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Abstract
Quantifying the degree to which genetic and environmental factors shape brain network connectivity is critical to
furthering our understanding of the developing human brain. Sleep, a state of sensory disengagement, provides a unique
opportunity to study brain network activity noninvasively by means of sleep electroencephalography (EEG) coherence. We
conducted a high-density sleep EEG study in monozygotic (MZ; n = 38; mean age = 12.46; 20 females) and dizygotic (DZ;
n = 24; mean age = 12.50; 12 females) twins to assess the heritability of sleep EEG coherence in early adolescence—a period
of significant brain rewiring. Structural equation modeling was used to estimate three latent factors: genes, environmental
factors shared between twins and environmental factors unique to each twin. We found a strong contribution of unique
environmental factors (66% of the variance) and moderate genetic influence (19% of the variance) on sleep EEG coherence
across frequencies and sleep states. An exception to this was sleep spindle activity, an index of the thalamocortical
network, which showed on average a genetic contribution of 48% across connections. Furthermore, we observed high
intraindividual stability of coherence across two consecutive nights suggesting that despite only a modest genetic
contribution, sleep EEG coherence is like a trait. Our findings in adolescent humans are in line with earlier findings in
animals that show the primordial cerebral map and its connections are plastic and it is through interaction with the
environment that the pattern of brain network connectivity is shaped. Therefore, even in twins living together, small
differences in the environment may cascade into meaningful differences in brain connectivity.
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Introduction
The complexity of brain function is not only tied to isolated
activity of specific brain regions, but also to the dynamic inter-
actions between regions (Tononi et al. 1994; Tognoli and Kelso
2009). The integration of information across regions has been
linked to cognitive function and behavior (e.g., Gray et al. 1989;
Varela et al. 2001; Tarokh et al. 2014) and is altered in disease
states (Henry and Cohen 2019). Identifying the degree to which
genetic and environmental factors account for interindividual
variability in brain network activity is necessary for laying the
groundwork for future research. Only by knowing the degree to

which environmental factors impact brain connectivity, can we
measure the success of psychosocial interventions. Conversely,
if connectivity is largely genetically determined, it may serve as
a useful endophenotype.

Brain connectivity can be assessed noninvasively by means
of the electroencephalography (EEG) due to the high temporal (in
the millisecond range) resolution that EEG recordings provide.
EEG coherence—a measure of connectivity based on correlation
of EEG signals at a specific frequency—has been shown
to reflect functional interactions between neural networks
(e.g., Nunez and Srinivasan 2006). EEG coherence also tracks
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the developmental rewiring of the brain critical to healthy
development (Thatcher 1994). During adolescence, substantial
reorganization of the brain takes place (e.g., Giedd et al. 1999;
Paus et al. 1999; Sowell et al. 2003), wherein underutilized
synapses are eliminated (Huttenlocher 1979; Goldman-Rakic
1987). Experimental work in carnivores and nonhuman primates
shows a general pattern of overproduction of synapses early in
life (Innocenti et al. 1977; Rakic et al. 1986; Bourgeois et al. 1994;
Bressoud and Innocenti 1999) followed by a selective elimination
during the adolescent period (Bourgeois et al. 1994). At the
same time, highly used connections are strengthened through
myelination (Benes 1989). In a study examining human brain
specimens across seven decades of life, Benes et al. (1989) found
an increase in myelination across several brain regions including
prefrontal cortex, cingulate cortex, parahippocampal gyrus,
subiculum, presubiculum, and the hippocampal formation
during adolescence. These processes are thought to result in
a more specialized and efficient brain, however, at the cost of
plasticity (Giedd 2015). While the synaptic pruning that takes
place during adolescence is believed to be reflected in a decline
in sleep EEG power (Feinberg 1982; Campbell and Feinberg
2009; Feinberg and Campbell 2010; Buchmann et al. 2011;
Goldstone et al. 2018), the increased myelination and rewiring
of brain networks are likely reflected in an increase in sleep
EEG coherence (Tarokh et al. 2010).

