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INTRODUCTION: HOW TO ISOLATE AN ECM PROTEIN IN 1980

Forty years ago, the tremendous complexity of extracellular matrix (ECM) was still largely an
uncharted area, mainly because many of its components could only be solubilized by denaturing
agents. Known were just five types of collagens, elastin, a couple of proteoglycans, and a few ECM
glycoproteins, among them fibronectin, thrombospondin-1, and laminin-111 (1). The best studied
was fibronectin (2), which became notorious for promoting specific cell adhesion to collagens. In
parallel, the search for yet undetected large ECM glycoproteins continued. In 1981-82, Carter (3)
observed several novel glycoproteins in human fibroblast ECM extracts. Among them, "GP250" was
shown to be distinct from fibronectin but resisted isolation. However, between 1983-85 several
research groups independently discovered and characterized a similar ECM glycoprotein that later
became known as tenascin-C (see below). Its subunits were comparable in size to fibronectin but
instead of dimers formed large (>106 kDa) disulfide-linked oligomers. In the following paragraphs,
the history and context of the individual discoveries of tenascin-C is briefly recounted. I then
describe how a combination of methods available at the time lead to a detailed structural model of
tenascin-C. This was the basis for trying to assign functions to different parts of the molecule. For
reasons outlined below, this turned out to be more difficult than for fibronectin.
DISCOVERIES OF TENASCIN-C

Glial Mesenchymal Extracellular Matrix (GMEM) Protein
Working on brain cancer, Bourdon et al. (4) aimed at finding a glioma-specific cell surface marker.
They used the new tool of generating a monoclonal antibody (mAb) library, which they screened for
mAbs binding specifically to U-251 glioma cells. One mAb, 81C6, also strongly reacted with the ECM
of these cells. The antigen recognized by this mAb was detected in human glioblastoma but few other
neural cancers, and was absent from normal human brain. The novel ECM component was also
present in restricted mesenchymal areas of normal adult tissues. Interestingly, “glial mesenchymal
extracellular matrix” (GMEM) antigen was practically absent from normal skin, but was strongly
expressed by fibrosarcomas and human fibroblast lines in culture. By radioimmunoassays, mAb 81C6
did not react with plasma fibronectin, collagen types I-V, and glycosaminoglycans.
Immunoprecipitation of radiolabeled U-251 cell extracts revealed two bands of 230 and 210 kDa
on reducing SDS gels. The authors concluded to have identified a novel human ECM protein of glial
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and mesenchymal origin that differed from fibronectin and any
other ECM component known at the time.

Myotendinous Antigen
Tenascin-C was discovered a second time due to its appearance
in the developing vertebrate musculoskeletal system. Chiquet
and Fambrough (5) aimed at finding mesenchymal ECM
components that connect muscle fibers to tendons at the
myotendinous junctions. Again a mAb library was generated,
this time against chick skeletal muscle ECM, and screened for
antibodies that specifically labeled tendons and myotendinous
junctions in embryonic and adult limbs. The most promising,
mAb M1, recognized a “myotendinous antigen” that was also
present in restricted areas of a few other developing organs. After
immunoprecipitation, a major band at 220 kDa and two minor
(splice) variants at 200 and 190 kDa were observed. Despite of
similar size, there were clear differences to fibronectin. First,
proteolytic cleavage patterns of myotendinous antigen were
distinct from fibronectin. Second, on non-reducing SDS gels
the antigen had an Mr of >106, indicating that it was a disulfide-
linked oligomer instead of a dimer. Third, contrary to
fibronectin, myotendinous antigen did not bind to gelatin but
co-purified with proteoglycan, pointing to functional differences
(6). In conclusion, a novel ECM protein presumably involved in
muscle-tendon interactions was isolated.

Hexabrachion
Erickson and Inglesias (7) investigated cell surface fibronectin
preparations after rotary shadowing in the electron microscope
(EM). The majority of particles in their samples had the typical
V-shape of fibronectin dimers, but in addition they found
molecules of a peculiar six-armed, gnat-like appearance that
they called “hexabrachions”. In contrast to the rather uniform
fibronectin subunits, hexabrachion arms showed distinct
structural features. The authors therefore concluded that
hexabrachions were not higher-order fibronectin oligomers,
but represented a novel ECM protein contaminating
fibronectin preparations.

