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5Dublin Institute for Advanced Studies, Dublin 4, Ireland
∗To whom correspondence should be addressed; E-mail:

christian.wessler@psi.ch

1



Supplementary Note 1. CRYSTAL STRUCTURE

YbBr3 crystallizes with the BiI3 layer structure in the rhombohedral space

group R3̄ (148) with lattices parameters of a = 6.97179(18) Å and c =

19.1037(7) Å at room temperature. The lattice parameters are in good agree-

ment with powder1 and crystal2 diffraction data found in literature. The unit

cell contains six Yb3+ ions on site (6c) at (0, 0, z), (0, 0, z) + (2/3, 1/3, 1/3)

and (0, 0, z) + (1/3, 2/3, 2/3) with z = 0.1670(2). The Yb ions have C3

point symmetry and form two-dimensional (2D) honeycomb lattices perpen-

dicular to the c-axis, see Fig. 1. Yb3+ has a distorted octahedral coordination

by Br− ions which are located on site (18f) at (x, y, z) with x=0.3331(5),

y=0.3131(5), and z=0.08336(15). Surprisingly, the distance between Yb3+-

Br− varies by less than 10−2 Å, however the Br−-Yb3+-Br− bond angles differ

significantly between 87.3◦ and 91.1◦. The crystallographic parameters de-

termined on HRPT are summarized in Supplementary Table 1.

Name x y z occ.

Yb1 0 0 0.33289(21) 0.317(3)
Yb2 0 0 0 0.009(0)
Br 0.35362(57) 0.00022(60) 0.08325(15) 1

Supplementary Table 1: Structural parameters of YbBr3 determined on HRPT
at room temperature
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Supplementary Note 2. CRYSTAL ELECTRIC FIELD (CEF)

The electrostatic potential originating from the ions surrounding the Yb3+

ion can be modeled with Stevens operators

HCEF =
∑
l,m

Bm
l O

m
l

with Bm
l = γml θl and θl the Stevens coefficients. For the C3 point group

symmetry of the Yb site only the parameters3 B0
2 , B

0
4 , B

±3
4 , B0

6 , B
±3
6 , B±6

6 are

non-zero. From the inelastic neutron scattering measurement we determined

3 CEF excitations at E1 = 14.5 meV, E2 = 25 meV and E3 = 29 meV. We

first used the susceptibility χ(T ) for the determination of the CEF Hamilto-

nian. From a least-square fit to χa and χc where a and c denote the crystal-

lographic axis we obtain γ02 = -5.14 meV, γ04 = -0.59 meV, γ+3
4 = 57.43 meV,

γ−3
4 = 51.31 meV, γ06 = 6.09 meV, γ+3

6 = 50.21 meV, γ−3
6 = 55.56 meV, γ+6

6

= 33.9 meV, γ−6
6 = 42.4 meV. In agreement with the Kramers theorem the

CEF splits the J = 7/2 multiplet of the Yb3+ ion into 4 doublets. The calcu-

lated CEF-levels are at 15.16 meV, 24.75 meV, and 28.88 meV, respectively.

From a subsequent fit of the inelastic neutron data we obtain very similar

values, γ02 =-6.49 meV, γ04 = -0.51 meV, γ+3
4 =58.53 meV, γ−3

4 =52.12 meV,

γ06 = 6.01 meV, γ+3
6 = 48.11 meV, γ−3

6 = 56.30 meV, γ+6
6 = 33.21 meV,

γ−6
6 = 41.12 meV. We show in Supplementary Fig. 1 a comparison between

calculated and observed neutron scattering intensities. We point out that

the first excited CEF-level has a double-peak structure in YbBr3 that is not

explained by our model. It also resembles the CEF levels4 of YbCl3 and
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thus this issue requires further investigation. Nevertheless the CEF-model

presented here provides an adequate description of the temperature depen-

dence of the static susceptibility. In addition we performed a point charge

calculation based on the program multiX.5 In agreement with the suscepti-

bility measurements, calculations show that at high temperatures anisotropy

is small in YbBr3 with easy-plane anisotropy developing below T = 50 K. At

T = 4 K, we obtain χa ≈ 1.3χc.

