinical application, the quantification of outcomes from the MP-MRI need to 

be fully automatized. The generation of ventilation and perfusion weighted maps of the whole 

chest is automated with MP-MRI, and a radiologist can already assess these maps for whole-

lung evaluation. However, quantitative assessment of ventilation and perfusion-defects 
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(currently given in percent) requires segmentation of the lung tissue. These segmentations are 

usually performed manually by a trained specialist, which is time-consuming and subjective. 

The impact of the observer on functional MRI outcomes is currently unknown. 

For clinical application and use in longitudinal multicenter studies, it is essential to have robust, 

fast, quantitative, and reproducible post-processing of functional MRI outcomes which is 

observer-independent (28,29). Artificial neural networks (ANN) have made significant progress 

in discriminative tasks and displayed a high level of accuracy in organ segmentation (30,31). 

Notwithstanding the high performances of current deep learning models, segmentations 

performed by ANNs are still "observer-specific" (i.e. relative to the used and trained model) 

which can influence quantitative outcomes. We aimed to investigate the potential of ANNs to 

accelerate post-processing time for MP-MRI. 

In this study, we investigate the intra-observer repeatability (variability across observations by 

the same observer) and inter-observer reproducibility (variability across different observers) of 

the segmentations and their subsequent impact on impaired relative ventilation and perfusion 

quantification of MP-MRI images. First, we determine the similarity of the segmentation masks 

performed by two human observers and an ANN. Further, we investigate the observer 

variability of MP-MRI quantitative outcomes and assess the applicability of the ANN for fully 

automatic evaluation. 

 

METHODS 

Study Design 

This methodological study used existing MRI data from partly published measurements from 

a cross-sectional, single-center, observational study at the University Children's Hospital of 

Bern, Switzerland (20,21). 

Study Population 

In this study, data from 10 healthy controls and 25 children with CF were included. Eligibility 

criteria were the ability to perform pulmonary function tests and MRI, and no requirement for 

supplemental oxygen. Furthermore, for healthy subjects, no history of chronic lung disease 

and no acute respiratory infection in the 4 weeks prior  to the investigations. Participants 

underwent N2-MBW, spirometry, body plethysmography, and MRI on the same day and in this 

order. Three patients underwent lung function testing and MR imaging twice resulting in a total 

of 38 examinations included in this study. From three patients two examinations were included, 

to increase the number of observations and thereby the precision of estimates. We considered 
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all the data as independent, as scans were performed at least one year apart. The study was 

approved by the Ethics Committee of Bern (EKNZ 2015-326 and KEK 2017-00279). Parents 

and participants gave written informed consent, if older than 14 years. 

Lung Function Testing 

N2-MBW was performed with an unmodified device (Exhalyzer D, Eco Medics AG, Duernten, 

Switzerland), and according to consensus guidelines (32). The primary outcome was the lung 

clearing index (LCI), which represents the ventilation inhomogeneity of the lung (calculated as 

the cumulative expired volume divided by functional residual capacity). Spirometry 

measurements (Jaeger MasterScreen, CareFusion, Hochberg, Germany) were performed 

after N2-MBW, according to ERS/ATS guidelines (33): The forced expiratory volume in 1s 

(FEV1) was used to describe the study population. 

MRI Data Acquisition 

Imaging was performed on a 1.5T whole-body MRI Scanner (MAGNETOM Aera; Siemens 

Healthineers, Erlangen, Germany) using a 12-channel thorax and a 24-channel spine receiver 

coil array. Children were awake and not sedated during the scans. Parents or caregivers were 

allowed to be with the child in the MR room during imaging.  

State-of-the-art functional imaging for MP-MRI consisted of time-resolved two-dimensional 

(2D) coronal acquisitions (base-images) using an ultra-fast balanced steady-state free-

precession pulse sequence (ufSSFP) during approximately 50 seconds of free-breathing (34). 

To cover the majority of lung, imaging was performed at 6-11 coronal slices positions. No 

contrast agent was used. Scan parameters for ufSSFP were as follow: field-of-view = 400×400 

to 450×450 mm2, matrix size = 128×128 (in-plane resolution = 3.1×3.1 to 3.5×3.5 mm2), slice 

thickness = 12 mm, echo time / repetition time (TE/TR) = 0.67/1.46 ms, bandwidth = 2056 

Hz/pixel, FA = 65°, GRAPPA factor 2, acquisition rate = 3.3 images/s, 160 coronal images per 

slice (= 48s scan time per slice) and predefined default shim settings (tune-up). 

