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Abstract 
The magnetic anisotropy carried by strongly magnetic particles such as magnetite or ferrofluid-filled 

pores is generally composed of shape anisotropy and distribution anisotropy. Their relative 

importance in rocks depends on numerous factors and has been discussed controversially. A major 

challenge in estimating their contributions so far has been that models for distribution anisotropy 

only exist for regular arrangements of equal particles along lines or in planes. Because magnetite 

grains or pores in rocks display wide ranges of orientations, shapes and sizes in generally irregular 

arrangements, new models are needed to describe distribution anisotropy for more realistic grain 

and pore assemblies. The model presented in this study, FinIrrSDA, calculates Shape and Distribution 

Anisotropy for FINite IRRegular assemblies of unequal particles with different orientations. Input 

parameters are provided as a table with x, y and z coordinates of the particle centers, and the 

lengths and orientations of the major, intermediate and minor axes of best-fit ellipsoids. The model 

output consists of two susceptibility tensors: (1) the shape anisotropy tensor, and (2) the total tensor 

combining shape and distribution anisotropies. FinIrrSDA can be applied to a wide range of input 

datasets, including known structures of synthetic samples, particle analyses from tomography data, 

and, subject to certain assumptions, 2D images. The model will hopefully increase our understanding 

of the interplay between shape and distribution anisotropies in natural rocks, and facilitate future 

interpretations of both the magnetic anisotropy carried by magnetite grains, and magnetic pore 

fabrics. 

Plain language summary 
Models are helpful when we aim at understanding and interpreting measured data, provided that 

they are applicable to reality. This paper presents a new model to predict magnetic properties and 

their directional dependence (anisotropy) of strongly magnetic particles (e.g. magnetite or pores 

filled with strongly magnetic fluid) in rock samples. This model is applicable to irregular assemblies of 

particles of various sizes and orientations, and thus helps close the gap between existing models and 

reality. The model helps us understand the sources of magnetic anisotropy, and thus makes 

magnetic anisotropy an even more valuable tool to investigate preferred alignment of magnetite or 

pores in rocks. 

1. Introduction 
Magnetic fabrics are commonly used in tectonic and geodynamic studies to characterize mineral 

alignment, which in turn reflects deformation processes and geologic history (Borradaile & Henry, 

1997; Borradaile & Jackson, 2004; Borradaile & Jackson, 2010; Hrouda, 1982; Jackson & Tauxe, 1991;  

Jackson, 1991; Tarling & Hrouda, 1993). Additionally, magnetic anisotropy measured on samples 

impregnated with strongly magnetic fluid (ferrofluid) provides information on the pore fabric, which 

can be related to permeability anisotropy and preferred flow directions (Hailwood et al., 1999; Pares 

et al., 2016; Pfleiderer & Halls, 1990, 1994). In a first approximation, magnetic anisotropy may be 

interpreted based on empirical relationships. Commonly used empirical relationships to relate 

magnetic anisotropy to mineral alignment are that (1) the maximum and minimum principal 

susceptibilities indicate the macroscopic lineation and pole of the foliation plane, as observed in 

granitic rocks (Balsley & Buddington, 1960), and (2) the degree of anisotropy is linked to the degree 

of deformation (Hirt et al., 1988; Kligfield et al., 1977; Kligfield et al., 1981). While empirical 

relationships can be powerful proxies, they may be largely affected by mineralogy (Borradaile, 1987; 

Housen et al., 1993). Thus, more robust and quantitative interpretations require a detailed and 

thorough understanding of the physical origin(s) and carrier minerals of the magnetic anisotropy. 

This is especially important when fabrics are complex superpositions of contributions of various 
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minerals that may have formed at different times during a rock’s history, in which case empirical 

relationships may not hold (Biedermann et al., 2018; Martín-Hernández & Ferré, 2007; Rochette et 

al., 1992). Analogously, empirical relationships used to interpret pore fabrics state that (1) the 

maximum principal susceptibility of a ferrofluid-impregnated sample indicates the direction of pore 

elongation and maximum permeability, and (2) the degree of anisotropy correlates with the pore 

shape and the permeability anisotropy (Pfleiderer & Halls, 1990, 1994). However, the details of 

these empirical relationships vary largely between studies (Hailwood et al., 1999; Jones et al., 2006; 

Nabawy et al., 2009; Pfleiderer & Halls, 1990, 1993, 1994). As the pore fabric defines numerous 

physical properties of a rock, magnetic pore fabric measurements can provide important predictions 

e.g. for fluid flow applications. These predictions will be more useful if magnetic pore fabrics can be 

interpreted quantitatively. A detailed and quantitative understanding of the way magnetic 

anisotropy reflects mineral and pore fabrics is therefore essential in structural, geodynamic and fluid 

migration studies employing magnetic fabric methods.  

Three physical sources control the magnetic anisotropy carried by the minerals in a rock: (1) 

magnetocrystalline anisotropy, related to the crystal structure, cation site occupancy, and mineral 

composition (Biedermann, 2018, and references therein), (2) shape anisotropy, due to self-

demagnetization of strongly magnetic non-equidimensional bodies (Clark & Emerson, 1999; Osborn, 

1945; Stoner, 1945), and (3) distribution anisotropy resulting from magnetostatic interactions 

between strongly magnetic grains (Hargraves et al., 1991; Stephenson, 1994). The magnetic fabric of 

the rock is then a superposition of contributions from (1) crystallographic preferred orientation of 

minerals with magnetocrystalline anisotropy, (2) shape preferred orientation of grains possessing 

shape anisotropy, and (3) non-random distribution of grains that interact magnetostatically. In 

strongly magnetic grains with cubic intrinsic anisotropy such as magnetite, shape and distribution 

anisotropy often outweigh the magnetocrystalline anisotropy. Their relative importance is 

controversially discussed (Cañón-Tapia, 1996, 2001; Grégoire et al., 1998; Grégoire et al., 1995; 

Hargraves et al., 1991; Stephenson, 1994). Magnetic pore fabrics have traditionally been attributed 

to shape anisotropy (Hrouda et al., 2000; Pfleiderer & Halls, 1990, 1993), but recent results suggest 

that distribution anisotropy plays an important role too (Biedermann, 2019). Hence, the same two 

physical sources, shape and distribution anisotropy, are relevant in magnetic pore fabric studies, and 

to describe the anisotropy carried by magnetite.  

This study focuses on the mathematical description of shape anisotropy and distribution anisotropy. 

