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Objectives: The aim of this study was to compare a diagnosis support system to
detect COVID-19 pneumonia on chest radiographs (CXRs) against radiologists
of various levels of expertise in chest imaging.
Materials and Methods: Five publicly available databases comprising normal
CXR, confirmed COVID-19 pneumonia cases, and other pneumonias were used.
After the harmonization of the data, the training set included 7966 normal cases,
5451 with other pneumonia, and 258 CXRs with COVID-19 pneumonia, whereas
in the testing data set, each category was represented by 100 cases. Eleven blinded
radiologists with various levels of expertise independently read the testing data set.
The data were analyzed separately with the newly proposed artificial intelligence–
based system and by consultant radiologists and residents, with respect to positive
predictive value (PPV), sensitivity, and F-score (harmonic mean for PPVand sensi-
tivity). The χ2 test was used to compare the sensitivity, specificity, accuracy, PPV,
and F-scores of the readers and the system.
Results: The proposed system achieved higher overall diagnostic accuracy
(94.3%) than the radiologists (61.4% ± 5.3%). The radiologists reached average
sensitivities for normal CXR, other type of pneumonia, and COVID-19 pneumo-
nia of 85.0% ± 12.8%, 60.1% ± 12.2%, and 53.2% ± 11.2%, respectively, which
were significantly lower than the results achieved by the algorithm (98.0%,
88.0%, and 97.0%;P < 0.00032). Themean PPVs for all 11 radiologists for the 3 cat-
egories were 82.4%, 59.0%, and 59.0% for the healthy, other pneumonia, and
COVID-19 pneumonia, respectively, resulting in an F-score of 65.5%±12.4%,which
was significantly lower than the F-score of the algorithm (94.3% ± 2.0%,
P < 0.00001).When other pneumonia and COVID-19 pneumonia caseswere pooled,
the proposed system reached an accuracy of 95.7% for any pathology and the ra-
diologists, 88.8%. The overall accuracy of consultants did not vary significantly
compared with residents (65.0% ± 5.8% vs 67.4% ± 4.2%); however, consultants
detected significantly more COVID-19 pneumonia cases (P = 0.008) and less healthy
cases (P < 0.00001).
Conclusions: The system showed robust accuracy for COVID-19 pneumonia de-
tection on CXR and surpassed radiologists at various training levels.

Key Words: COVID-19, chest radiographs, deep learning, diagnostic support
system

(Invest Radiol 2020;00: 00–00)

I n the current COVID-19 pandemic, radiological imaging studies have
rapidly gained significant importance.1–3 Several reports have dem-

onstrated that computed tomography (CT) might be a highly sensitive
diagnostic test to detect COVID-19 pneumonia4 and assess its severity,5

and even more sensitive for COVID-19 pneumonia diagnosis than ini-
tial polymerase chain reaction testing.6,7 Therefore, centers in heavily
afflicted areas initially used chest CT to screen for COVID-19–positive
individuals.8

Radiographs are reported to be less sensitive to subtle early im-
aging findings.9,10 Two recent studies11,12 have shown that 2 artificial
intelligence (AI)–based systems perform better than human readers. Ar-
tificial intelligence has already actively contributed to the fight against
the COVID-19 pandemic,13 particularly in assisting the diagnosis pro-
cess based on the medical image.14 Specifically, recent studies have
shown that deep learning can accurately detect COVID-19 pneumonia
on CT images,15,16 as well as on chest radiographs (CXRs),17–19 and
differentiate it from other community-acquired pneumonia and lung
diseases. Recent studies have even aimed at assessing the severity of
COVID-19 pneumonia based on CXRs,20 as well as the risk of develop-
ing critical illness based on other clinical parameters.21

We hypothesize that CXR possesses great potential to facilitate
management of patients with COVID-19 pneumonia. Recent published
recommendations of the Fleischner Society22 and the European Society
for Thoracic Imaging23 have also emphasized this approach. By appropri-
ate use of CXRs in a predefined patient population, conventional chest im-
aging can provide critical information on the pulmonary status and
facilitate patientmanagement.Moreover, CXRunits can be easily deployed
to the intensive care units for disease monitoring and could even be applied
through glass and/or smart glass doors of isolation rooms.24 As the
COVID-19 pandemic continues to spread and also afflicts developing
countries that might not have broad access to CT imaging, CXRs could
play a critical role in the diagnosis andmanagement of COVID-19 patients.

