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Abstract: Periodontal therapy using antimicrobials that are topically applied requires slow or
controlled release devices. The in vitro antimicrobial activity of biodegradable polymer formulations
that contain a new minocycline lipid complex (P-MLC) was evaluated. The new P-MLC formulations
that contained 11.5% minocycline were compared with pure minocycline or an existing commercial
formulation, which included determination of minimal inhibitory concentration (MIC) values against
two oral bacteria and activity on six-species periodontal biofilm. Moreover, the flow of gingival
crevicular fluid (GCF) was modeled up to 42 days and the obtained eluates were tested both for
MIC values and inhibiting biofilm formation. In general, MICs of the P-MLC formulations were
slightly increased as compared with pure minocycline. Biofilm formation was clearly inhibited by
all tested formulations containing minocycline with no clear difference between them. In 3.5 day
old biofilms, all formulations with 250 µg/mL minocycline decreased bacterial counts by 3 log10 and
metabolic activity with no difference to pure antimicrobials. Eluates of experimental formulations
showed superiority in antimicrobial activity. Eluates of one experimental formulation (P503-MLC)
still inhibited biofilm formation at 28 days, with a reduction by 1.87 log10 colony forming units (CFU)
vs. the untreated control. The new experimental formulations can easily be instilled in periodontal
pockets and represent alternatives in local antimicrobials, and thus warrant further testing.

Keywords: controlled release; periodontitis; local antibiotics; in vitro model; gingival flow

1. Introduction

Periodontal disease is associated with an imbalance of microorganisms in subgingival biofilm.
Bacteria highly present in these biofilms are Porphyromonas spp. and Tannerella forsythia [1]. Porphyromonas
gingivalis has been designated as a keystone pathogen by modifying the biofilm towards a pathogenic
one via modulation of the host response [2]. The response of the periodontium to inflammatory changes
resulted in the loss of attachment and periodontal integrity [3].
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Removal of the subgingival biofilm, either by manual or ultrasonic instrumentation, is an essential
outcome of periodontal therapy and decreases the bacteria count associated with periodontal disease.
When applied as a sole method, failures arise with increasing probing depths (≥5 mm) [4]. Systemic
antibiotics improve the clinical outcomes, although their use should be restricted to severe cases [5], as
antimicrobial use affects the gut microbiota [6] and is clearly associated with global development of
antimicrobial resistance [7].

In particular, in supportive periodontal therapy, local antimicrobials are applied to treat residuals
pockets [8]. Topical application can lead to a high concentration of the antimicrobial which is active
in the diseased area and selectively targets microorganisms in the diseased area [9,10]. Systemic side
effects can be reduced and application of controlled compliance by the periodontist to the patient is
guaranteed [9,10].

However, an important problem is the high flow rates that are ≥20 µL/h of the gingival crevicular
fluid (GCF) [11]. In order to avoid rapid depletion of the therapeutics and to keep them in place, sustained
or controlled release devices are needed [9]. Desirable properties of the devices include easy application,
biodegradability, and a continuous release of an antimicrobial-active substance over a defined time [9,10].

In so doing, topical antimicrobials combined with mechanical therapy can improve the clinical
outcome [8]. This is underlined by a systemic review including more than 50 studies, in which the
effect was most pronounced in deep and residual pockets [12].

Frequently, tetracyclines and analogs are used as local antibiotics [12]. Tetracylines (e.g., tetracycline,
minocycline, and doxycycline) block bacterial growth by inhibiting protein synthesis [13]. Moreover,
independent of the antimicrobial activity, they are frequently used to inhibit matrix metalloproteinases
activities [14].

Several antibiotic formulations are on the market, such as gels containing doxycycline [15,16]
or PLGA (poly-(lactide-co-glycolide)) based minocycline microspheres [17,18]. For the application of
minocycline microspheres, the cartridge is connected with a special handle mechanism and used to
insert the unit-dose cartridge into the base of the periodontal pocket, then, the thumb ring in the handle
mechanism is pressed to expel the powder [19]. The minocycline microspheres have been proven in
several clinical studies where the adjunctive used for mechanical debridement was compared with
mechanical debridement only. A large clinical trial including more than 700 patients found minocycline
microspheres highly efficient in probing depth reduction up to nine months [18]. Another study
that included 127 subjects showed favorable results on the reduction of P. gingivalis, T. forsythia, and
Treponema denticola [20]. Moreover, the adjunctive use of minocycline microspheres was able to improve
the clinical outcome in the treatment of peri-implantitis [21].