A major development towards a quantitative understanding of these anisotropies were correlations 

between images of grains or pores in natural samples and magnetic measurements (Grégoire et al., 

1998; Launeau & Cruden, 1998; Pfleiderer & Halls, 1993). Models represent a further step towards 

quantitative mathematical descriptions. Shape anisotropy is modeled based on self-demagnetization 

of grains, analogously to self-demagnetization of large magnetized bodies (Clark & Emerson, 1999). 

Stephenson (1994) developed a model to calculate the distribution anisotropy of equal spherical 

particles arranged in either infinite lines or infinite planes at constant inter-particle spacing. This 

model has been adapted to ellipsoidal grains or pores of equal size and shape arranged in infinite 

lines or planes with equal spacing (Biedermann, 2019; Cañón-Tapia, 1996, 2001). These existing 

models predict shape and distribution anisotropy in simplified systems with easy geometries, but are 

not directly applicable to natural rocks. To help solve the controversy on the relative contributions of 

shape and distribution anisotropy, a model that more closely reflects properties of natural samples is 

desirable.  

Grains or pores in rocks generally display an irregular distribution, and possess a wide range of sizes, 

shapes, and orientations. These characteristics of natural rocks were taken into account when 
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developing FinIrrSDA (Figure 1). FinIrrSDA is a Matlab-based code that calculates the Shape and 

Distribution Anisotropies for all types of particle arrangements, including FINite IRRegular assemblies 

of particles with different sizes, shapes and orientations. These characteristics allow predicting 

shape and distribution anisotropies in a wide range of rocks, and will ultimately help solve the 

ongoing controversy on the relative importance of shape and distribution anisotropies. Because the 

size, shape, orientation, and distribution of magnetic particles or impregnated pores varies between 

rocks, it is expected that shape and distribution anisotropies contribute in different proportions. 

Hence, the examples shown here illustrate how FinIrrSDA is applied to different datasets, but will 

not solve the controversy once and for all. FinIrrSDA is conceptualized as a forward model, and 

requires information on the magnetic particles (position, dimensions, orientation, magnetic 

properties). As with every model, the reliability of the results depends on the quality of the input 

data; ideally, the input data would contain a full 3D description with perfect resolution and cover a 

representative volume of the sample. Assumptions and limitations associated with limited 

resolution, and the lack of depth information in image data and related uncertainties are discussed. 

The model predictions and the results presented here apply equally to strongly magnetic grains in 

rocks and to ferrofluid-filled pores. The generic terms ‘body’ or ‘particle’ will be used throughout this 

manuscript to describe any part of the rock that is strongly magnetic compared to the properties of 

the bulk rock. 

2. Theory 
Shape and distribution anisotropy are observed for strongly magnetic bodies surrounded by non-

magnetic material. Shape anisotropy is a consequence of self-demagnetization, a result of energy 

minimization at the outer boundary of a strongly magnetic body (Clark & Emerson, 1999; Lowrie, 

1997). Self-demagnetization is mathematically described as a secondary demagnetizing field 𝐻⃑⃑ 𝑑 =

 −𝑁𝑀⃑⃑  that depends on the magnetization 𝑀⃑⃑  of the body and its self-demagnetization tensor 𝑁, 

defined by body shape (Lowrie, 1997). For a body with intrinsic susceptibility 𝑘𝑖𝑛𝑡, the demagnetizing 

field reduces the observed susceptibility to 𝑘𝑜𝑏𝑠 = (𝐼 + 𝑘𝑖𝑛𝑡𝑁)−1𝑘𝑖𝑛𝑡, where 𝐼 is the unit matrix 

(Clark, 2014). The self-demagnetization tensor 𝑁 is defined exactly for ellipsoids (Osborn, 1945; 

Stoner, 1945), and can be approximated for other bodies (Sato & Ishii, 1989). For spherical bodies, 

𝑁 =
1

3
𝐼 (in the SI system of units), and they display no shape anisotropy. Shape anisotropy is 

particularly pronounced for strongly elongated or flattened particles with strong intrinsic 

susceptibility. In addition to reducing the magnetization intensity, self-demagnetization and the 

resulting shape anisotropy generally cause deviations of the magnetization direction away from the 

direction of the externally applied field 𝐻⃑⃑ 𝑒𝑥𝑡 (Figure 2a). 

Distribution anisotropy results from magnetostatic interactions between strongly magnetic particles. 

The magnetization in each particle generates a secondary magnetic field 𝐻⃑⃑ 𝑝,𝑖, 𝑖 = 1…𝑛 − 1, where n 

is the number of particles, that acts on the other particles in addition to the externally applied field. 

Assuming that particle spacings are large enough, the magnetization of particle i can be described as 

a dipole field acting on all particles j, j≠i. The field strength and direction depend on the inter- 

particle distance r and the relative positions of the particles to each other, described by the angle 𝜃 

between the dipole axis and the vector connecting the particles. In the polar coordinate system of 

the dipole, the secondary field generated by particle i and experienced by particle j can be written 

as:  

𝐻⃑⃑ 𝑝,𝑖𝑗 =
2𝑚cos𝜃𝑖𝑗

4𝜋𝑟𝑖𝑗
3 𝑟𝑖𝑗̂ + 

𝑚sin𝜃𝑖𝑗

4𝜋𝑟𝑖𝑗
3 𝜃𝑖𝑗̂,  
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where the magnetic moment 𝑚⃑⃑ = 𝑀⃑⃑ 𝑉, and 𝑉 is the particle volume (Lowrie, 1997; Tauxe et al., 

2018). The effect of the secondary field can decrease or increase the effective field at another 

particle, and decreases with increasing inter-particle distance (Figure 2b).  

Independent of its source, magnetic anisotropy is represented mathematically by a symmetric 

second-order tensor k, or geometrically by an ellipsoid. The eigenvalues of this tensor, 𝑘1 ≥ 𝑘2 ≥

𝑘3, are referred to as maximum, intermediate and minimum principal susceptibilities and define the 

lengths of ellipsoid axes. The corresponding eigenvectors define the principal susceptibility 

directions, or the orientation of the ellipsoid. Six independent elements are required to fully 

describe k. Common experimental setups measure properties in more than six directions to 

minimize the effect of measurement noise, and to determine data quality (Jelinek, 1977, 1996). In 

the absence of noise, six directions are sufficient. 

3. Model: Assumptions, applicability and setup 
FinIrrSDA calculates shape and distribution anisotropy for homogeneous ellipsoidal or cylindrical 

particles in a non-magnetic matrix. It is assumed that the particle magnetization is high, and that 

particle properties and their preferred orientation are such that magnetocrystalline anisotropy is 

negligible compared to the combined effect of shape and distribution anisotropies. This assumption 

is valid for example for elongated magnetite grains in a silicate rock, or for ferrofluid-filled pores in a 

weakly magnetic sediment.  