However, as outlined previously, CXRs are difficult to read and
radiologists require particular expertise.25,26 To optimize the diagnosis
of CXR, we have developed a deep learning diagnostic support system
for the detection of COVID-19 pneumonia. The purpose of our study is
to assess the system’s diagnostic performance, analyze the sensitivity
and accuracy for COVID-19 pneumonia and other pneumonias, and
compare it to radiologists of different levels of expertise. The proposed sys-
tem is based on light-weight architecture and does not need any dedicated
segmentation module to obtain high diagnostic accuracy. This study is
completely based on publicly available data. Furthermore, the working
codewill be open access. To the best of our knowledge, this is the first pub-
lished study to compare an open-access system with such a large pool of
radiologists with respect to the analysis of publicly available data.

MATERIALS AND METHODS
For this retrospective study, we used open-access databases of

CXRs of patients with COVID-19 pneumonia, other pneumonias, or
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without lung pathology (Fig. 1). As the study was retrospective and
used publicly available, anonymized data, institutional review board ap-
proval could be waived. We conformed to the STARD criteria for
reporting studies on diagnostic accuracy.27

Databases
For the purposes of this study, 5 open-access databases were

used: COVID-19 Image Data Collection,28 Figure 1 COVID-19 Chest
X-ray,29 ActualMed COVID-19 Chest X-ray data set,30 COVID-19 Ra-
diography Database,31 and the RSNA Pneumonia Detection Challenge
data set.32 All databases were accessed as of May 27, 2020, and their
major characteristics are summarized in Table 1. All COVID-19 pneu-
monia scans were recorded between December 2019 and May 2020.
As shown in Table 1, different data formats are used.

The RSNA data set32 is mainly used to gather CXR images of
healthy individuals and patients with bacterial or viral pneumonia. Fur-
thermore, 19 cases from the COVID-19 Image Data Collection28 were
used to augment the other pneumonia class.28 However, as shown in Ta-
ble 1, in some of the used databases, for example, in COVID-19 Image
Data Collection28 and COVID-19 Radiography Database,31 there is an
overlap of COVID-19 pneumonia cases. To avoid duplicate use of a
CXR case, we followed the approach proposed byWang et al.33 The final
merged database contained 13,975 CXR images from 13,870 patients. Of
these, 266 patients are confirmed with COVID-19 (358 CXR images),
5538 patients (5551 CXR images) demonstrated bacterial or viral pneu-
monia with 5551 CXRs, and 8066 were healthy individuals represented
by equivalent number of images. All cases in the merged database were
annotated either as healthy/normal, pneumonia other than COVID-19,
or characteristic findings of COVID-19 pneumonia.

FIGURE 1. Top row, 3 sample chest x-rays (left, sample for healthy class; middle, sample for other types of pneumonia; right, COVID-19 pneumonia);
bottom row, overlaid class activation maps.

TABLE 1. Major Characteristics of the Databases Used for the Development and Validation of the System

Database Data Format Sources

Cases

Healthy
Other

Pneumonia
COVID-19
Pneumonia

COVID-19 Image
Data Collection28

.png • Italian Society of Medical and Interventional Radiology
(https://www.sirm.org/category/senza-categoria/covid-19/)

• Radiopedia.org (https://radiopaedia.org)
• Figure1.com (https://www.figure1.com/covid-19-clinical-cases)
• Eurorad.org operated by the European Society of Radiology
(https://www.eurorad.org/)

• Radiological Society of North America (https://pubs.rsna.org)