In the present study, we investigated new experimental biodegradable formulations in the form
of the extrudates, which could easily be placed into a periodontal pocket using a pair of tweezers.
Recently, we described the manufacturing of new lipophilic complexes of tetracyclines, and their
incorporation into these extrudates (Figure 1) [22].

The new formulations show higher stability in an aqueous environment as compared with the pure
drug molecules [22]. This is an important aspect, as drug molecules in biodegradable PLGA polymers
could be exposed to a very acidic aqueous microenvironment (pH 2) for longer times prior to their
release [23]. This exposure could lead to drug inactivation by hydrolysis or the formation of covalent
amide bonds [24]. The main focus of the first publication was on the complex formation, the analytical
characterization, and the drug release kinetics from polymer-lipid complex extrudates. Although
the principal bioactivity of the lipophilic complexes has been shown in preliminary experiments [22],
much more detailed studies are necessary to explore the potential of the new formations with regard
to its biological performance. Therefore, this study aimed to investigate the time dependence of the
antimicrobial activity in relevant in vitro models. In particular, the dilution by the GCF flow was
mirrored. The newly developed polymer-lipid complex extrudates were compared with a commercially
available product and minocycline as the drug substance.
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the biodegradable polymer poly-(lactide-co-glycolide) (PLGA), and extruded. As a result, a polymer-

lipid complex extrudate P-MLC is obtained (diameter 600 µm). Two different PLGA polymers were 

used P502-MLC and P503-MLC. 
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Figure 1. The investigated minocycline lipid complex (P-MLC) systems are manufactured in two
sequential main steps. Step 1 includes the formation of the lipophilic minocycline lipid complex MLC
by solvent and heat associated complex formation between minocycline and magnesium stearate. After
evaporation of the intermediate solvent ethanol, the MLC complex is micronized, mixed with the
biodegradable polymer poly-(lactide-co-glycolide) (PLGA), and extruded. As a result, a polymer-lipid
complex extrudate P-MLC is obtained (diameter 600 µm). Two different PLGA polymers were used
P502-MLC and P503-MLC.

2. Materials and Methods

2.1. Antimicrobials

The manufacturing and characterization of the PLGA and minocycline lipid complex (P-MLC)
extrudates have been described in a previous publication [22]. In short, for both used formulations
(P502-MLC and P503-MLC), minocycline (Ontario Chemicals Inc., Guelph, ON, Canada) was chelated
with calcium and preferably magnesium stearate (both Magnesia Germany, Müllheim, Germany) in
the molar ratio 1:2. Subsequently, the complex was mixed with the desired PLGA polymer (Evonik,
Darmstadt, Germany) and cryomilled. This composition was utilized for the hot melt extrusion with a
600 µm device. Each of the extrudates contained 11.5% (m/m) of minocycline [22].

Positive controls were minocycline as a substance (Ontario Chemicals Inc., Ontario, ON, Canada)
and minocycline microspheres (Arestin®; OraPharma, Bridgewater, NJ, USA). As a negative control, the
drug free PLGA/lipid extrudate (P503 and of magnesium stearate; vehicle) was included. All minocycline
formulations were also kept thoroughly in the dark throughout the experiments.

To achieve a homogeneous distribution of the formulations in the assays, the extrudates and the
microspheres were kept at −20 ◦C overnight in a freezer, and thereafter micronized with a pestle in a
porcelain mortar.

2.2. Microorganisms

In the assays, the following six bacterial strains were used: Porphyromonas gingivalis ATCC
33277, Tannerella forsythia ATCC 43037, Fusobacterium nucleatum ATCC 25586, Streptococcus gordonii
ATCC 10558, Actinomyces naeslundii ATCC 12104, and Parvimonas micra ATCC 33270. All strains were
precultured on tryptic soy agar plates (Oxoid, Basingstoke, GB) with 5% sheep blood for 24 h at 37 ◦C
with the respective conditions (S. gordonii, A. naeslundii with 10% CO2, others anaerobically).