Functional Imaging with Matrix Pencil Decomposition 

MP-MRI allows for robust calculation of ventilation and perfusion maps employing a matrix 

pencil decomposition and linearized least-square fitting for spectral analysis (18). It offers a 

fully automatic spectral analysis of the time-resolved data sets which improves the post-

processing workflow. As compared to Fourier decomposition MRI, MP-MRI mitigates both the 

problem of time-series truncation and irregular breathing/cardiac frequencies.  
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Every acquired two-dimensional image time-series was registered to a fixed image chosen in 

the mid respiratory state (baseline image). Registration was performed using a specific 

algorithm which preserves ventilation and perfusion signal modulations but aligns 

automatically lung structures (e.g. vessels, chest cage, and airways)  (35). Subsequently, the 

registered time-series was processed voxel-wise with the matrix pencil decomposition 

algorithm to calculate both perfusion-weighted and fractional ventilation maps. The first 10 

images of every time series were excluded from the MP analysis since acquired in the transient 

state, and not in the pseudo-steady-state. 

Quantification of Impaired Lung Functions  

Segmentations of the lung parenchyma were performed on the baseline -images with the 

exclusion of the main pulmonary vessels. These segmentation masks were applied for 

pulmonary perfusion quantification, while for ventilation quantification the segmentation masks 

were refined as follows: the voxels in the lung perfusion maps representing the 95th percentile 

of signal intensities were identified as vessels and removed from the segmentation masks for 

ventilation quantification. Vessels are removed from the ventilation maps since they appear at 

low intensity and must be excluded for ventilation defect quantification.  In order to extract 

distributions of fractional ventilation and perfusion, a threshold equal to 75% of the median 

value from each voxel distribution was used to quantify regions with impaired lung ventilation 

(RFV) and perfusion (RQ), as described before (26).  

In this study, RFV and RQ were calculated in every subject as a lung-area-weighted average for 

the whole lung (RFV,Lung and RQ,Lung). Figure 1 summarizes the steps required for MP-MRI and 

the quantitative evaluation of lung functions. The perfusion maps are normalized by the 97.5 

percentile for graphical presentation as color maps. 

Observers 

Observer A (C.W.) is a physician with 1 year of experience in lung imaging. Next to 

segmentations drawn at time point one (A-t1), observer A repeated the segmentations (A-t2) 

after a minimum of 24 hours in a blinded random fashion to investigate the intra -observer 

repeatability. Observer B is an MR-technician with 5 years of experience in lung imaging. All 

human segmentations were done with a region-growing algorithm and manually refined in 

open-source software (MITK, version 1.1.0, DKFZ, Heidelberg, Germany) (36). Observer C 

represents the ANN. 

Artificial Neural Network 
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An ANN (observer C) was trained to segment the lung parenchyma of baseline-images 

automatically (37). The recurrent neural network's main layers consist of multi-dimensional 

gated recurrent units (MD-GRU) for voxel-wise binary classification. Furthermore, on-the-fly 

data augmentation is applied during training to increase the network robustness, i.e. images 

and masks are both randomly and slightly scaled, rotated, skewed, distorted, noise is added, 

and image signal intensity is marginally variated. The MD-GRU neural network has already 

shown competitive accuracy for brain segmentation tasks, and specifically for lung 

segmentation, it previously reached a Dice similarity coefficient of 0.93 (37-39). The ANN can 

be found under https://github.com/zubata88/mdgru.  

The artificial neural network was trained with baseline-images and lung segmentations of 51 

patients examined multiple times in previous studies (totaling to 100 MR examinations, and 

502 baseline images acquired in coronal orientation at several anterior-posterior positions.). 

Segmentations were originally drawn by an MR-scientist with 5 years of experience in lung 

imaging (O.P.). None of the subjects evaluated in this study was included in the ANN training 

data; the evaluation in this study represents thus a new and independent validation cohort for 

the network. The network training lasted 24 hours on a GPU (NVIDIA Quadro P6000,  Nvidia 

Corp., Santa Clara, CA). 

Data Analysis and Statistics 

To evaluate the agreement between segmentation masks of two different observers (SObserver1 

and SObserv er2) or time points, we calculated the Dice similarity coefficient (DSC) as an overlay 

metric (40): 

DSC=2*(SObserv er1  SObserver2) / (SObserver1 + SObserver2). 

