
s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
1
4
8
7
3
5
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
2
5
.
4
.
2
0
2
4

                 Journal of Clinical and Developmental Psychology, 2(2), 2020, 48-66 
 

 

48 

 

 

 
 
 
 
 
 
 
 

Developmental progression in children’s and adolescents’ cognitive control  
 
 

Thaqi Q.1*, Roebers C.M.1   

1 Department of Psychology, University of Bern, Switzerland 
 

 
 

ABSTRACT 
 

Background: Despite developmental progression in the ability to control behavior in service of goals 
during kindergarten period, little is known about cognitive control mechanisms in later childhood and 
adolescence.  
Method: The present study provides detailed insights into children’s and adolescents’ ability to flexibly 
and efficiently adapt their speed of responding in the context of a multiple-trial spatial conflict task. 
Based on the dual mechanisms of cognitive control, variability in response times, response consistency, 
trial-by trial adjustments surrounding errors, and developmental differences thereof were investigated.  
Results: Results showed that individuals become more reliable, more efficient, better adjusted, and thus 
of overall better in cognitive control with increasing age. Sequential adjustments of response times 
revealed that the participating 4th graders responded too fast when the task was running smoothly and 
slowed down too strongly after committing an error in comparison to 6th and 8th graders.  
Conclusion: The results suggest that the fine-tuning of speeded responses are key mechanisms for 
developmental progression in cognitive control. Furthermore, the current study attempts to increase 
researcher’s and practitioners’ awareness that detailed analysis of cognitive control processes in typically 
developing children and adolescents is needed for a better understanding when evaluating these 
processes in individuals with deviant cognitive development.  
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Introduction 
 

Many learning and test situations, but also many everyday life situations contain some kind of 

interference calling for cognitive control processes to resolve the conflict. In many of these situations, 

individuals have to respond fast but also as accurate as possible for optimal performance. This 

requires the ability to – in a top-down manner – regulate behavior in a flexible way (i.e., slowing 

down under high conflict conditions to avoid errors). Self-regulatory deficits and a lack of moment-

to-moment behavioral adaptations are being discussed to be at the root of cognitive control problems 

being observed in individuals with attention-deficit hyperactivity disorder (ADHD; Klein, Wendling, 

Huettner, Ruder, & Peper, 2006) and other vulnerable groups (e.g., institutionalized children, 

intellectual humility; Danovitch, Fisher, Schroder, Hambrick, & Moser, 2019; Troller-Renfree, 

Nelson, Zeanah, & Fox, 2016). Research on ADHD however, has produced mixed results in these 

atypically developing individuals (Shiels, Tamm, & Epstein, 2012). One reason for the inconsistent 

evidence may lie in the selection of control groups, typically including a wide age range, ignoring 

developmental improvements naturally occurring in cognitive control and performance monitoring 

(e.g., Schachar et al., 2004; Wild-Wall, Oades, Schmidt-Wessels, Christiansen, & Falkenstein, 2009). 

The present study therefore addresses moment-to-moment behavioral adjustments in a cognitive 

control task in typically developing children and adolescents that have received only very little 

attention in developmental literature. This study aims to gain a better understanding on the typically 

developing monitoring skills and to obtain a better basis for comparisons when addressing atypically 

developing individuals’ behavioral adjustments under cognitive control demands.  

Cognitive control processes (including inhibition, updating, switching but also monitoring and 

planning; Lee, Bull, & Ho, 2013; Lyons & Zelazo, 2011; Miyake et al., 2000; Roebers, 2017; 

Sergeant, 2000) allow the individual to adapt to continuously changing situations and to master 

challenging tasks by flexibly modulating the amount of cognitive control processes that are being 

recruited and invested (Botvinick, Braver, Barch, Carter, & Cohen, 2001). These processes are 

associated to the late maturation of prefrontal cortex and have a long-term impact on health-related 

outcomes (Moffitt et al., 2011; Wendelken, Munakata, Baym, Souza, & Bunge, 2012).  