J1 Glycoproteins
The mAbs L2 and HNK-1 recognize a specific oligosaccharide
epitope present on certain neural adhesion molecules. To
identify unknown neural components carrying this epitope,
Kruse et al. (8) used a mAb L2 column to enrich for L2/HNK-1
positive proteins from mouse brain. After removing N-CAM, L1,
and MAG, they produced an antiserum against the “rest L2
fraction”. Interestingly, this antiserum inhibited neuron-
astrocyte interactions in culture. On immunoblots, it reacted
with a mixture of ECM proteins present in brain. According to
their size in kDa, these proteins were called “J1-200/220” and
“J1-160/180”, respectively. Later, collaborations established that
J1-200/220 was identical to tenascin-C (9), and J1-160/180 to its
paralog tenascin-R (10).

Cytotactin
Grumet et al. (11) published a similar approach to isolate
“cytotactin” from embryonic chicken brain. They purified the
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protein from a crude fraction of HNK-1-positive components by
ion exchange chromatography, and showed it to be a disulfide-
linked complex of 220, 200 and 190 kDa polypeptides like
myotendinous antigen. Purified cytotactin blocked the activity
of an antiserum that inhibited the adhesion of neurons to glial
cells, again indicating that the novel ECM protein was involved
in the interaction between the two cell types. Grumet et al. (11)
also showed the distribution of cytotactin in the chick embryo,
which agreed with the results for myotendinous antigen (5).

Tenascin-C
Exchange of reagents and collaborations quickly established that
the novel ECM protein described independently was in fact one
molecular species (12). Eventually, the new name “tenascin”
coined by Chiquet-Ehrismann et al. (13) became generally
accepted. After discovery of the additional family members
tenascin-R (14), -X (15), and -W/N (16), the original tenascin
was amended to tenascin-C (17).
TOWARDS A STRUCTURAL MODEL
OF TENASCIN-C

A crude model of tenascin-C was already laid out in the first
publications. The molecule consisted of several similar or
identical 220 kDa subunits that were linked together at one
end by disulfide bridges (6). EM images of rotary-shadowed
molecules revealed an intriguing hexabrachion structure (Figure
1). From opposite sides of a central globule, two triplets of arms
were emanating that showed distinct features. Each arm had a
thin proximal rod fused to a thicker, flexible middle region and
ended in a distal globular domain (7, 18, 19). From expression
cloning using the new antibodies against tenascin/cytotactin, its
first cDNA sequences were published in 1988 (20, 21).
Fortunately, the tenascin-C cDNA contained sequence repeats
coding for some small protein modules for which X-ray
structures were already available. These were (from N- to C-
terminus) an alpha-helical coiled coil domain suitable for
oligomerization, epidermal growth factor (EGF)-like modules,
a series of fibronectin type III (FN3) domains, and a single
globular domain related to the fibrinogen gamma-chain
(Figure 1A).

It was tempting to correlate the tenascin-C cDNA sequence
with the structural features of hexabrachion particles as observed
by EM. The N-terminal coiled-coil domain with adjacent
cysteines could link two triplets of subunits at the central globe
via disulfide bridges. The EGF-like repeats might correspond to
the proximal rod domain of each hexabrachion arm, the stretch
of FN3 domains to the flexible middle part, and the fibrinogen-
like domain to the distal globule (Figure 1A). To prove this
hypothesis for avian tenascin-C, two approaches were used. First,
a library of monoclonal antibodies was generated against the
purified molecule (18). Individual antibodies were tested for their
binding to different recombinant tenascin-C fragments that were
derived from various parts of the sequence (22). Simultaneously,
individual mAbs were incubated with intact tenascin-C, and the
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Chiquet Tenascin-C Discovery and Structure
mixture was examined in the EM after rotary shadowing. IgG
molecules attached to hexabrachion particles could easily be
identified and their binding sites mapped from such images
(Figure 1C). For example, mAb M1 reacted with a recombinant
chick tenascin-C fragment containing the N-terminal EGF-like
repeats, and mAb Tn68 with a fragment comprising the C-
terminal FN3 repeats (22). On EM images, mAb M1 bound to
the proximal thin rod region of tenascin-C particles (Figure 1C),
and mAb Tn68 to the flexible middle region close to the distal
globe. Similarly, mAbs against other parts of the molecule were
mapped by EM on intact tenascin-C.