DSC ranges between [0,1], where zero indicates no overlap and 1 indicates exact overlap. 

DSC was calculated for single slices (DSCSlice), and for the whole lung volume (DSCLung) of 

every patient. DSC was calculated between segmentations of observers At1 and At2, At1 and 

B, At1 and C, B and C. For a qualitative assessment, an independent observer (O.P.) visually 

evaluated the automatically segmented data, determining which were not well performed.  

Percentage differences between the indices resulting from different observers were computed 

as follows: (RFV,Observer2 – RFV,Observer1) / RFV,Observer1*100 and (RQ,Observer2 – RQ,Observer1)/ 

RQ,Observer1*100. Absolute differences were assessed using a two-sided Wilcoxon signed-rank 

test, if normality assumption was not valid, otherwise paired t-test was used. The agreement 

and variability of RFV and RQ between observers were assessed graphically by the Bland–

Altman method and by the coefficient of repeatability (CR) or reproducibility (RDC) (29,41). 

Reliability was assessed by calculating intra-class correlation (ICC) (42). The 95% limits of 

https://github.com/zubata88/mdgru
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agreement (LOA) between observers were calculated as the mean difference ± 1.96 SD. CR 

and RDC represent the least significant difference between to measurements. CR and RDC 

are estimated as 2.77 times the within-subject standard deviation through an analysis of 

variance, as described in (29). ICC estimates and their 95% confidence intervals were 

computed based on a mean-rating (k = 3), absolute-agreement, 2-way mixed-effects model. 

ICC was defined as excellent (>0.8), good (0.6-0.79), and moderate (0.4 – 0.59). The 

correlations between the functional defects (RFV and RQ) and the LCI were assessed with 

Pearson’s correlation coefficient and linear regression models. For comparison of the non -

nested models, we used adjusted R-squared and the Akaike Information Criterion (AIC) 

difference (∆i = AICi-AICmin) (43). We considered models with ∆i <2 have no evidence against 

the i-th model. When 4<∆i <7 there is considerably less support for the i-th model. Models with 

∆i >10 were seen to have no support. Analyses were performed using Stata™ (StataCorp. 

2015, Release 14. College Station, TX: StataCorp LP), Matlab (2017b, The MathWorks, 

Natick, MA) and GraphPad Prism (GraphPad Software Inc., La Jolla, CA). Two add on 

packages were used for Stata: BA-plot and Zanthro (44,45).  

 

RESULTS 

Study Population and Feasibility 

Table 1 provides the general study population characteristics. The study population represents 

a broad cross-sectional spectrum of the pediatric age range from 6 to 18 years. All participants 

could perform spirometry, N2-MBW and MRI examinations. The RFV for the healthy cohort 

included in this study was between 10.1% to 21.4% and 13.8% to 18.6% for RQ (Observer At1) 

and for the CF cohort between 11.8% to 34.9% for RFV and 14.4% to 34.5% for RQ. The LCI 

ranged between 5.3 to 6.9 for the healthy, and between 7.4 to 18.2 for subjects with CF. 

A total of 271 2D lung slices where segmented. Five exemplary selected segmentations 

performed by the three observers are presented in Figure 2, and additionally 15 randomly 

chosen segmentations are presented in the Supporting Information Figure S1 available online.  

All the segmentations are visually well performed and very similar, but the DSC vary between 

0.82 and 0.96 (Figure 2), indicating that segmentations are subjective and that there is no 

absolute ground truth.  

Qualitatively 94% of the segmentation performed by the ANN appeared well performed. In 

comparison, 6% had small imperfections which would require very minor manual refinement 

due to invasion of lung boundaries (e.g. chest, bowel [4%]), or the disease (e.g. atelectasis, 
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mucus [2%]) was partially not included in the lung mask. No manual refinement was performed 

in this study in order to evaluate fully automatic processing. Exemplary ANN segmentation 

flaws are presented in Figure 3. 

Intra-observer Repeatability 

Figure 4 shows boxplots of the DSC (DSCSlice and DSCLung) for the intra-observer repeatability 

and the inter-observer reproducibility of the whole-cohort segmentations included in this study. 