Self-demagnetization and shape anisotropy are approximated by the magnetic anisotropy of best-fit 

ellipsoids (or best fit cylinders) for each particle. Thus, the calculated shape anisotropy is most 

accurate for particles resembling these shapes, but may deviate for complicated irregular grains.  

Magnetostatic interactions and secondary fields generated by each particle’s magnetization on all 

other particles are approximated by point source magnetic moments at the center of particle 𝑝𝑖, 

assuming that the central secondary fields at particles 𝑝𝑗 , 𝑗 = 1. . 𝑛, 𝑗 ≠ 𝑖 are representative for the 

average field the particles experience. Thus, the model is valid as long as inter-particle distances are 

large enough that the dipole equation adequately represents magnetic interactions, and the 

secondary field is sufficiently homogeneous throughout the particle. This limitation equally applies 

to previously published distribution anisotropy models. The distance at which this assumption is 

valid was determined from a 2-particle system, where the magnetization of particle 𝑝1, due to an 

externally applied field 𝐻⃑⃑ 𝑒𝑥𝑡, gives rise to a secondary field 𝐻⃑⃑ 𝑝 at the location of particle 𝑝2. The total 

field experienced by 𝑝2 is 𝐻⃑⃑ 𝑡𝑜𝑡 = 𝐻⃑⃑ 𝑒𝑥𝑡 + 𝐻⃑⃑ 𝑝. 𝐻⃑⃑ 𝑝 was calculated at the center of 𝑝2, as well as by 

averaging all secondary fields on a regularly spaced grid throughout the volume of 𝑝2. To simplify the 

grid average, particles were assumed to be rectangular rods, whose x and y dimension remained 

constant, while their z-dimension varied to form isometric, flattened (oblate) and elongated 

(prolate) particles. The particle size is given here by the diameter in the xy plane, so that prolate 

particles have larger volumes than oblate particles. The external field was applied parallel to the 

particles’ x, y, and z directions, and 𝑝2 was shifted along the x-axis to various distances from 𝑝1. Four 

intrinsic susceptibilities were used, 20 SI and 2.4 SI to test differences in the model results related to 

the uncertainty in the 𝑘𝑖𝑛𝑡 of magnetite, 1 SI which is close to the intrinsic susceptibility of the 

ferrofluid used by Jones et al. (2006), and 0.16 SI, corresponding to a more strongly diluted ferrofluid 

(Pugnetti et al., 2020).  

The strength of 𝐻⃑⃑ 𝑝 and its variability throughout 𝑝2 depends on 𝑝1’s magnetization and thus its 

intrinsic susceptibility, particle geometry and external field direction, as well as the inter-particle 

spacing (Figure 3). For spherical and prolate particles 𝑝2, the central field overestimates the average 



 
©2020 American Geophysical Union. All rights reserved. 

field experienced by the particle. For spherical particles, differences between the central and 

average fields are independent of field direction, and the overestimation is ~20 % for a particle 

spacing of 1, i.e. when the sides of 𝑝1 and 𝑝2 are touching, ~10 % at a spacing of 1.3, and <1% when 

the spacing increases to 2.3 particle diameters. The overestimation and its dependence on the 

direction of 𝐻⃑⃑ 𝑒𝑥𝑡 become stronger with increasing prolateness of the particles. Conversely, for 

oblate particles, the central field underestimates the average field experienced by 𝑝2, except when 

𝐻⃑⃑ 𝑒𝑥𝑡 // y and inter-particle spacing is small (Figure 3a). 

The deviation of the total field experienced by 𝑝2, 𝐻⃑⃑ 𝑡𝑜𝑡, from 𝐻⃑⃑ 𝑒𝑥𝑡 depends on particle geometry, 

inter-particle spacing, as well as the intrinsic susceptibility. Deviations are larger for smaller spacing, 

larger 𝑘𝑖𝑛𝑡, and increase from oblate to spherical to prolate geometries (Figure 3b). For the 

arrangement of 𝑝1 and 𝑝2 along the x-axis, |𝐻⃑⃑ 𝑡𝑜𝑡| > |𝐻⃑⃑ 𝑒𝑥𝑡| when the external field is applied along x, 

and |𝐻⃑⃑ 𝑡𝑜𝑡| < |𝐻⃑⃑ 𝑒𝑥𝑡| when the applied field is along y or z. The difference between |𝐻⃑⃑ 𝑡𝑜𝑡| and |𝐻⃑⃑ 𝑒𝑥𝑡| 

at the particle center drops to 1% of the external field at ~4 particle diameters spacing for strongly 

prolate particles and 𝑘𝑖𝑛𝑡 = 2.4. Averaged over 𝑝2, |𝐻⃑⃑ 𝑡𝑜𝑡| is within 1% of |𝐻⃑⃑ 𝑒𝑥𝑡| at a spacing of 2 

(oblate particles) to 8 (prolate particles) particle diameters for 𝑘𝑖𝑛𝑡 = 20, and at smaller distances for 

weaker 𝑘𝑖𝑛𝑡. Figure 3b also shows that |𝐻⃑⃑ 𝑡𝑜𝑡| deviates less than 0.1% from |𝐻⃑⃑ 𝑒𝑥𝑡| at spacings of ca 4, 

6 and >10 particle diameters for strongly oblate, spherical, and strongly prolate particles, 

respectively (𝑘𝑖𝑛𝑡 = 20). These distances may be taken as threshold values at which the influence of 

magnetostatic interactions becomes negligible. Although a 1% or 0.1% deviation in field intensity 

may seem small, these results apply to the one-sided effect of 𝑝1 on 𝑝2, and the effect of 

magnetostatic interactions will add up when the number of particles increases, and their mutual 

effects on each other are considered.  

The secondary field is anisotropic, and effects on the anisotropy of the apparent susceptibility 

prevail at larger particle spacing, especially when 𝑘𝑖𝑛𝑡 is large. For example, a 1% change in 

anisotropy is expected from a one-sided interaction of a strongly prolate particle at a spacing of ca 6 

particle diameters for 𝑘𝑖𝑛𝑡 = 2.4 and >10 particle diameters for 𝑘𝑖𝑛𝑡 = 20 (Figure 3c). The results 

shown in Figure 3 indicate that the largest errors in estimating magnetostatic interactions are made 

for side-by-side configurations of closely spaced and strongly magnetic prolate particles. 