Studies using the sleep EEG to examine changes to coherence
during adolescence have reported an increase in sleep EEG
coherence across this period (Tarokh et al. 2010, 2014). The study
by Tarokh et al. (2010) examined sleep EEG coherence in three
age cohorts, children aged 9–10, teenagers aged 15–16, and adults
aged 20–23 years and included a follow-up assessment 2–3 years
later. The authors found a linear increase in intrahemispheric
and diagonal coherence across all cohorts, sleep states and
most frequency bands spanning the ages of 9–23 years, likely
reflecting anatomical changes such as increases in white matter
(Paus et al. 2001). Though this early study has established that
developmental changes in sleep EEG coherence occur, it is based
on a few EEG derivations (i.e., four); therefore, information about
regional aspects of changes to coherence across development
are lacking.

Recent evidence suggests that brain network organization
rather than dysfunction of isolated regions is implicated in
the etiology of numerous neurodevelopmental and psychiatric
disorders (Henry and Cohen 2019). A recent systematic review
of quantitative EEG biomarkers in child psychiatric disorders
(McVoy et al. 2019) identified studies demonstrating reduced
EEG coherence during waking in autism (Coben et al. 2008;
Machado et al. 2015) and increased EEG coherence during waking
in attention deficit disorder (Chabot et al. 1999). During sleep,
reduced coherence has been associated with major depression
disorder (Armitage et al. 1999), schizophrenia (Wamsley et al.
2012), and posttraumatic stress disorder (Modarres et al. 2019)
in adults. Furthermore, in one study comparing children with
autism to those without, increases in coherence associated with
autism were only present in sleep and not in waking, suggesting
that during sleep, we can measure unique network activity that
may be of functional relevance (Buckley et al. 2015).

Taken together, sleep EEG coherence has the potential to
provide valuable information about functional organization of
the brain in health and disease. Therefore, it is important to
understand the degree to which sleep EEG coherence is her-
itable. Previous studies in both adults (Ambrosius et al. 2008;
De Gennaro et al. 2008; Adamczyk et al. 2015) and adolescents

(Rusterholz et al. 2018) have found high (<80%) heritability for
sleep EEG power. Despite the abundance of studies showing
the utility of sleep EEG coherence in measuring developmental
changes to the brain (Tarokh et al. 2010, 2014; Kurth et al. 2013),
and altered sleep EEG coherence in neurodevelopmental and
psychiatric disorders (Armitage et al. 1999; Wamsley et al. 2012;
Buckley et al. 2015; Modarres et al. 2019), we are unaware of a
study to date examining the heritability of sleep EEG coherence.

Therefore, the current study uses a twin design to examine
genetic and environmental influences on high-density sleep
EEG coherence in early adolescence. Based on findings with
regards to waking EEG coherence, which find moderate heri-
tability (Baal et al. 1998; Beijsterveldt et al. 1998; Chorlian et al.
2007), we hypothesize a moderate genetic contribution and a
somewhat weaker influence of unique environmental factors
across frequencies. Furthermore, we assess the stability of sleep
EEG coherence across two consecutive nights and hypothesize
high stability as previously shown in waking across several
months (Corsi-Cabrera et al. 1997, 2007).

Materials and Methods
Participants

Overnight sleep EEG was recorded in 19 MZ (n = 38; mean
age = 12.46; SD = 1.22; 20 females) and 12 DZ (n = 24; mean
age = 12.50; SD = 1.53; 12 females) same-sex twin pairs. The MZ
and DZ groups did not differ with regards to the distribution of
gender (χ2 (1.62) = 0.04; P = 0.84), pubertal status (assessed using
Petersen et al. 1988; χ2 (4.62) = 2.46; P = 0.65) or age (t(60) = −0.11;
P = 0.90). A set of triplets that included an MZ and a DZ twin pair
was part of both MZ and DZ analyses. Zygosity was determined
by means of a questionnaire administered to the parents shown
to be 95% accurate (Goldsmith 1991). Participants were healthy
and born after the 30th week of pregnancy. Written assent was
obtained from all participants and written consent was obtained
from their parents. Study procedures were approved by the
local ethics committee of the Canton of Zurich and performed
according to the Declaration of Helsinki.

