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1. Introduction

A fundamental theory of Nature, such as string theory, should be able to describe at the same
time particle physics and cosmology, which are phenomena that involve very different scales from
the microscopic four-dimensional (4d) quantum gravity length of 10−33 cm to large macroscopic
distances of the size of the observable Universe ∼1028 cm, spanned a region of about 60 orders
of magnitude. In particular, besides the 4d Planck mass, there are three very different scales with
very different physics corresponding to the electroweak scale, dark energy and inflation. An in-
teresting possibility is that these scales are related by the dynamics of an underlying fundamental
theory, such as string theory. A first step towards this goal is to study possible connections between
the electroweak scale of the Standard Model or its possible extension (such as the supersymmetry
breaking scale) with that of inflation. An additional constraint would be to impose at the elec-
troweak vacuum the presence of a tiny tuneable cosmological constant in order to accommodate
the observed dark energy, without necessarily trying to explain it. Indeed, despite the absence of
evidence of low-energy supersymmetry at colliders, it is likely theoretically that supersymmetry
plays a role at some more fundamental level. On the other hand, inflation is an attractive paradigm
for cosmology but the associated models provide a phenomenological description leaving several
unanswered questions, such as the origin of the inflaton field, its fundamental or composite nature
and its connection to the rest of particle physics.

Inflationary models in supergravity1 suffer in general from several problems, such as fine-
tuning to satisfy the slow-roll conditions, large field initial conditions that break the validity of the
effective field theory, and stabilisation of the (pseudo) scalar companion of the inflaton arising from
the fact that bosonic components of superfields are always even. The simplest argument to see the
fine tuning of the potential is that a canonically normalised kinetic term of a complex scalar field X
corresponds to a quadratic Kähler potential K = XX̄ that brings one unit contribution to the slow-
roll parameter η =V ′′/V , arising from the eK proportionality factor in the expression of the scalar
potential V . This problem can be avoided in models with no-scale structure where cancellations
arise naturally due to non-canonical kinetic terms leading to potentials with flat directions (at the
classical level). However, such models require often trans-Planckian initial conditions that inval-
idate the effective supergravity description during inflation. A concrete example where all these
problems appear is the Starobinsky model of inflation [2], despite its phenomenological success.

All three problems above are solved when the inflaton is identified with the scalar component
of the goldstino superfield2, in the presence of a gauged R-symmetry [4]. Indeed, the superpo-
tential is in that case linear and the big contribution to η described above cancels exactly. Since
inflation arises at a plateau around the maximum of the scalar potential (hill-top) no large field
initial conditions are needed, while the pseudo-scalar companion of the inflaton is absorbed into
the R-gauge field that becomes massive, leading the inflaton as a single scalar field present in the
low-energy spectrum. This model provides therefore a minimal realisation of natural small-field
inflation in supergravity, compatible with present observations, as we show below. Moreover, it
allows the presence of a realistic minimum describing our present Universe with an infinitesimal
positive vacuum energy arising due to a cancellation between an F- and D-term contributions to

1For reviews on supersymmetric models of inflation, see for example [1].
2See [3] for earlier work relating supersymmetry and inflation.
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the scalar potential, without affecting the properties of the inflationary plateau, along the lines of
Refs. [5, 6, 7].

In the above models the D-term has a constant FI contribution but plays no role during inflation
and can be neglected, while the pseudoscalar partner of the inflaton is absorbed by the U(1)R gauge
field that becomes massive away from the origin. Recently, a new FI term was proposed [8] that has
three important properties: (1) it is manifestly gauge invariant already at the Lagrangian level; (2)
it is associated to a U(1) that should not gauge an R-symmetry and (3) supersymmetry is broken by
(at least) a D-auxiliary expectation value and the extra bosonic part of the action is reduced in the
unitary gauge to a constant FI contribution leading to a positive shift of the scalar potential, in the
absence of matter fields. In the presence of matter fields, the FI contribution to the D-term acquires
a special field dependence e2K/3 that violates invariance under Kähler transformations.

In a recent work [9], we studied the properties of the new FI term and explored its conse-
quences to the class of inflation models we introduced in [4].3 We first showed that matter fields
charged under the U(1) gauge symmetry can consistently be added in the presence of the new FI
term, as well as a non-trivial gauge kinetic function. We then observed that the new FI term is
not invariant under Kähler transformations. On the other hand, a gauged R-symmetry in ordinary
Kähler invariant supergravity can always be reduced to an ordinary (non-R) U(1) by a Kähler trans-
formation. By then going to such a frame, we find that the two FI contributions to the U(1) D-term
can coexist, leading to a novel contribution to the scalar potential.

The resulting D-term scalar potential provides an alternative realisation of inflation from su-
persymmetry breaking, driven by a D- instead of an F-term. The inflaton is still a superpartner
of the goldstino which is now a gaugino within a massive vector multiplet, where again the pseu-
doscalar partner is absorbed by the gauge field away from the origin. For a particular choice of
the inflaton charge, the scalar potential has a maximum at the origin where inflation occurs and
a supersymmetric minimum at zero energy, in the limit of negligible F-term contribution (such
as in the absence of superpotential). The slow roll conditions are automatically satisfied near the
point where the new FI term cancels the charge of the inflaton, leading to higher than quadratic
contributions due to its non trivial field dependence.

The Kähler potential can be canonical, modulo the Kähler transformation that takes it to the
non R-symmetry frame. In the presence of a small superpotential, the inflation is practically un-
changed and driven by the D-term, as before. However, the maximum is now slightly shifted away
from the origin and the minimum has a small non-vanishing positive vacuum energy, where super-
symmetry is broken by both F- and D-auxiliary expectation values of similar magnitude. The model
predicts in general small primordial gravitational waves with a tensor-to-scaler ration r well below
the observability limit. However, when higher order terms are included in the Kähler potential, one
finds that r can increase to large values r ' 0.015.

In the following, we will present the main features of these models, where inflation occurs near
the maximum of the scalar potential where R-symmetry is restored and supersymmetry breaking is
driven predominantly either by an F-term or by a D-term.

