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Compound events (CEs) are weather and climate events that result from multiple hazards or

drivers with the potential to cause severe socio-economic impacts. Compared with isolated

hazards, the multiple hazards/drivers associated with CEs can lead to higher economic losses

and death tolls. Here, we provide the first analysis of multiple multivariate CEs potentially

causing high-impact floods, droughts, and fires. Using observations and reanalysis data

during 1980–2014, we analyse 27 hazard pairs and provide the first spatial estimates of their

occurrences on the global scale. We identify hotspots of multivariate CEs including many

socio-economically important regions such as North America, Russia and western Europe.

We analyse the relative importance of different multivariate CEs in six continental regions to

highlight CEs posing the highest risk. Our results provide initial guidance to assess the

regional risk of CE events and an observationally-based dataset to aid evaluation of climate

models for simulating multivariate CEs.
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Extreme weather and climate events often result from a
combination of multiple hazards or drivers (a driver is a
direct cause of climate-related hazards, see Table 1 in ref. 1).

These events are often referred to as compound events (CEs)1–4.
The interaction of multiple hazards and/or drivers that generates
CEs often lead to more severe ecologically and socioeconomically
damaging events compared to single hazard events5. One specific
class of CEs, multivariate CEs3, occurs when two or more drivers
and/or hazards impact a region simultaneously. This joint
occurrence will often exacerbate the impacts compared to indi-
vidual hazards occurring in isolation. One example of a high-
impact multivariate CE was the 2012 Groningen event, where
extreme inland water levels were caused by elevated coastal water
levels, preventing runoff of high rainfall for several tidal periods6.
A more recent example was the increase in fire danger in eastern
Australia during spring and summer (Sep–Jan) 2019–2020 due to
the simultaneous occurrence of high temperatures, drought
conditions, high fuel load, and strong winds. Here, we use the risk
framework of the Intergovernmental Panel for Climate Change
(IPCC), and define climate extremes as the occurrence of a value
of a weather/climate variable within either tail of the variable’s
observed distribution4. This means that not all occurrences of a
CE necessarily lead to an impact as these are dependent on a
combination of hazard occurrence, as well as vulnerability and
exposure of the affected region/system. Our analysis focusses on
the occurrence of CEs defined as the joint probability of two
hazards, and we do not explore whether the CEs necessarily lead
to impacts. For multivariate risk assessments that require CEs to
have impacts, our results can be interpreted as the climatology of
the precursors to CEs, or of potential CEs. CEs are by definition
events with multiple, potentially interacting, meteorological pro-
cesses, and consequently require different analysis methods
compared with their univariate counterparts. For instance, the
probability of the near flood event in Groningen in 2012 or
compound hot and dry summers is widely underestimated, when
classical univariate statistical methods are used6,7.

While analyses of univariate climate extreme events is common
(e.g., extreme rainfall8,9, heatwaves (HWs)10,11, extreme tem-
peratures8, and flood12) there has been little research on the
probability of multivariate CEs at larger scales, with the exception
of hot and dry events and compound flooding6,13–18. Previous
studies have analysed specific hazard pairs and used climate
models to account for sparse data. There are uncertainties around
whether coarse resolution models can reproduce the physical
relationships associated with multivariate CEs, which raises
doubts over the reliability of these single hazard pair
studies6,7,17,19. No previous analysis has examined correlations
between a range of hazards, or the geographic regions where
different multivariate CEs are most likely to occur. Instead, stu-
dies have focused on describing specific events, the influence of
correlation on return periods7, and, with the exception of a few
isolated studies20, regional scales. This lack of a global geo-
graphical climatological fingerprint of multivariate CEs may also
limit the ability to design studies to better understand the
mechanisms underlying multivariate CEs and to assess, plan for,
and mitigate the consequences of multivariate CEs.

Here, we present the first global climatology of different mul-
tivariate CEs consisting of two hazards co-occurring in space and
time. We combine 12 different hazards from observations com-
plemented with the ERA-Interim reanalysis (see “Methods”) to
form 27 hazard pairs with the potential to cause ecological and
socioeconomic impacts. The possible impacts of some hazard
pairs are more obvious than others. Supplementary Table 1
presents a list of possible ecological and socioeconomic impacts,
including less obvious potentially impact-bearing hazard combi-
nations. For example, the joint occurrence of low streamflow and

HW may not immediately appear important, but can lead to
increased transport costs due to shipping delays, and the
requirement of additional refrigeration and storage21,22. Other
combinations might cause a joint impact in the sense of monetary
loss due to crop failure caused by HWs, and/or drought condi-
tions paired with hail damage of crop and/or property in the same
region. Using daily observations (where available) complemented
by reanalysis data (Supplementary Table 2), we determine the
annual and seasonal occurrence probability of these hazard pairs
for the period between 1980 and 2014, and identify regional
hotspots for the occurrence of multivariate CEs. Our results
provide initial guidance of which multivariate CEs need to be
included for risk assessments in particular regions. Our results
also provide a dataset that can be used to assess the skill of climate
models in simulating the occurrence of multivariate CEs. Com-
bined with studies that examine whether climate models repro-
duce the driving mechanisms behind multivariate CEs correctly,
our findings have the potential to identify those models best
suited for predicting multivariate CEs in the future.