Unfortunately, closely spaced and strongly magnetic particles are also those with the highest 

expected contribution to distribution anisotropy, and care needs to be taken to avoid artefacts due 

to the differences between central and average particle fields. The particles in many natural rock 

samples are less anisotropic or at a larger spacing than what is used here to explore the model 

limitations. However, some rocks will contain side-by-side configurations of needle-shaped particles, 

and for those it is important to be aware of FinIrrSDA’s limitations. A solution would be to compute 

the variation of magnetization throughout the particle rather than solely at the particle center, if the 

computational power is available. It computational power is limited, the data presented in Figure 3 

can help quantify the expected uncertainties.    

Within the limits of the assumptions outlined above, FinIrrSDA is aimed to be as broadly applicable 

as possible. In particular, it was designed to calculate magnetic anisotropy for finite and irregular 

distributions of particles with unequal dimensions, shapes, and orientations. The calculations 

presented in this study assume equal intrinsic susceptibility for each particle, but the model could be 

easily adapted to incorporate individually defined susceptibilities for each particle. The following 

parameters serve as input for the model: 

(1) x, y, and z coordinates of the particle centers 
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(2) lengths of the major, intermediate and minor axes of best-fit ellipsoids 

(3) orientation vectors (defined by their declination and inclination) of the ellipsoid axes 

(4) intrinsic magnetic susceptibility  

The input data reflecting the particle properties, (1) to (3) are read in as a table where each row 

represents one particle. The particle data could be the known structure of synthetic samples, or 

derived from tomography scans or images. The quality of the particle data in terms of accuracy, 

representativeness and resolution is an important factor determining the reliability of the modeled 

anisotropies. 3D representations of the particles are preferable, but 2D image analysis data can be 

used subject to certain assumptions. Spatial resolution can typically be increased by analyzing 

smaller samples, and often a compromise between resolution and representativeness will have to be 

made. Similarly, 2D images may have higher resolution than 3D datasets, at the expense of depth 

information. 

3D particle distributions can be characterized by X-ray computed tomography (XRCT), with typical 

voxel resolutions on the order of ~1-10 µm (Baker et al., 2012; Ketcham, 2005; Landis & Keane, 

2010). Given that isometric SD and PSD magnetite grains have typical sizes of 50 nm – 1 µm and 1 – 

20 µm, respectively (Clark, 1997, Table 4; larger threshold values for elongated particles), mainly MD 

grains will be included in XRCT-derived input data. Higher-resolution input data that also includes SD 

and PSD grains will need to be treated with special care, because SD magnetite causes inverse low-

field anisotropy of magnetic susceptibility (AMS) (Rochette et al., 1999; Rochette et al., 1992). A 

mathematical description of the anisotropy of PSD grains still needs to be defined.  

When studying pore fabrics, the intrinsic susceptibility is controlled by the ferrofluid used for 

impregnation. Estimating the intrinsic susceptibility of strongly magnetic materials such as magnetite 

is challenging, because 𝑘𝑜𝑏𝑠 approaches 𝑁−1 for large 𝑘𝑖𝑛𝑡. Therefore, the observed magnetic 

susceptibility in spherical MD magnetite is ~3. For SD grains, 𝑘𝑜𝑏𝑠 depends on the grain shape, and 

varies between 1.33 (needles) to 20 (equidimensional grains with magnetocrystalline anisotropy) 

(Dunlop & Özdemir, 1997; Stacey & Banerjee, 1974). Typical susceptibility values for SD magnetite of 

2.4 and 1.3-12.6, and for MD magnetite of 2.8 and 2.5-3.8, as reported by (Thompson & Oldfield 

(1986, Table 4.2) and Clark (1997, Figure 3) respectively, agree with these theoretical limits. Intrinsic 

magnetite susceptibilities vary largely depending on grain size, crystallinity and dislocation density. 

Clark (1997) reported values from 13 (fine-grained, poorly crystalline, stressed or inhomogeneous 

grains) to 130 (coarse and well-crystallized grains), and identified a ‘typical value’ of 20. The large 

uncertainty in 𝑘𝑖𝑛𝑡 leads to uncertainties in the models, and this is tested by calculating models for 

𝑘𝑖𝑛𝑡 values of 2.4 as well as 20 (SI). 

To calculate magnetic anisotropy of the particle assemblage, FinIrrSDA (1) determines the self-

demagnetization and 𝑘𝑜𝑏𝑠 tensors for each particle, (2) based on 𝑘𝑜𝑏𝑠calculates the primary 

magnetization of each particle for a series of 6 independent directions of 𝐻⃑⃑ 𝑒𝑥𝑡, (3) computes the 

vector sum of secondary fields 𝐻⃑⃑ 𝑝,𝑖 experienced by particle i due to all other particles for every 

direction of 𝐻⃑⃑ 𝑒𝑥𝑡, and (4) predicts the total magnetization of each particle taking into account the 

secondary fields and the particle’s shape anisotropy for each direction of the external field. 

Magnetostatic interactions (3) change the total field experienced by each particle. This in turn 

affects the particles’ magnetization, and their secondary field that adds to the total effective field 

experienced by all other particles, in particular those close-by. Hence, a second iteration of steps (2) 

to (4) is performed when |𝐻⃑⃑ 𝑡𝑜𝑡| of a particle differs more than 1 % from |𝐻⃑⃑ 𝑒𝑥𝑡|, or the directions of 

𝐻⃑⃑ 𝑡𝑜𝑡 and 𝐻⃑⃑ 𝑒𝑥𝑡 deviate by more than 1°. The integrated shape anisotropy of all particles is calculated 
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after step (1), by adding the 𝑘𝑜𝑏𝑠 tensors, weighted by the particle volume. The combined shape and 

distribution anisotropy tensor is calculated after step (4), using magnetization components parallel 

to 𝐻⃑⃑ 𝑒𝑥𝑡. Both results are given as susceptibility normalized by total particle volume. Two distinct 

coordinate systems are employed for different calculation steps in the model. Shape anisotropy, 

magnetization directions, and final anisotropy tensors are computed in the sample (xyz) coordinate 

system. Conversely, the magnetic interactions are computed in the coordinate system of the dipole 

generating 𝐻⃑⃑ 𝑝, defined by the magnetization direction of the particle after shape anisotropy is taken 

into account. The latter are then transformed back to the sample coordinate system. An overview of 

the code including the used coordinate systems is given in Figure 4.  