3This new FI term was also studied in [10] to remove an instability from inflation in Polonyi-Starobinsky super-
gravity.
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2. Inflation from supersymmetry breaking

2.1 Set up

Let us consider D = 4, N = 1 supergravity with one chiral multiplet transforming under a
gauged R-symmetry with a corresponding abelian vector multiplet. We assume that the chiral
multiplet X transforms as:

X → e−iqΛX , (2.1)

where q is the charge of X , and Λ is the gauge parameter. The Kähler potential is therefore a
function of XX̄ while the superpotential W is linear in X

K = K (XX̄), W = κ
−3 f X , (2.2)

where f is a constant. Note that X is dimensionless and κ−1 = 2.4× 1018 GeV is the reduced
Planck mass. The gauge kinetic function is chosen to be 1. The scalar potential is given by

V = VF +VD, (2.3)

where the F and D-term potential are

VF = eκ2K
(
−3κ

2W W̄ +∇XW gXX̄
∇̄X̄W̄

)
, VD =

1
2
P2. (2.4)

The Kähler covariant derivative is acting on W as

∇XW = ∂XW (z)+κ
2(∂XK )W . (2.5)

The moment map P is given by

P = i(kX
∂XK − r). (2.6)

where kX is the Killing vector for X under the U(1) R-symmetry, and r is defined by r =−κ−2kXWX/W ;
in the present setup, they become kX = −iqX , r = iκ−2q. As usual, subscripts stand for partial
derivatives: WX := ∂XW .

We are interested in the case where inflation starts near a local maximum of the potential at
X = 0, where R-symmetry is preserved. Let us expand the Kähler potential in XX̄ up to quadratic
order:

κ
2K = XX̄ +A(XX̄)2 + ... . (2.7)

With this, the F-term potential becomes

κ
4VF = f 2eXX̄(1+AXX̄)

[
−3XX̄ +

(
1+XX̄ +2A(XX̄)2)

)2

1+4AXX̄

]
, (2.8)

and the D-term potential is

κ
4VD =

q2

2
[
1+XX̄ +2A(XX̄)2]2 . (2.9)
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Under a change of field variables

X = ρeiθ , X̄ = ρe−iθ , (ρ ≥ 0), (2.10)

the scalar potential reads

κ
4V = f 2eρ2+Aρ4

[
−3ρ

2 +

(
1+ρ2 +2Aρ4

)2

1+4Aρ2

]
+

q2

2
(
1+ρ

2 +2Aρ
4)2

. (2.11)

Note that the scalar potential is only a function of the modulus ρ and the phase θ will be “eaten"
by the U(1)R gauge field in a similar manner to the standard Brout-Englert-Higgs mechanism.

We now interpret the field ρ as the inflaton. In order to calculate the slow-roll parameters, one
needs to work with the canonically normalised field χ satisfying

dχ

dρ
=
√

2KXX̄ . (2.12)

The slow-roll parameters are given in terms of the canonical field χ by

ε =
1

2κ2

(
dV /dχ

V

)2

, η =
1

κ2
d2V /dχ2

V
. (2.13)

Since we assume inflation to start near ρ = 0, we expand

ε = 4
(
−4A+ y2

2+ y2

)2

ρ
2 +O(ρ4),

η = 2
(
−4A+ y2

2+ y2

)
+O(ρ2), (2.14)

where we defined y = q/ f . The above equation implies ε ' η2ρ2� η . For simplicity, we consider
the case where the F-term potential is dominant by setting y to be very small so that y can be
neglected. Taking this into account, let us find some constraints on the coefficient A of the quadratic
term of the Kähler potential. The condition that the scalar potential has a local maximum at ρ = 0
requires A > 0. Furthermore, the slow-roll condition |η | � 1 gives an upper bound A� 0.25.
Therefore, the constraint on A is

0 < A� 0.25. (2.15)

In order to satisfy CMB observational data with η ∼ −0.02, we choose A ∼ 0.005. In the fol-
lowing sections we explore a microscopic model that can generate the coefficient A satisfying the
requirement (2.15).

3. Microscopic model

In this section, we introduce a “generalisation" of the Fayet-Iliopoulos (FI) model as an ex-
ample of the microscopic origin for the effective field theory of the inflation model described in
the previous section. We consider the regime where both gauge symmetry and supersymmetry are
spontaneously broken, leaving (in the decoupling limit) the goldstino as the only light mode in this
sector.

4
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3.1 The generalised Fayet-Iliopoulos model

Let us consider a supergravity model with two chiral multiplets Φ± and one vector multiplet.
As we will show shortly, this theory has a vacuum in which only Φ+ is lighter than the other degrees
of freedom. We then integrate out the heavy degrees of freedom to find an effective supergravity
action in Φ+. The UV supergravity action we consider is

S =
1
4

∫
d4xd2

θ E F (Φ−)W αW α +h.c.

+κ
−3m

∫
d4xd2

θ E Φ+Φ−+h.c.

−3κ
−2
∫

d4xd4
θ Ee−κ2K0/3−(q+−q−)V/3, (3.1)

which is formulated in Poincaré superspace as in [11]. In the following, we will mostly work in
supergravity mass units κ = 1, for notational simplicity. This theory is invariant under a gauged
U(1) transformation which acts only on matter superfields, which we call U(1)m transformation.
The chiral superfields Φ± transform under U(1)m as,4

Φ± 7→ e∓iq±Λ
Φ±, (3.2)

where Λ is chiral. The vector superfield V transforms under U(1)m as

V 7→V + i(Λ− Λ̄). (3.3)

The function K0 is the U(1)m-invariant Kähler potential,

κ
2K0 = Φ̄+eq+V

Φ++ Φ̄−e−q−V
Φ−, (3.4)

and W α is the gaugino superfield, defined with the super-Poincaré covariant derivatives Dα ,D̄α̇ as

W α =−1
4
D̄2DαV . (3.5)

The function F (Φ−) is the gauge kinetic function, given by

F (Φ−) = 1+b lnΦ−, b =
(x−1)3q2

−
24π2 , x = q+/q−, (3.6)

in which the second term produces a Green-Schwarz action that cancels the chiral anomaly of
U(1)m. For more details see [4, 12].