The intra-observer repeatability for a segmentation mask has a very high similarity for both the 

single slices and the whole lung volume: DSCSlice of 0.93 ± 0.04 (mean ± SD) and DSCLung of 

0.94 ± 0.01. In Table 2 the t-test to evaluate the RFV and RQ biases is presented and in Figure 

5 the Bland-Altman plots to evaluate the variability of RFV and RQ amongst the different 

observers. The high similarity in the intra-observer repeatability of segmentation results in an 

unsystematic absolute difference of -0.01% for RFV (LOA, -1.2% to 1.1%) and +0.1% for RQ (-

-0.8% to 1.0%). The CR for RFV was 1.11% and 0.91% for RQ. The ICC (95% CI) is very good 

for both ventilation with 0.996 (0.993 - 0.998) and perfusion 0.996 (0.993 – 0.998). The intra-

observer repeatability for the ANN was perfect: DSCSlice of 1.0 ± 0.0 and DSCLung of 1.0 ± 0.0. 

Inter-observer Reproducibility 

Between two human observers (At1 and B), the segmentations show a good but not perfect 

similarity (Figure 4): DSCSlice 0.87 ± 0.06 and DSCLung 0.88 ± 0.02. The difference in the 

segmentations of observer At1 and B results in a small, but significant systematical bias of -

0.81% in RFV and -0.38% RQ (Table 2). Bland-Altman analysis revealed a good agreement. As 

presented in Figure 5, between human observers, the 95% LOA was -2.5% to 0.9% for RFV 

and -2.5% to 1.8% for RQ. The RDC for RFV was 2.33% and 2.20% for RQ. 

The DSC between the segmentations drawn by the human observer A t1 and the one computed 

by the ANN exhibits similar outcomes than the inter-observer reproducibility between two 

human observers: DSCSlice 0.88 ± 0.05 and DSCLung 0.89 ± 0.03 (cf. Figure 4). Although having 

a good DSC, also the segmentations from the neural network introduce a small, systematic 

absolute difference of -0.36% in RFV (LOA -2.1% to 1.4%) and -0.35% in RQ (LOA -1.6% to 

0.9%; cf. Table 2 and Figure 5). The RDC for the ANN against the human observer A was 

1.86% for RFV and 1.44% for RQ. Comparing observer B to the ANN yielded similar results: 

DSCslice 0.89 ± 0.06 and DSCLung 0.90 ± 0.03. There was a similar systematic difference for RFV 

+0.45% (LOA -1.6% to 2.5%), and unsystematic difference for RQ +0.03 (LOA -1.8% to 1.8%).  

Notably, the human-ANN biases and the LOA are of similar extent as compared to the biases 

between two human observers. The ICC between the three observers shows a very good 
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agreement for both RFV 0.984 (0.965 – 0.992) and RQ 0.985 (0.975 – 0.992). In general, for all 

observers, the lowest DSC of the segmentation masks were observed in the very dorsal and 

the very ventral lung slices (see Figure 2 and Supporting Information Figure S1). 

Impact on quantitative outcomes 

In Figure 6 representative segmentations are shown for a subject with CF performed by the 

three observers and the resulting perfusion maps, perfusion defect masks, ventilation maps,  

and ventilation defect masks. Although the functional defect maps evaluated with 

segmentations outlined by different observers appear similar by eye (Figure 6), there is an 

impact on the quantification of impaired functions, namely varying from 27.8% to 28.5% in RFV 

and from 25.2% to 26.4% in RQ. 

In the cohort of subjects presented in this study, the extent of RFV and RQ quantified by MP-

MRI and by all three observers was strongly correlated to LCI. The Pearson correlation 

coefficients were rFV= (0.772, 0.776, 0.775, 0.800) and rQ=(0.785, 0.802, 0.773, 0.806), 

p<0.0001, for observers (At1, At2, B, C) respectively. Linear regression estimations of the LCI 

as a function of RFV or RQ and for the three observers are presented in Table 3. The intra-

reader variation in the regression coefficients was higher for RQ then for RFV. The coefficient of 

determination R-squared (adjusted) was slightly higher for the artificial neural network. From 

the R-squared values, it is not possible to determine a relevant difference to give preference 

to an observer. The Akaike information criterion (AIC) and the AIC difference show 

considerably less support in the RFV models from the human observers, and support the ANN 

the most. The AIC difference for RQ varies from substantial support to considerably less 

support for the repeatability. Also for RQ the ANN model had the most support. 

 

DISCUSSION 

Main Findings 

The evaluation of intra-observer repeatability and inter-observer reproducibility are crucial to 

establish the stability and robustness of quantitative imaging outcomes for clinical application. 