The model was tested for self-consistency, i.e. whether anisotropy tensors are the same when the 

entire particle assembly is rotated with respect to the coordinate system. Additional tests verified 

that calculations are independent of whether the 3 axes of a particle define a right-handed or left-

handed coordinate system. Finally, FinIrrSDA models of finite lines and planes consisting of different 

numbers of particles were compared to results of published models for infinite lines or planes of 

regularly spaced equal particles (Biedermann, 2019; Cañón-Tapia, 1996; Stephenson, 1994) (Figure 

5). Input parameters for these models were (1) the particle dimensions along their main axes, and 

(2) the spacing between particles. For both line and plane models, the particles were rotationally 

symmetric with their symmetry axes along z, and particles along the x-axis or in the xy plane for 

linear and planar arrangements, respectively. For the finite models, the total extension of the lines is 

defined as (𝑁 − 1) ∗ 𝑑, where 𝑁 describes the number of particles, and 𝑑 the spacing between two 

neighboring particles. Finite plane models were computed for an equal number of particles along x 

and y, and the extension of the plane is (√𝑁 − 1) ∗ 𝑑 or (𝑁𝑥 − 1) ∗ 𝑑, where 𝑁 = 𝑁𝑥𝑁𝑦 is the total 

number of particles, and 𝑁𝑥 = 𝑁𝑦 are the number of particles along the x and y axes.  

The comparison between FinIrrSDA (finite lines and planes, interactions between all particles) and 

previous models (infinite lines and planes, nearest neighbor interactions only) shows considerable 

differences, especially when the number of particles is small. The anisotropy of a small number of 

particles is more strongly dominated by shape anisotropy, while the contribution of distribution 

anisotropy is weak due to the small number of interaction partners. As the number of particles 

increases, interactions increase, leading to stronger influence of distribution anisotropy. The 

influence of one additional particle is large when the line increases from N=1 to N=2 and from N=2 

to N=3, but minimal when N changes from 100 to 101. Directional susceptibilities and anisotropy 

calculated by FinIrrSDA reflect these changes in the magnetic interactions, whereas the previously 

used infinite models provide a single estimate independent of particle number. Therefore, largest 

deviations are observed for small N. For large particle numbers, the line models shown in Figure 5 

reach nearly constant directional susceptibilities, which however, deviate from those of the infinite 

models. The reason for this is that FinIrrSDA considers interactions between all particles rather than 

exclusively nearest-neighbor-interactions. Therefore, distribution anisotropy is stronger in FinIrrSDA, 

and more realistic. Analogously, for planar particle assemblies, FinIrrSDA shows a gradual transition 

for a single particle controlled purely by shape anisotropy to a plane of 2*2, 3*3, n*n particles, 

reflecting the increasing influence of distribution anisotropy. The differences between finite and 

infinite models for a specific 𝑑 are generally larger for planar assemblies compared to linear 

assemblies, due to the increased number of non-nearest neighbors within a given radius. For the 

same reason, larger differences are predicted between planar assemblies with 10*10 = 100 particles 

compared to planar assemblies of 11*11 = 121 particles compared to lines of 100 vs 121 particles. 

Therefore, the errors made by predictions based on the previously available infinite models is larger 

for 2D (planar) assemblies of magnetic particles than for 1D (linear) ones. For the 3D arrangements 
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of iron oxides and impregnated pores in natural rocks, even larger uncertainties would be expected, 

if the infinite models were able to predict the distribution anisotropy for that geometry. Hence, the 

application of finite models taking into account all interactions between all particles is especially 

important when these particles are arranged in 3D.  

As 𝑑 decreases, interactions become stronger, resulting in more prominent distribution anisotropy. 

Strong interactions lead to changes in the effective fields and magnetizations experienced by each 

particle, and FinIrrSDA takes this into account by a second iteration step. In the examples shown in 

Figure 5, a second iteration was only necessary for the prolate particles. The change in predicted 

susceptibility after the second iteration is larger for the planar arrangement than the linear 

arrangement, again related to stronger interactions in the planar arrangement. Both the infinite and 

finite models show a stronger distribution anisotropy component when particles are closer together. 

The differences of FinIrrSDA to previously published models are largest for small 𝑑, where the 

interactions are stronger (Figure 5d).  

Model run times depend on the computational power as well as the properties of the particle 

assemblage. Typical run times on a standard laptop (Intel® Core™ i7-7500 CPU @ 2.7 GHz processor, 

16 GB RAM) are < 0.5 s for models with < 10 particles, ~1 s for 50 particles, 2-3 s for 100 particles, 

and slightly more than 1 min for 1000 particles. The largest model shown here contains ~20 000 

particles and the calculation took ca. 1-2 days.  

4. Applications 
The FinIrrSDA model is universally applicable to datasets from which particle dimensions and 

orientations can be extracted, as long as the particle data is representative of the sample volume, 

and has sufficient resolution. To illustrate the versatility of the model, two examples will be shown 

here, (1) computing the expected magnetic pore fabric from the known 3D pore structure of 

synthetic samples, and (2) approximating the magnetic anisotropy in a plane based on BSE images. 

All model results are verified against experimental data. In both cases, the model provides 

information on the relative contributions of shape and distribution anisotropies, and defines which is 

more important in that specific dataset. However, the main goal of the examples is to highlight the 

abilities and limitations of the FinIrrSDA model. 

4.1 3D: Magnetic pore fabrics in synthetic samples with defined pore geometries 
The first example is a 3D model of the magnetic anisotropy caused by ferrofluid-filled cavities in 

synthetic samples. The pore shapes and geometries used here reflect the synthetic samples and 

measurements by Jones et al. (2006), made to study bedding-, capillary- and crack-like pore fabrics. 

The pores in these synthetic samples are cylinders of known length and diameter, arranged in lines 

or planes with known geometry, but undefined distance between the cavities. The intrinsic 

susceptibility of the ferrofluid they used was 1.09 (SI), and they characterized the magnetic 

anisotropy by the ratio of maximum to intermediate principal susceptibility (magnetic lineation, L = 

k1/k2), and intermediate to minimum magnetic susceptibility (magnetic foliation, F = k2/k3). The 

bedding- and capillary-type fabrics consisted of prolate cylinders, while the crack-like fabric was 

approximated by oblate cylinders. Magnetic anisotropy measurements revealed fabrics resembling 

the shapes of the individual cavities for the capillary (F = 1, L>1, corresponding to prolate cylinders) 

and crack-like (F>1, L=1, corresponding to oblate cylinders) fabrics. Conversely, the prolate cylinders 

of the bedding-type fabric give rise to a magnetic anisotropy with both F > 1 and L > 1 (Jones et al., 

2006). The latter observation cannot be explained by shape anisotropy alone and highlights the 

importance of distribution anisotropy.  
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Biedermann (2019) calculated shape and distribution anisotropy models for a range of pore 

spacings, constrained by the sample size, pore size, and number of pores. That study assumed 

infinite lines or planes and considered only nearest-neighbor interactions. In contrast, finite lines and 

planes are used in this study, and each of the pores interacts with all other pores in the same 

sample. Results obtained with FinIrrSDA reflect Jones et al. (2006)’s measurements better than the 

previous infinite model, in particular for the bedding-like fabric (Figure 6). A comparison between 

the modeled shape anisotropy and the modeled combination of shape and distribution anisotropies 

clearly indicates that distribution anisotropy has an important effect on the measurements. 

