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During acute or chronic lung injury, inappropriate immune response and/or aberrant repair process causes irreversible damage in
lung tissue and most usually results in the development of fibrosis followed by decline in lung function. Inhaled corticosteroids and
other anti-inflammatory drugs are very effective in patients with inflammatory lung disorders, but their long-term use is associated
with severe side effects. Accordingly, new therapeutic agents that will attenuate ongoing inflammation and, at the same time,
promote regeneration of injured alveolar epithelial cells are urgently needed. Mesenchymal stem cells (MSCs) are able to
modulate proliferation, activation, and effector function of all immune cells that play an important role in the pathogenesis of
acute and chronic inflammatory lung diseases. In addition to the suppression of lung-infiltrated immune cells, MSCs have
potential to differentiate into alveolar epithelial cells in vitro and, accordingly, represent new players in cell-based therapy of
inflammatory lung disorders. In this review article, we described molecular mechanisms involved in MSC-based therapy of
acute and chronic pulmonary diseases and emphasized current knowledge and future perspectives related to the therapeutic
application of MSCs in patients suffering from acute respiratory distress syndrome, pneumonia, asthma, chronic obstructive
pulmonary diseases, and idiopathic pulmonary fibrosis.

1. Introduction

The respiratory system is continuously exposed to various
irritants such as inhaled toxins, carbon granules, pathogens,
and their products. Pulmonary homeostasis is maintained
by interaction between alveolar epithelial cells and lung-
resident immune cells that continually monitor the pulmo-
nary microenvironment, induce tolerance to innocuous
inhaled particles, or provide efficient immune reactions

against invading microbes [1]. Accordingly, in the lungs,
inflammation is the result of the infection, trauma, and
hypersensitivity caused by pathogens, airborne irritants, haz-
ardous pollutants, toxins, and allergens. Pathogen-associated
molecular patterns (PAMPs) expressed on the lung infil-
trated microbes, as well as damage-associated molecular pat-
terns (DAMPs) and alarmins, released from the injured lung
parenchymal cells, activate residential macrophages which
produce a large amount of inflammatory chemokines and
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cytokines, attract circulating immune cells in the lungs, and ini-
tiate inflammation. Clinically, acute lung injury and inflamma-
tion is seen in pneumonia and acute respiratory distress
syndrome (ARDS), whereas chronic inflammation is repre-
sented by asthma and chronic obstructive pulmonary diseases
(COPD) [2]. The repair of the airway epithelium after acute
or chronic injury is modulated by matrix metalloproteinases
(MMPs), cytokines, and growth factors produced by epithelial
cells, lung-resident immune cells, fibroblasts, and chondrocytes
[1]. Inappropriate immune responses and/or aberrant repair
process causes irreversible damage in lung tissue and most usu-
ally results in the development of fibrosis followed by decline in
lung function [3]. Inhaled corticosteroids are very effective in
patients with inflammatory lung disorders, but their long-
term use is associated with an increased risk of pneumonia, oral
candidiasis, osteoporosis, skin bruising, and tuberculosis [4].
Accordingly, new therapeutic agents that will attenuate ongoing
inflammation and prevent accumulation of fibrous connective
tissue on one side and, at the same time, promote regeneration
of injured alveolar epithelial cells are urgently needed.

Due to their capacity to suppress detrimental immune
response and ability to differentiate into type II alveolar epithe-
lial (ATII) cells in vitro, mesenchymal stem cells (MSCs) repre-
sent new players in cell-based therapy of acute and chronic
inflammatory lung disorders [5, 6]. Since these adult multipo-
tent stem cells can be readily isolated from numerous tissues
(bone marrow (BM), adipose tissue (AT), amniotic fluid (AF),
placenta (PL), umbilical cord (UC), peripheral blood, lungs,
and deciduous teeth) and expanded with high efficiency,
MSC-based therapy of lung diseases has rapidly progressed over
the past decade [5]. Accordingly, in this review article we sum-
marized findings obtained in preclinical and clinical studies that
demonstrated beneficent effects of MSCs in the treatment of
lung diseases. An extensive literature review was carried out in
July 2018 across several databases (MEDLINE, EMBASE, Goo-
gle Scholar, and ClinicalTrials.gov), from 1990 to present. Key-
words used in the selection were “mesenchymal stem cells,”
“inflammatory lung disease,” “ARDS,” “lung injury,” “COPD,”
“asthma,” and “idiopathic pulmonary fibrosis (IPF).” Eligible
studies had to delineate molecular and cellular mechanisms
involved in the MSC-based therapy of acute and chronic
inflammatory lung diseases, and their findings were analyzed
in this review.

2. Main Text

MSCs are self-renewable, multipotent cells capable of suppress-
ing immune response and differentiating into ATII cells in vitro
[5, 6]. Accordingly, MSC-mediated suppression of inflamma-
tion and, at the same time, MSC-dependent lung repair and
regeneration were responsible for their therapeutic effects in
the treatment of ARDS, pneumonia, asthma, COPD, and IPF.