Procedures

Sleep EEG recordings were conducted at participants’ home dur-
ing two consecutive nights (adaptation followed by a baseline
night). Only data from the second night (baseline) were included
in the heritability analysis apart from three subjects for which
recordings from the adaptation night were used due to insuffi-
cient signal quality during the baseline. Prior to EEG recordings,
participants spent at least 5 days on a stabilization schedule
ensuring time in bed between 9.5 and 10 h. The sleep schedule
was tailored according to the needs of the participants and
actigraphy and sleep diaries verified adherence to this schedule.

Sleep EEG Analysis

Sleep EEG, electrooculogram (2 channels), electromyogram (2
channels), and electrocardiogram (2 channels) were recorded via
a Geodesics system (GSN300; Electrical Geodesic Inc.) with 64
channels resulting in 58 EEG channels. The data were acquired
at a sampling rate of 1000 Hz and downsampled to 250 Hz for
analysis. The signal at each derivation was recalculated relative
to the average of all derivations (average reference) after exclud-
ing bad channels based on visual inspection of spectrograms.
All sleep recordings were scored in 30-s epochs according to the
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criteria of Rechtschaffen and Kales (1968). Epochs with artifacts
were detected and excluded using a semiautomated procedure
whenever power in the low (0.8–4.6 Hz) and high (20–40 Hz)
frequencies exceeded a threshold (Buckelmüller et al. 2006).

We examined sleep EEG coherence between all possible

channel pairs, with coherence defined as

∣
∣
∣Pxy(f )

∣
∣
∣

2

Pxx(f )Pyy(f ) where

Pxy(f ) is the cross-spectral density and Pxx(f ) and Pyy(f ) are
the autospectral density functions of the two signals x and
y at frequency f (Bendat and Piersol 2010). Coherence values
range from 0 to 1 and are not normally distributed. Therefore,
we applied a Fisher’s z-transform to the square root of the
data before statistical analyses. Electrode pairs with very small
(<10 cm) or very large (>20 cm) separations, as reflected through
their arc length, were excluded from analyses, to reduce volume
conduction effects (Srinivasan et al. 2007), resulting in 559
connections. Of these 559 connections, 291 were classified as
interhemispheric because they crossed the hemispheres and
268 were classified as intrahemispheric.

Coherence was calculated for 30-s epochs using Welch’s
method (average of six 5-s windows; Hanning window; no
overlap; frequency resolution 0.2 Hz) in MATLAB (Mathworks)
for the two states, rapid eye movement (REM) and nonrapid eye
movement (NREM) sleep, and the following frequency bands:
delta (1–4.6 Hz), theta (4.8–7.8 Hz), alpha (8–10.8 Hz), sigma (11–
16 Hz), beta 1 (16.2–20 Hz), beta 2 (20.2–24 Hz), gamma 1 (24.2–
34 Hz), and gamma 2 (34.2–44 Hz). Because the duration of sleep
has an impact on the calculation of sleep EEG coherence, as the
distribution of sleep stages as well as the abundance of specific
oscillations change with the dissipation of sleep pressure
(Achermann and Borbély 2011), we used the maximal common
length of NREM and REM sleep epochs for each twin pair.

In addition to band coherence, we quantified the sigma
peak in the coherence spectrum, which corresponds to sleep
spindles—bursts of sleep EEG activity in the sigma frequency
range generated by thalamocortical loops (Krosigk et al. 1993;
Fuentealba and Steriade 2005). By subtracting background EEG
activity and only examining the relative sigma peak, we obtain
a measure of spindle coherence (modified from Gottselig et al.
2002). This procedure is illustrated in Supplementary Material,
Figure S1.