For functional lung imaging, the segmentation is expected to have an impact on the quantitative 

outcomes. The human intra-observer repeatability for lung segmentation was excellent 

(DSCLung: 0.94) which resulted in a minimal and unsystematic influence on the imaging 

outcomes RFV and RQ. The ANN repeatability was perfect with a DSCLung of 1.0, and thereby 

did not show any bias. 
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The inter-observer reproducibility between two human observers show a good, but not perfect 

similarity (DSC: 0.88). This is essential to establish the general variability between observers, 

since medical image segmentation has the problem of lacking ground truth inherently and there 

is no knowledge towards a minimal significant difference of the DSC. The similarity between 

human and artificial neural network segmentations are on the same level of agreement (DSC: 

0.89) as compared to human observers. The minimal difference in the segmentations 

introduces a small, but highly relevant bias between the quantitative outcomes RFV and RQ 

from different observers. This bias is of a similar extent between all observers. Moreover, the 

bias and limits of agreement for perfusion defects RQ is lower compared to the ventilation 

defects RFV, and due to the narrower distribution range of perfusion values as compared to 

fractional ventilation (not shown).  

The overall agreement between the observers is good as shown by ICC. Independently from 

the observer, the correlation between LCI and both RFV and RQ was strong. The linear 

regression estimations of the LCI as a function of RFV or RQ for different observers were similar, 

but the Akaike information criterion supported the neural network the most.  

Whether the inter-observer bias is relevant to the individual clinical case is yet to be 

determined. However, our findings demonstrate that the stability and continuity of the same 

observer for an interventional or longitudinal study are crucial. The longitudinal stability can be 

better controlled with an ANN, which represents a favorable advantage.  

Comparison with previous studies 

To the best of our knowledge, the intra-observer repeatability and inter-observer reproducibility 

of quantitative ventilation and perfusion lung defects as calculated from proton-based 

functional imaging have not yet been investigated. In previous work, we studied the 

reproducibility of MP-MRI measured 24-hour apart (21). The absolute differences of our 

previous 24-hour reproducibility study were RQ=0.35% and RFV=0.19% (segmentations 

performed by a single expert). In our current study, the repeatability differences caused by 

segmentations were lower (RQ =0.1% ±0.46 and RFV=0.01% ±0.57, mean ±SD), but 

interestingly the differences from human-human reproducibility were higher (RQ = -0.38% ±1.07  

and RFV= -0.81% ±0.96). This corroborates the importance of having the same observer 

evaluating longitudinal data. 

Our group has also proposed the application of a neural network for fully automated functional 

quantification. The lung is a frequently targeted organ for automated processing, but most 

applications focus on pathology or nodule detection on CT data, which is generally more widely 

used than MRI. Pulmonary MRI and the application of neural networks for automatic post-
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processing remains still infrequent but rapidly growing (46). Recently Guo et. al. proposed an 

interesting automated processing for lung segmentation, but it was limited to proton-based 

ventilation MRI and still needs manually placed seeding points (47). Their approach reached 

a slightly better DSC (0.95 ± 0.01) for adult asthma patients. This value is of difficult comparison 

with our results due to the different MRI sequence used and different cohorts of patients. We 

used a bSSFP sequence optimized for lung imaging with a very short TR and focused on 

healthy and children with CF. Lately the original research of Tustison et. al. focused on the 

feasibility of proton-based MRI lung segmentations with an ANN, and their application to 

quantify pulmonary ventilation defects from hyperpolarized helium MRI in adult subjects (48). 

They reached a DSC of 0.94 ± 0.02, although they previously reported on even better 

performances (49). Our study differs since we investigated both ventilation and perfusion 

quantitative information without the application of contrast agents and without the use of 

hyperpolarized gases. Moreover, we focused on a pediatric population. 

Strengths and Limitations 

This validation cohort for the ANN represents a broad clinical spectrum of the pediatric CF 

population, which is an important target for early interventions. The data processed with the 

ANN represents real clinical data with no selection or preparation. The manual human 

segmentation is estimated to take about five to eight minutes per slice. With an average of 

seven slices per subject, a whole lung segmentation took about 35 to 57 minutes per patient. 

The ANN took only about three seconds to segment a single slice, totaling to less than 30 

seconds for whole-lung segmentation. This gives an important advantage for the ANN. 

The DSC provides similarity between segmentations, but it is sensitive to the size of the masks 

evaluated. In a small area, few false negative or false positive voxels have a strong influence 

on the coefficient. Therefore, it is challenging to achieve DSC >0.9 in the anterior or posterior 

regions/slices (smaller area) and generally young children with small lung volume (exemplary 

seen in Figure 2E). This explains the low values of DSCslice and the rather wide range. 