Results
Compound event hotspots. In the following, CE hotspots are
defined as geographical regions with short return periods in the
joint occurrence of a specific hazard pair. In the multivariate
context of CEs discussed in this paper, return periods (hereafter
joint return periods; RP) are based on the probability that both
hazards in a given pair exceed their individual threshold simul-
taneously (see “Methods”). The geographical joint occurrence of
key hazard pairs (see list in Supplementary Table 1) is shown in
Fig. 1 (relating to dry conditions) and Fig. 2 (relating to wet
conditions; other hazard pairs are shown in Supplementary
Fig. 1). Broadly, similar hazard pairs lead to similar regional
hotspots. The occurrence for hazard pairs containing HW and
dry conditions (low precipitation or a standardised precipitation
index (SPI) below −1.3, hereafter lowP and drought) are located
at midlatitudes (Fig. 1a, b). Hotspots for strong wind and drought
CEs occur in isolated regions around the equatorial regions and at
midlatitudes (Fig. 1c). Other hazard pairs (Fig. 1d, e) display
strongly regional signatures (e.g., North America, eastern Europe,
and Russia, Fig. 1d) or little clear regionality over most continents
(e.g., Fig. 1f). In the case of wet hazard pairs (Fig. 2), eastern
North America is a hotspot for the majority of multivariate CEs,
e.g., high precipitation (highP) and hail, wind and hail, highP and
high streamflow (highQ), and wind and highQ (Fig. 2a–d). This
suggests a high susceptibility of this region to compound flooding
and storm damage. CEs that involve extreme storm surges
(hereafter surge) form hotspots along the western European coast
(Fig. 2e–g) and both coasts of North America (Fig. 2e, g).

Statistical dependence between hazards forming compound
events. The consequence of the statistical dependence between a
hazard pair on its joint occurrence probability can be presented as
a likelihood multiplication factor7 (LMF). The LMF is the ratio of
the observed empirical exceedance probability and the probability
assuming independence between the hazards (Supplementary
Figs. 2, 3 and 4). If the hotspots in the occurrence of one CE are
reproduced in the global patterns of its corresponding LMF then
the hazards making up the CE are likely strongly correlated due
to their driving mechanisms, and are not the result of data cov-
erage or baseline threshold choices. For example, the hotspots in
highP and hail, wind and hail, highP and highQ, and high wind
and highQ (Fig. 2a–d) located in North America coincide with
high LMF values (Supplementary Fig. 3a–d). This suggests a
common cause of hazards such as severe convective storms that
can generate flash floods, with hail damage intensifying the risk of
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water damage. Similarly, the hotspots of CEs along the coast of
Western Europe and the global hotspot of highP and surge in
northeast Australia are accompanied by high LMF values (Fig. 2
and Supplementary Fig. 3). A possible common driver for these
events are large-scale low-pressure systems23. We find clear
hotspots for wind and highP (wind–highP) CEs along the
northwest coasts of North America and Australia, the west coasts
of Portugal and Madagascar, and the east coast of North America
(Fig. 2h). In northwest Australia and eastern North America, this
pattern resembles the footprint of landfalling tropical cyclones. At
midlatitudes, the hotspots coincide with regions with a high
occurrence frequency of atmospheric rivers, long filaments of
increased water vapour transport that occur in relation to pole-
ward moving extratropical cyclones24,25. Atmospheric rivers have
been previously linked to the joint occurrence of wind–highP24,
as well as storm surge24,26, highlighting the importance of these
systems in driving wind–highP CEs. There has also been exten-
sive research on tropical cyclones as drivers of high wind and/or
precipitation extremes4,27,28.

Relative importance of compound events in different geo-
graphical regions. We next focus on six continental regions
(Supplementary Fig. 5) and examine the relative importance of
different hazard pairs. Hazard pairs containing temperature and
precipitation generally contribute to the majority of CEs (Fig. 3).