The determinations of minimal inhibitory concentration (MIC) values were made only against
P. gingivalis ATCC 33277 and S. gordonii ATCC 10558.
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All six strains were included in the biofilm assays. For that, bacteria were suspended in phosphate
buffered saline (PBS) according McFarland 0.5 (about 1.5 × 108 microorganisms) and mixed in a ratio
1:2:4 (S. gordonii)/(A. naeslundii)/(each other strain).

2.3. Determination of Minimal Inhibitory Concentration (MIC)

A two-fold dilution series of the formulations dissolved in Aqua Dest was prepared. The highest
concentration of the formulations was always equivalent to 64 µg/mL minocycline. The vehicle was
adapted to the amount of this concentration of the test formulation. Thereafter, each 100µL of test substance
solution followed by 100 µL of bacterial suspension (about 106 bacteria/mL) in doubled concentrated
Wilkins–Chalgren broth (Oxoid) with 10% of lysed horse blood and 10 µg/mL β-NAD (Merck KGaA,
Darmstadt, Germany) was pipetted per well of a 96-well-plate. The final tested concentrations of the
formulations ranged from 32 µg/mL to 0.125 µg/mL minocycline. After an incubation time of 18 h
(anaerobes 42 h) in respective atmosphere, the MIC was assessed as the lowest concentration without
visible growth (turbidity).

2.4. Activity on Biofilm Formation

First, the test formulations were dissolved in Aqua Dest equivalent to 125µg/mL. Then, the wells of a
96-well-plate were coated with 10µL/well for 1 h, before 10µL/well PBS with 1.5% bovine serum albumin
(PBS/SA) was added for 10 min followed by the mixed bacterial suspension in Wilkins–Chalgren broth
with 5% of lysed horse blood and 5 µg/mL β-NAD. Here, the total counts of colony forming units (CFU)
of the biofilms were counted after 6 h and 24 h incubation in an anaerobic atmosphere at 37 ◦C. After 24 h
of incubation, the quantity and metabolic activity of the biofilms were also measured. The quantification
was made by staining with crystal violet according to recently published protocols [25,26]. In short, after
washing, the biofilms were fixed at 60 ◦C for 1 h. Thereafter, 50 µL of 0.06% crystal violet solution was
given per well. After 10 min of incubation at room temperature, the stained biofilms were dissolved by
200 µL of 30% acetic acid, and after transferring to a new microtiter plate, the OD600nm was measured.
Biofilm metabolic activity was assessed using resazurin as a redox indicator [25,27]. After short washing
of the biofilms, 100 µL of nutrient broth containing 0.06 mM resazurin (Merck KGaA) per well was
added. After 1 h of incubation at 37 ◦C, the plate was measured at 570 nm against 600 nm.

2.5. Activity on an Already Formed Biofilm

Biofilms using the multispecies mixture consisting of 6 species were formed for four days. Nutrient
broth was exchanged and selected bacteria (P. gingivalis, T. forsythia) were added again after 2.5 days.
At four days of biofilm formation, after removing the nutrient media and short washing with PBS,
100 µL of test substances solutions in a concentration equivalent to 1000, 500, and 250 µg/mL were
added per well for 10 min, before 100 µL of nutrient broth were pipetted per well (final concentrations
of minocycline 50, 250, and 125 µg/mL). After an overnight incubation (18 h), the CFU, biofilm quantity,
and biofilm metabolic activity were determined, as described before.

The Biofilm experiments were made in two independent experiments in each independent
quadruplicate. ANOVA with post hoc Bonferroni was used for statistical analysis. The level of
significance was set to p = 0.05. Software SPSS 25.0 (IBM SPSS Statistics, Chicago, IL, USA) was used.

2.6. Simulation of the Release Kinetic in a Periodontal Pocket

The GCF flow was simulated in a model. The basis of the experimental setup was a resting volume
of 1.5 µL with a flow of 44 µL/h in periodontitis, which decreased to 15 µL/h 12 weeks after therapy
(Goodson et al., 2003). Thus, formulations equivalent to 1 mg minocycline were put into tubes with
23.5 µL PBS/SA. After 30 min, tubes were centrifuged at 5000× g for 1 min and 22 µL were removed
and replaced by fresh 22 µL PBS/SA. Then, at diverse time points, the exchange of the eluates using
different volumes was repeated (Table 1). All obtained eluates were stored at −20 ◦C until analysis.
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Table 1. Scheme of pipetting to simulate the gingival flow.

