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Abstract: I give a summary of recent results on nucleon polarizabilities, with emphasis on chiral
perturbation theory. The predictive calculations of Compton scattering off the nucleon are compared
to recent empirical determinations and lattice QCD calculations of the polarizabilities, thereby testing
chiral perturbation theory in the single-baryon sector.
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1. Introduction

The name Chiral Perturbation Theory (χPT) was first introduced in the seminal works of
Pagels [1], who used it to describe a systematic expansion in the pion mass mπ , which is small compared
to other hadronic scales. Some years later, in 1979, Weinberg [2] made an enlightening proposal for
effective-field theories (EFT) and the χPT acquired its present meaning by Gasser and Leutwyler [3,4]
in this, more powerful, connotation. Since then, χPT stands for a low-energy EFT of the strong sector
of the Standard Model. Written in terms of hadronic degrees of freedom, rather than quarks and
gluons, it offers an efficient way of calculating low-energy hadronic physics. Many calculations can be
done analytically in a systematic perturbative expansion, in contrast to the ab initio calculations, viz.,
lattice QCD, Dyson–Schwinger equations, and other non-perturbative calculations in terms of quark
and gluon fields.

However, as in any EFT framework, the convergence and the predictive power of χPT calculations
are often of concern. After all, the expansion in energy and momenta is not as clear-cut as usual
expansions in a small coupling constant. Moreover, each new order brings more and more free
parameters—the low-energy constants (LECs). This is why the cases where χPT provides true
predictions are very valuable. One such case, considered here, is the process of Compton scattering
(CS) off the nucleon, see Figure 1. It allows one to study the low-energy properties of the nucleon [5,6].
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Figure 1. Compton scattering (CS) off the nucleon in general kinematics: γ∗(q)N(p)→ γ∗(q′)N(p′).
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The nucleon is characterized by a number of different polarizabilities, the most important of
which are the electric and magnetic dipole polarizabilities αE1 and βM1. These quantities describe the
size of the electric and magnetic dipole moments induced by an external electric ~E or magnetic ~H field:

~dind. = 4παE1~E, (1a)

~µind. = 4πβM1~H. (1b)

In loosely bound systems, such as atoms and molecules, these polarizabilities are roughly given
by the volume of the system. The nucleon is apparently a much more rigid object—its polarizabilities
are orders of magnitude smaller than its volume (∼ 1 fm3). The most accurate evidence of that comes
from the Baldin sum rule (sometimes referred to as the Baldin–Lapidus sum rule) [7,8]. It is a very
general relation based on the principles of causality, unitarity, and crossing symmetry akin to the
Kramers–Kronig relation (see, e.g., in [9] for a pedagogical review). The Baldin sum rule expresses the
sum of dipole polarizabilities in terms of an integral of the total photoabsorption cross section σT :

αE1 + βM1 =
1

2π2

∫ ∞

ν0

dν
σT(ν)

ν2 . (2)

Empirical evaluations [10–15], based on experimental cross sections of total photoabsorption on
the nucleon, yield the most accurate information on proton [15] and neutron [13] dipole polarizabilities,
we presently have

αE1p + βM1p = 14.0(2)× 10−4 fm3, (3a)

αE1n + βM1n = 15.2(4)× 10−4 fm3. (3b)

To disentangle αE1 and βM1, one measures the angular distribution of low-energy CS. For example,
the low-energy expansion of the unpolarized CS cross section is given by (to O(ν2))

dσ

dΩL
− dσBorn

dΩL
= −νν′

(
ν′

ν

)2 2πα

MN

[
(αE1 + βM1) (1 + cos θL)

2 + (αE1 − βM1) (1− cos θL)
2
]

, (4)

where θL is the scattering angle, dΩL = 2π dcos θL, and ν(ν′) is the energy of the incoming (scattered)
photon, all in the lab frame. Here, in addition to the sum of dipole polarizabilities appearing in
forward kinematics, one can measure their difference. Another interesting observable is the beam
asymmetry Σ3 defined in Equation (39), which also provides access to βM1 independent of αE1 at
O(ν2), cf. Equation (40).

In reality, the CS data are taken at finite energies (typically of ~100 MeV), rather than at
infinitesimal energies required for a strict validation of the above low-energy expansion. For a
model-independent empirical extraction of polarizabilities from the RCS data it is, therefore, important
to have a systematic theoretical framework such as χPT or a partial-wave analysis (PWA).

There are other interesting polarizabilities, called the spin polarizabilities. These are more difficult
to visualize in a classical picture, but they certainly characterize the spin structure of the nucleon.
χPT provides robust predictions for the different nucleon polarizabilities at leading and next-to-leading
order. Given the accurate empirical knowledge of the nucleon polarizabilities from dispersive sum
rules and CS experiments, they become an important benchmark for χPT in the single-baryon sector,
but not just for χPT—the lattice QCD studies of nucleon polarizabilities are also closing in on the
physical pion mass, see Figures 2 and 3.
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Figure 2. Summary for the electric dipole polarizability of the proton αE1p (upper panel) and neutron
αE1n (lower panel). Theoretical predictions from chiral effective-field theories (EFT) and lattice QCD
are compared with extractions based on CS data. Note that the lattice QCD calculations are done at
unphysical pion masses. For the proton one observes a small tension between the dispersive approaches
to CS and the BχPT results.

It is worth mentioning that χPT can be used for calculating the proton-structure corrections to the
muonic-hydrogen spectrum. These corrections are not only relevant in the context of the proton-radius
puzzle [16,17], but also for the planned measurements of the muonic-hydrogen ground-state hyperfine
splitting [18–20]. The χPT is thusfar the only theoretical framework which can reliably compute the
polarizability effects in CS observables and, at the same time, in atomic spectroscopy. In this way,
a calculation which is validated on experimental data of CS and photoabsorption (through sum rules)
can be used to predict the effects in muonic hydrogen [21–23].