A central concept of cognitive control is monitoring, describing an individuals’ online processing of 

his or her performance. The ability to monitor performance and adjust behavioral output according to 

set goals have mainly been researched in the context of error monitoring by using cognitive conflict 

paradigms with multiple-choice tasks (Danielsmeier & Ullsperger, 2011). However, research in this 

field focuses predominantly on neural signs attributable to the detection of committed errors (Wessel, 

2012). The error-related negativity (Falkenstein, Hohnsbein, Hoormann, & Blanke, 1991) is an 

neuronal event-related potential that is believed to be functionally localized in the anterior cingulate 
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cortex which alerts the cognitive control system for necessary adaption in occurrence of errors (van 

Veen & Carter, 2002; Ridderinkhof, van den Wildenberg, Segalowitz, & Carter, 2004). Despite the 

intense research on neuropsychological underpinnings of monitoring in cognitive control, behavioral 

measures of adaptive control that ideally lead to continuous and fine-tuned adaptations of the speed 

of responding haven’t been examined in detail. Thereof, moment-by-moment modulations of speeded 

but controlled responses in a spatial cognitive conflict task and their developmental differences are 

the focus of the present contribution.  

Developmental improvements in the ability to monitor and adjust behavior when necessary have 

consistently been observed in typically developing children (e.g., Carlson, 2005; Cragg & Nation, 

2008; Diamond, 2013; Hughes & Ensor, 2007; Jones, Rothbart, & Posner, 2003). The most prominent 

advancements in cognitive control that are observed once children are in school-age concern 

quantitative changes, that is, a continuously increasing speed of responding in multiple-trial tasks 

(Diamond, 2002). So far often overlooked are qualitative aspects of cognitive control driving the 

developmental progresses into adulthood (e.g., Chevalier, 2015; Chevalier, Huber, Wiebe, & Espy, 

2013; Gonthier, Zira, Colé, & Blaye, 2019). These concern an increasing ability to efficiently handle 

the accuracy-speed trade-off inherent in many cognitive control situations, an ability that seems 

heavily impaired and thus obvious in children with ADHD (e.g., Best, Miller, & Jones, 2009; 

Geburek, Rist, Gediga, Stroux, & Pedersen, 2013; Keute, Stenner, Müller, Zähle, & Krauel, 2019; 

Somsen, 2007; van Meel, Helsenfeld, Oosterlaan, & Sergeant, 2007). In other words, these qualitative 

aspects in cognitive control concern sequential adjustments of speed of responding in the course of a 

conflict task, well observable before, on, and after an error (Fernandez-Duque, Baird, & Posner, 2000; 

Roebers, 2017). Their behavioral correlates are pre-error speeding, impulsive errors, and post-error 

slowing.  

The theoretical background for the above noted qualitative aspects of cognitive control is provided 

by Braver’s framework on dual mechanisms of cognitive control (DMC; Braver, 2012; Braver, Gray, 

& Burgess, 2007; Chevalier et al., 2013). According to this view, cognitive control entails two 

primary aspects, one being the ability to monitor the amount of conflict and occurring errors, signaling 

to what extent cognitive control is needed. The other, for the present study more important aspect, is 

the recruitment of cognitive control resources that can be further broken down into proactive and 

reactive cognitive control. Thereby, proactive control is needed before a response is given, and 

depends on the amount of cognitive conflict that is perceived. It entails the monitoring of conflict (or 

interference) that may change over the course of a multiple-trial task. Reactive control, in contrast, 

concerns post-response processing in that committed errors are detected, calling for more cognitive 

control resources to be recruited in anticipation of the next conflict, behaviorally quantifiable through 
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post-error slowing, that is, increased reaction times following an error (Dutilh et al., 2012; Rabbitt, 

1966; Rabbitt & Rogers, 1977).  

Qualitative changes in proactive cognitive control may thus be found with respect to an individual’s 

ability to define the most efficient basic speed of responding to achieve a maximum accuracy and at 

the same time, react at the fastest possible speed without increasing errors (i.e., handling the accuracy-

speed trade-off; see Diamond, 2013). Insufficient proactive control may consequently be observable 

by (a) a generally more pronounced variability in response times when comparing different age 

groups or when comparing healthy individuals with patients (e.g., Brewer & Smith, 1989; Leth-

Steensen, Elbaz, & Douglas, 2000; Hervey et al., 2006), (b) stronger intra-individual variability of 

response times as a function of age groups or diagnosis (e.g., Castellanos & Tannock, 2002; 

MacDonald, Nyberg, & Bäckman, 2006), (c) increasingly speeded responses after correct responses 

(indicative of an exaggerated adjustments of reaction times; i.e., pre-error speeding; e.g., Allain, 

Burle, Hasbroucq, & Vidal, 2009; Dudschig & Jentzsch, 2009; Hajcak & Simons, 2008), and (d) so-

called impulsive errors (i.e., faster responses on error trials compared to correct trials; e.g., Davies, 

Segalowitz, & Gavin, 2004; Simpson et al., 2012; Wiersema, van der Meere, & Roeyers, 2007). 