Coastal/hydrological and temperature-related CEs are relatively
less important due to their low frequency and their strong sea-
sonal link to summer, respectively (Supplementary Figs. 6 and 7).
The role of hazard pairs varies strongly with region (Fig. 3). In
North America, highP–highQ events are the dominant
precipitation-related CE, while other CEs contribute <5% each
(Fig. 3a), suggesting increased probability of flooding from CEs.
Over Africa, the wind–drought CE exceeds 20%, suggesting a
susceptibility to dust storms. In other regions, highP–highQ
(South America and Oceania) and wind–drought (Europe and
Asia) events are the most common. For precipitation and
temperature-related CEs (Fig. 3b), McArthur forest fire danger
index (FFDI) and drought, and lowP and HW are the most
common in almost all regions.

Seasonality of regionally important compound events. We next
examine the seasonality of CEs, noting that limited data precludes
a reliable analysis of trends over the period 198–2014. Many
precipitation- and temperature-related CEs occur mainly during
spring, and the extended summer period (Fig. 4). For instance, in
the northern hemisphere FFDI–drought and T–lowP CEs mainly
occur during summer (May–August, Fig. 4b), potentially
increasing fire danger and economic losses in important agri-
cultural regions of the US and Europe. In the southern hemi-
sphere, these CEs generally peak in spring, although the

Compound events related to dry conditions

HW and drought
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Fig. 1 Hotspots of joint occurrence of different hazard pairs related to dry conditions. This includes meteorological drought (drought) and hydrological
drought (lowQ) in combination with heatwaves (HW), extreme temperature (T), McArthur forest fire danger index (FFDI), and low streamflow (lowQ).
Shown are CEs consisting of a heatwave and meteorological drought, b heatwave and hydrological drought, c strong winds and meteorological drought, d
high temperatures and heatwaves, e high fire danger and heatwave, and f high fire danger and hydrological drought. Joint occurrences are given as RP of
the actual probabilities derived from the data allowing the direct comparison of different panels, and to Fig. 2 and Supplementary Fig. 1. Only statistically
significant values are shown (p≤ 0.05); statistically insignificant values are masked (white). Grey areas indicate regions without data coverage
(Supplementary Fig. 10), or where percentile values of at least one hazard falls below the minimum required percentile value (Supplementary Table 2).
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seasonality is more variable most likely due to the variety of
climate zones included in the different regions. The peak in
FFDI–drought CEs co-occurs with the peak in wind–drought
CEs, potentially exacerbating fire danger. CEs consisting of HWs
and lowP occur through the year in each region, but are generally
more frequent in local summer or autumn except for Asia, where
the peak season occurs in boreal winter. The seasonality of CEs
reflects the seasonal occurrence of warm and dry conditions,
resulting from the correlation between temperature and low
precipitation, the key drivers for hazards in this CE group.

The dominant precipitation-related CEs show a more diverse
seasonality. The highP–highQ CEs in North America mainly
occur in late spring/early summer, while the season in Europe
extends from late spring (May) to early winter (Dec; Fig. 4a). This
overlap with the European storm season suggests that large-scale

low-pressure systems play a significant role in the occurrence of
compound floods in Europe, while they play a lesser role in North
America. In the southern hemisphere, highP–highQ CEs occur
mainly in austral summer with some occurrences in early autumn
in South America. This can be linked to the seasonal climatology
of severe convective storms, and tropical cyclones at low latitudes.

Drivers behind the occurrence of compound event hotspots.
The regional differences in hotspots and the seasonality of
occurrences are caused by the drivers of the different CE types. As
previously shown, CEs related to dry conditions are often located
in inland areas particularly in North America, eastern Europe/
Russia, and to some extent Australia (Fig. 1b, c). They reflect the
close link between temperature, precipitation/meteorological

