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Abstract 
Modeling the joint distribution of extreme events at multiple 
locations is a challenging task with important applications. In 
this study, we use max-stable models to study extreme daily 
precipitation events in Switzerland. The non-stationarity of the 
spatial process at hand involves important challenges, which 
are often dealt with by using a stationary model in a so-called 
climate space, with well-chosen covariates. Here, we instead 
choose to warp the weather stations under study in a latent 
space of higher dimension using multidimensional scaling 
(MDS). Two methods are proposed to define target dissimilarity 
matrices, based respectively on extremal coefficients and on 
pairwise likelihoods. Results suggest that the proposed 
methods allow capturing complex spatial dependences of 
spatial extreme precipitations, enabling in turn to reliably 
extrapolate functionals such as extremal coefficients. 

Keywords: Extremal coefficient, Extreme value theory, Spatial extremes 

1 Introduction 

Understanding the joint distribution of extremes at different locations is a 

challenging problem with important stakes. In particular, extreme rainfall can 

result in damage due to extensive overland flow and cause natural disasters 

such as mudslides (Guzzetti et al., 2008) or floods (Froidevaux et al., 2015). 

These rainfall events typically affect wider areas and are spatially dependent. 

Spatial models for extremes (see, Davison et al. (2019) for a recent review) have 

received particular attention in the last few years, through the use of max-stable 

process modeling (De Haan, 1984; Smith, 1990; Schlather, 2002; Kabluchko 

et al., 2009). Although statistical inference is known to be challenging (Bacro and 

Gaetan, 2014), max-stable processes have been used for spatial modeling of 

extreme temperatures (Davison and Gholamrezaee, 2012), winds (Engelke 

et al., 2015), precipitation (Smith and Stephenson, 2009; Padoan 

et al., 2010; Huser and Davison, 2014; Shang et al., 2015) and snow depths 

(Blanchet and Davison, 2011; Gaume et al., 2013). The theory of max-stable 

processes generalizes (Ribatet, 2013) the now well-established univariate 
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extreme value theory (Coles, 2001). Although other approaches exist for 

constructing spatial models for extremes (see, Davison et al. (2012) for a review), 

this work focuses on the joint distributions of extremes through max-stable 

processes. Of the possible choices for max-stable processes, we chose to mainly 

focus on Brown-Resnick models (Kabluchko et al., 2009; Davison et al., 2012). 

Max-stable models are often calibrated in a so-called climate space (see, 

Blanchet and Davison (2011) and references therein), which is a parametric 

transformation of the space of spatial coordinates with additional well-chosen 

covariates. This approach is used in, e.g., Cooley et al. (2007); Blanchet and 

Davison (2011) and has been shown to improve the fits compared to models that 

are merely calibrated in the 2 or 3-dimensional space of spatial coordinates. The 

use of additional covariates can be seen as a solution to deal with non-

stationarity. Indeed, the dependence between extremes often cannot be seen as 

a simple function of the Euclidean distance between the stations in the 

(longitude, latitude) space or the (longitude, latitude, elevation) space, even if 

some geometrical anisotropy is added. Frei and Schär (1998) and Fukutome 

et al. (2015) have shown that the climatological spatial distribution of both mean 

and extreme precipitation in Switzerland is not a simple function of height and 

location because of slope and shielding effects. An example event is presented 

in Rossler et al. (2014), where the amount of precipitation falling on the north- 

and south-facing slope of a valley differed by a factor of three due to local 

circulation effects. 

Overall, it appears that max-stable process modelling is at the same time 

enjoying solid theoretical foundations and posing severe implementation 

challenges. The fact that likelihoods are typically intractable, and that surrogate 

criteria such as pairwise log-likelihoods are numerically optimized instead, 

constitutes a substantial limitation. Furthermore, even when augmenting the 

geographical space using the climate space approach of Blanchet and 

Davison (2011), the model expressiveness may be insufficient to capture 
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complex dependency patterns such as reflected by extremal coefficients 

estimated from data by means of an F-madogram. This can be seen on the 

upper panel of Figure 1, where the so-called classical model delivers extremal 

coefficient isolines (upper right graph) that strongly differ from the ones estimated 

by F-madogram and interpolated (upper left graph). Note that while this example 

focuses on one arbitrary reference station (Aarberg), 219 stations are considered 

in our study, as precised below. Our main contribution is to introduce two 

methods that leverage multi-dimensional scaling and specificities of the Brown-

Resnick model in order to better reproduce, and eventually extrapolate, complex 

dependency patterns such as illustrated here. The bottom panel of Figure 1 

displays the extremal coefficient maps returned by our methods. 

In our two proposed methods, we choose to deal with non-stationarity by using a 

stationary model in a different space. Instead of a climate space however, we 

rely on a latent space built non-parametrically in which the different stations 

under study are warped. We propose two different model fitting approaches, both 

of which use multidimensional scaling (MDS) to compute the coordinates of the 

stations in the latent space, yet with two different rationales regarding the target 

dissimilarity matrix. In the first method, the target dissimilarity matrix is 

constructed based on estimated extremal coefficients and on links between 

extremal coefficients, covariances, and distances under a Brown-Resnick model 

with a family of isotropic kernels monotonically decreasing with respect to 

Euclidean distance. A similar setting is employed in method 2, yet with target 

covariance values steeming from considerations on pairwise log-likelihoods 

rather than inherited from estimated extremal coefficients. 

Max-stable models and MDS are both well-established concepts. The novelty of 

this work lies in the way we use MDS to produce new non-stationary max-stable 

model fitting approaches. In non-extreme spatial statistics, MDS has notably 

been used by Sampson and Guttorp (1992) to build a spatio-temporal kriging 

model. For the spatial part of their model, the dimension of the latent space built 
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with MDS was set to 2, allowing the creation of a map that warps any location of 

the input space to the latent space. More recently, Bornn et al. (2012) suggested 

dealing with non-stationarity by using a stationary model in an expanded space, 

which they defined as the product of the initial input space and a 1- or 2-

dimensional space built with MDS. In extreme spatial statistics, non-stationarity 

has notably been addressed in Asadi et al. (2015) where the authors build a 

parametric hydrological distance which better assess dependencies in extreme 

river discharges than the Euclidean distance. Also, Huser and Genton (2016) 

dealt with non-stationarity using parametric transformations of stationary 

covariance functions, which might also be interpreted as a space transformation. 