We acknowledge that our segmentations were not outlined by an experienced chest 

radiologist. Furthermore, the ANN segmentations might still have some minor flaws (see Figure 

3). We account for this lack with our clinical workflow, as a chest radiologist is evaluating the 

functional maps overlaid onto the baseline images (as in Figure 6). Any flaws in the mask are 

easily identified and cause a return for refinement to the post-processing unit. Even with the 

best-performing automated model, validation and decisions are made by a physician.  

Clinical relevance 



 
12 

 

Measures of repeatability and reproducibility are essential for the validation of imaging 

biomarkers. As imaging diagnostics include substantial post-processing, this technical aspect 

needs to be validated as thoroughly as the biological reproducibility. The reproducibility bias 

between the observers is of important consideration for studies with multiple investigations on 

one subject and needs to be quantified. In those studies where it is not possible to keep the 

observer (performing the segmentation) constant, it is crucial to quantify the reproducibility 

coefficient in order to estimate the impact of the inter-observer variability. In our study we could 

show, that a minimum change of 2.33% for RFV and 2.20% for RQ would be above the inter-

observer variability. 

Although current results of functional lung MRI in general and MP-MRI specifically are very 

promising, one clear drawback for clinical routine use is the time-consuming post-processing 

procedure. To incorporate imaging biomarkers into clinical decision making it needs to be 

quickly available to the treating physician. The here demonstrated ANN can work time and 

resource-efficient, delivering results within minutes to the clinicians and patients. Although only 

CF patients were investigated, our findings apply to other lung diseases such as COPD, 

Asthma or lung cancer. 

Methodological considerations & next steps  

In this study, we explored the influence of the segmentation masks on the quanti tative 

outcome. Repeatability for a human observer results in limits of agreements of ±1.2% for R FV 

and ±0.9% for RQ (Figure 5) which correspond to the uncertainty caused only by the 

segmentations variability. The repeated use of the ANN produced exactly the same 

segmentation results, therefore we expect that in a scan-rescan experiment any change in RFV 

or RQ would be caused by other experimental uncertainties such as patient and coil positioning, 

MR hardware settings (shimming, frequency adjustments),  and physiology (breathing and 

cardiac pulsation). These experimental uncertainties of the MP-MRI imaging method must yet 

be determined by scan-rescan reproducibility studies and taken into account especially for 

longitudinal patients evaluation. Due to the high repeatability of the ANN segmentations, we 

expect that in longitudinal examinations the ANN mitigates segmentation uncertainties and 

improves overall repeatability as compared to segmentations performed by humans.  

Recurrent neural networks are able to meet or even surpass the state-of-the-art results of feed-

forward convolutional neural networks (CNN, e.g. U-net) (38,39). However, it might be 

interesting to test a feed-forward convolutional neural network for our specific segmentation 

task or to improve our current network with a more elaborate on-the-fly data augmentation 

technique (48). There is no inherent ground truth available for organ segmentation. Using 
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segmentations of several observers or consensus segmentations as target for ANN training 

might reduce the dependence of the ANN output on different segmentation “styles" of different 

observers and generalize better. The ideal number of human observers needed to create 

training data is unclear and depends upon several factors, such as underlying organ, training 

process of the human observers and resulting variability of segmentation between observers. 

Moreover, currently every research facility is gathering its own data and developing its own 

models for this task. It is tempting to propose joining resources for large-scale benefits, as it 

has been done for other anatomical locations (50). 

CONCLUSION 

Segmentations of the lung are highly repeatable without any bias. Human observers and an 

ANN reproduce the task well, but observers are not interchangeable since reproducibility 

introduces a systematic bias in the resulting quantifications. This drawback can be eliminated 

by the proposed ANN, which processes the data time and resource-efficient with similar 

accuracy to human observers, strengthening its routine use. Since the post-processing is now 

fully automatized for MP-MRI, we see a potential for broad clinical application in several lung 

diseases. 
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TABLES 

  
  Healthy (n = 10) 

  
Cystic Fibrosis (n = 25) 

    

Age, years 11.1 (± 4.0)    13.5 (± 3.6) 

  Range 5.7 to 17.2   6.1 to 18.9 

Males in % (N) 60% (n=6)   40% (n=10) 