Statistical Analysis

Structural equation modeling (SEM) was used to estimate
genetic and environmental influences on coherence with
OpenMx in R (Boker et al. 2011). SEM estimates the contribution
of latent factors (i.e., genes [A], environmental effects shared
between twins [C], and environmental effects unique to each
twin and measurement error [E]) to observed data under the
assumption that the genetic concordance between MZ twins is
1, while it is 0.5 in DZ twins. On the other hand, both MZ and
DZ twins share a familial and school environment leading to a
shared environmental (C) concordance of 1 for both MZ and DZ
twins. Unique environmental factors and measurement error
(E) are uncorrelated among both MZ and DZ twins. Each factor,
A, C, and E can vary between 0 and 1 and all factors sum to
1 indicating the amount of variance explained by each of the
factors. Model fit was assessed using the Akaike information
criterion (AIC), as is standard in twin studies using SEM analysis
(Lessov-Schlaggar et al. 2012; Shan et al. 2016; Vandenbosch
et al. 2019). When the model fit, as determined by the AIC,
was better for a reduced model (AE or CE) as compared to

the full model (ACE), then we used the reduced model and
set the value for the unused factor to zero (Rijsdijk and Sham
2002).

Because the latent factor E captures unique environmental
factors in addition to measurement error, we sought to quan-
tify the stability of sleep EEG coherence across consecutive
recordings. To this end, we calculated intraclass correlation
coefficients (ICCs) (Shrout and Fleiss 1979) for the two con-
secutive nights (adaptation and baseline). ICCs were defined
as the between-subjects mean square minus the residual sum
of squares divided by the between-subjects mean square. A
large between-subject variance combined with a high within-
subject similarity across the two recordings will result in large
ICCs. Furthermore, previous studies (Ambrosius et al. 2008; De
Gennaro et al. 2008; Adamczyk et al. 2015; Rusterholz et al.
2018; Gorgoni et al. 2019) have used ICC analysis to quantify
heritability by subtracting ICC values of DZ twins from MZ twins
with the assumption that due to the greater proportion of shared
genetic material in MZ twins ICC values will be higher in MZ as
compared with DZ twins. Therefore, to compare the between-
night variance to heritability, we calculated ICC values for MZ
and DZ twins separately and use the difference between MZ and
DZ twins as a further index of heritability. Finally, a Wilcoxon
rank sum test was conducted on sleep stage variables to assess
whether the two groups of twins were comparable with regards
to their sleep.

Results
The MZ and DZ twins in our sample showed no significant dif-
ferences with regards to sleep stage variables and showed sleep
architecture typical for this age group with a sleep efficiency
>90% (Table 1).

Coherence Values

Figure 1 (first row) depicts the distribution of coherence values
across the 559 connections for all frequency bands and sleep
states and shows that the median value lies between 0.21 and
0.27 for NREM sleep and between 0.22 and 0.27 for REM sleep.
These values are in accordance with a previous study of sleep
EEG coherence in adolescence (Tarokh et al. 2010) and show
a consistent decline across frequencies in REM sleep, while in
NREM sleep, the decline is limited to the higher frequency range
(beta 1 to gamma 2 bands). Supplementary Material, Figure S2
shows maps of coherence values during NREM sleep grouped
in 14 regions averaged across subjects. These maps suggest
that coherence values are high between central, parietal, and
temporal regions for band coherence and central and frontal
regions for sigma peak coherence. We observed similar patterns
for REM sleep (Supplementary Material, Fig. S3).

ICC values were categorized as moderate (0.41–0.60), sub-
stantial (0.61–0.80), and almost perfect (0.81–1.00) by Landis and
Koch (1977), a nomenclature that we use in the current report.
Based on ICC analysis, coherence values across two consecutive
nights showed intrasubject stability, with ICC values mainly in
the substantial range across frequency bands and sleep states
with median values between 0.60 and 0.82 (Fig. 1).