Time
PBS/SA Per Tube with Antimicrobial (1 mg)

Removal (µL) Addition (µL)

T 0 - 23.5
T 30 min 22 22
T 60 min 22 44

T 2–4 h each h 44 44
T 4 h 44 88
T 6 h 44 792

T 24 h 792 1056
T 2 d–T 3 day each day 1056 1056

T 4 day 1056 3168
T 7 days 3168 3500

T 10.5 day 3500 3500
T 14 days 3500 3304
T 17.5 day 3304 3304
T 21 days 3304 3108
T 24.5 day 3108 3108
T 28 days 3108 2912
T 31.5 day 2912 2912
T 35 day 2912 2716

T 39.5 day 2716 2716
T 42 days 2716 -

For MIC determination, eluates were used which were obtained at 1, 2, 4, 6, 24 h, and 2, 4, and
7 days, and then weekly up to 42 days. A two-fold dilution series of the eluates was prepared. Eluates
were handled as the dissolved formulations before in the assays. The highest dilution of the eluate
inhibiting growth of S. gordonii and P. gingivalis was recorded.

Furthermore, to assess the potential activity on the biofilm formation, eluates obtained at 24 h,
and 2, 7, 14, and 28 days were used. The wells of a 96-well plates were coated with 10 µL eluate/well
for 1 h. The further procedure of biofilm formation was as mentioned before. However, here, the CFU
were counted after only 6 h of incubation.

3. Results

3.1. Antimicrobial Activity of the Formulations Against Planktonic Bacteria

The minimal inhibitory activity of the P-MLC formulations was slightly less, but in the range
of the pure substance. The difference was one to two dilution steps related to the pure substance.
The microspheres were equally active as the substance. The minocycline free vehicle did not exert any
antibacterial activity against the tested bacteria (Table 2).

Table 2. Minimal inhibitory concentrations of the minocycline formulations (equivalent to µg/mL minocycline).

Formulation S. gordonii ATCC 10558 P. gingivalis ATCC 33277

Minocycline 0.5 0.25
Microspheres 0.5 0.25

P502-MLC 1 0.25
P503-MLC 2 0.5

Vehicle No inhibition No inhibition

3.2. Activity of the Formulations on Biofilms

All tested experimental formulations and positive controls clearly inhibited biofilm formation
(Figure 2). Regarding the CFU counts, the pure substance was the most active, with a reduction
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of 2.1 log10 after 6 h and 3.6 log10 after 24 h. The biofilm quantity was about one-sixth and the
metabolic activity was about one-sixth, one-tenth related to the controls, here, no difference among the
formulations with minocycline occurred, but the vehicle also reduced the CFU counts by 0.6 log10 and
the biofilm quantity by about one-third.
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Figure 2. Activity of the minocycline formulations (substance (minocycl.) and microspheres (microsph.)
polymer-lipid complex extrudate (PLM-C)) and PLM-C without minocycline (vehicle) on formation of
a six-species biofilm. Bacterial counts determined as colony forming units (CFU) (A); biofilm quantity
(B); and metabolic activity (C). ** (black) p < 0.01 vs. control; ** (blue) p < 0.01 vs. P502-MLC; * (green)
p < 0.05 / ** (green) p < 0.01 vs. P503-MLC.

3.3. Activity on an Already Formed Biofilm

Analyzing the activity on an already formed biofilm, the reduction of the CFU counts was between
2.4 and 3.7 log10 CFU with a tendency of more activity with the higher concentrated minocycline
formulations. Among the minocycline formulations, there was no difference and metabolic activity
was also clearly reduced by all minocycline formulations. No clear effect on biofilm quantity was
visible. The vehicle did not show any activity on the established biofilm (Figure 3).
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Figure 3. Activity of the minocycline formulations (substance (minocycl.) and microspheres (microsph.)
polymer-lipid complex extrudate (PLM-C)) and PLM-C without minocycline (vehicle) on a six-species
biofilm formed over 3.5 d. Bacterial counts determined as colony forming units (CFU) (A); biofilm
quantity (B); and metabolic activity (C). ** p < 0.01 vs. control.