Our approach share similarities with this idea, except that we do not transform an 

initial space, distance, or covariance function. Instead, we directly build latent 

spaces using MDS – a somewhat non parametric approach – and use standard 

distance and covariance functions. The calibration of the models presented in 

this work does not require to know the spatial coordinates or other covariates of 

the stations, as opposed to the other methods. However spatial coordinates are 

required in the additional procedure that we propose for bridging the gap 

between MDS and warping models defined over the whole domain of interest. 

Throughout the paper we use an application test case pertaining to the study of 

extreme precipitations in Switzerland. In the Alpine area, extreme precipitation 

events are known to be more intense than in other parts of Europe (Frei and 

Schär, 1998). In Switzerland, extreme rainfall and associated flooding can have 

substantial socio-economic consequences (Hilker et al., 2009). A significant 

fraction of extreme daily rainfall events in Switzerland is associated with synoptic-

scale weather systems (Martius et al., 2006; Pfahl et al., 2014; Giannakaki and 

Martius, 2016). Our dataset is provided by the Swiss Federal Office for 

Meteorology and Climatology (MeteoSwiss) and consists of daily measurements 

of rainfall from January 1st 1961 to December 31st 2013. We study the 219 

stations that have no missing data. From the available daily precipitations we 

compute blockwise maxima over the autumn season, i.e. from 21 September to 
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20 December of each year. We focus on this season because daily precipitation 

is highest in summer and autumn in northern Switzerland (Umbricht 

et al., 2013; Giannakaki and Martius, 2016) and in autumn in southern 

Switzerland (Panziera et al., 2018). The blockwise maxima are henceforth 

referred to as yearly maxima. In this study, the number of stations in the dataset 

(219) is larger than in the previously cited references (at most approx. 100 

stations in Blanchet and Davison (2011)). 

The article is organized as follows: Section 2 provides a brief background in 

spatial extreme value statistics, and presents a short overview of MDS methods. 

Section 3 details our two different methods for fitting max-stable models using 

MDS and discusses parameter estimation. In Section 4, we compare the 

obtained models to a more classical max-stable model fitted in a (longitude, 

latitude, elevation) space with geometrical anisotropy and space rotation. In 

particular, we compare the ability of the models to reproduce the observed non-

stationary dependencies. Finally, we discuss the advantages and drawbacks of 

the proposed approaches. For completeness, a short background in univariate 

extreme values statistics and more details on MDS methods are given as 

supplementary material, together with some details on the tested “classical” max-

stable model. Further diagnostic plots and R code are also provided in the 

supplementary material. 

2 Background 

2.1 Max stable models and extremal coefficients 

Max-stable processes are well-suited to model block maxima (Davison 

et al., 2012). Formally, a random process ( ( ))xY x   is max-stable with unit 

Fréchet margins if the random process ( ( ))xNY x   has the same distribution as 

1,..,(max ( ))i N i xY x  , where N > 0 and 1, , NY Y  are N i.i.d copies of Y. A widely 

used representation is given in De Haan (1984), where a max-stable process 

( ( ))xZ x   is represented as follows: 
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( ) : max ( ),i i
i

Z x W x


  (1) 

where the ηi’s are drawn from a Poisson process on   with intensity 2dz z  and 

1 2, ,W W  are i.i.d copies of a non-negative random process W  satisfying 

( ) 1W x   for all x . Several choices of processes W  lead to different 

models. Here, we focus on the geometric Gaussian process, 

2exp( / 2)W W    where 0   and W is a centered Gaussian process with 

unit pointwise variance. This model will be referred to as the “Brown-Resnick 

model” even-though we do not impose a stationarity or intrinsic-stationarity 

condition on W. 

For a max-stable process Z  with unit Fréchet margins and for an arbitrary set of 

locations 1: 1: ( , , )N Nx x  , the finite-dimensional cumulative distributions of Z  

can be written as 

1 1 1: 1( ( ) , , ( ) ) exp( ( , , )),N N N NZ x z Z x z V z z       (2) 

for some function 
1: 1: ( , , ) N

N NV z z   called the exponent function 

(Resnick, 1987) which satisfies 1

1: 1 1: 1( , , ) ( , , ), 0N N N NV tz tz t V z z t     and 

1

1: ( , , , )NV z z    for any permutation of its arguments. If we set 

1 :Nz z z  , Equation (2) can be rewritten as 

1 1:

1:

( ( ) , , ( ) ) exp( (1, ,1) / )

: exp( / ),

N N

N

Z x z Z x z V z

z

     

 
 

where 1:N  is the so-called extremal coefficient associated with the set of 

locations 1:N . Practitioners are often interested in the pairwise extremal 

coefficients θij between stations xi and xj. For a Brown-Resnick model with 

parameter 0  , this extremal coefficient is given by 

2

2 (1 ( , )) ,
2

ij i jk x x



 

   
 

 (3) 
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where k is the covariance function of the centered Gaussian process W and   is 

the cumulative distribution function (c.d.f.) of the standard normal distribution. 

Throughout this paper, all covariances ( , )i jk x x  are also correlations, since W 

has unit variance. 