Efficient reactive control may be observable concerning response time adjustments after an error 

occurred (i.e., post-error slowing; e.g., Rabbitt, 1966; Rabbitt & Rogers, 1977; Schroder et al., 2017; 

Smulders, Soetens, & van der Molen, 2016).  

Unfortunately, the majority of developmental studies addressing transitions in cognitive control has 

focused on response times for correct responses only, disregarding sequential effects and strategic 

up- and down regulations of cognitive control processes surrounding incorrect responses (but see 

Ambrosi, Lemaire, & Blaye, 2016). This renders direct comparisons with clinical sample very 

difficult. The current study represents an attempt to address this gap in literature with new additional 

findings that may provide a more comprehensive view of developmental improvements. The 

developmental pattern of these control processes also enable implications for developmental disorder 

such as ADHD that are characterized by error-processing deficits (e.g., Liotti, Pliszka, Perez, 

Kothmann, & Woldorff, 2005; Wiersema, van der Meere, & Roeyers, 2005). 

However, the very few existing developmental studies on sequential response time adjustments in the 

context of cognitive conflict tasks of typically developing children confirm the assumed qualitative 

changes. Fairweather (1978) was among the first to document increasingly efficient modulations of 

response times from childhood to adulthood. Brewer and Smith (1989) followed up on this and 

reported increasingly smooth modulations of response speed with age. That is, in comparison to 

adults, 9-year-old children were found to more strongly speed up their responses after a correct 

response (pre-error speeding) and also to more strongly slow down after an error (post-error slowing). 
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Although the evidence is not entirely unambiguous (e.g., Gupta, Kar, & Srinivasan, 2009; van de 

Laar, van den Wildenberg, van Boxtel, & van der Molen, 2012; Wiersema et al., 2007), it appears 

that with increasing age, trial-by-trials modulations of response times become more fine-tuned, subtle 

and thereby more efficient (e.g., Brewer & Smith, 1989; Schachar et al., 2004; Smulders et al., 2016). 

A differentiated picture of developmental improvements in qualitative aspects of cognitive control in 

the age range of 10 to 14 years, however, is still missing and needed to understand driving forces for 

developmental progression in cognitive control. 

The current study  

The present approach focuses on a widely understudied aspect of cognitive control development, that 

is, on developmental improvements in the ability to flexibly modulate cognitive control processes in 

the context of a multiple-trial task. Although age-related increases in cognitive control have 

repeatedly been documented (see above), the literature mainly focuses on correct responses only, 

thereby neglecting sequential effects and response times before, on, and after erroneous responses. 

With respect to efficient modulations in proactive and reactive cognitive control, however, these 

effects may be especially informative for a better understanding of cognitive control improvements 

beyond the age of 8 years that are crucial for perception and actions. Moreover, an in-depth and 

detailed exploration on improvements in cognitive control in typically developing children and 

adolescents will allow to better evaluate performance and moment-to-moment adjustments of 

speeded responses in atypically developing individuals within the same age range. It was expected 

that individual’s behavior in cognitive control during late childhood and adolescence will be 

characterized by continuous qualitative changes.  

Given the very limited evidence on proactive and reactive cognitive control in children and 

adolescents, the present study will first explore whether, as theoretically assumed, response times in 

a cognitive conflict task vary more strongly in younger (4th graders) than in older (6th and 8th graders) 

on the group level. It will be examined whether also on the individual level there are age-related 

decreases in response time variations, as Brewer and Smith’s study (1989) suggested. The main focus 

of the present study lies on sequential effects of response times surrounding errors. Using the Simon 

task and applying a fixed sequence of congruent and incongruent trials (Rey-Mermet & Meier, 2017), 

we will provide detailed insights into typically developing children’s and adolescents’ ability to 

flexibly and efficiently adapt their speed of responding. We expect that 4th graders will speed up after 

a correct response, will commit errors by responding (too) fast, and will slow down more extremely 

after having committed an error than 6th and 8th graders. These analyses will help to gain a better 

understanding of the qualitative changes in the ability to flexibly and adaptively recruit and invest 
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cognitive control processes and may underline the necessity of age-specific norms when evaluating 

young individuals with deviant development. 

 

Method 

Participants 

The sample consisted of N = 209 typically developing children and young adolescents (46% females) 

from three different grades (4th, 6th, and 8th grade school). They were recruited from 13 public primary 

and secondary schools situated in different urban and rural regions. They were predominately of 

Caucasian origin and from middle-class families, representing the average characteristics of the local 

communities and free from neurological disorders (e.g., ADHD). All participants were fluent in the 

local language to follow verbal task instructions easily. Of the 209 children and adolescents, the group 

of 4th graders consisted of 71 children (35% females) with a mean age of 10.5 years (SDmonths = 6.6). 