Compound events related to wet conditions

HighP and hail Wind and hail

Wind and highQ

Wind and surge

Wind and highPSurge and highQ

Surge and Waves

HighP and highQ
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Fig. 2 Hotspots of joint occurrence of different hazard pairs related to wet, potentially flood causing conditions. Shown are combinations of high
precipitation (highP), strong winds (wind), high probability of large hail (hail), high streamflow (highQ), and high storm surge (surge). Shown are CEs
consisting of a high precipitation and strong wind, b strong winds and hail probability, c strong wind and highQ, d strong wind and highQ, e high surge and
high waves, f strong winds and high surge, g high surge and highQ, and h strong winds and high precipitation. Joint occurrences are given as return period
of the actual probabilities derived from the data allowing the direct comparison of different panels, and to Fig. 1 and Supplementary Fig. 1. Only statistically
significant values are shown (p≤ 0.05); statistically insignificant values are masked (white). Grey areas indicate regions without data coverage
(Supplementary Fig. 10), or where percentile values of at least one hazard falls below the minimum required percentile value (Supplementary Table 2).
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Fig. 3 Relative importance of hazard pairs per region. Percentages are weighted by number of grid cells in the region taking into consideration the
different data coverage of different hazard pairs (Supplementary Figs. 11–13). a Hazard pairs related to extreme high and low precipitation, including
combinations of high precipitation (highP), high probability of large hail (hail), strong winds (wind), extreme storm surge (surge), high streamflow (highQ),
and meteorological drought (drought). b Hazard pairs related to extreme precipitation and temperatures, including combinations of high temperatures (T),
low precipitation (lowP), heatwaves (HW), high probability of large hail (hail), low SPI (drought), and extreme McArthur forest fire index (FFDI) values.
Hazard pairs containing low streamflow (lowQ) were removed for consistency (univariate occurrence probability of lowQ inconsistent with other hazards
due to threshold choice and gridding of station data; see “Methods” and Supplementary Fig. 9).
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drought, and soil moisture7. Synoptic features facilitating these
conditions include atmospheric blocking systems and other stable,
long duration atmospheric features. In Southeast Asia and Aus-
tralia, for example, global climate modes of variability, including
the El Niño/Southern Oscillation and the Indian Ocean Dipole
can cause weather conditions leading to dry CEs, which can
prevail from months to years29. In contrast, CEs associated with
wet conditions generally have a shorter duration ranging from
hours to several days30. As such, their hotspots are often caused by
atmospheric low-pressure and frontal systems31,32. For instance,
eastern North America is a hotspot for highP and strong winds
combined with hail and highQ31. These hazards are related to
small- to meso-scale severe convective systems33,34. In contrast,
Europe is a hotspot for CEs containing high surges, which require
strong winds affecting a large area for an extended period of time,
often associated with large-scale low-pressure systems, such as
extratropical cyclones32. This is also reflected in the seasonality of

surge and wind-related CEs that coincide with the increased
occurrence of storms in Europe during autumn and winter (Fig. 4
and Supplementary Fig. 4). An important factor contributing to
the formation of hotspots of surge-related CEs in north-western
Europe is the form of the North Sea, and the way surge waves
travel through it32. These examples give an insight into the drivers
and their regional characteristics. More thorough regional
assessments are needed to determine the complex interplay of
these drivers of regional hotspots and identify possible other
contributing factors. However, the global pattern of multivariate
CEs provides an immediate challenge for global climate models
given the socioeconomic significance of these phenomena.

Discussion
We present a first global climatology for a wide range of multi-
variate CEs with the potential to cause severe ecological and
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socioeconomic impacts based on observations, and the ERA-
Interim reanalysis product that spans three decades (1980–2014).
We used reanalysis data to supplement observations; not all
hazards could be derived from observational data due to the lack
of available data products (e.g., wind speed and wind-related
hazards, including storm surge and wave height). In many parts of
the world, the reanalysis products are constrained by high-quality
observations, but reanalyses are poorly constrained in data-sparse
regions. This leads to unavoidable geographical variations in the
reliability of our estimates of the joint probabilities of hazard pairs.
We were careful in choosing the best available observational data
with daily temporal resolution. We note our use of reanalyses was
restricted to the ERA-Interim reanalysis product. We did not test
the sensitivity of our results to alternative reanalyses for individual
variables because taking one component of a CE (e.g., wind) from
an alternative source would create physical inconsistencies with
another component from ERA-Interim (e.g., storm surge). Thus, a
repeat of our analysis with alternative observations and newer
reanalyses is encouraged, but we recommend whole-scale repla-
cement of the ERA-Interim when available.

While our global results are limited by data coverage, and
uncertainties in both observational and reanalysis data, high-
resolution regional datasets do exist that could be used to replace
the global products. We therefore examined whether replacing
the global datasets with alternative high-resolution data repro-
duce the main features of the global hotspots map for the most
important CEs over Australia (Supplementary Fig. 8). Our results
show a high degree of similarity in the overall patterns of CEs
using alternative data, suggesting the regionally dependent hot-
spots identified in the global analysis, and the varying regional
importance of different hazard pairs are robust. We therefore
suggest that the global-scale analysis provide a useful first step in
informing risk analysts and stakeholders concerned with identi-
fying risk from multivariate CEs. While a translation of the CE
hotspots identified in this study into risk maps would be useful
for policy decision making, it falls outside of the scope of this
study as this requires additional information about regional
vulnerability and exposure in accordance with the IPCC
framework1,4. The identified CEs, however, are an indicator for
the possibility of adverse impacts. Our results are therefore an
important first step and represent a foundation for the analysis of
actual impacts caused by the different CEs assessed in this study.
Further, the identification of hotspots highlights regions with the
potential of increased risk, indicates where to focus future
investigations of underlying mechanisms of co-occurring hazards,
and provides a starting point for global impact analyses.