This mini-review is by no means comprehensive. A more proper review can be found in [24],
whereas here I primarily provide an update on the nucleon polarizabilities. For the reader interested
in the update only, I recommend to skip to Section 4 where a description of all summary plots is given.
A recent theoretical discussion of nucleon polarizabilities in χPT and beyond can be found in [25].
Other commendable reviews include Guichon and Vanderhaeghen [26] or Fonvieille et al. [27] (VCS
and generalized polarizabilities), Drechsel et al. [28] or Pasquini and Vanderhaeghen [29] (dispersion
relations for CS), Pascalutsa et al. [30] (∆(1232) resonance), Phillips [31] (neutron polarizabilities),
Griesshammer et al. [32] (χEFT and RCS experiments), Holstein and Scherer [33] (pion, kaon, nucleon
polarizabilities), Geng [34] (BχPT), Pascalutsa [9] (dispersion relations), and Deur et al. [35] (nucleon
spin structure). A textbook introduction to χPT can be found in [36].
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Figure 3. Summary for the magnetic dipole polarizability of the proton βM1p (upper panel) and
neutron βM1n (lower panel). Theoretical predictions from chiral EFT and lattice QCD are compared
with extractions based on CS data. Note that the lattice QCD results are extrapolated to the physical
pion mass. For the proton one observes a small tension between the dispersive approaches to CS and
the BχPT results.

The paper is organized as follows. In Sections 2 and 3, I briefly describe the χPT framework and
the CS formalism. In Section 4, I summarize recent χPT results for the nucleon polarizabilities and
compare to empirical and lattice QCD evaluations.

2. Baryon Chiral Perturbation Theory

The low-energy processes involving a nucleon, such as πN scattering or CS off the nucleon, can be
described by SU(2) baryon chiral perturbation theory (BχPT), which is the manifestly Lorentz-invariant
variant of χPT in the single-baryon sector [4,37,38]. To introduce it, I will start in Section 2.1 with
the basic EFT including only pions and nucleons. Then, in Section 2.2, I will discuss different ways
(counting schemes) for incorporation of the lowest nucleon excitation—the ∆(1232) resonance—into the
χPT framework. In Section 2.3, I will show how the LECs can be fit to experimental data and discuss the
predictive power of χPT for CS. In Section 2.4, I introduce the heavy-baryon chiral perturbation theory
(HBχPT) and point out how its predictions differ from BχPT for certain polarizabilities. For more
details on BχPT for CS, I refer to the following series of calculations; RCS [39–41], VCS [42], and
forward VVCS [43–45].
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2.1. BχPT with Pions and Nucleons

Consider the basic version of SU(2) BχPT including only pion and nucleon fields [4]: scalar
iso-vector πa(x) and spinor iso-doublet N (x). Expanding the EFT Lagrangian [4] to leading orders in
pion derivatives, mass, and fields, one finds (see, e.g., in [46])

L(1)N = N
(

/D−MN
)
N − gA

2 fπ
N τa

(
/Dabπb

)
γ5N , (5a)

L(2)π =
1
2

(
Dab

µ πb
)(

Dµ
acπc

)
− 1

2
m2

ππaπa, (5b)

with the covariant derivatives:

Dab
µ πb = δab∂µπb + ieQab

π Aµπb, (6a)

DµN = ∂µN + ieQN AµN +
i

4 f 2
π

εabcτaπb(∂µπc), (6b)

the photon vector field Aµ(x), and the charges:

Qab
π = −iεab3, (7a)

QN = 1
2 (1 + τ3). (7b)

Here, τa are the Pauli matrices, γ5 = iγ0γ1γ2γ3 are the Dirac matrices, εijk is the Levi–Cevita
symbol, and all other parameters are introduced in Table 1.

Table 1. Low-energy constants (LECs) and other parameters and the orders at which they appear in
the chiral expansion when employing the low-energy δ-expansion counting scheme.

Order in
Chiral Expansion χPT Parameters Values Sources

fine-structure constant α = e2/4π ' 1/137.04O(p2) nucleon mass MN 938.27 MeV
nucleon axial charge gA 1.27 neutron decay n→ p e− ν̄e [47]
pion decay constant fπ 92.21 MeV pion decay π+ → µ+νµ [47]O(p3)

pion mass mπ 139.57 MeV
P33 partial wave in πN scatteringN -to-∆ axial coupling hA 2.85 and ∆(1232) decay width [30,48,49]

∆(1232) mass M∆ 1232 MeV
magnetic (M1) coupling gM 2.97

electric (E2) coupling gE −1.0

O(p4/∆)

Coulomb (C2) coupling gC −2.6

pion electroproduction
e−N → e−Nπ [50]

The key ingredient for the development of χPT as a low-energy EFT of QCD was the observation
that the pion couplings are proportional to their four-momenta [2–4]. Therefore, at low momenta the
couplings are weak and a perturbative expansion is possible. This chiral expansion is done in powers
of pion momentum and mass, commonly denoted as p, over the scale of spontaneous chiral symmetry
breaking, ΛχSB ∼ 4π fπ ≈ 1 GeV. Therefore, one expects that χPT provides a systematic description
of the strong interaction at energies well below 1 GeV. Considering only pion and nucleon fields,
the chiral order O(pn) of a Feynman diagram with L loops, Nπ (NN) pion (nucleon) propagators,
and Vk vertices from k-th order Lagrangians (e.g., k = 1: γNN interaction from Equation (5a) and
k = 2: γππ interaction from Equation (5b)) is defined as [4]

n = 4L− 2Nπ − NN + ∑
k

k Vk. (8)
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In the case of CS, the low-energy scale p also includes the photon energy ν and virtuality Q,
which therefore should be much smaller than 1 GeV. However, the presence of bound states or low-lying
resonances may lead to a breakdown of this perturbative expansion. For example, in π–π scattering
the limiting scale of the perturbative expansion is set by the σ(600) and ρ(775) mesons [51,52]. In the
single-nucleon sector, the breakdown scale is set by the excitation energy of the first nucleon resonance,
the ∆(1232) isobar. That is unless the ∆(1232) is included explicitly in the effective Lagrangian.