The group of 6th graders consisted of 67 children (52% females) with a mean age of 12.2 years 

(SDmonths = 6.7). Finally, the group of 8th graders consisted of 71 young adolescents (51% females) 

with a mean age of 14.3 years (SDmonths = 8.6). The initial pool included in total N = 222 participants. 

Data of 13 participants were omitted due to missing data or technical failures.  

 

Procedure and Measures 

The objectives of the present project were approved by the Faculty’s Ethics Committee of the Faculty 

of Humanities of the University of Bern, Switzerland (Approval No. 2017-09-00002). For all 

participants, parents provided written informed consent. Additionally, verbal assent from children 

and young adolescents was obtained prior to testing. Participants were tested individually in a quiet 

room in their school. The tasks were administered by trained experimenters. After completing the 

tasks, children and young adolescents were thanked for their participation, praised for their effort, 

and rewarded with a small present.  

One task that has been extremely useful for the examination of cognitive control-related adjustments 

is the classical Simon task (Simon, 1969). This spatial cognitive conflict task includes strong spatial 

compatibility manipulation and moreover triggers adjustments in the face of response conflicts and 

errors (Notebaert & Verguts, 2011). A computerized (E-Prime 2.0 Psychological Tools, Pittsburgh, 

PA) version of this spatial standard two-choice conflict task was accomplished. Participants 

completed two different experimental blocks: congruent block: 24 congruent trials; mixed block: 96 

congruent and 24 incongruent trials in a fixed sequence order in which every fifth trial was 

incongruent to make the task sufficiently difficult (to avoid floor effects in errors; Rey-Mermet & 

Meier, 2017). Each trial consisted of the presentation of one out of two target stimuli (a blue and a 
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yellow starfish), appearing either on the right or on the left side on the screen, and a response that 

was given by pressing one of two pre-defined keys on the laptop. Participants were instructed to press 

(with their index fingers) the left side key for the yellow starfish and the right side key for the blue 

starfish, independent of its presentation side. In congruent trials, the yellow and blue starfish appeared 

on the same side as their corresponding key. In the incongruent trials, the yellow and blue starfish 

appeared on the opposite side to where their corresponding key was (i.e., a spatial conflict). Please 

note that within the congruent and incongruent trials yellow and blue starfish appeared in random 

order. No participant ever indicated during the briefing to have noticed the fixed pattern of congruent 

and incongruent trials. Participant’s responses (accuracies [ACC] and reaction times [RT]) were 

recorded. The inter-stimulus interval (ISI) – the interval between any given response and the onset of 

the next experimental trial – was 250 milliseconds (ms), with a fixation cross in the center of the 

screen, preparing for the next trial. Presentation and response times were not time limited. In each of 

these two experimental blocks, participants completed first a practice session with four practice trials 

and were instructed to perform as quickly and correctly as possible. Practice sessions were repeated 

if three (or more) out of four answers were incorrect. 

 

Results 

 

Statistics and data analysis 

On trial level, RT below 150 ms and above 2000 ms were considered as outliers and therefore 

excluded (< 1% of the N = 25’080 trials were removed). For the congruent and incongruent trials, 

and overall, mean RT (for correct responses only) and the accuracy (ACC; proportion correct) were 

calculated.  

All statistical procedures were performed using the statistical package for the social sciences (SPSS; 

Version 25). One-way analysis of variance (ANOVA) were realized to test the effect of age group on 

response speed distributions, consistency, and performance ACC on incongruent trials. To address 

the relationship between response consistency and overall performance, a bivariate as well as a partial 

correlation (controlling for age) were calculated. The effect of varying interference as well as the 

sequential effects surrounding errors (i.e., pre-error speeding, impulsive errors, and post-error 

slowing) were investigated by conducting a series of separated mixed ANOVAs with different trial 

types as within-subjects factor and age group as a between-subjects factor. For the multiple 

comparisons of specific response latencies related to the trial types, p-value adjustments for multiple 

group comparisons were made by Bonferroni corrections. An alpha level of α = .05 was set for 

significance tests. 
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To confirm the assumption of higher levels of interference on incongruent compared to congruent 

trials (monitoring of conflict or interference; Ridderinkhof, van der Molen, Band, & Bashore, 1997; 

Rueda et al., 2004), substantial congruency effects in all three age groups had to be confirmed first. 