The scalar potential of the UV theory (3.1) is given by

κ
4V UV =

1
4

q2
−

(
x|ϕ+|2−|ϕ−|2 + x−1

)2

2(1+b lnv)

+m2e|ϕ+|2+|ϕ−|2
(
|ϕ+|2 + |ϕ−|2−|ϕ+|2|ϕ−|2

)
, (3.7)

4Strictly speaking, it involves a local rotation of the fermionic coordinates in addition to the overall phase rotation,
due to the non-invariance of the superpotential under U(1)m. In this sense, U(1)m is a gauged R-transformation, which
is allowed only in supergravity.
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where ϕ± = Φ±| is the lowest component of superfields Φ±. The first line is the D-term contribu-
tion. Note that it contains the Fayet-Iliopoulos type contribution with FI parameter x−1. Below, it
is natural to introduce the parameter ∆ as

∆ := x−1− v2. (3.8)

We are interested in a vacuum of the form

〈ϕ+〉= 0, 〈ϕ−〉= v, (3.9)

which spontaneously breaks U(1)m and supersymmetry and around which the fields of V ,Φ− are
heavier than those of Φ+, in the limit of small SUSY breaking scale. The extremisation condition
with respect to ϕ− reads

−1
4

q2
−

∆

1+b lnv
v2− 1

16
bq2
−

(
∆

1+b lnv

)2

+m2v2(1+ v2)ev2
= 0. (3.10)

This gives us a constraint among the parameters ∆, v, x and q− which will be used in Section 3.4.
We consider first the approximation b = 0. In this case equation (3.10) has a unique solution

∆ =
4m2

q2
−
(1+ v2)ev2

. (3.11)

It is also easy to see that Imϕ− is the massless R-Goldstone boson while Reϕ− gets a correction to
its mass-squared compared to the global SUSY case q2

−v2 by 4m2v2(2+ v2)ev2
. The mass-squared

of ϕ+ also changes to m2(1+ x+ xv2)ev2
and the integrating out condition is satisfied if this mass

is much smaller than the other masses.
For b 6= 0 eq. (3.10) gives two solutions ∆ = ∆±, where ∆± are given by

∆± :=
2v2(1+b lnv)

b

(
−1±

√
1+

4bm2(1+ v2)ev2

q2
−v2

)
. (3.12)

Notice that the existence of the two solutions originates from the anomaly coefficient b. The mass2

of the vector field Aµ is q2
−v2. The mass matrices of ϕ± are given by

V UV
ϕ∗+ϕ∗+
|vac = 0, (3.13)

V UV
ϕ∗+ϕ+
|vac = m2ev2

+
1
4

xq2
−

∆

1+b lnv
, (3.14)

V UV
ϕ∗−ϕ∗−
|vac = m2ev2

v2(2+ v2)+
1
4

q2
−

v2

1+b lnv
+

1
16

bq2
−

∆2

v2(1+b lnv)2

+
1
4

bq2
−

∆

(1+b lnv)2 +
1
16

b2q2
−

∆2

v2(1+b lnv)3 , (3.15)

V UV
ϕ∗−ϕ− |vac = m2ev2

(1+3v2 + v4)+
1
4

q2
−

v2

1+b lnv
− 1

4
q2
−

∆

1+b lnv

+
1
4

bq2
−

∆

(1+b lnv)2 +
1
16

b2q2
−

∆2

v2(1+b lnv)3 . (3.16)

In the following, we assume that the integrating out procedure is justified, which we will show
explicitly in Section 3.4 with the analysis of the parameter space leading to models of realistic
inflation.
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3.2 Integrating out heavy fields

The UV action in conformal superspace which becomes the action (3.1) after fixing the con-
formal compensators as C =C = 1 is actually very easy to write down,

S =
1
4

∫
d4xd2

θ E F (Φ−)W αW α +h.c.

+κ
−3m

∫
d4xd2

θ EC3
Φ+Φ−+h.c.

−3κ
−2
∫

d4xd4
θ ECCe−κ2K0/3−(q+−q−)V/3, (3.17)

and takes exactly the same form as in the case with the super-Weyl compensators [13]. To explain
the notation, we need to introduce two important classes of superfields in conformal superspace:
chiral and primary. A chiral superfield Φ is defined with respect to the superconformally covariant
spinor derivative ∇̄α̇ by

∇̄α̇Φ = 0. (3.18)

A primary superfield Φ of charges (δ , w̃) (conformal and chiral weights) is defined by

D̂Φ = δΦ, ÂΦ = iw̃Φ, K̂AΦ = 0, (3.19)

where D̂, Â, K̂A are the generators for the dilatation, chiral U(1) rotation, and special conformal
transformations [14].5

We now explain the notation. For details, see [15]. An action integral with
∫

d4xd4θ like the
third line of (3.17) is called the D-type action. Its integrand is required to be real primary of charge
(0,0) for gauge invariance. On the other hand, an action integral with

∫
d4xd2θ like the first and

second lines of (3.17) is called the F-type action. Its integrand is required to be chiral primary of
charge (0,0) for gauge invariance.

The determinant E of the vierbein superfield is real primary of charges (−2,0), while the
determinant E of the “chiral” part of the vierbein superfield, called the chiral density, is chiral
primary of charges (−3,−2).

The chiral superfields Φ± are primaries of charges (0,0), transforming under the matter U(1)m

as Φ± 7→ e∓iq±ΛΦ±, where Λ is chiral primary of charges (0,0). The vector superfield V is primary
of charges (0,0), which transforms under U(1)m as V 7→V + i(Λ−Λ).

The compensators C,C are chiral primaries of charges (1,2/3), and anti-chiral primary of
charges (1,−2/3), respectively. To guarantee U(1)m invariance, we need to assign U(1)m charges
to the compensators C,C as

C 7→ ei(q+−q−)Λ/3C, C 7→ e−i(q+−q−)Λ/3C. (3.20)

5The local Lorentz index A in K̂A stands for the vector and the undotted and dotted spinor indices (a,α, α̇). There-
fore K̂A denotes the generators (K̂a, Ŝα ,

ˆ̄Sα̇ ), with Ŝα , ˆ̄Sα̇ the generators of the S-supersymmetry.
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K0 is the gauge-invariant Kähler potential defined in (3.4) and W α is the chiral primary gaugino
superfield of charges (3/2,1), defined here with the superconformally covariant derivatives ∇α , ∇̄α̇

as6

W α =−1
4

∇̄
2
∇αV . (3.21)

We proceed to integrating out the heavy degrees of freedom. For this, we first fix the matter U(1)m

degrees of freedom by the unitary gauge Φ− = v, in which the action reads

S =
1
4

∫
d4xd2

θ EW αW α +h.c.

+κ
−3mv

∫
d4xd2

θ EC3
Φ++h.c.