Heritability of Coherence

The SEM results are depicted in Figure 2 for the frequency bands
delta to sigma and the sigma peak, and in Figure 3 for the
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Table 1 Mean and standard deviation (in parentheses) of sleep parameters for monozygotic (MZ; n = 36) and dizygotic (DZ; n = 24) twins in our
sample. The percent values were calculated with respect to total sleep time. Sleep latency is defined as the first occurrence of stage 2 sleep
following lights out. Results from a Wilcoxon rank sum test comparing the two groups with regards to sleep parameters are also reported
(z-values; P-values in parentheses)

Sleep parameter MZ DZ z-statistic

Total sleep time (min) 522.61 (±51.16) 546.12 (±37.71) −1.84 (P = 0.07)
Wake after sleep onset (min) 28.71 (±29.03) 23.29 (±25.94) 0.45 (P = 0.65)
Sleep latency (min) 22.01 (±17.85) 18.44 (±9.71) 0.27 (P = 0.79)
Sleep efficiency (%) 91.03 (±5.45) 92.69 (±4.33) −0.92 (P = 0.36)
REM latency (min) 112.39 (±44.95) 93.06 (±40.12) 1.91 (P = 0.06)
Stage 2 (%) 44.26 (±10.08) 45.10 (±8.62) −0.24 (P = 0.81)
Slow wave sleep (%) 29.36 (±9.56) 27.00 (±7.81) 0.86 (P = 0.39)
Stage REM (%) 25.98 (±5.01) 26.95 (±6.54) −0.39 (P = 0.69)

frequency bands beta 1 to gamma 2 in NREM sleep. Generally
speaking, we found a strong contribution of unique environ-
mental factors (latent factor E) across bands for interhemi-
spheric as well as intrahemispheric coherence in both NREM and
REM sleep (median value range: 0.45 ≤ E ≤ 0.75), with minimal
contribution by shared environmental factors. The strongest
impact of genetic factors (A) on both inter- and intrahemispheric
coherence was found for NREM sleep sigma band (median value:
A = 0.38) and sigma peak (median value: A = 0.48) coherence
(Fig. 4). We performed an ANOVA comparing heritability values
(latent factor A) across bands (i.e., 559 values corresponding to
559 connections per band) and found that NREM sleep sigma
coherence significantly differed from all other frequency bands
except for beta 1 as revealed by post-hoc t-tests (P < 0.0001;
Tukey-corrected).

Furthermore, we used a χ2 test to determine whether the
total number of connections where more than half the variance
was explained by a given factor (A, C, or E) differed for intra-
versus interhemispheric coherence. We found that a larger num-
ber of intrahemispheric connections were explained by genetic
factors as compared with interhemispheric coherence for NREM
sleep sigma to gamma 2 bands, NREM sigma peak coherence
and REM sleep alpha to sigma bands. In other words, despite an
overall trend toward unique environmental factors explaining
the most variance, in some frequency bands intrahemispheric
coherence manifested a greater number of connections with a
large genetic contribution as compared with interhemispheric
coherence.

Using ICC analysis to calculate heritability confirmed
findings from SEM and revealed low heritability (third row in
Fig. 1) as reflected in small differences in ICC values for MZ
and DZ twins across states and frequencies (median value
range: 0–0.43).

Discussion
The current study takes a behavioral genetics approach in ado-
lescents to estimate the heritability of connectivity in the sleep-
ing brain as indexed by sleep EEG coherence. Across frequencies
and sleep states, we consistently observed that unique envi-
ronmental factors had a large influence on sleep EEG coher-
ence, while environmental factors shared among twins (latent
factor C) had the weakest influence. Some frequency bands,
such as the sigma band in NREM sleep as well as sigma peak
coherence, showed modest genetic control. Our findings are in

line with a large body of literature in animals showing that
while the initial formation of brain structures relies on genetic
regulation, the patterns of interaction between regions and the
efficiency of such interactions are tuned through experience and
external input (Rakic et al. 2009). According to one prominent
hypothesis, the protomap hypothesis, a map of future cortical
areas and their identity is established at the time of the last
division of neural progenitor cells in the ventricular zone (Rakic
1988). However, the size of these areas and their synaptic fea-
tures are influenced by afferent input (Rakic 1988; Rakic et al.
1991). Further reflecting the plasticity of network activity, a
study in cat fetuses showed that by blocking action potentials
through injections of a sodium channel antagonist, thalamo-
cortical projections can be altered and manipulated (Catalano
and Shatz 1998). Such plasticity of the cortex, thus, may be
crucial to evolutionary development and adaptation (Rakic et al.
2009).