2.2 Pairwise likelihood maximization and climate space 

Let T denote the number of years of data, n the number of stations, and 
itz  the 

rescaled maximum precipitation at station xi during year t (see supplementary 

material Section 1 for details on the data transformations to have unit Fréchet 

margins). The pairwise log-likelihood of some max-stable model with parameters 

γ is 

1 1 1

( ) log ( , ; ) :
T

ij it jt ij

i j n t i j n

f z z 
      

     (4) 

where fij is the bivariate density of the random vector ( ( ), ( ))i jZ x Z x  and Z  is a 

max-stable process with unit Fréchet margins. In the particular case of Brown-

Resnick models with parameter σ and covariance function k, fij is obtained by 

differentiating the following bivariate c.d.f. (see Davis et al. (2013) for detailed 

calculations): 

log( / ) log( / )1 1
( , ) exp ,

2 2

j i i j

ij i j ij ij

i ij j ij

z z z z
F z z

z z
 

 

     
           

       

 (5) 

where 2(1 ( , )) / 2ij i jk x x   . The latter equation shows that the contribution 
ij
 

of the pair (i, j) of stations to the pairwise likelihood of Equation (4) is directly 

linked to the covariance ( , )i jk x x  and hence to the parameters of the covariance 

functions and other parameters accounting for space transformation. An example 

is given in Blanchet and Davison (2011) where γ is a set of parameters that 

allows space transformation, this model is refered to as the “classical model” in 

this paper and is shortly described in the supplementary material, Section 2. The 
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models proposed in this work also rely on the notion of climate space, with the 

important difference that the space will be somehow built non-parametrically 

using Multidimensional Scaling (MDS). 

2.3 Multidimensional scaling 

Let D be a given n × n dissimilarity matrix and let d > 0 be an integer. 

Multidimensional scaling (MDS) techniques aim at finding a configuration of n 

points in d  in such a way that the obtained n × n interpoint Euclidean distance 

matrix is as close as possible to D, with respect to some stress function. In many 

applications, MDS is used to provide graphical displays of n points, which ease 

the interpretation of an n × n distance or dissimilarity matrix D (Borg and 

Groenen, 2005). For visualization, the dimension d is thus often set to 2 or 3, 

although the algorithms usually remain valid for larger values of d. Different 

choices of stress functions, as well as different algorithms to minimize the stress, 

yield a large set of MDS techniques. In this work, we use the MDS algorithm of 

Sammon (1969) which minimizes the so called raw-stress using iterative 

gradient-descent in dimension nd. Details on this algorithm as well as on other 

MDS techniques are given in the supplementary material, Section 3. 

As explained in the next section, we manage in this work to transform the Brown-

Resnick model fitting problem into a MDS problem. In particular, for a given 

parameter choice γ, we obtain a dissimilarity matrix D and ultimately a placement 

of the station in a space of dimension d which yields a given goodness of fit (or “

loss”) that depends on γ. In our models, γ is merely a vector composed of the 

Brown-Resnick parameter σ and some covariance parameters of the Gaussian 

Process W, see Section 2.1. The dimension d of the latent space could actually 

be part of the vector of parameters γ. Instead, we choose ( )d d   using the 

Bayesian Information Criterion (BIC) of Oh and Raftery (2001). The BIC has the 

advantage to be applicable to any MDS algorithm and to bring a solution to 

potential overfitting problems when d becomes too large. 
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3 Proposed model fitting approaches 

We now present our two approaches that both consist in leveraging MDS in order 

to allow efficient non-stationary Brown-Resnick modelling via non-parametric 

warping. While both proposed methods aim at increasing the realism of the fitted 

model by capturing spatial non-stationarity reflected by sampled block maxima, 

they differ by the employed criteria of fit. In the first case (method 1), model 

parameters are tuned with the aim to best reproduce extremal coefficients 

estimated by F-madogram (Cooley et al., 2006), yet with a custom measure of fit 

that translates the problem on extremal coefficients into a problem on 

dissimilarity matrices which can be elegantly tackled by using off-the-shelf MDS 

algorithms. Following a different route, although based as well on MDS with a 

target dissimilarity matrix inherited from data assumed to have been generated 

by the Brown-Resnick model, method 2 relies instead on dissimilarities inherited 

from consideration on pairwise log-likelihoods. The crux of this second method is 

to remark indeed that to each pair of locations in the Brown-Resnick model 

corresponds an ideal covariance value that maximizes the corresponding 

contribution to the pairwise log-likelihood criterion. Assuming like method 1 an 

isotropic covariance function, written as a monotonically decreasing function of 

the underlying distance, method 2 hence also boils down to an MDS problem 

with a specific target dissimilarity matrix. One further issue in order to bring the 

applicability of these methods to a next level is to be able to warp arbitrary 

locations into the latent space induced by MDS, and not only the station locations 

used in the algorithm. For this we appeal to Gaussian Process interpolation 

(kriging) in the latent space, resulting in continuous formulations of the proposed 

non-stationary covariance functions. This is presented in Section 3.2. 

Furthermore, the estimation of model parameters such as σ and covariance 

parameters are adressed in Section 3.3 (the latent dimension d being taken care 

of via the employed kind of MDS procedure). Let us first focus in the next section 

on the way target covariance and distance matrices are obtained in the two 

proposed methods, respectively. 
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3.1 From data to target distance matrices 

3.1.1 Method 1, based on fitting (estimated) pairwise extremal 
coefficients 

The first introduced method adresses the issue of poorly reconstructed pairwise 

extremal coefficients (See Figure 1) by directly taking some misfit between model 

and reference extremal coefficients as an objective function, such as the “

Extremal Coefficients Mean Squared Error” (ECMSE): 

ref 2

1 ,

1
ECMSE( ) : ( ) ,

( 1)
ij ij

i j nn n
  

 

 


  (6) 

where the ref

ij ’s are reference (estimated or prescribed) values for the pairwise 

extremal coefficients and ( )ij   form the extremal coefficient between stations 

xi and xj under the considered Brown-Resnick model. Such a criterion is looking 

at model fit from a very specific angle and one should keep aware of potential 

overfitting pitfalls (see for instance Brehmer et al. (2019) for theoretical results on 

why scoring functions cannot assess tail properties). Nevertheless, we will see in 

our numerical experiments that this first method turns out to not only deliver a 

non-stationary generative model with improved fitting of observed extreme 

precipitations but to also offer promising performances in predicting extremal 

coefficients involving unobserved locations. Futhermore, the latter is found to 

perform surprisingly better than the baseline in terms of pairwise log-likelihood. 