The class of multivariate CEs analysed in this study is only one
of the possible types of CEs, all of which have potential to cause
ecological and socioeconomic impacts. We selected multivariate
CEs because this type has received the most attention in recent
years3 and a climatology of these events is therefore timely. Our
decision to focus on CEs using a daily time step provides us with
a rich sample to calculate the co-occurrence of pairs of hazards.
We recognise that events with the duration of 1 day will not
always cause significant socioeconomic impacts for all hazard
combinations considered in this study. Adding a temporal
dimension in the analysis is an area worthy of future work, but we
note that it would increase the complexity quite substantially and
reduce the data available for analysis.

We are confident that the analysis of multivariate CEs in this
study, and the hotspots identified, are a necessary step forward for
research into CEs. Our results provide (1) guidance on the
occurrence probability of CEs, which can be considered as pre-
cursors of actual CE impacts, (2) information on the regional
importance of CEs, and (3) a climatology to evaluate how well
global climate models simulate CEs. Establishing those models

with skill in simulating CEs, and those models that capture the
right statistics with the right physical mechanisms, would provide
planners and risk analysts clarity on which climate models are
best suited to explore changing risks associated with CEs under a
changing climate.

Methods
Data. The analysis uses a combination of observational and reanalysis at the daily
timescale that has been gridded to a common 2.5˚ × 2.5˚ grid with 73 latitude
bands and 144 longitude bands, spanning the period from 1980 to 2014
(12,874 days of record per grid cell). We consider a total of 12 different land-based
hydroclimate variables and indices, namely daily high and low precipitation sums,
SPI as a metric for meteorological drought, high and low streamflow, daily max-
imum temperatures, the excess heat factor (EHF) as a measure for HWs, the FFDI
to quantify fire weather conditions, the probability of hail, maximum wind speeds,
maximum storm surge, and maximum wave heights. The sources for the different
hazards were chosen to ensure use of high-quality data, consistency of observation
locations, and global coverage of the data, as far as possible. As noted earlier, to
avoid physical inconsistencies, we use one reanalysis product for those variabilities
not available from observational data on the global scale. Details on each dataset
are listed below.

Temperature and heatwaves. Daily maximum temperatures were taken from the
HadGHCND observational dataset35. HadGHCND is the largest available reposi-
tory of global daily in situ observations for temperature. It has been specifically
designed to analyse extremes that has been relied upon in past studies36,37, which
makes this dataset particularly suitable for this study.

The EHF index is calculated from HadGHCND using the method outlined by
Perkins and Alexander11. HW events are identified as at least three consecutive
days where the daily mean temperature exceeds the calendar day 90th percentile.
This relative approach to define HWs captures events at all latitudes, including
those events in colder climates and during local winter months. This ensures that
we capture events which can have significant impacts due to system resilience and
adaptation even if absolute temperatures might not be high.

Precipitation and drought. Daily precipitation sums were derived from the 1˚ × 1˚
observational dataset REGEN38. This dataset represents a combination of two of
the largest in situ observational repositories, namely GPCC and HadGHCND. This
reduces biases and uncertainties associated with single-source datasets, while
incorporating information from the same observational system as the temperature
dataset chosen here. As such REGEN is highly suitable for the analysis of CEs in
the context of this study. From the REGEN precipitation data, monthly SPI values
were calculated with the Climpact2 software (https://climpact-sci.org/get-started/),
using the 3-monthly running means and subsequently transformed into daily data
by assigning each day the monthly value.

Other hazards. Wind speed (ws) was calculated from the 3-hourly instantaneous
10-m zonal (v) and meridional (u) wind components of the ERA-Interim reanalysis
provided by the European Centre for Medium-Range Weather Forecast39 as
ws ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p

. The final analysis uses the daily maximum of this 3-hourly wind
speed data. The choice of using ERA-Interim was based on the availability of
additional hazards calculated using this reanalysis product, such as probability of
large hail, storm surge, and FFDI40,41.

The streamflow data is taken from the Global Streamflow Indices and Metadata
archive, which contains daily data from over 35,000 daily streamflow
timeseries33,42,43.

More detailed information about the different datasets can be found in the
referenced literature (Supplementary Table 1).

Interpolation and transformation of station data. Bilinear interpolation was used to
translate data from its original resolution to the 2.5˚ grid used here. Station data,
namely surge height and river discharge, are transformed to grid data by assigning
the stations to the relevant grid cells of the field data. Grid cells containing more
than one station were assigned the value of the station with the highest surge height
as derived from the Global Tidal and Storm surge Model (GTSM), using ERA-
Interim 10-m wind components and sea level pressure41. In the case of river
discharge, a grid cell is assumed to experience a high-flow (low-flow) extreme if any
of the stations in that grid cell experience discharge values in the top 1% (lowest
10%) of the respective river basin. For grid cells with more than one streamflow
station, this approach implies that the occurrence probability of high-flow (low-
flow) events is increased, since there are multiple stations that have the potential to
exceed the chosen threshold.