2.2. Inclusion of the ∆(1232) and Power Counting

The ∆(1232) resonance as the lightest nucleon excitation has an excitation energy

∆ = M∆ −MN ' 293 MeV, (9)

which is of the same order of magnitude as the pion mass. In the following, it will be included as an
explicit degree of freedom: vector-spinor iso-quartet ∆µ(x). The relevant Lagrangians read [46,50,53]:

L(1)π∆N =
ihA

2 fπ M∆
N Taγµνλ

(
Dµ∆ν

) (
Dab

λ πb
)
+ h.c., (10a)

L(2) non−minimal
γN∆ =

3e
2MN(MN + M∆)

[
N T3

{
igM(∂µ∆ν)F̃µν − gEγ5(∂µ∆ν)Fµν

+i
gC

M∆
γ5γα(∂α∆ν − ∂ν∆α)∂µFµν

}
+ h.c.

]
, (10b)

with the covariant derivative

Dµ∆ν = ∂µ∆ν + ieQ∆ Aµ∆ν +
i

2 f 2
π

εabc Taπb(∂µπc), (11)

and the charge
Q∆ = 1

2 (1 + 3T3). (12)

Here, h.c. stands for the hermitian conjugate, γµν = − i
2 εµναβγαγβγ5 and γµνα = −iεµναβγβγ5

are Dirac matrices with ε0123 = 1, Fµν = ∂µ Aν − ∂ν Aµ is the electromagnetic field strength tensor,
F̃µν = εµνρλ∂ρ Aλ is its dual, and Ta (Ta) are the isospin 1/2 (3/2) to 3/2 transition matrices. The latter
commute with the Dirac matrices. The superscripts of the Lagrangians in Equations (5) and (10)
denote their order as reflected by the number of comprised small quantities: pion mass, momentum,
and factors of e. Inclusion of the ∆(1232) introduces the excitation energy ∆ as another small scale,
which has to be considered when defining a power-counting for the perturbative χPT expansion.

There are two prominent counting schemes for χPT with explicit inclusion of the ∆(1232).
For simplicity, they both deduce a single expansion parameter from the two involved small mass
scales: ε = mπ/ΛχSB and δ = ∆/ΛχSB. In the ε-expansion (small-scale expansion), it is assumed that
ε ∼ δ [54], while in the δ-expansion one assumes ε ∼ δ2 with ε� δ [55]. In this way, the δ-expansion
defines a hierarchy between the two mass scales. Consequently, it defines two regimes where the
∆(1232) contributions need to be counted differently:

• low-energy region: p ∼ mπ ;
• resonance region: p ∼ ∆.

This makes sense as the ∆(1232) is expected to be suppressed at low energies and dominating in
the resonance region. The chiral orderO(pnδ) of a Feynman diagram with N1∆R (N1∆I) one-∆-reducible
(one-∆-irreducible) propagators is in the δ-expansion defined as

nδ =

{
n− 1/2 N∆ , p ∼ mπ ,

n− 3N1∆R − N1∆I , p ∼ ∆,
(13)
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where
N∆ = N1∆R + N1∆I. (14)

An extensive review on the electromagnetic excitation of the ∆(1232) resonance with more details
on the formulation of the extended χPT framework and the chiral expansion in the resonance region
can be found in [30]. As we will see in Section 4, BχPT calculations based on the ε [56] and the δ [43,45]
counting schemes give significantly different predictions for the longitudinal-transverse polarizability
of the proton shown in Figures 4 (upper panel) and 5.

Figure 4. Summary for the longitudinal-transverse polarizability of the proton δLTp (upper panel) and
neutron δLTn (lower panel). Theoretical predictions from chiral EFT are compared to the MAID unitary
isobar model.
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Figure 5. Longitudinal-transverse spin polarizability, Equation (38), for the proton (left) and neutron
(right) as function of Q2. The black dotted line is the MAID model [57,58]; note that for the proton
we use the updated estimate from the work in [28] obtained using the π, η, ππ channels. The red line
shows the leading-order BχPT result. The blue band is the O(p4/∆) BχPT result from the work in [45].
The gray band is the O(ε3 + p4) BχPT result from the work in [59]. The orange dot-dashed and purple
short-dashed lines are the O(p3) and O(p4) HB results from the work in [60]. The experimental points
for the neutron are from the work in [61] (blue diamonds).

2.3. Low-Energy Constants and Predictive Orders

At any given order in the chiral expansion, the divergencies of the EFT are absorbed by
renormalization of a finite number of LECs. To match χPT to QCD as the fundamental theory of the
strong interaction, the renormalized LECs need to be fitted to experimental or lattice data. Thereby,
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it is important that the LECs are constrained to be of natural size. Take, for instance, the fifth-order
forward spin polarizability (in units of 10−4 fm6) [45]:

γ̄0p = 1.12(30) ≈ 2.08 (πN loop)− 0.96 (∆ exchange)− 0.01 (π∆ loop), (15a)

γ̄0n = 1.95(30) ≈ 2.92 (πN loop)− 0.96 (∆ exchange)− 0.01 (π∆ loop), (15b)

also shown in Figure 6. The next-to-leading-order effect of the ∆(1232) is two to three times smaller
than the leading-order effect of the pion cloud. This is consistent with estimates from power counting,
according to which each subleading order is expected to be suppressed with respect to the previous
one by a factor of ∼ ∆/MN ∼ 1/3. Therefore, implementing this naturalness allows to estimate the
uncertainty due to neglect of higher-order effects.

Figure 6. Summary for the fifth-order forward spin polarizability of the proton γ̄0p (upper panel)
and neutron γ̄0n (lower panel). Theoretical predictions from chiral EFT are compared to empirical
evaluations of the fifth-order forward spin polarizability sum rule (36) at the real-photon point and the
MAID unitary isobar model.

The LECs entering a next-to-next-to-leading-order BχPT calculation of low-energy CS in the
δ-expansion are fπ , gA, hA, gM, gE, and gC. They are listed in Table 1 together with the experiments
used to constrain their values. As one can see, BχPT has “predictive power” for low-energy CS up
to and including O(p4/∆) because all relevant LECs are matched to processes other than CS. This
makes χPT the perfect tool to study the low-energy structure of the nucleon as encoded in CS and the
associated polarizabilities. Starting from O(p4), LECs need to be fitted to the CS process as well, for
instance through the Baldin sum rule, as done in [32,44,62–66].