Additionally, a significant improvement from infinite to finite models is observed. In particular, the 

infinite models show a conceivably better fit of ellipsoidal pores with the measured data, which is in 

contradiction to the known geometry of the pores in that sample. In contrast, the finite models show 

a close match between cylindrical pore models and measurements, in agreement with the known 

sample geometry. Differences between the ellipsoidal and cylindrical pore models highlight the 

importance of expanding modeling capabilities to non-ellipsoidal particles. The FinIrrSDA results 

suggest that the distance from pore to pore in the bedding-like fabric of Jones et al. (2006) was ~4.5 

mm. The models for capillary- and crack-like fabrics yield unrealistic anisotropies for small distances, 

probably related to the assumption of dipolar interactions and central field approximation not being 

valid for large pores at small distances to each other.  

4.2 2D: In-plane anisotropy of an oxide gabbro 
In the second example, the magnetic anisotropy arising from magnetite in an oxide gabbro from the 

Duluth Complex, MN, USA in a single plane was determined based on backscattered electron (BSE) 

images. The gabbro contains two types of magnetite, individual grains and pyroxene-hosted 

exsolutions. The orientation of the exsolutions in pyroxenes is crystallographically controlled, 

typically with two groups of exsolutions sub-parallel to the [001] and [100] directions of the 

pyroxene (Bown & Gay, 1959; Feinberg et al., 2004; Fleet et al., 1980), leading to an oblate 

ferromagnetic fabric with the minimum susceptibility parallel to the clinopyroxene [010] axis 

(Biedermann et al., 2015; Hirt & Biedermann, 2019). 

The BSE images were obtained on a JEOL JXA-8900R electron microprobe at the Department of Earth 

Sciences, University of Minnesota, MN, USA. A large part of the core surface was imaged using 

comboscans, identifying a total of 20397 oxide particles (Figure 7a). To save computation time and 

avoid artefacts due to the image dimensions on the distribution anisotropy calculation, a circular 

section was cut from the original BSE image (Figure 7b). Oxide particles were isolated by greyscale 

thresholding, and best-fit ellipses obtained using ImageJ (Figure 7c – 7e) (Schneider et al., 2012). 

Particle analysis provided the orientation distribution of the best-fit ellipses, as well as correlations 

between aspect ratio or grain orientation with grain size (Figure 7f-h). 2546 oxide particles were 

identified in the circular section shown in Figure 7b. Image analysis results are limited by resolution; 

i.e. small oxides occupying a single pixel appear circular, and their orientation angle is 0. Similarly, 

the exact shape and orientation cannot be determined for oxides that occupy 2x1 or 1x2 pixels. Of 

the identified oxide particles, 982 were non-circular, and 849 of the non-circular particles showed 

angles different from n*45°. Similar resolution-related considerations are also necessary for 3D input 

data.     

Because self-demagnetization operates in 3D but images provide 2D information on the geometry 

and distribution of oxides only, certain assumptions were necessary prior to anisotropy modeling: 

Ellipsoids were constructed by assuming rotational symmetry around the long axes of the fitted 

ellipses (Figure 7i), which then served as input data for FinIrrSDA. This is a reasonable approximation 

for needle-shaped exsolutions oriented with their long axis in the viewing plane, but inadequate for 
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e.g. platelets or when needle-shaped exsolutions have their longest axis at a large angle to the 

viewing plane. Note that circular ellipses, reflecting either grains with truly circular cross sections, or 

grains not resolved adequately, were transformed to spherical grains. These do not possess shape 

anisotropy, but contribute to distribution anisotropy.  

For the modeling, all oxides identified in the image were assumed to be magnetite. Models were 

calculated for intrinsic susceptibilities of 2.4 (SI) and 20 (SI), to also quantify the effects of the 

uncertainty in magnetite susceptibility. Due to the high resolution of the image and the strongly 

elongated grains, some of these may be in the SD/PSD range, and thus give rise to inverse low-field 

AMS. Because of this, model results were compared to both low-field AMS and AARM 

measurements, where the latter is not affected by inverse anisotropy. Model calculations were 

performed for (1) solely shape anisotropy, and (2) shape and distribution anisotropy in the plane of 

the image. First calculations were performed on the 2546 particles in the circular section. A second 

model only included the non-circular particles (n = 982), and a third model excluded particles whose 

orientation could not be resolved (n = 849) (Figure 7d-k; Table 1). Models calculated from the 

circular section gave similar results, and appeared strongly controlled by a small number of large 

particles, which were excluded in a fourth model (n = 843). An additional model was calculated 

including all 20397 particles in the entire BSE comboscan. For the models using 𝑘𝑖𝑛𝑡= 20 SI, the 

strong modeled Intrinsic magnetization of the largest grains causes unrealistically high interaction 

fields, resulting in large angles between external and effective fields experienced by the other 

particles. These models show the limitation of the approach for strongly magnetic large particles at 

small spacing (cf Figure 3) and were not interpreted. For the successful models, only small 

differences were observed between pure shape anisotropy and the combination of shape and 

distribution anisotropies.  

All models have their minimum susceptibility normal to the image plane, an artefact of the 2D 

nature of the input data. The anisotropy is lineation-dominated, a direct consequence of the 

assumption that the long axes seen in the image are symmetry axes of needle-shaped particles. The 

differences between models for solely shape anisotropy and models including both shape and 

distribution anisotropy are small with their principal directions agreeing within < 1°, independent of 

the intrinsic susceptibility used. Comparing the modeled directions for both intrinsic susceptibilities 

also shows a close agreement with < 2° deviation. The models with stronger intrinsic susceptibility 

show larger susceptibilities and anisotropy degrees. For all models, taking into account distribution 

anisotropy leads to a slightly larger degree of anisotropy (difference of 0.003 – 0.012 for 𝑘𝑖𝑛𝑡 = 2.4, 

and 0.014 – 0.080 for 𝑘𝑖𝑛𝑡 = 20) and a stronger foliation component (difference of 0.001 – 0.009 for 

𝑘𝑖𝑛𝑡 = 2.4 and 0.006 – 0.016 for 𝑘𝑖𝑛𝑡 = 20), related to the particles being arranged in a plane. The fact 

that these differences are small indicates that for this sample, the contribution of distribution 

anisotropy is negligible compared to shape anisotropy.  