— 19 154

Figure 1 COVID-19
Chest X-ray29

.jpg Figure1.com 3 2 35

ActualMed COVID-19
Chest X-ray data set30

.png ActualMed 116 — 50

COVID-19 Radiography
Database31

.png • Italian Society of Medical and Interventional Radiology
• Radiological Society of North America
• Medarxiv.org
• New England Journal of Medicine

1341 1345 219

RSNA Pneumonia Detection
Challenge data set32

DICOM National Institutes of Health Clinical Center 8851 9555 —
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Artificial Intelligence–Based System for Chest
Radiograph Analysis

To diagnose COVID-19 pneumonia and distinguish it from other
viral/bacterial pneumonias and healthy lungs, a dedicated AI-based sys-
tem was developed. The system uses a newly introduced deep learning
algorithm, which is a modified and enhanced version of the network pre-
sented by Wang et al.33 Either the anteroposterior or the posteroanterior
projection of the CXR image was inputted to the system; lateral projec-
tions were omitted. The system is composed of an ensemble of 3 individ-
ual models, each of them following the architecture shown in Figure 2.
Each model uses as input the entire CXR (the pixel values of each image
were scaled to a range between 0 and 1), which was downsampled by a
learnable strided convolution and further processed by an alteration of
the inverted bottleneck blocks (IBs).34 Inverted bottleneck blocks were
used to generate and downsample the feature maps. The combined and
downsampled feature maps are fed to a multilayer perceptron, which
provides the model's output in the form of a probability for the healthy,
other pneumonia, and COVID-19 pneumonia class. Finally, the ensem-
ble is created by using the 3 best performing models during a single
training process—checkpoint ensemble.35 Each of these models pre-
dicts a slightly different output probability for the 3 classes that were
weighted by the inverse of their entropy for the final prediction.

As shown in Table 2, the merged database is used to formulate
the training and testing sets. A total of 258 COVID-19 pneumonia CXRs,

including follow-up scans or multiview examinations (anteroposterior
and posteroanterior projection), were used for training, whereas the re-
maining 100 were used for testing. Using multiple views as well as
follow-up scans might be considered as a special case of data augmen-
tation. The other pneumonia class is composed of 5440 and 98 unique
patient scans32 for the training and testing sets, respectively.28,32 Of the
8066 healthy individuals, 7966 unique patient scans were extracted for
training and 100 for testing. Table 2 provides statistics for both training
and testing sets.

As depicted in Table 2, the number of cases was unbalanced
among the classes considered. To mitigate the negative effects of such
a skewed class distribution, oversampling of COVID-19 pneumonia
cases was applied. Further, conventional data augmentation techniques,
such as slight translation (10%), rotation (±10 degrees), horizontal flip,
zoom (10%), and intensity shift (10%), were randomly applied on all
images. This kind of data augmentation aims at solving the risk of
overfitting due to multiple appearances of oversampled COVID-19
pneumonia cases. To emphasize the importance of COVID-19 detection,
the corresponding error was weighted by a factor of 4. An additional per-
formance boost had been achieved by pretraining our network on a subset
of the ImageNet36 collection.

To implement our system, we used the Keras37 with the Tensoflow
framework in the 2.2.4 and 1.12.0 versions. The model was trained on an
Nvidia Titan X (12 GB) graphics processing unit for 15 hours. Further,

FIGURE 2. The proposed network architecture. Left, overview over the full depth of the network; right, detailed description of the inverted bottleneck
block (IB). In the first stage, the feature map channels are expanded by a factor of 4 to compensate the information loss due to rectified linear unit
activations. The depth-wise (DW) convolution is used as feature extractor and downsampling stage at once. At the IB's output stage, the feature map
channels are collapsed by a factor of 2.