−3κ
−2
∫

d4xd4
θ ECCe−κ2K /3, (3.22)

where we rescaled V to absorb the factor 1+b lnv, and K is the gauge-fixed Kähler potential with
the FI contribution,

κ
2K = Φ+exq−V

Φ++ v2e−q−V +(x−1)q−V , (3.23)

and we recall x = q+/q−.
We integrate out V at tree level by solving the equation of motion of V around its vacuum,

neglecting higher derivative contributions. The equation of motion of V reads

−κ
2
∇

αW α +CCe−κ2K /3q−
(
xΦ+exq−V

Φ+− v2e−q−V + x−1
)
= 0. (3.24)

To integrate out V around its vacuum, we first shift ∇αW α | to remove the tadpole [16], and then
neglect the derivative term. This gives the following low-energy effective equation of motion

CCe−κ2K /3q−
(
xΦ+exq−V

Φ+− v2e−q−V + x−1
)
−q−∆' 0. (3.25)

Recall that ∆ = x−1− v2. We now integrate out V in the following way:
1
4

∫
d4xd2

θ EW αW α +h.c.=−1
2

∫
d4xd4

θ EV ∇
αW α , (3.26)

and then eliminate ∇αW α by substituting the exact equation of motion (3.24). The first and third
terms of the action (3.22) then become∫

d4xd4
θ E
(
−1

2
V ∇

αW α −3κ
−2CCe−κ2K /3

)
= κ

−2
∫

d4xd4
θ ECCe−κ2K /3

×
[
− 1

2
q−V

(
xΦ+exq−V

Φ+− v2e−q−V + x−1
)
−3
]
. (3.27)

Next, combining the (low-energy) equation of motion (3.25) with the second line of (3.27), we
obtain the low-energy effective action,

Seff[C;Φ+] = κ
−3mv

∫
d4xd2

θ EC3
Φ++h.c.

+κ
−2
∫

d4xd4
θ E
(
− 1

2
∆q−V −3CCe−κ2K /3

)
, (3.28)

where V must be understood to be a function of Φ+, determined by the equation of motion (3.25).
6Note that ∇α has charges (1/2,−1) and ∇̄α̇ has charges (1/2,1).
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U(1)m U(1)′

Φ+ +q+ q
Φ− −q− 0

Table 1: The chiral multiplet Φ+ and Φ− are charged under U(1)m×U(1)′. Note that U(1)′ does not play
any role during the integrating out process and remains R-symmetry of the low-energy theory.

3.3 Effective Kähler potential and superpotential

Let us now fix the compensators. We find Keff such that the gauge fixing

C =C = eκ2Keff/6 (3.29)

makes the effective action (3.28) into the integral in the Kähler superspace characterised by Keff.
It is easy to see that this is realised by

κ
2Keff = κ

2K +3ln
(

1− 1
6

∆q−V
)
, κ

3Weff = mvΦ+. (3.30)

The second term in the effective Kähler potential is the supergravity modification. The gauge fixing
(3.29) simplifies the effective equation of motion (3.25) into(

1− 1
6

∆q−V
)(

xΦ+exq−V
Φ+− v2e−q−V + x−1

)
−∆ = 0, (3.31)

which can be solved analytically for Φ+Φ+ as a function of V ,

Φ+Φ+ = x−1e−xq−V
(

v2e−q−V − x+1+
∆

1− 1
6 ∆q−V

)
= x−1e−xq−V

(
v2e−q−V − v2 +

1
6 ∆2q−V

1− 1
6 ∆q−V

)
. (3.32)

The effective theory found in the this section does not have a gauged R symmetry. Therefore,
we need to add another gauged R symmetry to the low-energy theory, which we denote by U(1)′.
This can be achieved by extending the symmetry of the UV theory from U(1)m to U(1)m×U(1)′.
We assume that U(1)′ acts as a spectator during the integrating out process and survives as the
gauged R-symmetry of the low-energy theory. As summarised in Table 1, Φ+ transforms under
U(1)m×U(1)′ with charge (q+,q) while Φ− is singlet under U(1)′.

In what follows, we will analyse the behaviour of the effective Kähler potential around the
origin and identify the parameter regions in which the scalar potential has a local maximum at the
origin.

3.4 Inflation from the effective low-energy theory

For simplicity, we absorb q− into the vector multiplet.7 To obtain the behaviour around the
origin, we should first solve for V in terms of Φ̄+Φ+ from equation (3.31) perturbatively in the
form

V =V0 +V1Φ̄+Φ++V2(Φ̄+Φ+)
2 +V3(Φ̄+Φ+)

3 + ... . (3.33)
7More precisely, we first rescale q− as q−→ q−(1+b lnv)−1/2 and then rescale V as q−V → V with the rescaled

q− in the unitary gauge action (3.22).
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Substituting this into equation (3.31) we obtain an explicit expression for the coefficients,

V0 = 0, V1 =
6x

∆2−6v2 ,

V2 =
6x2

(∆2−6v2)3

(
−∆

3 +6∆
2x−18v2(2x+1)

)
,

V3 =
6x3

(∆2−6v2)5

(
∆

6−18∆
5x+6∆

4 (v2 +9x2)+36∆
3v2(3x+2)

−36∆
2v2(18x2 +9x−1)+216v4(18x2 +9x+2)

)
. (3.34)

Substituting the perturbative solution (3.33) into the effective Kähler potential (3.30), we obtain the
effective Kähler potential around the local maximum,

κ
2Keff = v2 +K1Φ̄+Φ++K2(Φ̄+Φ+)

2 +K3(Φ̄+Φ+)
3 + ... , (3.35)

where the first three coefficients read

K1 =
∆2 +3∆x−6v2

∆2−6v2 , (3.36)

K2 = −
3x2
(
−∆4−12∆3x+30∆2v2 +36∆v2(2x+1)−72v4

)
2(∆2−6v2)3 , (3.37)

K3 =
x3

(∆2−6v2)5

{
−∆

7−18∆
6x+6∆

5 (8v2 +27x2)−18∆
4v2(12x−7)

−36∆
3v2 (v2 +54x2 +27x−3

)
+108∆

2v4(24x+7)

+648∆v4 (9x2 +9x+2
)
−1296v6(3x+1)

}
. (3.38)

We then define the canonically normalized chiral superfield Φ as

Φ :=
√

K1 Φ+. (3.39)

After absorbing the constant term v2 in (3.35) by a Kähler transformation, the effective Kähler
potential in Φ becomes

κ
2Keff = ΦΦ+A2(ΦΦ)2 +A3(ΦΦ)3 + ... , (3.40)

where the first two nontrivial coefficients A2,A3 read

A2 =
3x2
(
∆4 +12∆3x−30∆2v2−36∆v2(2x+1)+72v4

)
2(∆2−6v2)(∆2 +3∆x−6v2)2 , (3.41)

A3 =
x3

(∆2−6v2)2 (∆2 +3∆x−6v2)3

{
−∆

7−18∆
6x+6∆

5 (8v2 +27x2)
+18∆

4v2(7−12x)−36∆
3v2 (v2 +54x2 +27x−3

)
+108∆

2v4(24x+7)+648∆v4(18x2 +9x+2)−1296v6(3x+1)
}
. (3.42)

The condition for having a local maximum at the origin is A2 > 0. In the two-dimensional param-
eter space (v,x), the domain in which A2 is positive can be divided into four regions according to
the signs of ∆ = x−1− v2 and of the scalar component c =V | in each region. They are

10
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(a) (b)

Figure 1: (a) Allowed parameter space (v,x) with 0 < v < 2.0 and 0 < x < 2.0. The colored regions
in which A2 > 0 can be divided into 4 parts, namely I, II, III and IV. (b) Region I and part of Region
II are in the excluded area where v2− 1

4 x(x−1−v2)< 0 where the integrating out condition is not
satisfied.