The rationale of method 1 is as follows. Assume first for expository purpose that 

perfect (noiseless) values of the pairwise extremal coefficients at locations 

1( , , )nx x   (say the set of all n = 219 considered climatological stations) are 

given, so that ref  is assumed to stem from the Brown-Resnick model, yet with 

covariances to be determined. Recalling Equation 3, one can then write 

ref ( )g K   with ( , )i jK k x x  and g(K) is the result of applying g entry-wise to K 

where 
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2 2

: [ 1,1] ( ) 2 (1 ) 0,2 .
2 2

g g
 

  
    

               
 (7) 

As g is a bijective mapping, one can hence express K in function of ref  as 

1 ref( )K g  . If furthermore K writes as the chaining between a function 

:[0, ) [ 1,1]ok     and some distance d on , then ( )oK k D  for D the distance 

matrix with generic entry ( , ) ( , {1, , })i jd x x i j n  , so that in the end ref ( ( ))og k D 

. Assuming finally that ko is positive and stricly decreasing, we have that 

1 1 ref( ( ))oD k g   . In other words, for a broad class of models, and assuming 

known σ and ko, there is a one-to-one correspondence between pairwise 

extremal coefficients and distances between pairs of stations. Method 1 relies on 

this correspondence in order to find a parametrization of stations in a higher-

dimensional latent space so that the corresponding distance matrix be as close 

as possible to 1 1 ref( ( ))ok g   . In practice, however, ref ˆ   is the result of some 

estimation procedure (here using the F-madogram estimator of Cooley 

et al. (2006)), so that this workflow requires a few adaptations in order to be 

implementable. First, the inverse 

2

1 1

2

2
( ) 1

2
g


 



   
        

 is extended to 

[0,2] , using the convention 1(1)   . Furthermore, since we work with 

covariance functions delivering strictly positive values, we floor the “target” 

pairwise covariances 1

,( )i jg   with a minimum value 0  , leading to a target 

dissimilarity matrix 

  (1) 1 1 ˆmax , ( ) .oD k g    (8) 

The value of ε could be a parameter of our actual model, but for simplicity we fix 

it at exp( 3) 0.05  . Note that the matrix  (1) 1 ˆ: max , ( )K g   is not a covariance 

matrix because it has no reason to be positive definite. This is not a problem in 

practice, but there are two important consequences. First, it means that a perfect 

fit of the extremal coefficients ̂  estimated from the data will not be possible. 

Second, it involves that the so-called “target dissimilarity matrix” will not always 
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be Euclidean, which prevents using classical scaling, as explained in the 

supplementary material, Section 3. Other MDS techniques which are better 

suited to non-Euclidean matrices are used. More specifically, we choose to use 

the algorithm of Sammon (1969) that relies on nd-dimensional gradient descent 

to minimize a given stress function. Our experiments suggested that the latter 

was giving better results than other MDS techniques. 

3.1.2 Method 2, based on pairwise likelihood maximization 

Our second approach shares some essential features with the first one, in the 

sense that it involves a target dissimilarity matrix derived from observed data. Yet 

it does not rely on the extremal coefficients nor on the function g. Instead, it 

directly prescribes a target for K, and the latter is obtained via considerations on 

the pairwise log-likelihood criterion. Consider indeed again as before a Brown-

Resnick process with parameter σ, and focus for the moment on an arbitrary pair 

of distinct stations (xi, xj). The contribution of the Fréchet-transformed data from 

this pair of stations to the pairwise log-likelihood is given by the term 
ij
 in 

Equation (4) and depends on the covariance or correlation value ( , )ij i jK k x x  

(see Equation (5) and the expression of νij). 

When σ is fixed, it is possible to plot ij  values as a function of Kij and see where 

ij  is maximized. An example is given in Figure 2 where ij  is plotted for 3 

different pairs of stations (xi, xj). For each pair of stations, there exists an ideal 

value ijK  that maximizes 
ij
. In our work, the search for this ideal value is 

performed on the interval [0,0.99]  to avoid the numerical issues caused by 

correlations of 1. The target covariance matrix (2)K  is obtained by flooring the 

ijK ’s with the same minimum value 0   as in the previous method. The target 

dissimilarity to be fed into MDS is then defined analogously by 

    (2) 1 (2) 1 max , .o oD k K k K    (9) 
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The target dissimilarity matrices of Equation (8) and (9) depend on σ and on the 

covariance function ko. The choice of these parameters is discussed in 

Section 3.3. 

3.2 From MDS to warping models over the whole space 

When the parameters of the proposed model are fixed a target dissimilarity 

matrix can be calculated (see, Section 3.1), and the stations are then placed in a 

latent space of dimension d in order to have Euclidean distances close to these 

dissimarities. Let , ,
1 n

x x  be the coordinates of the n stations in the 3-

dimensional space (longitude, latitude, elevation) and let , ,
1 n

y y  be the 

coordinates of these stations in the latent d-dimensional space, obtained using 

MDS. Further, denote by ψ the MDS mapping, i.e. ( ) , 1, ,i n   
i i

x y . The fitted 

Brown-Resnick process lives in the latent space of dimension d so that, at this 

stage, we do not have a spatial model yet. Indeed, the coordinates in the latent 

space of a station or location that was not used to fit the model are unknown. To 

adress this issue, we need a mapping ψ which is known everywhere, for any 

location x in the (longitude, latitude, elevation) space. 