TABLE 2. Data Allocation Into Training and Testing Sets

Training Testing

Healthy Other Pneumonia COVID-19 Pneumonia Healthy Other Pneumonia COVID-19 Pneumonia

Patients 7966 5440 192 100 98 74
Multiple views (AP, PA) 0 0 15 0 0 13
Follow-up CXR 0 11 51 0 2 13
Total CXR 7966 (58.3%) 5451 (39.8%) 258 (1.9%) 100 (33.3%) 100 (33.3%) 100 (33.3%)

AP, anteroposterior projection; PA, posteroanterior projection; CXR, chest x-ray examination.
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our machine used an Intel Core i7-5960X central processing unit at
3.00 GHz and 128 GB random-access memory.

Experimental Reader Setup
Eleven readers, blinded to the diagnosis and system’s output,

independently scored the same testing set of CXR as applied to the
AI-based system (100 normal, 100 COVID-19 pneumonias, and 100
other pneumonias). For this purpose, the readers received individual
access to the image database. All images consisted of either the
anteroposterior or the posteroanterior projection, no lateral projectionswere
used. All radiologists performed the CXR image analysis on a picture ar-
chiving and communication system workstation using Barco professional
medical display monitors (MDCC-6430; BARCO, Kortrijk, Belgium).
The readers were asked to rate the CXR images as either “normal,”
“pneumonia other than COVID-19,” or “pneumoniawith findings char-
acteristic for COVID-19.” The criteria used are shown in Table 3.

Five readers were residents with 2 to 4 years of training. Six
readers were board-certified, consulting radiologists, including 2 dedi-
cated chest radiologists (with 6 and 20 years of experience), 1
subspecialized emergency radiologist (with 10 years of experience),
and 3 general radiologists (with 6, 13, and 19 years of experience).

Every radiologist rated the 300 cases individually; results were
calculated for each radiologist. There was no consensus reading. To cal-
culate sensitivity, specificity, and accuracy, the mean of each group of in-
terest was calculated. In addition, the F-score was analyzed (F-score
[harmonic mean] = [2� PPV� SENS]/[PPV + SENS]; PPV being pos-
itive predictive value and SENS standing for sensitivity).

All cases with COVID-19 pneumonia and other pneumonia pat-
terns were pooled together to the pathology group (all cases displaying
any pneumonia, without the healthy cases). Sensitivity, specificity, and

accuracy for detecting pathology were calculated for the system, the
consultants, residents, and all human readers separately. Moreover, pre-
cision (PPV) and recall (sensitivity) for other types of pneumoniaversus
COVID-19 pneumonia was analyzed separately for each group. Theχ2

test was used to compare the sensitivity, specificity, accuracy, PPV, and
F-scores of the readers and the proposed system. Interrater agreement
was calculated among the readers with the Fleiss κ test: poor (κ < 0),
slight (κ < 0.2), fair (κ < 0.4), moderate (κ < 0.6), substantial
(κ < 0.8), and almost perfect agreement (κ≤ 1). The agreement between
the consultants and the radiologists was compared with the Z-score. The
significance levelwas set to 0.05, andMedCalc Statistical Software ver-
sion 19.3 (MedCalc Software Ltd, Ostend, Belgium) was used for
computation.

RESULTS

System Performance
The proposed system achieved an average accuracy of 94.3%.

Table 4 and Figure 3 summarize the results on the testing set. The in-
troduced system primarily misclassified other pneumonia cases as
healthy, thus reducing the sensitivity for this class. Furthermore, the
3 false-positive COVID-19 pneumonia cases reduced the PPV for
the class of interest. Figure 1 shows examples of detected pathological
lung tissue.

Comparison Between Human Reader and System
The 11 radiologists reached an overall accuracy of 61.4% ± 5.3%.

The readout results for all radiologists are summarized in Table 5 and
Figures 3 and 4. The combined pattern sensitivity (66.1% ± 13.7%)
as well as the combined F-score (65.5% ± 12.4%) are significantly
lower than for the proposed system (94.3% ± 4.5% [P < 0.00032]
and 94.3% ± 2.0% [P < 0.00001], respectively).