3.4. Antimicrobial Activity of the Eluates on Planktonic Bacteria

Initially, eluates of all minocycline formulations inhibited the growth of S. gordonii ATCC 10558
and P. gingivalis ATCC 33277. As expected, the activity decreased continuously over time. At 28 days,
there was no remaining activity for the pure drug substance and the microspheres, whereas the eluates
of the P-MLC were still active after 42 days. The eluates of the vehicle did not have any activity at any
time (Figure 4).
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Figure 4. Minimal inhibitory concentration (maximum dilution) of the eluates obtained over a period
of 42 days from minocycline formulations (substance (minocycl.) and microspheres (microsph.)
polymer-lipid complex extrudate (PLM-C)) and PLM-C without minocycline (vehicle) according to
1 µg of minocycline and simulating the flow of the gingival fluid against Streptococcus gordonii ATCC
10558 (A) and Porphyromonas gingivalis ATCC 33277 (B).

Considering the MIC value of the minocycline substance, the antimicrobial active concentration of
minocycline was calculated. At 1 h, it was >16 mg/mL for the substance and the microspheres and 2 to
8 mg/mL for the P-MLC. At 24 h, the values decreased to 62.5 µg/mL for the substance, each 125 µg/mL
for the P502-MLC formulation and the microspheres, and 250 µg/mL for the P503-MLC formulation.
From 21 days, this concentration was less than 1 µg/mL for the substance and the microspheres,
whereas the eluates of both P-MLC formulations had an activity of 4 µg/mL minocycline (Table S1).

3.5. Antibiofilm Activity of the Eluates

All eluates obtained from minocycline preparations at 1 day inhibited biofilm formation by about
2 log10 CFU. Later, up to 14 days, eluates only obtained from minocycline P-MLC or microspheres
formulations reduced the CFU in biofilms by more than 1 log10. At 28 days, only the eluate obtained
from P503-MLC showed a reducing effect (1.9 log10) and in addition, the eluates obtained from the
vehicle decreased the CFU in biofilm by 1.4 log10 and 1.1 log10 at day 14 and day 21, respectively
(Figure 5).
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Figure 5. Activity of the eluates obtained over a period of 42 days from minocycline formulations
(substance (minocycl.) and microspheres (microsph.) polymer-lipid complex extrudate (PLM-C)) and
PLM-C without minocycline (vehicle) according to 1 µg of minocycline and simulating the flow of the
gingival fluid on biofilm formation (CFU after 6 h). ** (black) p < 0.01vs. control; ** (blue) p < 0.01 vs.
P502-MLC; ** (green) p < 0.01 vs. P503-MLC.

4. Discussion and Conclusions

In this study, newly developed formulations with magnesium stearate and PLGA as the vehicle
were evaluated regarding their antimicrobial activity. Except for analyzing the formulations directly,
the gingival flow was simulated, and eluates of the formulations obtained for a period of 42 days were
investigated. A controlled long-lasting activity of the minocycline as the loaded antibiotic was confirmed.

The formulations were prepared as extrudates with a 600 µm device, of which the P503-MLC
extrudate had a larger diameter than the P502-MLC extrudate due to viscoelastic properties [22]. For the
experiments, they were available as cylinders and easy to cut to the necessary size. However, for
clinical use, other sizes and shapes could also be created.

Minocycline was selected because of the fact that it is one of the best documented local antibiotics
in periodontal therapy [12]. In general, minocycline is also discussed as an anti-inflammatory drug
for the treatment of Alzheimer’s disease [28] and a cardiovascular therapeutic agent related to its
anti-inflammatory, antiapoptotic, and antioxidant properties [29].

As a local drug in periodontal therapy, different approaches have been taken, such as loaded in
PLGA hydrogels [30], in in situ reversed hexagonal mesophase [31], or in liquid crystals [32]. In this
study, the experimental formulations were compared with minocycline microspheres which have been
commercially available for many years.

First, experimental formulations were directly compared with pure minocycline and minocycline
microspheres. A comparison of the different formulations showed that the pure substance was the
most active against the two tested species. The experimental formulations exerted slightly less
activity. The purpose of a controlled release device is that the antimicrobial activity is prolonged over
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time. Although the experimental formulations were dispersed as much as possible, it is suggested
that minocycline was still covered by the vehicle substances. The total release of minocycline from
these formulations was found to be only half of the minocycline magnesium and calcium stearate
complexes [22].