Following Sampson and Guttorp (1992) and Borg and Groenen (2005), this 

mapping is explicitly constructed everywhere using interpolation. The MDS 

mapping to be interpolated goes from 3  to d . As many methods exist to 

interpolate real-valued functions, we then simply build d interpolators, each one 

being an Ordinary Kriging model (see Roustant et al. (2012) for a short 

description) associated to one of the coordinates in d . For all i, we use the 

notation 
,1 ,( , , )i i dy y 

i
y , and 1( ) : ( ( ), , ( ))d   x x x . The thi  kriging 

interpolators is trained from observations at locations , ,
1 n

x x  and responses 

,1 ,, ,i i ny y . It enables to obtain the thi  coordinate in the latent space of any 

location in Switzerland. These d kriging models are computed using the 

DiceKriging R package (Roustant et al., 2012) and with an anisotropic 

exponential covariance functions. The parameters of the covariance functions 

are estimated using maximum likelihood. An example of interpolation with d = 4 
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is given in Figure 3. Any location in Switzerland here has 4 coordinates in the 

latent space obtained with 4 kriging models. Each coordinate in the latent space 

can be represented with a map of Switzerland. 

3.3 Parameter selection 

In the previous section, MDS is performed assuming that the covariance function 

k of the Gaussian process W is known, and assuming that the Brown-Resnick 

parameter σ and the latent space dimension d are known. In practice, all of these 

parameters need to be estimated. 

We first discuss the choice of the covariance function and, when applicable, of 

the parameters of this function. For our MDS application, among the family of 

stationary covariance functions, it is sufficient to consider only isotropic ones. 

Indeed, the use of range parameters (sometimes called correlation lengths), that 

would account for geometrical anisotropy in the latent space, would simply yield 

a configuration of points Xd with coordinates divided by the corresponding range 

parameter. In other words, all the models that we can produce with anisotropic 

covariance functions k can also be obtained with isotropic ones. In this work, the 

considered covariance function is the powered-exponential covariance: 

( ) : exp( ), (0,2].k h h     (10) 

This covariance function can be used in spaces of arbitrary dimension d, a 

property that is mandatory for the application of our method. Many covariance 

functions (e.g., spherical, circular, cubic, Gneiting) are omitted here because they 

cannot be used in arbitrary dimensions. Experiments with the Matérn( 3/ 2  ) 

and Matérn( 5 / 2  ) covariance function have also been conducted, but 

underperformed the powered exponential covariance function. The Matérn(ν) 

covariance, with varying smoothness ν, might outperform the powered 

exponential covariance. However, this has not been investigated further because 

computing and inverting a large number of times the Matérn(ν) covariance for 
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arbitrary ν is too computer intensive. See also Section 4.4 for a detailed study on 

computation time. 

We hence need to estimate 2 parameters: the Brown-Resnick parameter σ and 

the covariance parameter α in Equation (10). When these parameter are fixed, 

we mentionned in Section 2.3 that the MDS dimension d can be chosen 

automatically using the Bayesian Information Criterion of Oh and Raftery (2001). 

In addition to this BIC we impose a maximum value of 6 for d. This is motivated 

by the results of Perrin and Meiring (2003), which indicate that a non-stationary 

field in space of dimension v can be represented as second-order stationary in 

dimension 2v. This result applied to a non-stationary random field in the 

(longitude, latitude, elevation) space yields a maximum latent space dimension of 

d = 6. 

As the choice of d is now automatically embedded in the MDS procedure, 

selection of ( , )   can simply be performed by optimizing a well-chosen criterion. 

For method 1, we choose ( , )   by minimizing the ECMSE of Equation (6). For 

method 2, we maximize the pairwise likelihood of Equation (4). The optimization 

of the criterion could be performed with a numerical optimization algorithm, but 

the objective function can be highly multimodal, specially given that the chosen 

MDS dimension d varies with ( , )  . Hence, given that we only have 2 

parameters, we simply evaluate the criterion on a grid of ( , )   values in 

[2,4] [1,2] . The solution has the advantage to be simple and to allow parallel 

computing. 

4 Results and comparisons 

4.1 Introduction: competing models 

In this section, we compare the max-stable models obtained using the two 

proposed model fitting methods with a more classical model fitted in a climate 

space, following Blanchet and Davison (2011). The classical model uses the 
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space (longitude, latitude, elevation) and a parametric space deformation. The 

parameters of the model are the Brown-Resnick parameter σ, the angle β and 

geometrical anisotropy parameters 1 2 3, ,c c c . In addition, we use the isotropic 

powered exponential covariance function in the climate space, which has an 

exponent parameter α. The 6 parameters of the model are estimated by 

maximizing the pairwise-likelihood obtained with the data from all n = 219 

stations. As in Blanchet and Davison (2011), we maximize the pairwise likelihood 

using a simple line-search algorithm. The likelihood is sequentially maximized 

with respect to one parameter while keeping the other parameters fixed, and the 

procedure is iterated until convergence. For the classical model, we considered 

adding additional covariates to the climate space, like the mean precipitation. 

However, the additional covariates did not improve the obtained likelihoods. The 

parameters of the fitted models, which are compared in the next sections, are 

summarized in Table 1. 

4.2 Extremal coefficients fits and pairwise log-likelihoods 

The fitted max-stable models should be able to reproduce the pairwise extremal 

coefficients estimated from the data. They should further give good overall 

pairwise log-likelihoods. In our experiments, both methods 1 and 2 yield better 

ECMSE than the classical model, as well as better pairwise likelihoods. To 

determine the significance of these results and to challenge the proposed 

methods, we decided to perform 50 additional random experiments. In each 

random experiment, n2 test stations are not used to fit our models and thus the 

models are fitted based on only 1 2:n n n   training stations, in the spirit of a 

cross-validation analysis. The obtained ECMSE and pairwise likelihoods for all 

training and tests stations are then obtained by using the MDS mapping for the 

n1 training stations and by interpolating this mapping for the n2 test stations (see 

Section 3.2). In the random experiments, n2 is chosen uniformly in the set of 

integers between 25 and 50. The n2 test stations are then chosen using the 

Acc
ep

te
d 

M
an

us
cr

ipt



space-filling algorithm of the BalancedSampling R package 

(Grafström, 2016; Grafström et al., 2012). 

