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Dear Sirs,

EEG microstates are defined as brief periods during which 
the overall scalp topography remains stable. Only four dis-
tinct microstates, explaining up to 80% of the variance in rest 
EEG, were consistently found in microstate studies [1, 2]. 
Additionally, an association between the EEG microstates 
and resting state fMRI likely exists [3, 4]. The link between 
the four canonical microstates (A, B, C, D) and sensory 
manipulations has been addressed, but a coherent theory has 
not yet emerged. For example, the temporal parameters of 
microstate B could be altered by manipulation of the visual 
input [5].

The link between microstate B and the visual system [5] 
motivated us to investigate whether an association exists 
between one of the microstates and vestibular stimulation. 
This is of special interest, since a close interaction between 
the different sensory systems is known from fMRI studies 
[6], e.g., showing a change of the interaction mode with 
the shift of the dominance from one system to the other 
for the visual and somatosensory systems [7]. Compared 
to other sensory systems, the vestibular system possesses 
a few unique features. For example, natural stimulation 
of the system always causes a multimodal stimulation of 
multiple sensory systems [8]. Vestibular information is pro-
cessed by a distributed cortical network represented in both 

hemispheres [9–11] with a preponderance in the non-dom-
inant hemisphere [12]. Additionally, a reciprocal inhibitory 
interaction between the vestibular and the visual system was 
demonstrated [13].

Here, we investigated whether passive whole-body 
movements with weak to moderate acceleration intensities 
influence the overall microstate architecture in healthy par-
ticipants sitting on a chair on a motion platform. The moti-
vation for the experiment was to test whether passive body 
accelerations, which are mostly but not solely [8] sensed 
by vestibular input, have a similar impact on microstates as 
visual input.

The EEGs of 29 healthy volunteers (12 female, 17 
male; 26.7 years ± 5.59 SD) were analyzed during passive 
body translations along the three main axes (fore/aft, left/
right, up/down) generated by a motion platform (Moog©-
6DOF2000E) and compared to the static rest condition. 
Sinusoidal profiles with a frequency of 0.5 Hz and an ampli-
tude of 3 cm were used. The stimulation duration along 
every axis was 35 s. Subjects were instructed to keep their 
eyes closed and stay awake.

The microstate analysis was performed in Matlab (Math-
works) using the EEGlab plug-in MicrostateAnalysis (Ver-
sion 0.3, Thomas König). The data were band-pass filtered 
(2–20 Hz) and visually inspected for artifacts. Segments 
contaminated with artifacts were removed. The data were 
clustered within subjects using the widely used ‘atomize 
and agglomerate hierarchical clustering’ (AAHC) algorithm 
[14] and by ignoring polarity. Averages across subjects were 
calculated for any of the four movement conditions (Fig. 1), 
and a grand average across the conditions was computed. 
The statistical values for duration, occurrence, contribution, 
and explained variance were extracted and a between condi-
tion ANOVA was calculated for any of the four movement 
conditions.

The microstates obtained for the four conditions resem-
bled the spatial distributions of the four canonical micro-
states and showed high inter-condition similarities (Fig. 1). 

 * M. Ertl 
 matthias.ertl@med.uni-muenchen.de

1 Department of Neurology, Ludwig-Maximilians-Universität 
München, Marchioninistraße 15, 81377 Munich, Germany

2 Department of Psychology, University of Bern, Bern, 
Switzerland

3 German Center for Vertigo and Balance Disorders (DSGZ), 
Ludwig-Maximilians-Universität München, Munich, 
Germany

4 Munich Cluster for Systems Neurology (SyNergy), Munich, 
Germany

http://orcid.org/0000-0002-6823-1935
http://crossmark.crossref.org/dialog/?doi=10.1007/s00415-020-09794-4&domain=pdf


 Journal of Neurology

1 3

The explained variance of the microstates was 76.3% across 
all conditions with no significant difference between the 
conditions (F(3,112) = 0.37, p = 0.777). This explained vari-
ance was well within the range (65–84%) typically reported 
in microstate analyses [1]. The average mean duration, 
defined as the average length of time a certain microstate 
remains stable whenever it appears, of the microstates were 
A: 67.1 ms, B: 70.2 ms, C: 67.7 ms, and D: 69.6 ms and 
therefore approximately 10 ms shorter compared to previous 
reports using an eyes-closed resting condition [15].

The mean contributions are the relative portions of the 
total time spent in any of the four microstates. In our data, 
the contributions of the four states were A: 25.5%, B: 24.7%, 
C: 24.9%, D: 24.9%. We also analyzed the average frequency 
of observation of the four microstates per second, which is 
called occurrence. The mean occurrences were A: 3.69/s, 
B: 3.46/s, C: 3.70/s, D: 3.58/s. No significant differences 
between the conditions were found for any of the three met-
rics. Thus, our analyses showed a smaller variance between 
the microstates with respect to duration, occurrence, and 
contribution compared to previous reports [15].

In conclusion, our results show that the EEG microstate 
architecture is, contrary to visual stimulation, invariant 
with respect to weak whole-body accelerations. To date, 
the relevance of the temporal structure as well as the cor-
rect number of microstates, their interpretation and the 

relationship between EEG microstates and the resting state 
networks measured by fMRI are only partially understood 
[1–3]. Future studies on microstates might reveal valuable 
insights, e.g., when comparing patients suffering from ves-
tibular failure or functional dizziness and healthy controls, 
or when stronger vestibular stimuli are used.
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Fig. 1  The topographies 
(head seen from above, nose 
up, left ear on the left) of the 
four microstate types (A–D) 
retrieved from the clustering 
algorithm for the four different 
motion conditions (static; fore/
aft; left/right; up/down). The 
four types resemble the topogra-
phies reported by other studies 
and were sorted accordingly
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otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
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