The handling of grid cells containing multiple stations in this way changes
the RP of these three single hazards compared to the gridded hazards based on
absolute variable values, e.g., temperature, wind, and heavy precipitation. Relative
hazard indices, e.g., EHF and SPI, also differ from the globally homogenous RPs
found for gridded hazards derived from absolute values. Global maps of RPs for the
chosen thresholds and hazards can be found in Supplementary Fig. 9.
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Definition of compound events and hotspots. We adopt the definition and
explanation introduced by Zscheischler et al.1,3, and define CEs as the combination
of multiple drivers and/or hazards that contribute to societal or environmental risk.
In this context, drivers include weather and/or climate processes, variables and
phenomena that may span multiple spatial and temporal scales. Hazards are the
immediate physical precursors to negative impacts. Within the wide range of CEs,
we focus on multivariate CEs, that is, the co-occurrence of multiple climate drivers
and/or hazards in the same geographical region3.

Out of all the possible hazard pairs, we consider those with potential
socioeconomic impacts and exclude those with no known socioeconomic effects
(Supplementary Table 1). For each of the 27 identified hazard pairs, the two
timeseries of the relevant climate variables/indices are combined. To identify
potentially hazardous conditions caused by each hazard combination, a threshold is
applied to both of its constituents. This is either a fixed value for the hazard indices
EHF, SPI, hail probability, and FFDI, or a percentile threshold for climate variables.
Percentiles are determined for each grid cell individually to account for regional
differences (see Supplementary Table 2 for thresholds). Percentile values were
derived using the Python NumPy function “percentile”. This estimates the value of
a specified percentile using provided data points (e.g., a value was associated with
the 90th percentile if ~90% of the data points were equal to or less than that value).
Linear interpolation was used to determine percentile values when they fell
between two data points.

Results are presented as RPs, i.e., the inverse of occurrence probability which in
this study is determined as follows. If both hazards in a pair jointly exceed their
respective threshold on the same day in the same grid cell then the day is marked as
a CE. Land-based hazards, storm surge, and wave height do not share the same grid
cells, with the latter occurring only over the sea. To identify CEs formed by a
combination of ocean-based and a land-based hazard, coastal grid cells are defined
as land grid cells with at least one neighbouring ocean grid cell. As an example, for
the combination of two land-based hazards, a day is considered a CE of the type
wind and precipitation, if the total precipitation and the daily maximum wind
speed on that day both lie within the top 1% of events during the study period. In
terms of occurrence probability, this means that if the two hazard pairs are
independent, the probability of their joint occurrence should be 0.01 × 0.01=
0.0001, which is equivalent to approximately one occurrence during the study
period (12,874 days).

To identify CEs containing surge and/or wave height each coastal cell is linked
to exceedances in surge in the four surrounding cells (both ocean and land cells
with land cells having no values). If the coastal grid cell exceeds the threshold of the
relevant land-based hazard at the same time as the surge level in one of its four
surrounding grid cells, then the grid cell is marked as having experienced a CE.
This increases the region that we assume an extreme surge event can affect and
changes the grid-cell-wise univariate RP for surge from a uniform ~100 days to
lower values depending on station coverage of the GTSM dataset. The resulting RP
is shown in Supplementary Fig. 9. Information about the coverage of different
hazard pairs are shown in Supplementary Fig. 10.

We note this is one specific combination of bivariate probability, i.e. both
hazard X and hazard Y: P(X > x ∧ Y > y). However, multivariate risk assessment can
incorporate more than multivariate CEs and depending on the impact one may
consider a combination of different joint probability described by a variety of
different possible hazard combinations4, e.g., both hazard X and hazard Y: P(X >
x ∧ Y > y) and hazard X or hazard Y: P(X > x ∨ Y > y)44. For the purpose of this
paper we note this is not appropriate due to the decision to analyse multivariate
CEs exclusively.

Global CE hotpots are determined by focusing on the identification of hotspots
for each CE type/hazard pair individually. For this, we calculate the joint
occurrence probability for each grid cell by adding the number of all joint
exceedances in this grid cell and dividing it by the total number of days in the study
period. The results are then presented as RP by dividing the inverse of the
probability by the number of days per year. For each hazard pair X and Y, we use
the global binary maps that show when (time) and where (latitude and longitude)
each hazard exceeds its respective threshold. That is, we have two 12784 × 73 ×144
matrixes X and Y, whose elements are either 0 (hazard does not exceed the
threshold) or 1 (hazard exceeds the threshold). Bold capital letters indicate that
these are matrixes. Matrix elements are displayed in italic capital letters with the
subscript “i”.