2.4. Heavy-Baryon Expansion

The theory of HBχPT was first introduced in [67], and later applied to CS and polarizabilities [68],
including also the effect of the ∆(1232) [32,60,69–73]. The results of HBχPT can be recovered from the
BχPT results by expanding in powers of the inverse nucleon mass. HBχPT calculations tend to fail
in describing the Q2 evolution of the generalized nucleon polarizabilities [44,45]. Moreover, for the
polarizabilities at the real-photon point (Q2 = 0), the heavy-baryon expansion can give significantly
different predictions. Consider, for instance, the nucleon dipole polarizabilities. The BχPT prediction
(in units of 10−4 fm3) [41]:

αE1p = 6.9 (πN loop)− 0.1 (∆ exchange) + 4.4 (π∆ loop) = 11.2± 0.7, (16a)

βM1p = −1.8 (πN loop) + 7.1 (∆ exchange)− 1.4 (π∆ loop) = 3.9± 0.7, (16b)



Symmetry 2020, 12, 1407 9 of 25

is in good agreement with empirical evaluations, see Figures 2 and 3. In HBχPT, however, the ∆(1232)
contributions to the nucleon polarizabilities turn out to be large [70] and need to be canceled by
promoting the higher-order [O(p4)] counterterms δα and δβ (in units of 10−4 fm3) [71]:

αE1p(HB) = 11.87 (πN loop) + 0 (∆ exch.) + 5.09 (π∆ loop)− (5.92± 1.36) (δα)
= 11.04± 1.36 ,

(17a)

βM1p(HB) = 1.25 (πN loop) + (11.33± 0.70) (∆ exch.) + 0.86 (π∆ loop)
−(10.68± 1.17) (δβ)

= 2.76∓ 1.36,
(17b)

at the expense of violating the naturalness requirement, see also in [32]. This can be seen from
the dimensionless LECs associated to δα and δβ, g117 = 18.82± 0.79 and g118 = −6.05∓ 0.66 [71],
that should be of O(1) to be consistent with estimates from power counting. This problem is discussed
at length in [40,74].

3. Compton Scattering Formalism

The CS process, shown in Figure 1, gives the most direct access to the nucleon polarizabilities.
Of interest are the following kinematic regimes, described by the four-momenta of incoming (outgoing)
photons q(q′) and nucleons p(p′).

• Real Compton scattering (RCS): q2 = q′ 2 = 0;
• Virtual Compton scattering (VCS): q2 = −Q2 < 0 and q′ 2 = 0;
• Forward doubly-virtual Compton scattering (VVCS): q = q′ (thus p = p′) and q2 = −Q2 < 0.

In general kinematics (p2 = p′ 2 = M2
N , q2 6= q′ 2), the CS amplitude can be described by

18 independent tensor structures. For VCS one needs 12 independent tensor structures; for RCS one
needs six independent tensor structures [75,76]. In the forward limit, this reduces to four independent
tensor structures for virtual photons and two independent tensor structures for real photons.

Splitting into spin-independent (symmetric) and spin-dependent (antisymmetric) parts,
the forward VVCS decomposes into four scalar amplitudes Ti(ν, Q2) and Si(ν, Q2):

Tµν(q, p) =
[

Tµν
S + Tµν

A

]
(q, p), (18a)

with

Tµν
S (q, p) = −gµν T1(ν, Q2) +

pµ pν

M2
N

T2(ν, Q2), (18b)

Tµν
A (q, p) = − 1

MN
γµναqα S1(ν, Q2) +

Q2

M2
N

γµνS2(ν, Q2), (18c)

with ν the photon lab-frame energy, Q2 the photon virtuality, and terms which vanish upon
contraction with the photon polarization vectors omitted. For real photons, the following two scalar
amplitudes survive,

f (ν) =
1

4π
T1(ν, 0), g(ν) =

ν

4πMN
S1(ν, 0). (19)

Constraints relating the different kinematic regimes (RCS, VCS, and forward VVCS) are discussed
in [77–79] for the unpolarized and polarized CS, respectively. Here, the focus is on RCS and
forward VVCS.

The off-forward RCS is conveniently described by the covariant decomposition [55]:

ū ′(ε′ · T · ε)u = 4πα ÂT(s, t) ū ′Ôµνu E ′µEν, (20a)
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with the overcomplete set of eight tensors:

Â(s, t) =
{
A1, · · · , A8

}
(s, t), (20b)

Ôµν =
{
− gµν, qµq′ ν, −γµν, gµν(q′ · γ · q), qµq′αγαν − γαµqαq′ν, qµqαγαν − γαµq′αq′ν,

qµq′ ν(q′ · γ · q), −iγ5εµναβq′αqβ

}
, (20c)

Eµ = εµ −
P · ε
P · q qµ, E ′µ = ε′µ −

P · ε′
P · q q′µ, Pµ = 1

2 (p + p′)µ, P · q = P · q′, (20d)

and the incoming (outgoing) photon polarization vector ε(′) and Dirac spinor u(′). Alternatively,
one can choose the non-covariant decomposition with the minimal set of six tensors:

ū ′(ε′ · T · ε)u = 8παMN ÂT(s, t) χ ′ε′i Ôij ε j χ, (21a)

with the incoming (outgoing) Pauli spinor χ(′) and the scalar complex amplitudes [80]:

Â(s, t) =
{

A1, · · · , A6
}
(s, t), (21b)

Ôij =
{

δij, nin′j, iεijkσk, δijiεklmσkn′lnm, iεklmσk(δilnmn′j − δjlnin′m),

iεklmσk(δiln′mn′j − δjlninm)
}

, (21c)

where ~n(′) is the direction of the incoming (outgoing) photon, σk are the Pauli matrices and δij is
the Kronecker delta. The scalar amplitudes A1,...,8 are related to the scalar amplitudes A1,...,6 in the
following way [62]:

A1 =
εB

MN
A1 +

ωBt
2MN

A4, (22a)