TABLE 4. Performance of the Proposed Approach on the Testing Set

Proposed System

Sensitivity
(%)

Specificity
(%)

PPV
(%)

F-Score
(%)

Healthy 98.0 94.5 89.9 93.8
Other pneumonia 88.0 98.5 96.7 92.1
COVID-19 pneumonia 97.0 98.5 97.0 97.0
Mean ± SD 94.3 ± 4.5 97.2 ± 1.9 94.5 ± 3.3 94.3 ± 2.0

For our evaluation, we present means and standard deviations.

PPV, positive predictive value.

TABLE 3. CXR Findings for Pneumonias With Different Causes

Type of Pneumonia Findings

Typical COVID-19 pneumonia
findings on CXR2

Consolidation is the most
common finding (47%)
followed by ground-glass
opacities (33%). Pathologies
on CXR have a peripheral
distribution (41%) and lower
zone predominance (50%)
with bilateral involvement
(50%). Pleural effusion is
uncommon (3%).

Non–COVID-19
pneumonias

Bacterial
pneumonia38,39

Consolidation confined to a lung
segment or 1 lobe is typically
seen in bacterial pneumonias.
Bulging fissure signs are
attributed to typical bacterial
pneumonias.
Bronchopneumonias (focal
segmental distribution) after
aspiration may be found on
both sides in the lower lobes.

Atypical pneumonia
(PCP, fungal, viral,
pneumonia other
than COVID)
patterns on
CXR40,41

Most common finding is
reticulation with or without
ground-glass opacities (90%)
followed by consolidation
(50%) and nodules (10%).
The abnormalities are usually
diffuse and symmetric
on both sides.

CXR, chest x-ray examination; PCP, pneumocystis pneumonia.

TABLE 5. Performance (Mean ± SD) of the 11 Radiologists

Sensitivity
(%)

Specificity
(%)

PPV
(%)

F-Score
(%)

Healthy 85.0 ± 12.8 90.7 ± 2.7 82.4 ± 3.1 83.0 ± 6.4
COVID-19 pneumonia 53.2 ± 11.2 81.0 ± 6.0 59.0 ± 6.8 55.2 ± 7.2
Mean ± SD 66.1 ± 13.7 83.0 ± 5.6 66.8 ± 11.0 65.5 ± 12.4

PPV, positive predictive value.
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Comparison Between Consultant and Resident
Radiologists

Consultant radiologists reached an overall accuracy of 65.0%±5.8%.
The readout results for the consultant radiologists are summarized in
Table 6 and Figure 5. On the other hand, the resident radiologists dem-
onstrated a similar overall accuracy of 67.4% ± 4.2%. Consultants de-
tected significantly more COVID-19 pneumonia cases (P = 0.008) and
fewer healthy cases (P < 0.00001) than the residents did (Table 7, Fig. 6).

Comparison Between Pathological and Healthy
Chest Radiographs

When other types of pneumonia and COVID-19 pneumonia
cases were pooled, the proposed system detected pathology in 94.6%
of patients (sensitivity) with a specificity of 97.4%, leading to an accu-
racy of 95.7%. The human readers reached lower numbers of 90.7%,
85.0%, and 88.8% (P = 0.074, P = 0.00032, P = 0.00023, respectively).
The diagnostic accuracy of the residents (90.2%) was significantly
higher than the accuracy of the consultants for detecting pathology
(87.7%, P = 0.021).

Comparison Between COVID-19 Pneumonia and
Other Pneumonias

Human readers reached similar F-sores for other types of pneu-
monia and COVID-19 pneumonia of 58.4% and 55.2% (P = 0.111).
The proposed system was superior in detecting COVID-19 pneumonia

than other types pneumonia (F-score 97.0% vs 92.1%; P = 0.038). The
system demonstrated significantly better results than the human readers
(P < 0.00001 for pneumonia and COVID-19).

Interreader Agreement
The interreader agreement wasmoderate: the averageweighted κ

of the consultant radiologists was 0.515 ± 0.07 and did not differ signif-
icantly from the weighted κ of the residents (0.535 ± 0.08, P = 0.43).