Figure 4 gives the obtained pairwise log-likelihoods (left plot) and ECMSE (right 

plot) for our full models (methods 1 and 2 using all n = 219 stations), the classical 

model, and all 50 random experiments. The dashed curve indicates the pairwise 

likelihood or ECMSE of the classical model. The triangles indicate the pairwise 

likelihood or ECMSE of the proposed full models, and the boxplots indicate the 

results of the 50 random experiments. With method 1, 100% of the random 

experiment yield a better ECMSE than the classical model, even though the 

classical model is fitted based on all n stations. With method 2 (optimizing the 

pairwise likelihood) 100% of the random experiments yield a better pairwise 

likelihood than the classical model and – more surprisingly – they also always 

outperform it with respect to the ECMSE. Based on these experiments, we 

conclude on the significance of the improvements with respect to the classical 

model. 

Next Section shows that the other advantage of the flexible MDS-based model 

fitting is its ability to reproduce complex dependence structures. 

4.3 Extremal coefficients maps 

We show in this section that the main advantage of the proposed model fitting 

methods is their natural ability to handle complex non-stationary dependencies. 

Figure 1 in the introduction shows a map of pairwise extremal coefficients 

between a given station (Aarberg) and any other point in Switzerland. The first 

map is computed from the extremal coefficients estimated from the data, using F-

madogram. For visualization only, this map requires a spatial interpolation, which 

is performed here using Ordinary Kriging in the (longitude, latitude, elevation) 

space, with an anisotropic exponential covariance function. The other three maps 

are computed from the three competing models (classical model, method 1, 

method 2). One clearly sees that methods 1 and 2 better reproduce the strong 
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non-stationarity observed in the data. For many stations in Switzerland, these 

map of extremal coefficients cannot be well reproduced with ellipses in the 

(longitude, latitude, elevation) space, as assumed by the classical model. Method 

1 aims at fitting extremal coefficients and thus the nice fit observed with the data 

is not a surprise. However, notice that method 2 does not aim at fitting extremal 

coefficients and relies instead on pairwise likelihood. The good performance of 

method 2 with respect to extremal coefficients and its ability to reproduce a 

complex non-stationary dependence structure is thus very encouraging. 

The maps in Figure 1 can be produced for all n = 219 stations, and all 219 

pictures are released as supplementary material in a file which can be easily 

downloaded. In Figure 5, we produce these maps for the 4 stations after Aarberg, 

in alphabetical order. Notice that for the Adelboden station (“ABO”, i.e. the 4 

maps at the top left), method 1 is able to reproduce complex dependencies, 

where the set of locations with extremal coefficients lower than 1.6 is not a 

connected set. The same phenomenon can be observed for many other stations. 

Additional extremal coefficients maps are presented and commented in the 

Supplementary Material. In addition, we produce diagnostic plots quantifying 

dependencies between more than 2 stations. 

4.4 Computation time 

The use of Sammon’s MDS algorithm on matrices of size n × n is relatively fast. 

With a standard computer with 3.40Ghz cpu and 8Gb of RAM, Sammon’s 

algorithm takes a bit less than 0.1 second for the considered number of stations 

n = 219. However, in the fitting procedure of Section 3, MDS is used a large 

number of times for different values of the parameters , ,d  . To estimate the 

parameters, we optimize a criterion on a grid of ( , )   values of size 21 × 21. For 

each ( , )  , an MDS is performed with dimension 2, 3d d   and continues to at 

most d = 6 as long as the BIC of Oh and Raftery (2001) recommends to increase 

d. Fitting a model with method 1 or 2 thus requires at most 221 5 2 200    calls to 

the Sammon MDS algorithm, which takes a bit less than 4 minutes. 
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Computationnal costs with method 2 are larger than with method 1 for two 

reasons. First computing a pairwise likelihood is slower than computing an 

ECMSE. Second, when ( , )   are fixed, computing the target dissimilarity matrix 

(2)D  (see, Equation (9)) given to the MDS is not straightforward. This 

dissimilarity matrix actually depends on the matrix K  containing “optimal” 

pairwise covariances, which depends on σ, but not on α nor d. As we use a grid 

of size 21 for σ we then simply store all these 21 matrices. This initial step does 

not involve any MDS. Storing these 21 matrices takes approximately 20 minutes 

for method 2. For method 1, no storage is performed. 

Notice that in Section 4.2 we perform 50 random experiments by removing n2 test 

stations from the dataset. To avoid multiplying the previous computation times by 

50, the value of α is “profiled” based on the full model. In other words for a given 

σ we automatically choose : argmin Crit( , )    where Crit  is the criterion 

computed for the full model. Hence, in these 50 random experiments, 

optimizations are performed only with respect to σ, at the cost of at most 21 × 5 

calls to the MDS algorithm instead of 221 5  calls. 

Compared to the proposed methods, fitting the classical model requires the 

maximization of a pairwise likelihood with respect to six parameters, and takes 

approximately 4 minutes. The improvement provided by the proposed models 

thus comes at the price of higher computational costs. The computational cost 

could be reduced by using faster procedures to optimize with respect to ( , )  . 

Our methodology could be used with a larger number n of stations since 

Sammon’s MDS mapping is still relatively fast. The main limiting factor is the 

diagonalization of an n × n matrix, which is needed to obtain an initial placement 

of the stations through classical scaling, before using Sammon’s gradient-

descent. 

5 Summary and discussion 

5.1 The full process: using these methods with your own data 
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We provide a summary of the proposed techniques, with the goal of allowing 

practitioners to use the proposed methods with their own dataset. The 

Supplementary Material indeed presents some R code and data which can be 

downloaded and which enables to reproduce every result presented in this 

paper. The code is also meant to be used with new datasets. Here we discuss 

the different steps involved to fit a full model, based on all stations, for methods 1 

and 2. 