• Region I: with ∆ > 0, c> 0,

• Region II: with ∆ > 0, c6 0,

• Region III: with ∆ < 0, c6 0,

• Region IV: with ∆ < 0, c> 0.

These four regions are shown in Fig. 1a. It turns out that a Minkowski minimum is allowed in the
presence of D-term in Region I and III, while Region II and IV have only de Sitter minimum with
a large cosmological constant. The integrating out condition also excludes Region I. Therefore,
this leaves Region III as the only possible domain for slow-roll inflation with a nearby minimum
having a tuneable vacuum energy.

3.5 The effective scalar potential and slow-roll parameters

In order to study the global minimum of the potential and compare our predictions for inflation
with the observational data, we need the exact expression of the scalar potential. Using the analytic
solution (3.32) for Φ+Φ+ as a function of V , we will express the scalar potential as a function of
c =V | instead of ϕ+ = Φ+| .

Combining the effective Kähler potential (3.30) with the analytic solution (3.32), we express

11
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the effective Kähler potential as a function of the vector multiplet V ,

κ
2Keff(V ) =

1
x

[
v2(1+ x)e−V +

∆

1− 1
6 ∆V

− x+1
]
+(x−1)V

+3ln
[
1− 1

6
∆V
]
. (3.43)

Note that V must be understood as a function of Φ+Φ+. The effective superpotential is

κ
3Weff = mvΦ+. (3.44)

Using the formula (2.4) and expressing it in the D-term potential in terms of c = V | instead of
ϕ+ = Φ+|, we find the low energy D-term potential given by

κ
4VD =

y2e−2cm2v2

8x2

[
ρv2(x+1− xec)c′−2ecx

− ec
ρc′

x∆(3− c∆)

6− c∆
− 6ecρc′∆2

(6− c∆)2

]2
, (3.45)

where we introduced a new parameter y := q/mv. Recall also that ∆ = x− 1− v2. The new field
variable ρ is defined as ρ := (ϕ∗+ϕ+)

1/2, which stands for the inflaton. This can be written in terms
of c with the help of (3.32) as

ρ
2 =

e−xc

x

[
v2e−c− x+1+

∆

1− 1
6 ∆c

]
. (3.46)

For any given value of the parameters v and x, we can choose the “physical domain" of c in such a
way that ρ2 > 0. We also introduced c′ = dc/dρ , c′′ = d2c/dρ2, which can be expressed in terms
of c with the help of (3.46) as

c′ =
2ρx(6− c∆)ec(x+1)

ec∆2− v2 (6− (c+ ec−1)∆)−ρ2xec(x+1)(6x− c∆x−∆)
, (3.47)

c′′ =− v2(6− c∆+2∆)(c′)2

ec∆2− v2 (6− (c+ ec−1)∆)−ρ2xec(x+1)(6x− c∆x−∆)

+
xec(x+1) (ρc′ (ρxc′(x(6− c∆)−2∆)+4(x(6− c∆)−∆))+2(6− c∆))

ec∆2− v2 (6− (c+ ec−1)∆)−ρ2xec(x+1)(6x− c∆x−∆)
. (3.48)

On the other hand, the effective F-term potential is given by

κ
4VF = m2v2eκ2Keff(c)

(
−3ρ

2 +
4A 2(c)
B(c)

)
, (3.49)

where we introduced two functions A (c),B(c)

A (c) = 1+
ρc′

2x(6− c∆)2 e−c
[
6ecv4 + ec

ξ
(
x
(
c2

∆
2−9c∆+18

)
+6ξ

)
+ v2 (−c2

∆
2 +12c∆−12ec

ξ + x(6− c∆)(c∆+3ec−6)−36
)]

, (3.50)

B(c) = − 3∆(ρc′′+ c′)
ρ(6− c∆)

+
ξ (ρc′′+ c′)

ρ
+

(ρc′′+ c′)
(

6∆2

(6−c∆)2 − e−cv2(x+1)
)

xρ

+
(c′)2

x

(
e−cv2(x+1)+

12∆3

(6− c∆)3

)
− 3∆2 (c′)2

(6− c∆)2 . (3.51)
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To compute the slow-roll parameters, we need the canonically normalised inflaton field χ

defined through χ ′ := dχ

dρ
=
√

2gΦ̄+Φ+
, which can be written in terms of c as

χ
′ = κ

√(
c′

2ρ
+

c′′

2

)
d
dc

Keff(c)+
(c′)2

2ρ

d2

dc2 Keff(c). (3.52)

The slow-roll parameters ε and η are given in terms of c by

ε =
1

2κ2

(
dV /dχ

V

)2

=
1

2κ2

(
dV /dc

V

c′

χ ′

)2

, (3.53)

η =
1

κ2
d2V /dχ2

V
,

=
1

κ2

(
d2V /dc2

V

(
c′

χ ′

)2

+
dV /dc

V

c′′

χ ′
− dV /dc

V

dχ ′/dc
χ ′

(
c′

χ ′

)2
)
. (3.54)

The number of e-folds N during inflation can be expressed as

N =
∫

χend

χ∗

V

∂χV
dχ =

∫
ρend

ρ∗

V

∂ρV
(χ ′)2dρ =

∫ c∗

cend

V

∂cV

(
χ ′

c′

)2

dc, (3.55)

where we choose |η(cend)|= 1 and c∗ is the value of c at the horizon exit. Now we can compare the
theoretical predictions of our model to the observational data, specifically the power spectrum of
primordial perturbations of the CMB, namely the amplitude of density fluctuations As, the spectral
index ns and the tensor-to-scalar ratio of primordial fluctuations r. They can be written in terms of
the slow-roll parameters:

As =
κ4V∗

24π2ε∗
, (3.56)

ns = 1+2η∗−6ε∗ ' 1+2η∗, (3.57)

r = 16ε∗, (3.58)

evaluated using the field value c∗ at the horizon exit.
We can choose for example

v = 1.86945, x = 0.08435, y = 4.07, m = 3.77×10−8. (3.59)

For this choice, we have ∆ =−4.41049.
The scalar potential for these parameters as a function of c and ρ is plotted in Fig. 2a and

2b, respectively. The relation between c and ρ coordinates is shown in Fig. 2c where the physical
domain is c < 0. The slow-roll parameters in ρ coordinates are plotted in Fig. 2d.