We then compare where the same elements in both X and Y are equal 1, i.e.,
where both hazards exceed their threshold at the same time and latitude–longitude
point. This results in a three-dimensional matrix Z (12,784 × 73 × 144) of which
each element (Zi) was assigned a value of either 0 or 1 following the below rules:

Zi ¼
1; ðXi ¼ 1 ^ Yi ¼ 1Þ

0; otherwise

�
: ð1Þ

The probability map of joint exceedance (P(X ∧ Y)) is then the sum of Z over
time (W), divided by the number of days in the study period (ndays):

P X ^ Yð Þ ¼
P

t Zðt; latitude; longitudeÞ
ndays

¼ Wðlatitude; longitudeÞ
ndays

: ð2Þ

As such, matrix W with the dimension 73 × 144, i.e., latitude × longitude,
represents a map with the total numbers of joint exceedances of hazards X and Y
throughout the study period. The return period (RP with [RP]= years) is then

calculated as:

RP X ^ Yð Þ ¼ 1
P X ^ Yð Þ ´ 365 : ð3Þ

Likelihood multiplication factor. We use the LMF7 to illustrate the impact of the
possible correlation between hazard pairs on their joint occurrence probability. The
LMF is the ratio of the actually observed probability of joint occurrence (Pactual)
and the probability assuming complete independence between the hazard pair
(Pindep). Therefore, considering LMF as a matrix of dimension latitude × longitude,
each element of LMF is calculated as LMF ¼ Pactual

Pindep
. The LMF for each hazard pair,

e.g., hazards X and Y, is determined for each grid cell individually by calculating the
grid cell-specific Pindep,i and Pactual,i as:

Pindep;i ¼ Pi hazardXð Þ ´Pi hazardYð Þ ¼
P

t Xi

ndays
´
P

t Yi

ndays
; ð4Þ

Pactual;i ¼ Pi X ^ Yð Þ ¼ Wi

ndays
: ð5Þ

The LMF varies between 0 and infinity, i.e., LMF∈ [0, ∞). If the two hazards are
independent the LMF equals 1. For positively correlated hazard pairs the LMF is
larger than one and increasing with the strength of correlation. For negatively
correlated hazards the LMF falls between 0 and 1.

LMF :¼
<1 negative correlation

¼ 1 independence

>1 positive correlation:

8><
>: ð6Þ

Regional and seasonal analysis. The regional analysis takes into account the
different coverage of hazard pairs. As such, we first calculate the total possible
number of events in this region to determine the relative contribution of a specific
CE type in one region. For this, we multiply the number of grid cells covered by
each individual CE by the total number of days in the study period. The total
amount of possible CE occurrences per region is then the sum over the products of
all individual CEs. This approach eradicates biases caused by the different coverage
of the individual data products. Further, it ensures that coastal hazards are
weighted in the same way as land-based hazards, which naturally can occur in a
larger number of grid cells. It is important to note that the inhomogeneous dis-
tribution of streamflow stations globally causes some grid cells to contain more
than one station (as mentioned above). The occurrence probability of a low-flow
events in single-station grid cells is equal to that of a single station, i.e., 0.1%. In
contrast, the occurrence probability of low-flow events in a multi-station grid cell is
increased, since there are multiple stations that have the potential to experience
low-flow conditions. In addition, the choice of the maximum threshold for low-
flow events as values below the tenth percentile of the distribution is not pro-
portional to that of the other hazards, for which values above the 99th percentile
are considered as extreme. As a result, low-flow events are ten times more likely
than the other hazards. This threshold choice for low-flow events is defensible on
two grounds. First, negative impacts of low streamflow can start to occur for
streamflow values below the tenth percentile. Second, this threshold has been used
by the Copernicus Climate Change Service for their report on the state of the
European climate (https://climate.copernicus.eu/river-discharge). The combination
of these two special characteristics around this hazard artificially increases the
importance of CEs containing low streamflow compared to the other CE types
assessed in this study (Supplementary Fig. 9). To avoid another scaling factor that
might introduce further uncertainty, the relative contributions of all CEs to
regional occurrence only considers hazard pairs without low streamflow.

For the seasonal analysis, we add the number of joint exceedances from
1980–2014 for each month separately. The month with the highest number of
events is used as a baseline to scale the number of events in the other months. The
monthly sums are then displayed in a polar plot.