A2 =
εBω2

B
MN

A2 +
ω3

B
MN

(
A5 +A6 − 1

2 tA7
)

, (22b)

A3 =
εB

MN
A3 −

M2
Nη t

4M2
N − t

(
A5 +A6

2MN(εB + MN)
−A7

)
− ωBt

2MN
A8, (22c)

A4 = ω2
BA4, (22d)

A5 = ω2
BA5 +

ω2
B

2MN(εB + MN)

[
1
2 A3 +

M2
Nη

4M2
N − t

(A5 +A6)
]
−ω2

B(ω
2
B + 1

2 t)A7 +
ω3

B
2MN

A8, (22e)

A6 = ω2
BA6 −

ω2
B

2MN(εB + MN)

[
1
2 A3 +

M2
Nη

4M2
N − t

(A5 +A6)
]
+ ω4

BA7 −
ω3

B
2MN

A8, (22f)

where

ωB =
s− u

2
√

4M2
N − t

, (23a)

εB =
1
2

√
4M2

N − t. (23b)

are the nucleon and photon energies in the Breit frame (~p′ = −~p ),

η =
M4

N − su
M2

N
, (24)

and s, t, and u are the usual Mandelstam variables.
According to the low-energy theorem of Low [81], Gell-Mann, and Goldberger [82], the leading

terms in a low-energy expansion of the RCS amplitudes are determined by charge, mass, and
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anomalous magnetic moment of the nucleon. At higher orders in the low-energy expansion, various
polarizabilities emerge. The low-energy expansion of the non-Born RCS amplitudes (denoted by an
overline, e.g., Ā1,...,6) reads as

αĀ1(ωB, t) = ω2
B
[
αE1 + βM1 + ω2

B (αE1ν + βM1ν)
]
+ 1

2 t
(

βM1 + ω2
BβM1ν

)
(25a)

+ ω4
B

1
12 (αE2 + βM2) +

1
2 t(4ω2

B + t) 1
12 βM2 +O(ω6

B), (25b)

αĀ2(ωB, t) = −ω2
B
(

βM1 + ω2
BβM1ν

)
+ ω4

B
1

12 (αE2 − βM2)− tω2
B

1
12 βM2 +O(ω6

B), (25c)

αĀ3(ωB, t) = −ω3
B
[
γE1E1 + γE1M2 + z (γM1E2 + γM1M1)

]
+O(ω5

B), (25d)

αĀ4(ωB, t) = ω3
B (γM1E2 − γM1M1) +O(ω5

B), (25e)

αĀ5(ωB, t) = ω3
B γM1M1 +O(ω5

B), (25f)

αĀ6(ωB, t) = ω3
B γE1M2 +O(ω5

B), (25g)

with z = cos θB = 1 + t/2ω2
B and θB the scattering angle in the Breit frame. The coefficients are given

in terms of static nucleon polarizabilities: electric dipole (αE1), magnetic dipole (βM1), quadrupole
(αE2, βM2), dispersive (αE1ν, βM1ν), and lowest-order spin polarizabilities (γE1E1, γM1M1, γE1M2, and
γM1E2), see Figures 2, 3, and 7–9, respectively. The latter combine into the forward (see Figure 10) and
backward spin polarizabilities:

γ0 = −γE1E1 − γM1M1 − γE1M2 − γM1E2, (26a)

γπ = −γE1E1 + γM1M1 − γE1M2 + γM1E2. (26b)

Figure 7. Summary for the quadrupole polarizabilities αE2p and βM2p of the proton. Theoretical
predictions from chiral EFT are compared with extractions based on CS data.
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Figure 8. Summary for the dispersive polarizabilities of the proton, αE1νp and βM1νp. Theoretical
predictions from chiral EFT are compared with extractions based on CS data. Note that
Pasquini et al. (2017) [83] presented the first extraction of the dispersive polarizabilities from proton
real Compton scattering (RCS) data below pion-production threshold.

Studying the forward RCS and VVCS is of advantage because of their accessibility through sum
rules. Based on the general principles of causality, unitarity and crossing symmetry, the forward
VVCS amplitudes can be expressed in terms of the nucleon structure functions by means of dispersion
relations and the optical theorem [28]:

T1(ν, Q2) = T1(0, Q2) +
32παMNν2

Q4

∫ 1

0
dx

x f1(x, Q2)

1− x2(ν/νel)2 − i0+
(27a)

= T1(0, Q2) +
2ν2

π

∫ ∞

νel

dν′

ν′

√
ν′ 2 + Q2 σT(ν

′, Q2)

ν′ 2 − ν2 − i0+
,

T2(ν, Q2) =
16παMN

Q2

∫ 1

0
dx

f2(x, Q2)

1− x2(ν/νel)2 − i0+
(27b)

=
2Q2

π

∫ ∞

νel

dν′
ν′ [σT + σL](ν

′, Q2)√
ν′ 2 + Q2(ν′ 2 − ν2 − i0+)

,

S1(ν, Q2) =
16παMN

Q2

∫ 1

0
dx

g1(x, Q2)

1− x2(ν/νel)2 − i0+
(27c)

=
2MN

π

∫ ∞

νel

dν′
ν′ 2
[Q

ν′ σLT + σTT
]
(ν′, Q2)√

ν′ 2 + Q2(ν′ 2 − ν2 − i0+)
,

νS2(ν, Q2) =
16παM2

N
Q2

∫ 1

0
dx

g2(x, Q2)

1− x2(ν/νel)2 − i0+
(27d)

=
2M2

N
π

∫ ∞

νel

dν′
ν′ 2
[

ν′
Q σLT − σTT

]
(ν′, Q2)√

ν′ 2 + Q2(ν′ 2 − ν2 − i0+)
,

with νel = Q2/2MN being the elastic threshold. Note that the structure functions f1, f2, g1, and g2

are functions of the Bjorken variable x = νel/ν and the photon virtuality Q2. They are related to the
photoabsorption cross sections σT , σL, σTT , and σLT measured in electroproduction, defined here with
the photon flux factor K(ν, Q2) =

√
ν2 + Q2 [84].