Our findings of low heritability and high unique environ-
mental influences are partially in contrast to wake EEG stud-
ies, where heritability estimates are often higher (range: 0.22–
0.71; Baal et al. 1998; Beijsterveldt et al. 1998; Chorlian et al.
2007) than those observed in the current study (mean range:
0.19–0.33). Direct comparison with waking studies is difficult
due to the varied methodologies used to calculate heritability
such as variance component models (Chorlian et al. 2007), or
report on average heritability values rather than specific con-
nections. Despite this, we note the wide range of heritability
values observed in the current study, with estimates of heri-
tability for some connections >0.5 (Figs 4 and 5). Indeed, when
we directly compare our findings to those of previous wake
EEG studies (Table 2) in 16-year olds (Beijsterveldt et al. 1998),
we find similar values. As far as we are aware, this is the first
high-density sleep EEG study of the heritability of coherence
and thus, the lower overall estimate observed in our study may
in part be due to the large number of connections studied,
which may include weak connections which are not biologi-
cally meaningful (e.g., connections running diagonally from the
left occipital to the right frontal cortex). On the other hand,
only by examining a large number of connections is it possible
to envisage the overall patterns of genetic and environmental
influences on coherence. For these reasons, the use of high-
density EEG provides a more thorough overview of this phe-
nomenon and may explain why our findings are congruous with
studies in animals and human magnetic resonance imaging
(MRI) studies as compared with previous studies of wake EEG
coherence.
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Figure 1. (A) Raincloud plots (Allen et al. 2019) showing the distribution of coherence values across all 559 connections for all frequency bands and both sleep states
averaged across subjects. (B) Distribution of ICC values calculated between two consecutive nights of assessment across all 559 connections for all frequency bands and
both sleep states. (C) Distribution of differences in ICC values between monozygotic (MZ) and dizygotic (DZ) twins (MZ-DZ) across all 559 connections for all frequency

bands and both sleep states. In these plots, the scattered dots represent the values for individual connections, while the circle in the middle depicts the median value.

Nonetheless, our finding suggests that the brain’s functional
connectivity during sleep is largely shaped by individual expe-
riences, not shared among twins, and, therefore, possibly one
of the features making each individual unique. An EEG study

of source connectivity showed that dynamic functional con-
nectivity of temporal lobe regions, the posterior cingulate, and
the superior parietal region is correlated with personality traits
such as neuroticism, agreeableness, and extraversion (Kabbara
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Figure 2. Topographic distribution of the results from structural equation modeling (SEM) shown for interhemispheric (left panel) and intrahemispheric (right panel)

connections separately, and delta to sigma bands (first to fourth row) during NREM sleep as well as sigma peak (fifth row). The first column shows the contribution
of genetic factors (latent factor A), the second column shows the contribution of environmental factors shared among twins (C), and the third column shows the
contribution of environmental factors unique to each twin (E). The color corresponds to the magnitude of the contribution with warm tones representing large values
(close to 1) and cool tones representing lower values (close to 0.5). Only connections with coherence values >0.2 and a contribution >0.5 for the shown factor are

depicted (the number of connections with more than half the variance explained by that factor shown next to each map).

et al. 2019) and a wealth of studies examining the heritabil-
ity of such traits show a significant contribution of unique
environmental factors to personality traits (Plomin et al. 2008).
One possible hypothesis is that functional brain connectivity,
shaped by unique environmental influences, is unique to an
individual and a potential substrate of personality. However,
what these environmental influences might be remains largely
unknown. Several environmental factors including stress and
child–parent interactions have been shown to affect brain devel-
opment (Marshall et al. 2008; McEwen 2011). Marshall et al.
(2008) found that previously institutionalized children placed
into foster homes at an earlier age had increased EEG alpha
power and decreased short-distance alpha and beta EEG coher-
ence during waking as compared with children with an older
age at placement. Furthermore, they report that this effect was
more robust for EEG coherence than for EEG power. However, it
is not only highly adverse and dramatic life events that may
impact brain development, but also subtle influences during
sensitive periods can have long-term effects detectable later in

life. This was demonstrated by a study showing that the level
of caregiver support provided during a stressful task measured
in early childhood is significantly associated with hippocam-
pal volume growth across school age and early adolescence
(Luby et al. 2016).