Later, a complementary approach derived from analyzing
recombinant deletion variants of full-length tenascin-C by EM.
Fischer et al. (19) expressed and purified chick tenascin-C
subunits that lacked specific parts of the intact molecule, but
still assembled correctly into hexabrachion particles. Reactivity
of such tenascin-C variants with antibodies matched with the
specific deletions. A variant missing the EGF-like domains
reacted with all tenascin-C specific mAbs except mAb M1, and
when examined in the EM, it lacked the proximal rod-like part of
Frontiers in Immunology | www.frontiersin.org 3
the hexabrachion arms (Figure 1D). A FN3 deletion variant did
not react with mAb Tn68, and missed the flexible middle region
from the hexabrachion structure. Similarly, when the fibrinogen-
like domain was deleted, hexabrachions without the distal globe
of the arms were observed by EM. By these means, it was possible
to generate a precise model of the hexameric chick tenascin-C
molecule (19, 22) (Figure 1). Knowing the X-ray structures of the
various modules from those of the original proteins, on paper the
model of 1.3x106 kDa hexameric tenascin-C could be
extrapolated essentially to atomic resolution.
DISCUSSION: THE TRICKY PATH FROM
STRUCTURE TO FUNCTION

Elucidation of the structure of a complex protein is rightly
considered the basis for understanding its interactions and
functions. In the ECM field in the early 1980s, fibronectin was
the role model. Once its general structure was known, various
A

B DC

FIGURE 1 | Correlation of tenascin-C domain structure with electron micrographic images. Model of the hexameric tenascin-C molecule derived from cDNA
sequencing. Each arm corresponds to one subunit: two triplets of arms are connected by disulfide bridges at the central globular domain. C, C-terminus; N, N-
terminus; EGF, EGF-like domains; FN3, fibronectin type III repeats; FBG, fibrinogen-like domain; mAb M1, monoclonal antibody binding site (A). EM image of a single
tenascin-C (hexabrachion) molecule after rotary shadowing. Bar, 50 nm (B). EM image of tenascin-C molecule with three mAb M1 particles binding to the inner rod
domain (EGF repeats) of its arms (C). Recombinant tenascin-C mutant with a deletion of the EGF-like repeats. Note that the arms are shortened because their inner
rod domain is missing (D). Original micrographs (B, C) from Chiquet-Ehrismann et al. (18), and (D) from Fischer et al. (19) with permission.
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defined functions could be assigned to distinct parts of the
molecule, among them cell/integrin, gelatin/collagen, and
heparin/glycosaminoglycan binding sites. In fibronectin, all
these sites fully retained their individual functions as small
proteolytic or recombinant fragments. Fibronectin appeared
like an interface with independent functional units plugged in,
enabling it to connect cells with ECM (23). However, the
example of fibronectin spoiled us. For other large ECM
proteins, the structure-function relationships turned out to be
much more complex, and tenascin-C is a puzzling example. It
has been classified as an adhesion-modulating “matricellular”
protein with seemingly context-dependent activities. On the one
hand, it is a poor adhesion molecule for many cells and notorious
for inhibiting spreading of fibroblasts on fibronectin (18). On the
other hand, it binds proteoglycans and promotes neurite
outgrowth [for review, see (24)]. However, it proved difficult to
assign these functions to specific parts of the molecule. Partially
conflicting results were reported from using small recombinant
tenascin-C fragments (22, 25, 26). In a reciprocal approach,
Fischer et al. (19) instead analyzed avian tenascin-C deletion
mutants for function. In this case, tenascin-C lacking the C-
terminal fibrinogen-like domain completely lost its ability to
inhibit fibroblast spreading. However, deletion of other regions
(primarily adjacent FN3 repeats) diminished this activity as well.
Similarly, the neurite-promoting activity of full-length tenascin-
C disappeared completely by removing just the fibrinogen globe.
However, when the FN3 repeats were omitted in addition, a
strong neurite-promoting activity became unmasked in the EGF-
like region, which was not seen with intact tenascin-C and did
not depend on the fibrinogen domain. Thus in contrast to
fibronectin, distinct activities of tenascin-C appear to depend
on strong crosstalks between its various domains (19). Such
interactions can also affect functions (such as glycosaminoglycan
binding) that are observed with certain fragments but hidden in
the full-length molecule (27). Intact tenascin-C is clearly much
Frontiers in Immunology | www.frontiersin.org 4
more than just the sum of its parts, which complicates the
analysis of structure-function relationships. This should be
taken into account when studying the more recently
discovered roles of tenascins in the immune system (28),
which are the topic of this special issue.
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