Performing low-energy expansions of the relativistic CS amplitudes [28,78,85] and combining
these with dispersion relations and the optical theorem leads to various sum rules for the polarizabilities.
A famous sum-rule example is the Baldin sum rule [7], allowing for a precise data-driven evaluation of
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the sum of electric and magnetic dipole polarizabilities, cf. Equations (2) and (3). It follows from the ν2

term in the low-energy expansion of the RCS amplitude f (ν):

f (ν) = − Z2α

MN
+ [αE1 + βM1] ν2 + [αE1ν + βM1ν + 1/12 (αE2 + βM2)] ν4 +O(ν6). (28)

Figure 9. Summary for the lowest-order spin polarizabilities γE1E1p, γM1M1p, γE1M2p, and γM1E2p

of the proton. Theoretical predictions from chiral EFT are compared with extractions based on CS
data. The experimental results are combinations of different beam asymmetry and double-polarization
observable measurements at MAMI and LEGS: Σ2x [86,87], Σ2z [88], and Σ3 [89,90]. Krupina et al. [91]
performed a partial-wave analysis (PWA) of proton RCS data below pion-production threshold.
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Figure 10. Summary for the forward spin polarizability of the proton γ0p (upper panel) and neutron
γ0n (lower panel). Theoretical predictions from chiral EFT are compared with empirical evaluations of
the forward spin polarizability sum rule (35) at the real-photon point.

The extension of the Baldin sum rule to finite momentum-transfers [28],

[αE1 + βM1] (Q2) =
1

2π2

∫ ∞

ν0

dν

√
1 +

Q2

ν2
σT(ν, Q2)

ν2 , (29)

defines the Q2 dependent sum of generalized dipole polarizabilities. Be aware that while the definitions
of the polarizabilities in the real-photon limit are unambiguous, the generalized polarizabilities
defined in VCS and forward VVCS can differ. As an example, one can consider the magnetic dipole
polarizability βM1(Q2), which for VCS is defined in Equation (B2b) of the work in [77], and for forward
VVCS could be defined either by generalizing the non-Born part of the subtraction function

T1(0, Q2)

4π
= βM1Q2 +O(Q4), (30)

but is usually understood as part of the generalized Baldin sum rule (29). A recent measurement of
the generalized αE1(Q2) and βM1(Q2) polarizabilities from VCS by the A1 Collaboration can be found
in [92].

The generalized fourth-order Baldin sum rule is defined as

M(4)
1 (Q2) =

1
2π2

∫ ∞

ν0

dν

√
1 +

Q2

ν2
σT(ν, Q2)

ν4 . (31)

It differs from the generalized Baldin sum rule (29) by the energy weighting of the total
photoabsorption cross section σT in the sum rule integral. In the real-photon limit, it is related
to a linear combination of the dispersive and quadrupole polarizabilities given by the ν4 term in
Equation (28) [93,94]:

M(4)
1 (0) = αE1ν + βM1ν +

1
12

(αE2 + βM2), (32)

see Figure 11.
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Figure 11. Summary for the fourth-order Baldin sum rule of the proton M(4)
1p (upper panel) and neutron

M(4)
1n (lower panel). Theoretical predictions from chiral EFT are compared with empirical evaluations

of the fourth-order Baldin sum rule (31) at the real-photon point.

Similarly, the low-energy expansion of the RCS amplitude g(ν):

g(ν) = −
ακ2

N
2M2

N
ν + γ0 ν3 + γ̄0 ν5 +O(ν6), (33)

allows to express the anomalous magnetic moment of the nucleon (κp ∼ 1.79, κn ∼ −1.91) and the
forward spin polarizabilities as sum rule integrals over the helicity-difference photoabsorption cross
section σTT , cf. Equation (27c). The Gerasimov–Drell–Hearn sum rule [95,96],

− α

2M2
Nκ2

N
=

1
2π2

∫ ∞

ν0

dν
σTT(ν)

ν
, (34)

has been experimentally verified for the nucleon by MAMI (Mainz) and ELSA (Bonn) [97,98]. The same
cross section input can be used to evaluate the forward spin polarizabilities at the real-photon point,
cf. Figures 6 and 10. Considering the extension to finite momentum-transfers, the generalized forward
spin polarizability reads [28]

γ0(Q2) =
1

2π2

∫ ∞

ν0

dν

√
1 +

Q2

ν2
σTT(ν, Q2)

ν3 , (35)

while the fifth-order generalized forward spin polarizability sum rule is given by

γ̄0(Q2) =
1

2π2

∫ ∞

ν0

dν

√
1 +

Q2

ν2
σTT(ν, Q2)

ν5 , (36)

see Figure 12 upper and lower panel, respectively.
The polarizabilities involving longitudinal photon polarizations are absent from RCS. They are

given as sum rule integrals over the longitudinal photoabsorption cross section σL, e.g., the longitudinal
polarizability [43]:

αL(Q2) =
1

2π2

∫ ∞

ν0

dν

√
1 +

Q2

ν2
σL(ν, Q2)

Q2 ν2 , (37)

cf. Figure 13, and the longitudinal-transverse cross section σLT , e.g., the longitudinal-transverse
polarizability [28]:

δLT(Q2) =
1

2π2

∫ ∞

ν0

dν

√
1 +

Q2

ν2
σLT(ν, Q2)

Q ν2 , (38)
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see Figures 4 and 5.
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corresponding to 68%degree-of-belief intervals and the thick dashed blue lines show our �-less
O(q4) calculations. The red loosely dashed lines represent the NLO B�PT calculation from [39]
with therederror bands. Theblack dash-dotted linepresentstheMAIDmodel predictionsfrom[43]
(proton) and [8] (neutron). The green double-dash-dotted line is the O(p4) calculation from [83].
Empirical data are: for �(p)0 from [10] (triangle) and [7] (squares); for �(n)0 from [11] (preliminary,
triangles), [8] (square) and [9] (diamonds); for �(n)LT from [8].
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Figure 12. Upper panel: Generalized forward spin polarizability, Equation (35), for the proton (left)
and neutron (right) as function of Q2. The black dotted line is the MAID model prediction [57,58,99],
which is taken from the works in [28] (proton) and [61] (neutron). The red line shows the leading-order
BχPT result. The blue band is the O(p4/∆) BχPT result from the work in [45]. The gray band is the
O(ε3 + p4) BχPT result from the work in [59]. The purple short-dashed lines is the O(p4) HB results
from in [60]; note that the corresponding proton curve is outside of the plotted range. The experimental
points for the proton are from the works in [100] (blue dots), [101] (purple square), and [102] (orange
triangle; uncertainties added in quadrature). The experimental points for the neutron are from the
works in [61] (blue diamonds) and [103] (green dots; statistical and systematic uncertainties added
in quadrature). Lower Panel: Fifth-order generalized forward spin polarizability, Equation (36), for
the proton (left) and neutron (right) as function of Q2. The black dotted line is the MAID model
prediction [104]. The experimental points for the proton are from the works in [101] (purple square)
and [105] (orange dot).