Our findings are in line with results from resting-state MRI
studies which typically show a high impact of unique envi-
ronmental factors and a low to moderate genetic influence on
functional connectivity (Fu et al. 2015; Reineberg et al. 2018).
In the study by Fu et al. (2015), which examines a sample of
adolescents between 12 and 19 years of age, the genetic contri-
bution, however, varies between the examined brain networks
and reaches its highest values for sensory networks, which
develop early in life (Antonini and Stryker 1993). The authors,
thus, argue that such networks are more crucial to survival and,
therefore, might have a stronger genetic control (Fu et al. 2015).
Networks involved in cognition, on the other hand, mature later
in life and are, therefore, exposed to environmental influences
to a greater extent (Fu et al. 2015). In our analysis of sleep EEG
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Figure 3. Topographic distribution of the results from SEM shown for interhemispheric (left panel) and intrahemispheric (right panel) connections separately, and beta
1 to gamma 2 bands (first to fourth row) during NREM sleep. The first column shows the contribution of genetic factors (latent factor A), the second column shows
the contribution of environmental factors shared among twins (C), and the third column shows the contribution of environmental factors unique to each twin (E). The

color corresponds to the magnitude of the contribution with warm tones representing large values (close to 1) and cool tones representing lower values (close to 0.5).
Only connections with coherence values >0.2 and a contribution >0.5 for the shown factor are depicted (the number of connections with more than half the variance
explained by that factor shown next to each map).

coherence, the genetic contribution reaches its highest values
in the sigma band as well as for sigma peak coherence, possibly
suggesting a moderate genetic control of the thalamocortical
network, which relays sensory information to the cortex, but
at the same time serves as an integrative hub for information
processing across networks (Hwang et al. 2017). Nonetheless,
what is clear from our study, experimental studies in animals
(e.g., Rakic 1988; Rakic et al. 1991; Catalano and Shatz 1998) and
brain imaging studies (e.g., Fu et al. 2015; Reineberg et al. 2018) is
that brain plasticity allows for the brain to be shaped in response
to environmental influences.

What has been unambiguously shown thus far is that sleep
mirrors neurodevelopmental processes (e.g., Feinberg et al. 1990;
Buchmann et al. 2011; Tarokh et al. 2014). Our study adds to this
knowledge and provides support for the neurodevelopmental
studies described above. Taken together, this study shows that,
in the critical period of human adolescence encompassing
turbulent changes in behavior and function, sleep EEG power,
a measure reflecting the number of neurons in neuronal
populations firing in synchrony (Nunez and Srinivasan 2006), is
largely genetically determined (Rusterholz et al. 2018), whereas
coherence, a measure reflecting the interaction between

neuronal networks (Nunez and Srinivasan 2006), is shaped
through interaction with environment.

Limitations

Several limitations are associated with the current study. First,
the latent factor E is a measure of both unique environmental
contribution to a phenotype combined with measurement error.
Therefore, we cannot rule out the possibility that it is signal
noise rather than unique environmental factors that account
for the large E values that we observe. However, we believe that
our results are not subject to significant measurement noise for
three reasons: (1) we went through great effort to ensure that the
analyzed data are artifact-free (2) previous analyses of this data
set show high heritability of sleep EEG power (Rusterholz et al.
2018) and (3) coherence values are stable across two consecutive
nights as reflected in high ICC values. A further limitation is
that we were not able to examine differences in heritability
between genders due to the small sample size. However, data
from Beijsterveldt et al. (1998) show no evidence for gender
differences in heritability of wake EEG coherence. Finally, a
highly polemized issue associated with EEG coherence is the
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Figure 4. Raincloud plots (Allen et al. 2019) showing the distribution of the results from SEM across all 559 connections for all frequency bands during NREM sleep
and sigma peak coherence including contributions from genetic factors (latent factor A), environmental factors shared among twins (C), and environmental factors
unique to each twin (E). In each plot, the distribution of the data is shown in a split-half violin. The scattered dots represent the values for individual connections and

the circle in the middle depicts the median value.