Analysis found in all age groups the expected substantial congruency effect, with prolonged RT and 

decreased ACC for the incongruent compared to the congruent trials, FRT (1, 206) = 550.30, p <.001, 

ηp
2 = .73 (incongruent trials: M = 699.05, SE = 7.86 > congruent trials: M = 585.17, SE = 10.30); FACC 

(1, 206) = 485.31, p <.001, ηp
2 = .70 (incongruent trials: M = .79, SE = .01 < congruent trials: M = 

.97, SE = .00).  

Response speed distributions and consistency  

First, we investigated age-related group differences in response speed distribution of all correct 

responses (including congruent and incongruent trials) across the entire cognitive conflict task (see 

Figure 1). A one-way ANOVA was conducted to assess the effect of age group on response latencies 

for all correct trials across the entire mixed task. Results revealed a statistically significant main effect 

of Age group, F(2, 206) = 55.37, p <.001, ηp
2 = .35, with all three age groups differing significantly 

from each other (4th graders: M = 685.21, SE = 11.81 > 6th graders: M = 594.73, SE = 10.30 > 8th 

graders: M = 533.25, SE = 8.76), with the oldest being the fastest responding. There was a trend 

towards substantial heterogeneity of variance (Levene’s test, p = .08), indicating different variances 

of response time distributions across the three age groups. 

Following up on this, intra-individual variability was assessed to explore age-related differences in 

consistencies of responding (intra-individual coefficient of variation; ICV; see Wojtowicz, Berrigan, 

& Fisk, 2012). This coefficient mirrors an individual’s ratio between individual SD and mean RT for 

all correct responses, providing an interesting, often-overlooked measure of within-person variability. 

A main effect of Age group in response consistency was found, F(2, 206) = 4.37, p <.05, ηp
2 = .04, 

with 4th graders exhibiting significantly higher ICV compared to 8th graders, p <.05, (6th graders, in 

contrast, did not differ from either age group). This suggests that 4th graders engaged in coarser, and 

8th graders in more fine-tuned sequential adjustment of response times. Furthermore, the result of a 

Pearson correlation indicated that there was a significant negative association between ICV and ACC 

performance in the mixed block (including congruent and incongruent trials), r (209) = -.435, p <.05. 

Next, a partial correlation controlled for age revealed a substantial correlation between these two 

variables, r (206) = -.414, p <.05. These results underline that independent of age higher response 

variability during the whole task (i.e., low response consistency; high ICV) is associated to higher 

error rates, thus, low performance in ACC.  
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Figure 1. Response speed distributions - Distribution of reaction times for all correct trials (including 
congruent and incongruent trials) in the Simon task (mixed block) across the three age groups (4th-, 
6th, and 8th-graders).  

 

Sequential effects surrounding errors. Trials following errors on congruent trials were excluded due 

to low trials counts (i.e., very few errors occurred on congruent trials). Trials surrounding an error on 

the incongruent trials were compared with trials surrounding a correct response to the incongruent 

trial. However, the number of sequential adjustment observations differed as a function of correctness 

(Schroder et al., 2019). That is, as performance was relatively accurate, there were more sequences 

surrounding a correct responses on an incongruent trial than surrounding an incorrect response on an 

incongruent trial. Further, to exclude the influence of double-errors, only correct congruent trials that 

preceded and followed incorrect and correct incongruent trials were included to explore sequential 

effects (Hajcak & Simons, 2008). On average, participants across all age groups made between 4 and 

5 errors on incongruent trials in the course of the spatial conflict task, thus, there was no effect of Age 

group on the number of errors, F(2, 206) = 1.61, p = .32, ηp
2 = .01. Hence, response latencies 

surrounding errors across the three age groups are comparable. Figure 2 gives an overview over RT 

for correct and incorrect responses surrounding the incongruent trials, as a function of age. The 

different sequential effects were addressed by computing a series of separated mixed ANOVAs with 
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different trial types and their corresponding responses latencies across the three age groups (see 

below). Adjustments for multiple group comparisons were made with Bonferroni corrections.  

 

 

Figure 2. Sequential effects surrounding errors - Mean reaction times for pre-error/correct 
(correct congruent), error/correct (incongruent), and post-error/correct (correct congruent) 
trials in the Simon task (mixed block) across the three age groups (4th-, 6th, and 8th-graders). 
Standard errors of the means (SEM) are presented by the error bars. Separated mixed 
ANOVAs for sequential effects surrounding errors are reported in the result section. 