5.1.1 Model fitting 

The only input required to fit a model with one of the two presented methods is 

the Fréchet transformed block-maxima, stored as a n × T matrix, where n is the 

number of stations and T the number of years of data. Both methods 1 and 2 will 

then estimate the parameter ( , )   by calculating a loss function, the “criterion”, 

which depends on these parameter and by selecting ( , )   optimizing the 

criterion. Before detailing the equations applied to compute the criterion for a 

given ( , )   value, a preliminary step needs to be computed, for Method 2 only. 

Indeed, n × n matrices containing pairwise optimal covariances need to be stored 

for every possible value of σ, which represents 21 matrices to store with our grid. 

For a given σ, and for a pair (i, j) of stations, the optimal pairwise covariance 

between the stations is obtained by maximizing the pairwise log-likelihood of 

stations i, j alone, by playing with the covariance value ( , ) [0,1]i jk x x  , see 

Figure 2. Pairwise log-likelihoods are computed by differentiating the c.d.f. of 

Equation (5) and depend of ( , )i jk x x  because νij in Equation (5) depends on 

( , )i jk x x . 

Now, for a given ( , )   value the criterion is computed as follows. For Method 1, 

we compute a target dissimilarity matrix ( , )D    by applying Equation (8) to the 

extremal coefficients estimated from the data, using F-madogram. We then use 

MDS and choose the dimension ( , )d    suggested by the BIC of Oh and 

Raftery (2001). Once the MDS is run, the n stations have coordinates in the 

latent space from which we compute a Euclidean distance matrix ˆ ( , )D   . Then, 
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from the ( , )   values, we compute a covariance matrix ˆ( ( , ))k D    and modeled 

extremal coefficients ˆ( ( ( , )))g k D    where g is given by Equation (7). The 

modeled extremal coefficients are compared to the ones estimated from the data, 

which gives our ECMSE, see Equation (6). 

For method 2, the target dissimilarity matrix ( , )D    is obtained by applying the 

function 1k  , which depends on α, to the stored matrix with optimal pairwise 

covariances, see Equation (9). The MDS procedure is then the same than with 

Method 1. Once the stations have coordinates in the latent space of dimension 

( , )d   , we have a Brown-Resnick model in the latent space with fixed σ and 

known covariance function k. A pairwise likelihood of the data is calculated. This 

criterion depends on ( , )   and is used to choose these parameters. 

5.1.2 Warping any location in Switzerland to the latent space 

Once a model is fitted with either method 1 or 2, one can quantify dependencies 

only between locations that were used to fit the model, i.e. between stations 

where data are recorded. This is sufficient to compute the criteria (ECMSE, 

pairwise likelihoods) described previously. However, if one is interested in 

dependencies between any pair of location in Switzerland (e.g. to build extremal 

coefficients maps) then it is necessary to have the coordinates of all these 

locations in the latent space. In this case, the MDS mapping needs to be 

interpolated, see Section 3.2. In addition to the Fréchet-transformed data, this 

interpolation requires the following inputs: 

 The coordinates (longitude, latitude, elevation) of the stations used to fit 

the model. We remind that this information was NOT needed to fit the 

model with either method 1 or 2. 

 The coordinates (longitude, latitude, elevation) of the pixels that need to 

be mapped in the latent space. In our application, we have a total of 

77 256  pixels in Switzerland. 
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 The coordinates of the stations used to fit the model in the latent space of 

dimension d, obtained with MDS. 

Interpolating the MDS mapping consists in interpolation a mapping from 3  to 

d . As explained in Section 3.2, this can be easily done by interpolating d 

mappings from 3  to . Many interpolation methods could be used here. In this 

work we used the Ordinary Kriging models of the DiceKriging R package. In 

these models, we used an anisotropic exponential covariance function with 

parameters estimated by maximum likelihood, see Figure 3 to have 4 examples 

of these interpolated 3  to  mappings. Once the interpolation is performed, all 

the selected pixels have coordinates in the latent space and the computation of 

dependencies is possible. Extremal coefficients maps between one fixed location 

and any location in Switzerland (see, Figures 1 and 5) can be computed from 

Euclidean distances and by applying ( )g k  to the distances; i.e. by transforming 

distances into modeled extremal coefficients. 

5.2 Capturing full independence: unbounded variograms 

In this work, we chose to build max-stable models from stationary log-Gaussian 

processes. A drawback of this approach is the impossibility to reproduce full 

independence between precipitations at any pair of stations, even if the 

considered stations are far away in the latent space. For example, with method 1 

we obtain the value 2.9   which means that the model cannot reproduce 

extremal coefficients larger than 2 ( / 2) 1.96  , see Equation 3. To overcome 

this drawback, the two model-fitting methods presented in this paper could be 

applied to models involving an intrinsic-stationary Gaussian process with 

unbounded variogram. Indeed, if (·)  is the semivariogram of the considered 

Gaussian process, the modeled extremal coefficient between two locations with 

distance h is 
( )

2
2

h 
 
 

 and can converge to 2 if γ is unbounded. 
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In that case, the proposed methods can be applied provided that the chosen 

semivariogram can be “inverted”, meaning that it is possible to compute a target 

dissimilarity matrix which would reproduce – with this model – the extremal 

coefficients estimated from the data. A parametric semivariogram of the form 

( ) || || , 0 2h h      (fractional Brownian motion) satisfies this invertibility 

condition. Extensions like the Generalized Cauchy model of Gneiting and 

Schlather (2004) could also be applied. The performances of models with 

unbounded variograms has not been investigated in this work and is an avenue 

for future research. 

5.3 Uncertainty quantification 

The models presented in this work involve parameters – namely , ,d   – which 

are estimated from the data. Classical pairwise-likelihood maximization in a 

climate space enables to estimate variances for the model parameters (see, e.g. 