Supplementary Fig. 1 | Yb3+ crystal electric field in YbBr3. Crystal
electric field (CEF) excitations measured by inelastic neutron scattering. The
solid line is the calculated intensity. Error bars are standard deviations.
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Supplementary Note 3. MAGNETIC EXCITATIONS

Because of the large separation between the ground-state and the first CEF

doublet, the magnetic properties of YbBr3 can be approximated by a spin S =

1/2. Choosing a local coordinate frame with the ζ-axis oriented along a given

spin direction, the non-zero elements of the single-ion susceptibility matrix

are χξξ0 (ω) = χηη0 (ω) and χξη0 (ω) = −χηξ0 (ω) which correspond to excitations

transverse to the (local) spin direction. Within mean-field approximation,

χξξ0 (ω) =
1

2

∆

∆2 − (ω + iε)2
(1)

χξη0 (ω) =
i

2

ω + iε

∆2 − (ω + iε)2
, (2)

with ∆ ≡ ∆i = −〈Sζ〉
∑

j Jζζ(i, j) the local field acting on a given Yb mo-

ment with J defined in Eq. (1) and ε the finite line width of the excitations.

Within linear spin-wave theory, the dipole-dipole interactions induce a gap

in the spin-wave dispersion.9,10 With a Yb magnetic moment of 2 µB, the

dipolar interactions produce a spin gap at the zone center ∼ 200 µeV. The

easy-plane anisotropy favors alignment of the spins in the hexagonal plane.

The spin gap opened by Hdip is reduced by the easy-plane anisotropy. At

gcrit ∼ 0.985 the spin gap is minimal and below that value the spins rotate

into the basal plane, see Supplementary Fig. 2. The easy-plane anisotropy

lifts the degeneracy of the spin wave branches at the zone center and the

splitting increases with increasing anisotropy.
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Supplementary Fig. 2 | Dependence of the energy gap as a function
of easy-plane anisotropy. Above gzz/gxx = 0.985 = gcrit, the calculated
branches ω1(q) and ω2(q) are degenerate while for gzz/gxx < gcrit the two
spin-wave branches split. All points are calculated with a precision of ∼
0.005 meV. The magnetic configurations shown in the figure correspond to a
Néel antiferromagnet with spins aligned along the c-axis for gzz/gxx > 0.985
and in the hexagonal plane for gzz/gxx < 0.985.

We have also simulated the two-magnon scattering expected for a Heisenberg

Hamiltonian11 as shown in Supplementary Fig. 3. for the the (1,0,0) Brlllouin

zone. Our calculations show a broad continuum extending up to twice the

maximum of the spin wave excitations. In contrast to our observations,

the two-magnon continuum is present in the complete Brillouin zone and is

strongest close to the zone center.
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Supplementary Fig. 3 | Calculated two-magnon cross-section for a
Heisenberg Hamiltonian. An arbitrary cutoff is introduced in the disper-
sion of the spin-waves to avoid divergence of the two-magnon cross-section
at the zone center.

Supplementary Note 4. MAGNETIC GROUND-STATE

In mean field theory, the classical ground-state is given by the eigenvectors

of the largest eigenvalue λ (q) of the Fourier transform of the interaction

matrix M(q).6–8 Based on the Hamiltonian Hh +Hdip, λ (q) has a maximum

at Q0 = (0,0,0) which agrees with the diffuse scattering observed in YbBr3

(see Fig. 2a). We find that the dipolar energy becomes independent of the

distance between the Yb-planes for a lattice parameter c > 12 Å, which
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shows that the 2D limit is reached in YbBr3 and inter-layer interactions can

be neglected.

Supplementary Note 5. MAGNETIC SUSCEPTIBILITY

The temperature dependence of the static susceptibility χ is shown in Fig. 1c

for magnetic field orientations in-plane (a-axis) and out-of-plane (c-axis).

χT values (not shown) increase with temperature and do not saturate up

to 300 K. The values at 300 K are 2.282 and 2.687 cm3K/mol along the a-

and c-axes, respectively. The average of 2.417 cm3K/mol is slightly below

the expectation value of 2.572 cm3K/mol for the 2F7/2 ground-state of Yb3+.

At lower temperature a maximum in the χ versus T curves is observed at

T = 2.75 K. We have calculated the temperature dependence of the static

susceptibility for an Yb6 honeycomb with the exchange parameters deter-

mined from the spin-wave analysis and easy-plane anisotropy parameters

ga/gc = 1.25. We find that the susceptibility has a broad maximum around

T ' 4 K and reproduces the experimental χ (T) above 5 K well, as shown

in Supplementary Fig. 4.
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Supplementary Fig. 4 | Calculated susceptibility for a Yb6 hex-
amer. The measured low-temperature magnetic susceptibility is shown to-
gether with the calculation (solid lines) for a single plaquette with S = 1/2,
and the Hamiltonian Hh + Hdip of the main text. Error bars are standard
deviations.
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