Larger differences are observed depending on the number of particles included. The first three 

models give similar results in terms of fabric orientation, degree and shape of the anisotropy.  The 

fourth and fifth model show a second set of fabric orientations, which differ from the first three 

models. This can be explained by the strong influence of a small number of large grains masking the 

anisotropy of the aligned smaller grains in the first three models. Only a small number of large grains 

are present throughout the entire BSE comboscan. Nevertheless, they dominate volumetrically in 

the circular section. Their influence on the overall anisotropy is reduced when more particles are 

included. The smaller grains have similar orientation throughout the BSE comboscan and hence 

dominate the anisotropy when larger parts of the sample are considered in the model. 
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These model results were compared to anisotropy of magnetic susceptibility (AMS) and anisotropy 

of (partial) anhysteretic remanent magnetization (A(p)ARM) measured previously (Biedermann, 

Jackson, Bilardello, et al., 2020; Biedermann, Jackson, Stillinger, et al., 2020). The measurements 

describe orientations of different subpopulations of grains; AMS being an integrated measure of the 

alignment of all minerals in the rock, including ferromagnetic and para-/diamagnetic contributions, 

and potentially subject to an inverse fabric contribution of SD magnetite, and A(p)ARM targeting 

remanence-carrying minerals in specific coercivity windows, without the complexity of inverse 

fabrics. Coercivity depends on mineralogy, grain shape and size. Assuming all oxides are magnetite, 

small and strongly elongated grains will have higher coercivities than large and isometric grains. The 

measured anisotropies are full second-order tensors, and oriented at angles to the specimen’s x-, y- 

and z-axes. The maximum susceptibilities are grouped at a large angle to the xy plane on which the 

BSE image was taken. In order to compare the 3D measurements with the 2D model, the 

intersection of the magnitude ellipsoid and the image plane was calculated. A comparison of these 

intersection ellipses with the modeled anisotropy in the image plane is shown in Figure 7l. While the 

measured and modeled anisotropy in the image plane do not coincide, the agreement is reasonable 

considering the limitations with the approach: (1) only one plane was imaged and modeled, which 

may be representative of the alignment of small oxides, but is likely not representative for the larger 

oxides; (2) the image provides 2D information only, and assumptions had to be made about the 

particles’ geometry in the third dimension; (3) the smallest particles may not have been imaged due 

to imperfect resolution; (4) some slightly larger particles occupying a few pixels were imaged, but 

their exact shape and orientation could not be determined; (5) the model assumes that all identified 

oxide particles have the same composition and magnetic properties, and the intrinsic susceptibility 

of magnetite had to be assumed; (6) the model considers the contribution of the oxides only, 

assuming they contribute to the anisotropy proportionally to their size, whereas AMS measurements 

include contributions from para-/diamagnetic minerals as well as oxides and show inverse fabrics for 

SD grains, and A(p)ARM measurements take into account only sub-populations of remanence-

carrying oxides with a given coercivity. Both models and measurements indicate different anisotropy 

orientation for small vs large oxide particles; the model calculated for small particles best reflects 

the ApARM50-100 and ApARM100-180 which target high-coercivity magnetite, i.e., elongated small 

particles. The models dominated by large particles seemingly reflect the AMS and low-coercivity 

A(p)ARMs; however, this resemblance should be interpreted with caution given the statistical 

limitations related to the small number of large particles that were imaged. In any case, the 

anisotropy in this sample is dominated by shape anisotropy, while distribution anisotropy is 

negligible.  

Despite the limitations, this example illustrates how certain anisotropy predictions can be made 

from a 2D image. Nevertheless, 3D imaging techniques, provided their resolution is large enough, 

provide a better input for the model.  

4.3 Future applications and developments 
The FinIrrSDA code can in principle calculate the magnetic anisotropy of magnetite particles or 

ferrofluid-impregnated pores for (1) known pore and grain distributions in synthetic samples, (2) 3D 

pore or grain distributions extracted from XRCT or other structural and tomographic data, and (3) 2D 

pore or grain distributions obtained from image analysis. The latter is subject to certain assumptions, 

because demagnetization tensors need to be defined in 3D. In particular, FinIrrSDA is an 

improvement to previous distribution anisotropy models, in that it is not limited to regular 

arrangements of equal particles with the same orientation. 
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Nevertheless, some challenges and open questions remain. Similar to previous models, FinIrrSDA 

produces unrealistic results when the spacing is small with respect to the particle size. This is likely 

related to the assumptions of purely dipolar interaction, and homogeneous interaction field 

throughout the particle. Another challenge is that the model is limited to ellipsoidal or cylindrical 

particle shapes, because the demagnetization tensors are not defined for more complicated shapes. 

Particularly for networks of ferrofluid-filled pores, it needs to be defined how to describe and 

quantify self-demagnetization and interactions in a large connected network of highly magnetic 

material. More work is needed to address these issues.  

All particles in the models presented here have equal intrinsic susceptibility. This is a fair assumption 

for ferrofluid-filled pores, as long as the fluid displays homogeneous properties throughout the pore 

space. Oxide particles will also have similar properties throughout the rock as long as their 

mineralogy, chemical composition and domain state are constant throughout the rock. If several 

types of oxides with different magnetic properties are present in a sample, the code can be adapted 

so that the magnetic properties of each particle can be defined separately. A larger change to the 

code will be necessary to allow for inverse fabrics of SD grains, and to describe the anisotropy in PSD 

grains. This will be especially relevant after expected advances in imaging/tomography techniques 

that also allow characterization of these small particles in standard-size paleomagnetic samples.  

Currently, FinIrrSDA is limited by computation speed, in particular when calculating the distribution 

anisotropy for a large number of particles. This is because the mutual magnetostatic interactions for 

all particles on each other are calculated, and computation time increases approximately as a 

function of n2, where n is the number of particles, especially for large numbers of particles (Figure 8). 

Additional time is needed when several iterations are necessary to compute effective fields 

experience by each particle. This makes FinIrrSDA particularly useful for samples with low numbers 

of particles, e.g. synthetic samples. Because the secondary fields created by each particle are treated 

as independent of each other, future code developments could employ parallelization to reduce 

computation time for large assemblies. 