 

Pre-Error Speeding. On the trial level, cognitive control tasks including the instruction to respond as 

fast and as accurate as possible allow investigating whether individuals tend to speed up their 

responses when the task is running smoothly, that is, when they are responding correctly (also called 

the “win-stay strategy”; Brewer & Smith, 1989). As speeded responses increase the risk of an error, 

this is also called pre-error speeding (Allain et al., 2009). To analyze whether children and young 

adolescents are using the “win-stay” strategy before committing an error, mean RT before (i.e., 

congruent trials with correct responses) and on incorrect incongruent trials were compared. [Readers 

are reminded that there was a substantial congruency effect (see above), that is, that congruent trials 

normally were responded to faster than incongruent trials]. A mixed ANOVA was conducted with 

Trial type (pre-error correct congruent vs. incorrect incongruent) as within-subject factor and Age 

group (4th vs. 6th vs. 8th grade) as between-subjects factor. Results revealed a significant main effect 

of Trial type, F(1, 206) = 57.24, p <.001, ηp
2 = .22, indicating that incorrect responses on incongruent 
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trials were given substantially faster than on pre-error trials. Thus, individuals speeded up towards an 

error. Further, a significant main effect of Age group emerged, F(2, 206) = 34.24, p <.001, ηp
2 = .25, 

with all three age groups differing significantly from each other (4th graders: M = 557.46, SE = 11.10 

> 6th graders: M = 476.58, SE = 11.43 > 8th graders: M =428.92, SE = 11.10). The interaction between 

the within-subject factor Trial type and Age group was not significant, p > .05, suggesting that the 

pre-error speeding effect was comparable in the three age groups.  

Impulsive Errors. We wanted to establish that errors occurred because participants reacted too fast. 

For this, mean RT on the incongruent trials were compared for correct versus incorrect responses. A 

mixed ANOVA was conducted with Response accuracy (correct vs. incorrect on the incongruent 

trials) as within-subject factor and Age group (4th vs. 6th vs. 8th grade) as between-subjects factor. 

Results revealed a significant main effect of Response accuracy, F(1, 206) = 817.82, p <.001, ηp
2 = 

.80, indicating that – indeed - incorrect responses were given substantially faster than correct 

responses on these incongruent trials. Further, a significant main effect of Age group emerged, F(2, 

206) = 49.40, p <.001, ηp
2 = .32, with all three age groups differing significantly from each other (4th 

graders: M = 655.07, SE = 10.62 > 6th graders: M = 562.16, SE = 10.93 > 8th graders: M =507.38, SE 

= 10.62 ). Interestingly, the interaction between Response accuracy and Age group was also 

significant, F(2, 206) = 7.57, p <.001, ηp
2 = .07. Following up on this interaction, results revealed that 

the difference between correct and incorrect responding on the incongruent trials was larger in the 4th 

graders compared to both, the 6th and 8th graders (who did not differ from one another), F(2, 206) = 

7.57, p <.01, ηp
2 = .07. Thus, we found evidence for impulsive errors in all three age groups of 

typically developing participants, with the youngest age group being disproportionally susceptible for 

too fast responding, leading to impulsive errors on the incongruent trials.  

Post-Error Slowing. In tasks as the Simon task used here, individuals can – theoretically –reactively 

control cognition. By means of accurate error monitoring, ideally, individuals can slow down after 

having committed an error to avoid future errors. In other words, the error itself is also processed and 

signals to the individual that the chosen task strategy needs to be adapted towards slower responding 

for optimizing accuracy of performance (Botvinick et al., 2001). To analyze whether children and 

young adolescents slowed down after committing errors, mean RT on incorrect incongruent trials 

(errors) and the following trial were compared with each other. A mixed ANOVA was conducted 

with Trial type (incorrect incongruent vs. post-error correct congruent) as within-subject factor and 

Age group (4th vs. 6th vs. 8th grade) as between-subjects factor. Results revealed a significant main 

effect of Trial type, F(1, 206) = 582.82, p <.001, ηp
2 = .74, indicating that incorrect responses (M = 

450.67, SE = 7.20) were given substantially faster than responses on post-error trials (M = 858.02, SE 

= 18.22).  
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Further, a significant main effect of Age group emerged, F(2, 206) = 18.17, p <.001, ηp
2 = .15, with 

8th graders (M = 580.90, SE = 18.85) responding significantly faster than both 6th graders (M = 641.98, 

SE = 19.4) and 4th graders (M = 740.161, SE = 18.85). [There was no significant difference between 

6th graders and 8th graders, p = .08.] Interestingly, the interaction between Trial type and Age group 

was significant, F(2, 206) = 3.27, p <.05, ηp
2 = .03. Follow-up analyses on the interaction revealed 

that the difference in RT between error and the corresponding post-error trials was significant larger 

in the 4th graders compared to 8th graders, F(2, 206) = 3.27, p <.05, ηp
2 = .03. [The 6th graders did not 

differ from either age group.] Thus, while all three age groups were found to specifically and 

substantially slow down after having committed an error, indicative of efficient error monitoring, the 

magnitude of the RT adjustment was found to be substantially larger in the youngest compared to the 

two older age groups.  