Weight (kg) 39.6 (± 17.1)   43.8 (± 13.7) 
  Weight [z-score] 0.2 (± 0.4)   -0.4 (± 0.8) 

Height (meter) 1.4 (± 0.2)   1.5 (± 0.2)  
  Height [z-score] -0.1 (± 1.0)   -0.4 (± 1.1) 

BMI [z-score] 0.4 (± 0.6)   -0.2 (± 0.7) 

FEV1 [z-score] 0.4 (± 0.8)   -1.7 (± 1.5) 

LCI 6.1 (± 0.5)   11.7 (± 2.9) 

RFV (from Observer At1) 16.1  (± 4.2)   24.1 (± 6.3) 
  Range 10.1 to 21.4   11.8 to 34.9 

RQ (from Observer At1) 16.9 (± 1.5)   23.4 (± 5.4) 
  Range 13.7 to 18.6   14.4 to 34.5 

Table 1. General population statistics of the study cohort in healthy and cystic fibrosis 

participants for demographics and pulmonary function tests. Note: Each value is given as 

mean and standard deviation (SD), if not stated otherwise. Abbreviations: BMI, body mass 

index; FEV1, forced expiratory volume in 1 second; LCI, Lung clearance index; RFV, impaired 

relative fractional ventilation; RQ, impaired relative perfusion z-scores according to WHO data 

from Stata 15 (45). 
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Observers 

Defect 

Percentage 

(Mean) 

Defect 

Percentage 

(Mean) 

Absolute 

difference 

(± SD) 

95% 

Confidence 

Interval 

P-value 

Ventilation At1 - At2    21.97 21.98 -0.01 (± 0.57) -0.2 to 0.18 0.921 

(RFV)  At1 - B    21.97 22.78 -0.81 (± 0.96) -1.10 to -0.52 <0.001 

 At1 - C    21.97 22.33 -0.36 (± 0.89) -0.65 to -0.7 0.017 

 B - C 22.83 22.33 0.45 (± 1.17) 0.11 to 0.79 0.011 

Perfusion At1 - At2    21.69 21.60 0.096 (± 0.46) -0.06 to 0.25 0.211 

(RQ)  At1 - B    21.69 22.07 -0.38 (± 1.07) -0.73 to -0.02 0.037 

 At1 - C    21.69 22.04 -0.35 (± 0.65) -0.56 to -0.14 0.002 

 B - C 22.07 22.04 0.03 (± 0.96) -0.29 to 0.34 0.87 

Table 2. Paired T-Test between observers for RFV and RQ. Intra-observer repeatability shows 

a small, non-significant difference for both RFV and RQ. Human – human difference is of similar 

extent as human-ANN. Note: Defect size is given as percentage of whole lung. Abbreviations: 

RFV, impaired relative fractional ventilation; RQ, impaired relative perfusion. 

 

Independent 

variable 

Model Adjusted  

R-squared 

AIC AIC difference 

(∆i = AICi-AICmin) 

At1 LCI = (1.44 ±1.32) + (0.39 ±0.06)*RFV 0.58 155.7 4 

At2 LCI = (1.32 ±1.32) + (0.40 ±0.06)*RFV 0.59 155.3 3.6 

B LCI = (0.53 ±1.43) + (0.42 ±0.06)*RFV 0.59 155.3 3.6 

C LCI = (0.53 ±1.32) + (0.43 ±0.06)*RFV 0.63 151.7 0 

At1 LCI = (-0.65 ±1.55) + (0.49 ±0.07)*RQ 0.60 153.9 3 

At2 LCI = (-1.01 ±1.51) + (0.51 ±0.07)*RQ 0.63 151.5 0.6 

B LCI = (-0.89 ±1.64) + (0.50 ±0.07)*RQ 0.58 155.6 4.7 

C LCI = (-0.97 ±1.48) + (0.50 ±0.06)*RQ 0.64 150.9 0 

Table 3. Linear regression analyses: effect of RFV and RQ from different observers on 

correlation to LCI. Model equations for different observers as independent and LCI as 

dependent variable, including adjusted R-squared, AIC and AIC difference. The slope for the 

models is very similar for the observers. The adjusted R-squared and the AIC support the ANN 

segmentations at most. Abbreviations: RFV, impaired relative fractional ventilation; RQ, 

impaired relative perfusion; LCI, Lung clearance index; AIC, Akaike Information Criterion; ANN, 

artificial neural network. 
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FIGURES 

 