Biofilm formation findings confirm the MIC results regarding the viable bacterial counts within
the biofilm. Applying the formulations on an already formed biofilm, there was no visible difference
between the formulations. Viable bacterial counts decreased by about 3 log10, but a biofilm eradication
did not occur, although using high concentrations of the antibiotic were used over time. Once more,
this finding underlines that antibiotics alone are not able to eliminate bacteria within the biofilm [33],
and therefore, in periodontal therapy, their use is limited as adjuncts to instrumentation [34].

To mimic release kinetics in in vitro assays, in most cases the controlled release device is placed in
defined, constant volumes over time [35–37]. In order to simulate the clinical situation as closely as
possible, a GCF flow during a periodontal therapy with decreasing volumes [11] was simulated. Thus,
the initial volume was adjusted to those of the periodontal pocket and the exchange was simulated
accordingly taking into account the reduced GCF flow during periodontal therapy. Regarding its
protein composition, since the GCF closely resembles a diluted serum [38], a buffered saline solution
supplemented with serum albumin was added. The obtained eluates were used for analysis of the
antimicrobial activity, up to 42 days. However, limitations of the in vitro assay have to be addressed.
A short centrifugation step was included mainly for the purpose of sedimenting condensed water
in the tubes. In particular, at the beginning of the experiments (when having only small volumes),
an effect on the release of the minocycline into the environment cannot be completely excluded. In
addition, the method did not consider a potential attachment and uptake of the antibiotics by epithelial
cells, fibroblasts, and immune cells. Minocycline uptake by oral epithelial cells has been reported
by [39]. Further accumulation in gingival fibroblasts has been shown [40]. Tetracycline analogs seem to
be adsorbed mainly by plasma proteins and, when administered orally, their concentrations in GCF
were found to be low, in about 50% they did not reach 1 µg/mL [41]. However, the concentration of
tetracycline can reach more than 1000 µg/mL in the periodontal pocket when applied as a non-resorbable
fiber over a few days [42]. For doxycycline, another tetracycline analogous, the concentrations in the
periodontal pocket were about 1000 µg/mL after 2 h of application of the formulations containing either
8.5% or 14% of doxycycline, and then the concentrations decreased to 8 and 19 µg/mL after 12 days [43].

In the present study, the in vitro antimicrobial activity of the newly developed formulations lasted
up to 42 days, while the activity of the minocycline microspheres was detectable only up to 21 days.
Unfortunately, concerning the concentration or antimicrobial activity of minocycline, after applying
minocycline microspheres in the periodontal pockets, exact data are not available. It is only mentioned
once that the concentration was about 340 µg/mL in the GCF 14 days after application [18]. Differences
between the eluates of the two experimental formulations were seen regarding their direct inhibitory
activity on bacterial growth, as well as on retarding biofilm formation. The P503-MLC was more active
than the P502-MLC. The higher activity could be related to the larger diameter [22] and the resulting
higher surface which allows an initial faster release of the antibiotic.

The biofilm experiments showed that the vehicle itself (both directly and the obtained eluate) was
able to inhibit the biofilm formation. The vehicle contained PLGA and magnesium stearate. PLGA is
often incorporated in local antibiotics formulations [44,45]. However, a direct antimicrobial activity
of the vehicle was not found which is in accordance with studies using PLGA nanoparticles [45,46].
It has also been reported that unloaded PLGA-nanoparticles did not affect biofilm formation of
Pseudomonas aeruginosa [46,47]. It is suggested that the inhibition of biofilm formation is linked to the
incorporated magnesium stearate. In particular, magnesium is being discussed as an implant material,
it exerts antibacterial activity against planktonic Staphylococcus epidermidis, Staphylococcus aureus, and
Escherichia coli, furthermore, it prevents biofilm formation of these species [48]. In addition, magnesium
oxide nanoparticles clearly inhibited the growth of Staphylococci, E. coli, Pseudomonas aeruginosa, and
Candida ssp. in a study by [49] which also demonstrated a disruption of a nascent biofilm by magnesium
oxide nanoparticles [49].
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In conclusion, the tested controlled release device loaded with minocycline (especially P503-MLC)
seems to be a suitable alternative to commonly used systems, thus warranting further testing in animal
models, and thereafter in clinical trials.

5. Patents

The hereby presented work was filed in a patent application, which was registered under
PCT/EP2019/079566 at the EPA dated on 2019/10/29 as a community invention of Fraunhofer-Society,
Martin-Luther-University Halle-Wittenberg and the University of Bern.
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P-MLC or microspheres formulations over a period of 42 days.
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