DISCUSSION
In this study, we aimed to develop a deep learning algorithm for

the diagnosis of COVID-19 pneumonia on CXRs. The results from this
study demonstrated that the proposed system can reliably detect pneu-
monia on CXRs. In addition, the developed algorithm is capable of sep-
arating COVID-19 pneumonia from other forms of pneumonia with
high diagnostic accuracy when compared with human readers.

The system's development takes advantage of the availability of
open-access databases. The open-access databases allow the head-to-
head comparison of algorithms, support transparency and repeatability
in research, and boost the AI research in the field of diagnosis and treat-
ment of COVID-19. However, the used databases introduce several lim-
itations. Specifically, the provided metadata (eg, case-specific history,
disease severity, course of the disease, acquisition times, and acquisition
machine) are not standardized and thus scarcely provided, whereas dif-
ferent image data formats are supported. In general, a certain inhomoge-
neity of data has to be taken into account when using public data sets.

FIGURE 3. Confusion matrix for our ensemble system with entropy voting.
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This also applies for indication, disease status, examination type, and
nonstandardized examination parameters and apparatures. Furthermore,
the number of available lateral views, although they are very informative,
is limited and thus not included.

The introduced deep learning system is based on an ensemble of
3 individual models, whereas its major innovation characteristic is its
ability to be installed and used in portable devices, while keeping high
performance. Specifically, by introducing the IBs in the architecture, the
number of used layers and thus the network complexity is significantly
reduced. In contrast to previous approaches,33,34 we used stride convolu-
tions in our IBs to combine downsampling and feature extraction. The in-
formation shortcuts between the downsampling stages preserve the high
accuracy, which is further supported by using checkpoint ensemble.

As regards the system performance in the clinical application,
the algorithm showed high sensitivity for the detection of healthy patients
and COVID-19 pneumonia cases (98.0% and 97.0%, respectively). How-
ever, the sensitivity for the detection of pneumonia other than COVID-19
pneumonia was significantly lower (88.0%). The strength of our system
compared with that in the study by Wang et al33 was the 6% increase
in COVID-19 pneumonia sensitivity. This performance gain, however,
came at the cost of pneumonia sensitivity, leading to only a marginal
overall accuracy increase of 0.3% from 94%33 to 94.3%.

Despite the sacrifice in sensitivity for non–COVID-19 pneu-
monia, the proposed system was able to surpass radiologists of any
training level in the detection of COVID-19 pneumonia. The radi-
ologists in particular struggled with the discrimination between
COVID-19 pneumonia and other types of pneumonia. We observed

that many non–COVID-19 pneumonia CXRs were misinterpreted
as COVID-19 pneumonia. Conversely, a considerable number of
COVID-19 pneumonia cases were regarded as non–COVID-19 pneu-
monia. The obvious explanation for the first observation is that, in the
current pandemic, readers tend to overcall consolidations on radio-
graphs as COVID-19 pneumonia related. This effect was more preva-
lent with consultant radiologists, who detected more cases of COVID-19
pneumonia while conversely overcalling the disease. As compared with
the residents, the diagnostic threshold of board-certified radiologists
was lower for COVID-19 pneumonia.

Especially when used as a screening tool for disease, imaging
studies bear the risk of overdiagnosis bias.42,43 The latter finding that
COVID-19 pneumonia was misclassified as other pneumonia is prob-
ably associated with more advanced COVID-19 disease, which

FIGURE 4. Confusion matrix for the 11 radiologists.