4. Nucleon Polarizabilities

In the following, I want to discuss the nucleon polarizabilities, focusing on new empirical
results from the last five years and comparisons to χPT predictions. References quoted in
the summary figures are: PDG [106], MAID [104], experiments [86–89,107,108], dispersion
relations [11,76,83,94,101,105,109,110], PWA [91], lattice QCD [111–116], HBχPT fit [62,64,66], BχPT
fit [63], HBχPT [73,94,117], BχPT δ-expansion [41,43–45] and BχPT ε-expansion [56,59].

Most recent HBχPT [32,62,64–66] and BχPT [39–45,63] calculations and fits of CS observables
employ the δ-expansion power counting. An exception are the works of Bernard et al. [56]
and Thürmann et al. [59]. As one can see from Figure 4 (upper panel), BχPT predictions for δLTp
within the δ-expansion [43,45] or the ε-expansion [56,59] deviate substantially, since they include the
∆(1232) in different ways. In the ε-expansion, the longitudinal-transverse polarizability receives a
large contribution from diagrams where the photons couple directly to the ∆(1232) inside a loop.
These diagrams are absent in the δ-expansion at O(p4/∆), thus, there the effect of the ∆(1232) is small
and agrees with the MAID model [104]. For the generalized longitudinal-transverse polarizability
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δLTp(Q2) a similar Q2 evolution is found in both power-counting schemes, see Figure 5 (left panel).
Therefore, the discrepancy found for the polarizability δLTp at the real-photon point continues as a
constant shift for all Q2 [45]. Another difference between the BχPT calculations [43,45,56,59] is the
implementation of the magnetic-dipoleN -to-∆ transition and the coupling gM [118]. This “δLT puzzle”
could soon be resolved by an empirical evaluation based on new data for the proton spin structure
function g2 from the Jefferson Lab “Spin Physics Program”. A preliminary analysis [119] favored the
δ-expansion power counting [45], just like the MAID model does, cf. Figures 4 and 5. Note that the
δ-expansion results in Refs. [43,45] are both O(p4/∆). They differ by an improved error estimate and
inclusion of the Coulomb coupling gC [45]. The ε-expansion results in Refs. [56,59] are O(ε3) and
O(ε3 + p4), respectively.

Similarly, we observe that the extensive set of empirical evaluations of the generalized forward
spin polarizability γ0(Q2) at Q2 < 0.3 GeV2 agrees perfectly with the δ-expansion prediction [45],
but differs from the ε-expansion prediction [56,59], cf. Figures 10 and 12 (upper panel). For the
higher-order analogue γ̄0(Q2), shown in Figure 12 (lower panel), the situation is less obvious. Only the
dispersive evaluations of γ̄0p at the real-photon point, cf. Figure 6, are in slight disagreement with the
O(p4/∆) prediction [45], while conform with the O(ε3 + p4) prediction [59].

The most studied polarizabilities are the electric and magnetic dipole polarizabilities, for which
the Particle Data Group publishes recommended values [106]. They are needed as input for
calculations of the proton-structure effects in the muonic-hydrogen Lamb shift from two-photon
exchange. Of particular importance is βM1p. It enters the T1(0, Q2) subtraction function (30),
which has to be modeled [120] or predicted within χPT [44,77,121] because it cannot be measured
in experiment or reconstructed from the unpolarized proton structure function f1 in the dispersive
approach, cf. Equation (27a). Recently, βM1p has therefore been extracted from the linear polarization
beam asymmetry,

Σ3 =
dσ|| − dσ⊥
dσ|| + dσ⊥

, (39)

measured for the proton by the A2 Collaboration [89] and LEGS [90]. Up toO(ν2), the beam asymmetry
Σ3 provides access to βM1 independent of αE1 [122]:

Σ3 = −
4MNω2

B cos θB sin2 θB

(1 + cos2 θB)2 α−1βM1. (40)

Presently, the extraction of βM1p from Σ3 [89] is not competitive with the standard dispersive
analyses of unpolarized CS cross sections. New high-precision measurements with significantly higher
statistics should change this.

Figure 13. Summary for the longitudinal polarizability of the proton αLp (upper panel) and neutron
αLn (lower panel). Theoretical predictions from chiral EFT are compared with the MAID unitary
isobar model.



Symmetry 2020, 12, 1407 18 of 25

Analyses of CS data with fixed-t unsubtracted dispersion relations can be found in [76,123], with
an update in [109]. Fixed-t subtracted dispersion relations are used in [94], and are applied together
with a bootstrap-based fitting technique in the recent work in [110]. Unfortunately, the dispersive and
χPT fits tend to disagree for certain polarizabilities, e.g., for αE1p and βM1p, cf. Figures 2 and 3 (upper
panels). The O(p4/∆) BχPT prediction [41] and the BχPT fit [63] of the proton dipole polarizabilities,
see Figures 2 and 3 (upper panels), are in good agreement. A HBχPT fit, which also includes the
lowest-order spin polarizabilities in Figures 9 and 10, agrees with the BχPT results [41,63] except for
γM1E2p. Recently, a model-independent PWA of proton RCS data below pion-production threshold has
shown [91] that the differences between dispersive approaches and BχPT results are due to inconsistent
experimental data subsets, rather than the “model-dependence” of the theoretical frameworks. In the
summary figures for the dipole and lowest-order spin polarizabilities, cf. Figures 2, 3, and 9 (upper
panels), I show the spread of results from their PWA fits of different data subsets [91]. Note that all fits
use the data-driven evaluations of the Baldin and forward spin polarizability sum rules from in [15,101]
as input. Their analysis shows that the difference of proton scalar polarizabilities is constrained to
a rather broad interval [91]: αE1p − βM1p = (6.9 . . . 10.9)× 10−4fm3. In [83], the dipole dynamical
polarizabilities entering the multipole decomposition of the scattering amplitudes were for the first
time extracted from proton RCS data below pion-production threshold. At lowest order, they are
related to the static dipole and dispersive polarizabilities, see Figure 8 (upper panel).