Statistical significance assessment. A significance test is applied for each hazard
pair to assess whether the joint exceedance of a hazard pair is significant at a
specific grid cell. We test the null hypothesis that the joint RP of the hazard pair
found in each grid cell can be reproduced by chance and does not require any
physical correlation between the two hazards. For this, we removed the physical
correlation between the two hazards using a bootstrapping procedure and com-
pared the resampled (1000 datasets) and observed timeseries. A result is considered
statistically significant if the number of observed events is higher than 95% of the
resampled timeseries. This is equivalent to a p value of 0.05 or below. We perform
the following steps, using capital letters in bold font to indicate matrixes, italic
capital letters with the subscript “i” to represent matrix elements, and “*” to
indicate resampled datasets:

Step 1: Without changing the dimensions of latitude and longitude, we use a
bootstrapping method (with replacement) on the time axis of matrix Y, to generate
1000 alternate timeseries Y*

n (with n= N n 2 ½1; 1000�jf g). The time sequence of
the exceedance matrix X remains unchanged in this step (i.e., observed occurrence
of hazard X was used).
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Step 2: We constructed a three-dimension matrix Z*
n (12784 × 73 × 144)

following the same procedure that was applied to identify the observed joint
occurrence of CE X–Y (matrix Z). Specifically, each element Z*

n;i was assigned a

value of 1 if the same elements in both X (Xi) and Y*
nðY*

n;iÞ are equal to 1.

Otherwise, a value of 0 is assigned to Z*
n;i . The Boolean matrix Z*

n (12784 × 73 ×
144) represents the joint occurrence in space between hazard X and hazard Y that
introduced by random chance over the analysis period (as the temporal association
between hazard X and hazard Y was removed).

Step 3: We then sum each Z*
n over time to get the 73 × 144 matrixes W*

n (Eq.
(7)) that represent the joint exceedance over space between hazard X and hazard Y
that are introduced by random chance (i.e., a resampled replication of matrix W
used in Eq. (2)).

W*
n ¼

X
t

Z*
nðt; nlatitude; nlongitudeÞ: ð7Þ

Since W*
n contains discrete values, i.e., W*

n;i 2 N, it is necessary to introduce

artificial noise to each element of the W*
n matrixes to ensure that the probability of

the null hypothesis, in this case 5%, remains unchanged. This is done by adding a
matrix of the same rank as W*

n consisting of random elements ranging between
−0.0009 and 0.0009 (Nn with Nn,I

= R Nn;i 2 �0:0001; 0:0001½ ���n o
and n ¼ N n 2 ½1; 1000�jf g to each W*

n so that

W*0
n ¼ W*

n þ Nn; ð8Þ
with (′) indicating that W*0

n is a perturbed version of matrix W*
n . If the number of

joint occurrences in <5% of the resampled realisations (W*0
n ) are higher than that in

W, there is evidence to reject the null hypothesis that the joint exceedance between
hazard X and hazard Y was introduced by random chance.

We also tested for field significance of the joint exceedance probability adopting
a resampling approach to account for both spatial and temporal dependencies45.
For this, we counted the total number of statistically significant grid cells (nsign) in
W from Eq. (2). We then determined nsign for all W*0

n by comparing each of the
resampled datasets W*0

m withm ¼ N m 2 ½1; 1000�jf gð Þ with the other 999 replicas
W*0

k ;with k ¼ N k 2 ½1; 1000� ^ k≠mjf g� �
and the original time matrix (W), using

the same 5% threshold for significance as for W. The results presented in Figs. 1
and 2 are considered “field significant” if nsign in the original dataset is greater than
in 97.5% of the resampled replicates W*0

k (Supplementary Fig. 11).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The storm surge data can be obtained online from the 4TU.ResearchData archive
(https://data.4tu.nl/repository/uuid:29614991-345e-4ffd-be22-2930912a2798). The
applied fire weather index (FFDI) data were provided through the Zenodo service
(https://zenodo.org/record/3251000#.XcyoXzIzaL4) and the daily large hail probability
can be downloaded from the information system PANGEA (https://doi.pangaea.de/
10.1594/PANGAEA.888881?format=html#download). This study used gridded daily
temperature data from the Met Office Hadley Centre observations dataset available at
https://www.metoffice.gov.uk/hadobs/hadghcnd/download.html. The precipitation data
used in this study (REGEN) has been published with unique Digital Object Identifiers
(DOIs) https://doi.org/10.25914/5b9fa55a8298c and is available via the Research Data
Australia (RDA) web page https://researchdata.ands.org.au/search/#!/slug=rainfall-
estimates-gridded-station-v10.

Code availability
Any relevant code necessary to reproduce the results presented here is available upon
request.
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