TABLE 6. Performance (Mean ± SD) of the 6 Consultant Radiologists

Sensitivity
(%)

Specificity
(%)

PPV
(%)

F-Score
(%)

Healthy 79.0 ± 14.3 92.0 ± 2.5 83.5 ± 3.1 80.4 ± 7.3
Other pneumonia 59.2 ± 14.0 75.5 ± 11.9 56.7 ± 11.0 56.6 ± 8.4
COVID-19 pneumonia 56.8 ± 7.4 80.0 ± 7.2 60.1 ± 7.5 57.7 ± 3.5
Mean ± SD 65.0 ± 9.9 82.5 ± 7.0 66.8 ± 11.9 64.9 ± 11.0

PPV, positive predictive value.
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typically presents with extensive consolidations. It is well documented
that advanced COVID-19 infection can be complicated by bacterial
superinfection and adult respiratory distress syndrome, characterized
by consolidations and lobar or diffuse distribution in the lungs.44–46

Visual discrimination between viral and bacterial pneumonia is not feasi-
ble at this point. Although the algorithm showed better diagnostic accu-
racy, both the proposed system as well as the human readers exhibited
acceptable accuracy in determining pathology on radiographs. Discrim-
inating pneumonia/COVID-19 can be considered a secondary task and
might also be accomplished by polymerase chain reaction testing.

A critical limitation of CXR is its inferior sensitivity to detecting
ground-glass opacifications. Moreover, ground-glass opacifications—
mainly in a basal and peripheral, subpleural locations—have been reported
as being one of the hallmark findings in early COVID-19 pneumonia.46

However, the deployed CXR-based system gave comparable values
for sensitivity, PPV, and F-score for COVID-19 pneumonia diagnosis
to those found from CT images (Table 8), although we used data from
a different pool of patients, which makes a direct comparison more dif-
ficult. As shown in Table 8, a CXR-based system holds the potential to
support radiologists in the initial diagnosis, whereas CT-based systems
could be additionally used for risk assessment and treatment optimiza-
tion during the course of COVID-19 pneumonia.

In the utilization for initial diagnosis and risk estimation, imaging in
general plays a vital role in the follow-up of patients. Numerous studies
using chest CT have already shown that the extent and morphology of pul-
monary infiltrates at presentation permit risk estimation and could indicate
whether the course of the disease will be moderate or severe.50,51 Recent

reports suggest that the same quantification and risk prediction might
be feasible using CXRs.52–54 Deep learning–assisted detection systems
for CXR in conjunction with integrated disease quantification could po-
tentially serve as a valid surrogate for chest CT in the current pandemic.

The presented study has several limitations. First, the sample
size, in particular for the development of a deep learning system, is rel-
atively small. However, we have been spurred on by these promising re-
sults, and prospective trials are in place to further develop the proposed
system. Another critical aspect is the heterogeneous database compris-
ing mild, moderate, and severe cases. However, this could also be seen
as another challenge that was overcome by the system and is supported
by the positive test performance. Finally, this first iteration of the algorithm
was solely dedicated to deploy anAI-assisted diagnostic tool; disease quan-
tification has not been addressed in this version. Upcoming versions are

FIGURE 5. Readout for 6 consultants.

TABLE 7. Performance (Mean ± SD) of the 5 Residents

Sensitivity
(%)

Specificity
(%)

PPV
(%)

F-Score
(%)

Healthy 92.2 ± 4.8 89.2 ± 2.0 81.1 ± 2.6 86.2 ± 2.6
Other pneumonia 61.2 ± 9.4 79.6 ± 8.6 61.8 ± 8.8 60.5 ± 4.4
COVID-19 pneumonia 48.8 ± 13.3 82.3 ± 4.3 57.7 ± 5.6 52.1 ± 9.1
Mean ± SD 67.4 ± 18.3 83.7 ± 4.0 66.9 ± 10.2 66.3 ± 14.5

PPV, positive predictive value.
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planned to incorporate amultivariate system, including extent of disease, as
well as correlation with clinical parameters and outcome.

In conclusion, we proposed a deep learning algorithm for the di-
agnosis of COVID-19 pneumonia on CXRs. Our data suggests that this
approach is robust and capable to diagnose and differentiate COVID-19
pneumonia from other types of pneumonia. In this pilot study, the de-
ployed system surpassed radiologists at all levels of training. The pre-
sented results emphasize the potential of CXRs in combination with
AI-supported detection systems for patient triage and to ultimately

mitigate the impact on radiology departments and health care providers
globally during the COVID-19 pandemic.
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