As we have shown that participants were especially fast responding on error trials, the post-error 

slowing reported in the previous paragraph may mirror a “back-to-normal-speed” RT adjustment 

rather than a specific processing of the error itself. It may suggest that there is a reactive action-taking 

on that error to avoid future ones. Therefore, we also addressed RT after committing an error on 

incongruent trials with RT after correct responses on an incongruent trial (e.g., Schroder et al., 2017). 

A mixed ANOVA was conducted with Trial type (post-error correct congruent vs. post-correct correct 

congruent) as within-subject factor and Age group (4th vs. 6th vs. 8th grade) as between-subjects factor. 

Results revealed a significant main effect of Trial type (F(1, 206) = 236.65, p <.001, ηp
2 = .54). This 

indicates that responses after an error on an incongruent trial were significantly slower (M = 858.02, 

SE = 18.22) than responses after a correct response on an incongruent trial (M = 615.29, SE = 7.25). 

This points towards a substantial, specific post-error slowing. Further, a significant main effect of 

Age group emerged, F(2, 206) = 22.78, p <.001, ηp
2 = .18, with all three age groups differing 

significantly from each other (4th graders: M = 835.79, SE = 19.56 > 6th graders: M = 723.85, SE = 

20.14 > 8th graders: M = 650.34, SE = 19.56). The interaction between Trial type and Age group was 

not significant, F(2, 206) = .95, p = .388, ηp
2 = .01, suggesting that post-error slowing is independent 

of age, at least in this age range.  

 

Discussion 

The main goal of the present was to shed light on age-dependent qualitative changes in cognitive 

control based on typically developing children’s and adolescents’ ability to flexibly modulate the 

amount of cognitive control processes in presence of errors. The present study is one of the first 

studies to systematically and empirically investigate the developmental differences of speeded and 

controlled responses during an often understudied developmental period, that is, the transition from 

late childhood to young adolescence. Our results allow to better understand key mechanisms for 
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developmental progression in cognitive control and to evaluate performance of atypically developing 

youths, as disproportional developments are rarely taken into account in studies including, for 

example, children and adolescents with ADHD. 

A first hint that qualitative changes in cognitive control (Ambrosi et al., 2016; Chevalier, 2015; 

Chevalier et al., 2013; Gonthier et al., 2019) may be crucial when addressing top-down regulation in 

children and adolescents beyond the early primary school years was found when considering the 

distributions of RT across the entire task. The present study clearly revealed developmental progress 

in the ability to master the task with smaller fluctuations in RT, as became visible in the RT 

distributions for the three included age groups (see Figure 1). The narrower distribution of the older 

compared to the younger participants on the group level was confirmed in the smaller intra-individual 

variability on the individual level when younger and older participants were compared. Thus, in the 

course of development, individuals increasingly engage in proactive control, that is, increasingly learn 

to select and maintain a well-fitting speed of responding, allowing them to give speeded responses 

without disproportionally increasing the risk of errors. 4th graders’ performance can be considered as 

less effective, as their RT fluctuated in a more pronounced way compared to 8th graders. For 

comparisons with clinical samples, these age differences in typically developing youth are highly 

relevant as they call for age-dependent comparisons. Further, the consistency of response latencies 

was also found to be substantially and negatively related to overall task accuracy independent of age, 

suggesting a sensitive behavioral marker of cognitive control dysfunction in clinical samples, such as 

children and adolescents with ADHD (e.g., Castellanos & Tannock, 2002).  