Figure 1. Graphical overview of the workflow to quantify RQ and RFV. Time resolved base 

images (A) are registered (C) on a fixed baseline image in the middle of the respiratory state 

(B). The baseline image (B) is used to segment the lung (D). The registered time-series (C) is 

processed with the matrix pencil decomposition algorithm to calculate perfusion and ventilation 
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maps (E,F), and the lung segmentation (D) is applied to mask the lung. Histogram distribution 

analysis allows to visualize and quantify perfusion and ventilation defects (G,H). To note, the 

high intensity appearing lung vessels on perfusion maps (E) are removed from the lung 

segmentation to quantify the ventilation defects (workflow from F to H, cf. “Quantification of 

Impaired Lung Functions” in the “Methods” section for more information). The segmentation in 

(D) is outlined by three different observers to investigate the impact of different observers on 

RQ and RFV. In this subject with CF (17 years old, male, FEV1 z-score= -4.1, LCI = 14.4) 

impaired lung perfusion and ventilation are 28.5% and 34.7% respectively (G and H).  

Abbreviations: FEV1, forced expiratory volume in 1 second; LCI, Lung clearance index; RFV, 

impaired relative fractional ventilation; RQ, impaired relative perfusion. 
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Figure 2. Segmentations in 5 subjects (A-E) outlined by the 3 different observers including At2. 

Segmentations masks are overlaid in blue onto greyscale baseline-image. Segmentations 

amongst different observers are very similar and all appear correct, emphasizing there is no 

ground truth for this task. To note observer A seems to be more conservative in including pixels 

next to the lung borders and diaphragm, as compared to observers B and C. Row (A) and (B) 

represent examples mostly above the DSC average. Row (C) and (D) represent examples 

around the DSC average. Row (E) represents an example below the DSC average: Although 

by eyeballing quite similar between observers, theses segmentations yield a low DSC due to 
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the small mask size (N of mask pixels ca. 900 in E as compared to 10’000 for A). The DSC is 

calculated using observer At1 as reference. Abbreviations: DSC, dice similarity coefficient.  

 

 

Figure 3. Exemplary segmentation flaws of the ANN. The arrows indicate segmentation flaws 

of boundaries caused by lung atelectasis not included in the segmentation (firs row), and 

inclusion of non-lung tissue (middle row) and partial volume (last row). Abbreviations: ANN, 

artificial neural network. 
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Figure 4. Boxplot, Whiskers: 2.5 to 97.5 Percentile. DSC for four distinct Observers (At1, At2, 

B and C): On the left DSC for 271 single coronal slices, and on the right DSC for 38 lung 

volumes. The mean DSC between human and the ANN segmentations (A vs. C, and B vs C) 

is of similar extent as compared to the DSC between human observers (A vs B).  Abbreviations: 

DSC, dice similarity coefficient; ANN, artificial neural network. 
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Figure 5. Bland Altman plots for absolute difference between observers. Dashed line 

represents the bias. Dotted lines represent 95% limits of agreement (LOA). Left column: 

Ventilation (RFV); Right column: Perfusion (RQ). Top row: Intra-Observer repeatability At1- At2; 

second row: At1 – B, third row: At1 – C; bottom row: B – C. The biases and LOA amongst human 
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observers are comparable to the human-ANN one. Abbreviations: RFV, impaired relative 

fractional ventilation; RQ, impaired relative perfusion. 

 

 

 

Figure 6. Segmentations of a coronal slice in a 15 year old female with CF (FEV1 z-score= -

2.0, LCI = 12.4) performed by the three observers and the resulting perfusion maps, perfusion 
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defect masks, ventilation maps, and ventilation defect masks. The DSC (calculated with the 

segmentation At1 as reference), RQ and RFV are indicated in the figure. The DSC was 87.0% 

(At2 vs B), 90.3% (At2 vs C), and 92.7% (B vs C). This subject with CF has both ventilation and 

perfusion defects prominently localized in the apical lung, middle lobe and lingula. To note, the 

segmentations performed by human observers (A and B) by means of the region-growing 

algorithm (cf. Methods section) included few pixels on the diaphragm region, while the trained 

ANN (C) is more precise. Abbreviations: DSC, dice similarity coefficient; RFV, impaired relative 

fractional ventilation; RQ, impaired relative perfusion. 
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Supporting Information Figure S1. Exemplary lung segmentations in healthy and cystic 

fibrosis subjects. The dice coefficient is calculated using observer At1 as reference.  
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