Choosing the initial condition c∗ =−0.00017 and cend =−0.01192 (or equivalently, by using
(3.46), ρ∗ = 0.0225 and ρend = 0.1869), we obtain N = 59.48, ns = 0.9597, r = 4.15× 10−6 and
As = 2.2×10−9, which are within the 2σ -region of Planck’18 data [17].

Using the constraint (3.10), we obtain q− ≈ 31.5413. From (3.14), (3.15) and (3.16), we find
that the mass ratios indeed satisfy the integrating out condition,

m2
Aµ

V UV
ϕ∗+ϕ+

∣∣∣∣∣
vac

≈ 38.2253,
V UV

ϕ∗−ϕ−

V UV
ϕ∗+ϕ+

∣∣∣∣∣
vac

≈ 21.9463,
V UV

ϕ∗−ϕ∗−

V UV
ϕ∗+ϕ+

∣∣∣∣∣
vac

≈ 9.8853. (3.60)
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(a) (b)

(c) (d)

Figure 2: Plots of the scalar potential in Region III of Fig. 1 with parameters (3.59) as a function
of the coordinate c in (a) and ρ in (b). The relation between ρ and c is plotted in (c). The slow-roll
parameters ε and η are shown in (d).

4. Fayet-Iliopoulos (FI) D-terms in supergravity

In this section, we follow the notation in [14]. The chiral weight w′ in this section is related to
the chiral weight w̃ of the previous section by w̃ = 2

3 w′.

4.1 Review

In [8] (see also in [18]), a new (constant) FI term was proposed of the form LFI = ξ2 D+

fermions, that can be coupled to supergravity without gauging the R-symmetry. It is non-singular
when the D-auxiliary filed has a non vanishing vacuum expectation value (VEV), and the corre-
sponding supergravity Lagrangian is:

LFI = ξ2

[
S0S̄0

w2w̄2

T̄ (w2)T (w̄2)
(V )D

]
D
, (4.1)

where ξ2 is a constant parameter. In the superconformal formalism, the chiral compensator field S0,
with Weyl and chiral weights (δ ,w′) = (1,1), has components S0 = (s0,PLΩ0,F0). The vector mul-
tiplet has vanishing Weyl and chiral weights, and its components are given by V =

(
v,ζ ,H ,vµ ,λ ,D

)
.

In the Wess-Zumino gauge, the first components are put to zero v = ζ = H = 0. The multiplet w2

14
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is of weights (1,1), and given by

w2 =
λ̄PLλ

S2
0

, w̄2 =
λPRλ̄

S̄2
0

. (4.2)

The components of λ̄PLλ are given by

λ̄PLλ =
(

λ̄PLλ ;
√

2PL
(
− 1

2
γ · F̂ + iD

)
λ ; 2λ̄PL /Dλ + F̂− · F̂−−D2

)
. (4.3)

The kinetic terms for the gauge multiplet are given by

Lkin =−
1
4
[
λ̄PLλ

]
F +h.c. . (4.4)

The operator T (T̄ ) is defined in [19, 20], and leads to a chiral (antichiral) multiplet. For example,
the chiral multiplet T (w̄2) has weights (2,2). In global supersymmetry the operator T corresponds
to the usual chiral projection operator D̄2.8

From now on, we will drop the notation of h.c. and implicitly assume its presence for every
[ ]F term in the Lagrangian. Finally, the multiplet (V )D is a linear multiplet with weights (2,0),
given by

(V )D =
(

D, /Dλ ,0,DbF̂ab,− /D /Dλ ,−�CD
)
. (4.5)

The definitions of /Dλ and the covariant field strength F̂ab can be found in eq. (17.1) of [14], which
reduce for an abelian gauge field to

F̂ab = e µ
a e ν

b
(
2∂[µAν ]+ ψ̄[µγν ]λ

)
Dµλ =

(
∂µ −

3
2

bµ +
1
4

wab
µ γab−

3
2

iγ∗Aµ

)
λ −

(
1
4

γ
abF̂ab +

1
2

iγ∗D
)

ψµ . (4.6)

Here, e µ
a is the vierbein, with frame indices a,b and coordinate indices µ,ν . The fields wab

µ , bµ , and
Aµ are the gauge fields corresponding to Lorentz transformations, dilatations, and TR symmetry of
the conformal algebra respectively, while ψµ is the gravitino. The conformal d’Alembertian is
given by �C = ηabDaDb.

Let us consider first the case of pure supergravity coupled to a U(1) gauge multiplet with the
FI term in (4.1). The full Lagrangian is

L =−3
[
S0S̄0

]
D +

[
S3

0W0
]

F −
1
4
[
λ̄PLλ

]
F +LFI. (4.7)

Supersymmetry is broken via a non-vanishing VEV of the D-auxiliary component of the vector
multiplet driven by the linear term in D, with the Goldstino being the U(1) gaugino. After having
gauge fixed the compensator through S0 = 1, integrated the auxiliary fields, and in the unitary gauge
where the Goldstino vanishes, the Lagarangian in component form reads [8]:

e−1L =
1
2
(
R− ψ̄µγ

µνρDνψρ +m3/2ψ̄µγ
µν

ψν

)
− 1

4
FµνFµν −

(
−3m2

3/2 +
1
2

ξ
2
2

)
, (4.8)

8The operator T indeed has the property that T (Z) = 0 for a chiral multiplet Z. Moreover, for a vector multiplet V
we have T (ZC) = ZT (C), and [C]D = 1

2 [T (C)]F .
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with m3/2 =W0, a constant superpotential. In the absence of matter, any ξ2 6= 0 uplifts the vacuum
energy by a constant term VFI = ξ 2

2 /2 and breaks supersymetry. It is important to note that the FI
term given by eq. (4.1) does not require the gauging of an R-symmetry, but breaks invariance under
Kähler transformations.

Let us now couple the term LFI given by eq. (4.1) to additional matter fields charged under
the U(1). For simplicity, we focus on a single chiral multiplet X . The extension to more chiral
multiplets is trivial. The Lagrangian is given by

L =−3
[
S0S̄0e−

1
3 K(X ,X̄)

]
D
+
[
S3

0W (X)
]

F −
1
4
[

f (X)λ̄PLλ
]

F +LFI, (4.9)

with a Kähler potential K(X , X̄), a superpotential W (X) and a gauge kinetic function f (X). The first
three terms in eq. (4.9) give the usual supergravity Lagrangian [14]. We assume that the multiplet
X transforms under the U(1),

V →V + iΛ− iΛ̄,

X → Xe−iqΛ, (4.10)

with gauge multiplet parameter Λ. We assume that the U(1) is not an R-symmetry. In other words,
we assume that the superpotential does not transform under the gauge symmetry. For a model with
a single chiral multiplet this implies that the superpotential is constant

W (X) = F. (4.11)

Gauge invariance fixes the Kähler potential to be a function of XeqV X̄ (for notational simplicity, in
the following we omit the eqV factors).