Addressing the sequential effects with the aim to uncover reasons for the narrower RT distributions 

and the higher consistency of RT in older compared to younger participants revealed 

disproportionally coarser response time adjustments in the 4th graders as compared to the 6th and 8th 

graders. This was true for the errors themselves and for post-error slowing. Although all three age 

groups adjusted their speed of responding when the task was running smoothly, the uncovered 

sequential effects were stronger in the younger compared to the older participants when both RT of 

errors and post-error trials were considered. Thus, it seems safe to assume that the fine-tuning of 

speeded responses in the face of perceived cognitive conflict (infrequent incongruent trials: proactive 

cognitive control) or committed errors (error monitoring: reactive cognitive control) are key 

mechanisms for developmental progression in cognitive control in typically developing children. At 

the same time, these results call for age-matched samples when researching cognitive control in 

atypically developing individuals.  

Concerning RT of error trials, it appears that younger compared to older participants adjusted their 

response threshold too easily and too liberally when the task was running smoothly, leading to an 
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increased risk of erring (Brewer & Smith, 1989; Dudschig & Jentzsch, 2009), similar to what has 

been reported for ADHD children (Weigard, Heathcote, Matzke, & Pollock, 2019). As there were no 

age-dependent effect of pre-error speeding, results can be interpreted that even the 4th graders engaged 

in proactive control, but the efficiency of this process appeared yet less well developed. The alignment 

of their speed of responding was too strong, leading to impulsive behavior. Thus, 4th graders seemed 

to be susceptible for too fast responses and therefore may have committed more impulsive errors 

(e.g., double-errors, errors on congruent trials – not analyzed here). These findings are in line with 

studies showing that differences between correct and incorrect responding typically becomes smaller 

with increasing age (see Davies et al., 2004). From that perspective, ADHD children’s impulsive 

reactions leading to often to unwanted behavior might be interpreted as a developmental delay in 

cognitive control.  

Once an error had occurred, younger compared to older children also adjusted their RT more coarsely. 

All three age groups were found to substantially slow down after having committed an error (e.g., 

Brewer & Smith, 1989; see overview Smulders et al., 2016), but the amount of the recruitment of 

reactive control resources in anticipation of the next trial was found to be larger in the youngest 

compared to the two older age groups. While the metacognitive development literature suggests that 

typically developing 4th graders are relatively well able to monitor their performance, including errors 

(Roebers, 2017; Schneider & Löffler, 2016), the stronger post-error slowing in this age group suggests 

that yet, monitoring errors absorbs a substantially larger amount of cognitive resources in this than in 

older age groups, which in turn slows down the processing of the next trial more strongly. Moreover, 

RT after committing an error compared to RT after correct responses confirmed the interpretation of 

specific processing of the error itself (i.e., post-error vs. post-correct; Rabbitt, 1966; Rabbitt & 

Rogers, 1977; Schroder et al., 2017). Thus, besides impulsive responding, age-related changes in the 

efficiency of error monitoring and processing were uncovered contributing to developmental 

progression in cognitive control.  

 

Conclusion 

To conclude, the present study offers detailed insights into key mechanisms contributing to 

developmental progression in typically developing youth’s cognitive control in a strongly 

understudied age range. As has been put forward in the developmental literature (Best, Miller, & 

Naglieri, 2012; Diamond, 2013), the handling of a task-inherent speed-accuracy trade-off appears to 

drive continuous improvements in the top-down regulation of cognitive conflict and may thus also be 

vulnerable to deficits. These ongoing developmental improvements align nicely with structural and 

functional changes on neural substrate through childhood and adolescence (Moffitt et al., 2011; 
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Wendelken et al., 2012). Our study shows that typically developing individuals become more reliable, 

more efficient, better adjusted, and thus overall better in cognitive control with increasing age. 

Healthy children and adolescents in this age range are increasingly achieving a well-balanced 

coordination of proactive and reactive modes of cognitive control. These abilities are visible and 

needed in many everyday life situations which call for fast and accurate behavior (e.g., traffic, social 

interactions, academic achievements).  

These results offer not only new insights to a neglected cognitive domain but also offer practical 

implications that may be of great clinical relevance: they may help to better evaluate cognitive control 

and error monitoring in atypically developing individuals. The current findings of developmental 

trajectories in cognitive control and error monitoring may help to better understand behavioral 

correlates in vulnerable groups (such as ADHD) for whom impaired performance is relatively 

consistently documented (e.g., Liotti et al., 2005). These insights allow to better circumscribe the 

degree of deviation that would still be considered as within “the typical range”. Methodologically, 

the narrowly defined age groups are a major strength of the current study as they enable confident 

comparisons when addressing atypically developing individuals’ behavioral adjustments under 

cognitive control demands. Taken together, our findings may increase the awareness and 

comprehension of age-dependent cognitive control processes. In future work, researchers and 

practitioners may examine how to foster cognitive control, both in healthy and vulnerable youths.  
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