5. Discussion and Conclusions 
Shape and distribution anisotropy together define the magnetic pore fabric of samples impregnated 

with ferrofluid, or the magnetic fabric of strongly magnetic particles in rock samples. A large number 

of factors influence the relative importance of shape and distribution anisotropy, including the 

particle shape, arrangement, and their magnetic properties (Cañón-Tapia, 2001). Experimental 

studies on synthetic samples have shown that non-random distributions of isotropic particles display 

anisotropy (Hargraves et al., 1991), and that both the aspect ratio of one grain (shape anisotropy) as 

well as the configuration of two grains (distribution anisotropy) affect the magnetic anisotropy of 

magnetite, where the latter was considered more important (Grégoire et al., 1995). Several model-

based studies calculated distribution anisotropy of regular arrangements of equally shaped and sized 

particles in infinite lines or planes (Biedermann, 2019; Cañón-Tapia, 1996, 2001; Stephenson, 1994). 

However, particles and pores in natural rocks have irregular shapes and sizes, and are arranged in 

complex patterns. Therefore, a new model is presented here, that can predict the shape anisotropy, 

or the combined shape and distribution anisotropy of particle assemblages more closely resembling 

those found in natural samples. FinIrrSDA is the first full 3D model able to compute both shape and 

distribution anisotropy for any particle distribution, as long as individual particles can be 

approximated by ellipsoids or cylinders. The input data for the model consist of a table of particle 

properties, and the model is thus universally applicable to a wide variety of structural data and 

studies.  
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The results presented here illustrate that distribution anisotropy depends on the number of 

particles, in particular when their number is small. Hence, FinIrrSDA gives more realistic results than 

existing distribution anisotropy models, especially in synthetic samples with a low number of 

particles. This effect is nicely illustrated by the magnetic pore fabrics in the synthetic samples 

measured by Jones et al. (2006), whose results are better matched by FinIrrSDA than by previous 

models based on nearest-neighbor interactions of infinite lines or planes (Biedermann, 2019).  

The model presented here suggests a stronger effect of distribution anisotropy for assemblages with 

more than ~10 particles than predicted by previous models (Biedermann, 2019; Cañón-Tapia, 1996, 

2001; Stephenson, 1994). This is because FinIrrSDA takes into account more interactions, also with 

particles at larger distances. At the same time, because more interactions need to be calculated, 

FinIrrSDA is slower than the previous models. Hence, there is a trade-off between accuracy or 

applicability to natural samples and computation costs. Whether or not the added accuracy justifies 

the additional computational cost will need to be determined based on the application. 

Although FinIrrSDA provides more accurate results than previously possible, some issues remain 

unresolved: (1) magnetostatic interactions are calculated in the dipolar approximation, leading to 

artefacts if the ratio of interparticle distance to particle size is small, (2) the calculation of shape 

anisotropy is limited to ellipsoidal or cylindrical pores for which sufficiently accurate expressions for 

demagnetization factors exist. Another major limitation FinIrrSDA has in common with existing 

distribution anisotropy models is that the field inside each particle is approximated by the field at 

the particle center, which leads to inaccurate estimates of the secondary field especially for large 

particles at small spacing, i.e., when the contribution of distribution anisotropy is strongest. More 

work will be needed before magnetic anisotropy of complex shapes or entire pore networks can be 

modeled. 

Despite its limitations, FinIrrSDA allows to predict the magnetic shape and distribution anisotropy of 

irregular assemblies of magnetic grains or ferrofluid-impregnated pores based on a table with the 

particle positions, dimensions and orientations. With these characteristics, FinIrrSDA fills a major gap 

between previous distribution anisotropy models and natural samples, and allows to predict the 

relative importance of shape and distribution anisotropy for real rocks. Thus, it facilitates our 

understanding of the interplay between shape and distribution anisotropy in rocks, and will help 

solve the controversy on the importance of each, and facilitate structural, geodynamic and fluid flow 

interpretations from magnetic fabrics in future studies.  
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Figure 1: Properties of individual particles, their arrangement, and interactions of existing models 

compared to typical properties of natural rock samples. Examples for rock samples are backscattered 

electron images showing a basalt from Cape Verde, and a pyroxene grain in an oxide gabbro from 

the Duluth Complex, MN, USA. The code FinIrrSDA proposed in this study still relies on 

approximations with respect to particle shape and the description of magnetic interactions, but 

closes major gaps between existing models and reality.  
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Figure 2: Schematic overview of shape and distribution anisotropies. 
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Figure 3: (a) Magnetic interactions in a 2-particle system. The magnetization in particle 𝑝1 is defined 

by the external field and the particle’s intrinsic susceptibility and shape anisotropy. The field 

experienced by particle 𝑝2 is a superposition of the external field 𝐻⃑⃑ 𝑒𝑥𝑡 and the secondary field 𝐻⃑⃑ 𝑝 

created by 𝑝1. 𝐻⃑⃑ 𝑝 is not homogeneous throughout 𝑝2, especially for large and strongly elongated 

particles at small interparticle spacings. (b) Distance at which the secondary field is < 1% of 𝐻⃑⃑ 𝑒𝑥𝑡 as a 

function of intrinsic susceptibility and particle geometry. (c) Anisotropy of the secondary field. 

Perceptually uniform color-maps are used to prevent visual distortion of the data (Crameri, 2018). 
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Figure 4: Schematic overview of the FinIrrSDA model. 
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Figure 5: Differences between FinIrrSDA and previously published infinite models. An intrinsic 

susceptibility of 1 (SI) was used, and results are shown for three particle shapes (strongly oblate 

ellipsoids (a), spheres (b), and strongly prolate ellipsoids (c)) in either linear or planar arrangements, 

and a spacing of three times the particle diameter in the xy plane. (d) Influence of interparticle 

spacing on the example of spherical particles. Symbols indicate the results of finite particle 

assemblages with all interactions taken into account, and lines reflect infinite models considering 

nearest-neighbor-interactions only.  
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Figure 6: Comparison of FinIrrSDA to the measurements by Jones et al. (2006), and the model by 

Biedermann (2019) for bedding (a), capillary (b) and crack-like fabrics (c). Dashed lines show changes 

in results of the infinite models with pore spacing. Numbers next to the data points indicate inter-

pore distances for FinIrrSDA in mm.  
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Figure 7: BSE images, isolated oxides, best-fit ellipses, and modeled and measured in-plane 

anisotropy for oxides in a pyroxene-bearing oxide gabbro.     
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Figure 8: Computation time as a function of the number of particles in the model.  
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Table 1: Model results based on particle analysis from BSE images. Number of particles included in 

each model, computation time (seconds), modeled principal susceptibilities and their orientations 

and anisotropy parameters for models including shape anisotropy or the combination of shape and 

distribution anisotropy. All models calculated for intrinsic susceptibilities of 2.4 SI and 20 SI.    
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