Indeed, in this case the term LFI can be consistently added to the theory, similar to [8], and
the resulting D-term contribution to the scalar potential acquires an extra term proportional to ξ2

VD =
1
2

Re( f (X))−1
(

ikX ∂X K +ξ2e
1
3 K
)2

, (4.12)

where the Killing vector is kX =−iqX . The F-term contribution to the scalar potential remains the
usual and for a constant superpotential (4.11), it reduces to

VF = |F |2eK(X ,X̄)
(
−3+gXX̄

∂X K∂X̄ K
)
. (4.13)

From eq. (4.12) it can be seen that if the Kähler potential includes a term proportional to
ξ1 log(XX̄), the D-term contribution to the scalar potential acquires another constant contribution.
For example, if

K(X , X̄) = XX̄ +ξ1 ln(XX̄), (4.14)

the D-term contribution to the scalar potential becomes

VD =
1
2

Re( f (X))−1
(

qXX̄ +qξ1 +ξ2e
1
3 K
)2

. (4.15)
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We will argue below that the contribution proportional to ξ1 is the usual FI term in a non R-
symmetric Kähler frame, which can be consistently added to the model including the new FI term
proportional to ξ2.

In the absence of the extra term, a Kähler transformation

K(X , X̄)→ K(X , X̄)+ J(X)+ J̄(X̄),

W (X)→W (X)e−J(X), (4.16)

with J(X) =−ξ1 lnX allows one to recast the model in the form

K(X , X̄) = XX̄ ,

W (X) = m3/2X , (4.17)

where m3/2 = F . The two models result in the same Lagrangian, at least classically9. However, in
the Kähler frame of eqs. (4.17) the superpotential transforms nontrivially under the gauge symme-
try. As a consequence, the gauge symmetry becomes an R-symmetry.

Note that the extra term (4.1) violates the Kähler invariance of the theory, and the two models
related by a Kähler transformation are no longer equivalent. The model written in the Kähler frame
where the gauge symmetry becomes an R-symmetry in eqs. (4.17) can not be consistently coupled
to LFI. A generalized Kähler invariant FI term has been built in [21, 22].

4.2 The scalar potential in a Non R-symmetry frame

In this section, we work in the Kähler frame where the superpotential does not transform,
and take into account the two types of FI terms which were discussed in the last section. For
convenience, we repeat here the Kähler potential in eq. (4.14) and restore the inverse reduced
Planck mass κ = M−1

Pl = (2.4×1018 GeV)−1:

K = κ
−2(XX̄ +ξ1 lnXX̄). (4.18)

The superpotential and the gauge kinetic function are set to be constant10:

W = κ
−3F, f (X) = 1. (4.19)

After performing a change of the field variable X = ρeiθ where ρ ≥ 0 and setting ξ1 = b, the full
scalar potential V = VF +VD is a function of ρ . The F-term contribution to the scalar potential is
given by

VF =
1

κ4 F2eρ2
ρ

2b

[(
b+ρ2

)2

ρ2 −3

]
, (4.20)

and the D-term contribution is

VD =
q2

2κ4

(
b+ρ

2 +ξ ρ
2b
3 e

1
3 ρ2
)2

. (4.21)

9At the quantum level, a Kähler transformation also introduces a change in the gauge kinetic function f , see for
example [13].

10Strictly speaking, the gauge kinetic function gets a field-dependent correction proportional to q2 lnρ , in order to
cancel the chiral anomalies [4]. However, the correction turns out to be very small and can be neglected below, since the
charge q is chosen to be of order of 10−5 or smaller.
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Note that we rescaled the second FI parameter by ξ = ξ2/q. We consider the case with ξ 6= 0
because we are interested in the role of the new FI-term in inflationary models driven by supersym-
metry breaking.

For F = 0, one finds that for ξ < −1 and b = 3 the potential has a maximum at ρ = 0, and
a supersymmetric minimum. Let us comment on supersymmetry (SUSY) breaking in the scalar
potential. Since the superpotential is zero, the SUSY breaking is measured by the D-term order
parameter, namely the Killing potential associated with the gauged U(1), which is defined by

D = iκ−2−iqX
W

(
∂W
∂X

+κ
2 ∂K

∂X
W
)
+κ

−2qξ ρ
2eρ2/3. (4.22)

This enters the scalar potential as VD = D2/2. So, at the local maximum and during inflation D is
of order q and supersymmetry is broken. On the other hand, at the global minimum, supersymmetry
is preserved and the potential vanishes. Strictly speaking, the supersymetric minimum is not valid
because the new FI term becomes singular since the D-auxiliary vanishes. Therefore a small F is
required in any case.

For F 6= 0, the potential has still a local maximum at ρ = 0 for b = 3 and ξ < −1. For this
choice, the derivatives of the potential have the following properties,

V ′(0) = 0, V ′′(0) = 6κ
−4q2(ξ +1). (4.23)

By our choice ξ <−1, the extremum is a local maximum, as desired.
Let us comment on the global minimum after turning on the F-term contribution. As long as

we choose the parameters so that F2/q2� 1, the change in the global minimum ρv is very small,
of order O(F2/q2), because the extremisation condition depends only on the ratio F2/q2. So the
change in the value of the global minimum is of order O(F2). The plot of this change is given in
Fig. 3.

Scalar potential

F=0

F≠0

ρ

κ4 Vmin

κ4 Vmax

κ4 V

Figure 3: This plot shows the scalar potentials in F = 0 and F 6= 0 cases. When F = 0, we have a local
maximum at ρmax = 0 and a global minimum with zero cosmological constant. For F 6= 0, the origin ρ = 0
is still the maximum but the global minimum now has a positive cosmological constant.