Both the partial-wave and the dispersive analysis in [83,91] come to the conclusion that
quantity and quality of the CS data has to increase for improved extractions of the nucleon
polarizabilities. A trend is going towards the measurement of beam asymmetries, such as Σ3,
and double-polarization observables:

Σ2x =
dσR

+x − dσL
+x

dσR
+x + dσL

+x
, (41a)

Σ2z =
dσR

+z − dσL
+z

dσR
+z + dσL

+z
, (41b)

where dσ
R(L)
+x and dσ

R(L)
+z are the differential cross sections for right (left) circularly polarized photons

scattering from a nucleon target polarized either in the transverse +x̂ direction or in the incident beam
direction +ẑ. Here, the advantage is that systematic uncertainties, e.g., variations in photon flux or
uncertainties in target thickness, are canceling out. Combining double-polarization observable and
beam-asymmetry measurements, one is sensitive to the lowest-order spin polarizabilities, see Figure 9.
For the extraction of the polarizabilities from the MAMI data for Σ2x [86,87], Σ2z [88] and Σ3 [89],
as well as the older LEGS data for Σ3 [90], one can use dispersive models [28,94,124] or χPT fits [40].

Besides experimental efforts, lattice QCD is making considerable progress. Most notably are the
lattice QCD predictions for βM1 with chiral extrapolation to physical pion mass [111,125], as well as
the plentiful results for αE1n [112,114–116]. By now, even direct lattice evaluations of the unpolarized
forward VVCS amplitudes became possible and lead to predictions of, e.g, the generalized Baldin sum
rule and its fourth-order variant in the region of Q2 ∈ {2, 10} GeV2 [126–128].

In Figures 4 and 6–13, one can see updated results from the recent O(p4/∆) BχPT prediction of
unpolarized VVCS [44], related to αL and M(4)

1 , and polarized VVCS [45], related to δLT , γ0, and γ̄0.
The latter could be compared to new results from the Jefferson Lab “Spin Physics Program” for the
proton spin structure functions g1 and g2, see for instance the E08-027 experiment [102] and the E97-110
experiment [129]. Note that the HBχPT predictions for M(4)

1 and αL shown in Figures 11 and 13 were
extracted from the VVCS amplitudes presented in Ref. [73], but are not quoted in the original work.

5. Conclusions and Outlook

The chiral EFT expansion for nucleon polarizabilities begins with inverse powers of pion mass
and other light scales, such as the nucleon-∆ mass difference. These inverse powers (1/mπ , 1/∆, etc.)
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along with the chiral logs constitute predictions of χPT. As such, the polarizabilities, and, in fact,
the entire process of CS at low energies, provide a testing ground for χPT.

Moreover, the interpretation of low-energy CS data and the extraction of nucleon polarizabilities
therefrom should rely on a systematic theoretical framework such as χPT. In what we have seen
thus far, χPT is quite successful in the prediction of nucleon polarizabilities. It can as well be used
to design “optimal” future experiments for improving the empirical determinations of nucleon
polarizabilities [130].

An alternative to χPT, in the field of nucleon CS, is provided by models based on fixed-t dispersion
relations [131,132]. The theoretical uncertainties of the dispersive approach are harder to understand,
but, at least within the quoted uncertainties, the extracted values of polarizabilities are overall
comparable to those found in χPT. However, a few discrepancies remain. For example, the tension
in the value of the proton magnetic dipole polarizability still persists, cf. “Disp. Rel.” vs. χPT results
in Figure 3 (upper panel). A model-independent PWA shows [91] that this discrepancy is likely
to be caused by the experimental CS database, rather than the differences between the theoretical
frameworks. With MAMI [133] and HIGS [134] experiments underway, the database will soon be
greatly improved. It is worth mentioning that MAMI is also finalising a program to measure the CS
double-polarization observables (Σ2x, Σ2z) which will lead to an improved extraction of proton spin
polarizabilities [86–88].

Even among the various χPT calculations there are significant discrepancies that need to be
understood. The differences between the heavy-baryon (HBχPT) and the Lorentz-invariant covariant
(BχPT) results are not difficult to track. However, differences among various BχPT calculations are
more troublesome. A prominent example is the longitudinal-transverse polarizability of the proton
(upper panel of Figure 4 and left panel of Figure 5), where the δ- and ε-expansion BχPT calculations are
different by about a factor of 2. This “δLT puzzle” could soon receive an experimental resolution, when
the long-promised data from Jefferson Lab “Spin Physics Program” [102,129,135] on the proton spin
structure function g2 will be published [119]. Besides the polarizabilities, the Gerasimov–Drell–Hearn
sum rule for the neutron will be verified by the E97-110 experiment using a helium-3 target [136].

In the mean time, lattice QCD calculations of nucleon polarizabilities are advancing towards the
physical pion mass. Until now, however, χPT has been used to extrapolate the lattice results to the
physical mass [111,113]. A significant progress has recently been achieved in calculating the proton
polarizabilities [111,114], and in direct calculations of the spin-independent forward VVCS [126–128].

In the next few years, one can expect a lot of progress in this field, mainly due to the upcoming
data from MAMI, HIGS, and Jefferson Lab. New χPT and lattice QCD calculations will certainly
continue to advance and will, hopefully, bring some clarity on the aforementioned discrepancies.
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BχPT Baryon chiral perturbation theory
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