Blanchet and Davison (2011)). However, with the presented models, this cannot 

straightforwardly be reproduced as the criterion which is optimized involves an 

MDS which is itself performed with a numerical optimization algorithm. 

Uncertainty quantification is thus challenging. To quantify uncertainties on the 

parameters , ,d   fitted with methods 1 and 2, we here performed a parametric 

bootstrap as follows. For each method, we generate a set of 50 datasets using 

max-stable process simulation. Each dataset consist on 53 years of block-

maximum precipitations, for 219 stations. The method to simulate max-stable 

processes is decribed in the Supplementary Material. For Method 1, the max-

stable model lives in a latent space of dimension d = 5 and has parameters 

2.9, 2   . For method 2, we have 6, 2.7, 2d     , see Table 1. For all 50 

datasets generated from the “method 1” model, we refit a max-stable model 

based on method 1. We do the same for method 2. 

The results of these experiments are summarized in Table 2 where mean values 

and standard-deviation (in bracket) over the 50 experiments are computed for 

every parameter. For method 1, we notice that the obtained latent space 
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dimension is always of 5 or 6, with approx. equal probability. Method 1 performs 

quite well at recovering the parameters ,   used to generate the datasets. On 

the other hand method 2 chooses more often d = 6 and, rarely d = 5. Method 2 

seems to have more variability with respect to the estimates of ,  . In addition, 

method 2 here tends to overestimate the true value of σ (here: 2.7). Overall, the 

results of these bootstraped experiments seem more satisfying with method 1. 

5.4 Conclusion and additional perspectives 

In this work, we introduce new max-stable model fitting procedures that rely on 

multidimensional scaling (MDS). Instead of relying on a stationary model in a 

climate space, obtained with some parametric space deformation of the 

(longitude, latitude, elevation) space, we use a stationary model in a latent space 

built with MDS. Compared to more classical approaches, the proposed methods 

are better able to reproduce non-stationary spatial dependencies, as shown by 

the extremal coefficients map in Figure 1. User-friendly commented R code is 

available to let practitioners apply the presented work on their own data. 

To complement the possible future research avenues mentioned in the previous 

sections, we add that one could also implement a tailored MDS algorithm where 

one could directly play with the coordinates Xd of the n stations in the latent 

space to directly maximize a log-likelihood or minimize an ECMSE, without 

simplying the problem through the computation of a target dissimilarity matrix. 

One of the main challenges for such a procedure would be its computation time, 

since MDS is currently performed many times the parameters of the model. 
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SUPPLEMENTARY MATERIALS 

Supplementary Material: A short background in univariate extreme values 

statistics and more details on MDS methods are provided, together with some 

details on the tested “classical” max-stable model of Blanchet and 

Davison (2011). Additional extremal coefficients maps are commented. We also 
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provide a link to download the Fréchet-transformed dataset used in this work, as 

well as commented R code, allowing one to easily reproduce all of the results 

and figures in this article. A link for downloading all 219 extremal coefficients 

maps is also provided. Finally additional diagnostic plots for the proposed models 

are given. (PDF file) 

 

Fig. 1 Maps of pairwise extremal coefficients between the Aarberg station and 

other points in Switzerland. The top left map is obtained from the observed 

extremal coefficients (estimated with the F-madogram estimator) and with 

interpolation via kriging. The top right map represents extremal coefficients 

returned by the model of Blanchet and Davison (2011) while the two bottom 

maps represents those returned by our two proposed methods. 
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Fig. 2 Contribution 
ij
 of 3 different pairs of stations to the pairwise log-

likelihood as a function of their covariance Kij, using 2.4  . The locations of the 

3 stations forming the 3 pairs are indicated on the map. For each pair of stations, 

the covariance maximizing ij  is indicated with a dot. Since the covariances are 

positive and are also correlations, they are in the interval [0,1] . 
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Fig. 3 Ordinary Kriging predictors 
1 4, ,   obtained by interpolating the MDS 

mapping. Here, we fitted the model using method 1, 2.8  . The covariance 

function of the Gaussian process W (see, section 2.1) is a stationary isotropic 

powered exponential covariance function k with exponent α = 2. 
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Fig. 4 Pairwise log-likelihoods (left plot) and ECMSE (right plot) obtained using 

the proposed full models (red triangles) and the classical model (red dashed 

curve). The boxplots indicate the results of 50 random experiments in which n2 

stations are randomly selected and are not used to fit the proposed models. 
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Fig. 5 Maps of pairwise extremal coefficients, similar to those in Figure 1. The 4 

maps are plotted for the Adelboden (4 maps at the top left), Aesch (top right), 

Andelfingen (bottom left) and Affeltrangen (bottom right) stations. 
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Table 1 Description of the three fitted models that are compared. All of these 

models are Brown-Resnick models with an isotropic (in the latent or climate 

space) powered exponential covariance function with parameter α. For the 

classical model, the estimated space-deformation parameters are 

1 2 3( , , , ) (0.70,1.52,3.3 4, 0.11)c c c e    , see Equation 2 in the supplementary 

material. 

 method 1 method 2 classical model 

latent/climate space dimension d  5  6  3  

Brown-Resnick parameter σ  2.9  2.7  2.37  

Powered exponential exponent α 2  2  1.09  
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Table 2 Mean and standard deviation (bracket) of the parameters , ,d   , 

computed over 50 random experiments. In each experiment, a new dataset is 

generated from an initial model, using max-stable process simulation. For 

method 1, the parameters used to simulate the max-stable process are 

5, 2.9, 2d     . For method 2, they are 6, 2.7, 2d     . 

 method 1 method 2 

latent space dimension d  5.54(0.5)  5.92(0.27) 

Brown-Resnick parameter σ  2.91(0.27) 3.07(0.51) 

Powered exponential exponent α 2.00(0.03) 1.91(0.13) 
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