In the present case F 6= 0, the order parameters of supersymetry breaking are both the Killing
potential D and the F-term contribution FX , which read

D ∝ q[3+ρ
2(1+ξ eρ2/3)], FX ∝ Fρ

2(3+ρ
2)eρ2/2, (4.24)
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where the F-term order parameter FX is defined by

FX =− 1√
2

eκ2K /2
(

∂ 2K

∂X∂ X̄

)−1/2(
∂W̄
∂ X̄

+κ
2 ∂K

∂ X̄
W̄
)
. (4.25)

Therefore, near the local maximum, FX/D ∼ F
q ρ2. On the other hand, at the global minimum,

both D and FX are of the same order i.e. FX/D ∼ F
q , assuming that ρ at the minimum is of order

O(1), which is true in our models below. This makes tuning of the vacuum energy between the F-
and D-contribution in principle possible, along the lines of [4, 7].

Let us consider the case b = 0 where only the new FI parameter ξ contributes to the potential.
In this case, the condition for the local maximum of the scalar potential at ρ = 0 can be satisfied
for −3 < ξ < 0. In the case where F is set to zero, the scalar potential (4.21) has a minimum at
ρ2

min = 3ln
(
− 3

ξ

)
. In order to have Vmin = 0, we can choose ξ = −3

e . However, we find that this
choice of parameter ξ does not allow slow-roll inflation near the maximum of the scalar potential.
Similar to our previous models [4] it may be possible to achieve both the scalar potential satisfying
slow-roll conditions and a small cosmological constant at the minimum by adding correction terms
to the Kähler potential and turning on a parameter F . However, here we will focus on b = 3 case
where, as we will see shortly, less parameters are required to satisfy the observational constraints.

4.3 Example for slow-roll D-term inflation

In this section we focus on the case where b = 3 and derive the condition that leads to slow-
roll inflation scenarios, where the start of inflation (or, horizon crossing) is near the maximum of
the potential at ρ = 0. We also assume that the scalar potential is D-term dominated by choosing
F = 0, for which the model has only two parameters, namely q and ξ . The parameter q controls
the overall scale of the potential and it will be fixed by the amplitude As of the CMB data. The only
free-parameter left over is ξ , which can be tuned to satisfy the slow-roll condition.

In order to calculate the slow-roll parameters, we need to work with the canonically normalised
field χ defined by

dχ

dρ
=
√

2gXX̄ . (4.26)

The slow-roll parameters are given in terms of the canonical field χ by

ε =
1

2κ2

(
dV/dχ

V

)2

, η =
1

κ2
d2V/dχ2

V
. (4.27)

Since we assume inflation to start near ρ = 0, the slow-roll parameters for small ρ can be expanded
as

ε =
4
9
(ξ +1)2

ρ
2 +O(ρ3),

η =
2(1+ξ )

3
+O(ρ2). (4.28)

Note also that η is negative when ξ < −1. We can therefore tune the parameter ξ to avoid the
η-problem. The observation is that at ξ = −1, the effective charge of X vanishes and thus the
ρ-dependence in the D-term contribution (4.21) becomes of quartic order.
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Note that we obtain the same relation between ε and η as in the model of inflation from
supersymmetry breaking driven by an F-term from a linear superpotential and b= 1 (see eq. (2.14))
[4]. Thus, there is a possibility to have flat plateau near the maximum that satisfies the slow-roll
condition and at the same time a small cosmological constant at the minimum nearby.

The number of e-folds N during inflation is determined by

N = κ
2
∫

χend

χ∗

V

∂χV
dχ = κ

2
∫

ρend

ρ∗

V

∂ρV

(
dχ

dρ

)2

dρ, (4.29)

where we choose |ε(χend)|= 1. Notice that the slow-roll parameters for small ρ2 satisfy the simple
relation ε = η(0)2ρ2 +O(ρ4) by eq. (4.28). Therefore, the number of e-folds between ρ = ρ1 and
ρ2 (ρ1 < ρ2) takes the following simple approximate form as in [4],

N ' 1
|η(0)|

ln
(

ρ2

ρ1

)
=

3
2|ξ +1|

ln
(

ρ2

ρ1

)
. (4.30)

as long as the expansions in (4.28) are valid in the region ρ1 ≤ ρ ≤ ρ2. Here we also used the
approximation η(0)' η∗, which holds in this case.

We can compare the theoretical predictions of our model to the observational data via the
power spectrum of scalar perturbations of the CMB, namely the amplitude As, tilt ns and the tensor-
to-scalar ratio of primordial fluctuations r. From the relation of the spectral index above, one should
have η∗ '−0.02, and thus eq. (4.30) gives approximately the desired number of e-folds when the
logarithm is of order one. Actually, using this formula, we can estimate the upper bound of the
tensor-to-scalar ratio r and the Hubble scale H∗ following the same argument given in [4]; the
upper bounds are given by computing the parameters r,H∗ assuming that the expansions (4.28)
hold until the end of inflation. We then get the bound

r . 16(|η∗|ρende−|η∗|N)2 ' 10−4, H∗ . 1012 GeV, (4.31)

where we used |η∗|= 0.02, N ' 50 − 60 and ρend . 0.5, which are consistent with our models.

4.4 A small field inflation model from supergravity with observable tensor-to-scalar ratio

Supergravity models with higher r are of particular interest. In this section we show that our
model can get large r at the price of introducing some additional terms in the Kähler potential. Let
us consider the previous model with additional quadratic and cubic terms in XX̄ :

K = κ
−2(XX̄ +A(XX̄)2 +B(XX̄)3 +b lnXX̄

)
, (4.32)

while the superpotential and the gauge kinetic function remain as in eq. (4.19). We now assume
that inflation is driven by the D-term, setting the parameter F = 0. In terms of the field variable ρ ,
we obtain the scalar potential:

V = q2
(

b+ρ
2 +2Aρ

4 +3Bρ
6 +ξ ρ

2b
3 e

1
3(Aρ4+Bρ6+ρ2)

)2
. (4.33)

We now have two more parameters A and B. This does not affect the arguments of the choices
of b in the previous sections because these parameters appear in higher orders in ρ in the scalar
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potential. So, we consider the case b = 3. The simple formula (4.30) for the number of e-folds for
small ρ2 also holds even when A,B are turned on because the new parameters appear at order ρ4

and higher. To obtain r ≈ 0.01, we can choose for example

q = 8.68×10−6, ξ =−1.101, A = 0.176, B = 0.091. (4.34)

By choosing the initial condition ρ∗ = 0.445 and ρend = 1.155, we obtain the results N = 58,
ns = 0.96, r = 0.01 and As = 2.2×10−9 , which agree with Planck’15 data as shown in Fig. 4.

Figure 4: A plot of the predictions for the scalar potential with F = 0, b = 3, A = 0.176, B = 0.091,
ξ =−1.101 and q = 8.68×10−6 in the ns - r plane, versus Planck’15 results.

Note that an application of the new FI term in no-scale supergravity model for inflation can be
found for example in [22, 23].
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