choice of the EEG reference, as this will impact the volume
conduction contamination and the measured coherence values
(Nunez and Srinivasan 2006). Volume conduction effects arise
from the different electrical properties of the brain tissues
and can artificially inflate coherence between electrodes with
very small (<10 cm) (Nunez et al. 1997, 1999) or very large
(>20 cm) separations (Srinivasan et al. 2007). To minimize
volume conduction effects on our results, we only included
those electrode pairs with a distance between 10 and 20 cm
and we make use of the average reference, which has been
shown to approximate absolute potentials if the number of
electrodes is large enough (Srinivasan et al. 1998), and might,
therefore, be the best choice for high-density EEG data. Although
there are numerous alternative measures of functional brain
connectivity (e.g., phase synchronization; summarized in
Sakkalis 2011), the majority of EEG studies apply coherence.
Therefore, in order for our findings to be comparable to previous

work and applicable, we use coherence as our measure of
connectivity.

Conclusions
We add to the existing literature by showing that the genetic
contribution to sleep EEG coherence in adolescence is low for
band coherence, but moderate for sigma peak coherence. Given
the implication of sleep EEG coherence in psychiatric disorders
and its direct relation to brain connectivity, understanding the
factors contributing to sleep EEG coherence and its maturation
are of great importance. That environmental influences can
regulate gene expression in neurons has been known for a long
time, and complex disorders such as schizophrenia have been
associated with both genetic risk as well as environmental expe-
riences (Wiesel 1994). Numerous studies have supported the
notion that the structural aspects of brain networks are shaped
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Figure 5. Raincloud plots (Allen et al. 2019) showing the distribution of the results from SEM across all 559 connections for all frequency bands during REM sleep
including contributions from genetic factors (latent factor A), environmental factors shared among twins (C), and environmental factors unique to each twin (E). In
each plot, the distribution of the data is shown in a split-half violin. The scattered dots represent the values for individual connections and the circle in the middle
depicts the median value.

Table 2 Heritability estimates for the NREM sleep delta band from our study contrasted to heritability estimates for the delta band from
Beijsterveldt et al. (1998), a previous study investigating heritability of 3 min of eyes closed wake EEG coherence in 16-year-old twins (213
adolescent twins; mean age = 16.8 years; SD = 0.55). We note the use of average reference in our study compared with linked earlobes in the
Beijsterveldt et al. study. The estimates are shown only for those connections examined by Beijsterveldt et al. (1998) and we note the use of
the full ACE model in the values that we report for our study as opposed to using the model with the best fit to make our results comparable
to Beijsterveldt et al. (1998)

Heritability estimate Heritability estimate

Left-hemispheric
connection

Markovic et al. Beijsterveldt et al. Right-hemispheric
connection

Markovic et al. Beijsterveldt et al.

Fp1-F3 0.30 0.52 Fp2-F4 0.18 0.54
Fp1-C3 0.71 0.52 Fp2-C4 0.86 0.43
Fp1-P3 0.51 0.30 Fp2-P4 0.73 0.41
F3-O1 0.36 0.44 F4-O2 0.68 0.43
C3-O1 0.75 0.55 C4-O2 0.00 0.56
P3-O1 0.08 0.52 P4-O2 0.06 0.36

by our genes (e.g., Rakic 1988), whereas the fine modulations
of connectivity patterns happen through the interaction with
the environment (e.g., Rakic 1988; Rakic et al. 1991; Catalano
and Shatz 1998). This interaction not only undergoes critical
periods during brain development creating windows of suscep-
tibility to diseases, but also opportunities and targets for early
intervention and prevention.

Supplementary Material
Supplementary material is available at Cerebral Cortex online.
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