3. Molecular Mechanisms Responsible for MSC-
Based Beneficial Effects in the Therapy of
Lung Diseases

MSCs are able to modulate proliferation, activation, and
effector function of all immune cells that play an important

role in the pathogenesis of inflammatory lung diseases,
including professional antigen-presenting cells (dendritic
cells (DCs), macrophages, and B lymphocytes), neutrophils,
and effector and regulatory T cells. MSCs alter immune
response through juxtacrine or paracrine mechanisms [7].
MSCs lack the surface expression of costimulatory molecules
and are able to render Th1, Th2, and Th17 cells anergic.
Additionally, interaction of the inhibitory molecule pro-
grammed death 1 (PD-1) with its ligands PD-L1 and PD-
L2 was responsible for MSC-mediated inhibition of T cell
proliferation [5]. Precisely, upregulation of the cyclin-
dependent kinase inhibitor p27kip1 and inhibition of
cyclin-D2 were observed in T cells after a cross-talk with
MSCs. In this way, transplanted MSCs significantly reduce
the total number of effector T cells in the injured lungs and
attenuate Th1-, Th2-, or Th17-driven inflammation [5].

In addition to juxtacrine mechanisms, MSCs may sup-
press ongoing T cell-dependent inflammation through the
secretion of soluble, immunosuppressive factors (prostaglan-
din E2 (PGE2), transforming growth factor beta (TGF-β),
indoleamine 2,3-dioxygenase (IDO), and nitric oxide (NO))
[8]. Through the production of PGE2, MSCs attenuate the
expression of the interleukin- (IL-) 2 receptor and, accord-
ingly, inhibit clonal expansion of activated T cells. TGF-β is
also a potent inhibitor of the IL-2 signaling pathway and is
involved in MSC-mediated G1 cell cycle arrest of activated
T cells. In a similar manner, MSC-derived NO inhibits phos-
phorylation of signal transducer and activator of transcrip-
tion- (STAT-) 5 in T cells, leading to cell cycle arrest while
MSC-derived IDO promotes the degradation of tryptophan
into kynurenine which suppresses proliferation or induce
apoptosis of activated T cells [8].

In addition to the direct suppression of effector T cells,
MSCs are able to suppress the generation of Th1, Th2, and
Th17 cells by modulating the antigen-presenting function
of DCs in a PGE2-, IL-10-, and IL-6-dependent manner
[5]. After an interaction with MSCs, DCs became immature,
with a reduced capacity for antigen presentation, due to the
reduced expression of the major histocompatibility complex
(MHC) and costimulatory molecules. Additionally, MSCs
can induce tolerogenic phenotype in DCs and may promote
polarization of inflammatory M1 macrophages towards
immunosuppressive M2 macrophages. In this way, MSCs
reduce the production of inflammatory cytokines (tumor
necrosis factor alpha (TNF-α), IL-1β, and IL-12) in DCs
and macrophages and promote the production of anti-
inflammatory IL-10 and TGF-β resulting in enhanced tissue
repair and regeneration [5, 9–13]. In an IL-10- and TGF-β-
dependent manner, tolerogenic DCs and M2 macrophages
induce enhanced production of immunosuppressive human
leucocyte antigen- (HLA-) G5 in MSCs and promote their
capacity to stimulate generation and expansion of T regula-
tory cells (Tregs) [14], contributing to the creation of the
anti-inflammatory microenvironment in the injured lungs.

In addition to their interaction with lung-infiltrated
immune cells, MSCs have potential to differentiate into
ATII-like cells in vitro. Ma and coworkers provided the first
evidence that BM-derived MSCs (BM-MSCs) can be success-
fully differentiated into ATII cells in vitro after coculturing
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with MRC-5 cells (derived from normal fetal lung mesenchy-
mal tissue) in a modified small airway growth medium
(SAGM) that contained bovine serum albumin (BSA,
0.5mg/ml), insulin (5mg/ml), transferrin (10mg/ml), bovine
pituitary extract (30mg/ml), adrenaline (epinephrine,
0.5mg/ml), fibroblast growth factor (FGF)10 (1ong/ml), cor-
tisol (0.5mg/ml), human EGF (epidermal growth factor,
0.5 ng/ml), and antibiotics (gentamicin sulfate, 0.05mg/ml;
amphotericin-B, 0.05mg/ml) [15]. ATII-like cells became
dominant in culture two to three weeks after interaction of
BM-MSCs with MRC-5, and at the same time point, surfac-
tant protein (SP) C, a specific functional marker of human
ATII cells, was detected in differentiated cells [15]. In a sim-
ilar manner as BM-MSCs, AF-derived MSCs (AF-MSCs) and
decidua-derived MSCs (D-MSCs) can be differentiated into
ATII cells in vitro [16, 17]. Li and coworkers demonstrated
that, with the use of the appropriate induction medium,
including KnockOut™ serum replacement (KOSR), activin
A, and small airway basal medium, AF-MSCs differentiate
into SPC-expressing ATII-like cells in vitro [16]. Similar
findings were reported by Cerrada and colleagues who dem-
onstrated that D-MSCs cultured in the small airway epithelial
cell growth medium successfully generated functional ATII-
like cells which were able to exocytose lipid-rich assemblies
with high surface-active capabilities [17].

Activation of canonical as well as noncanonical Wnt path-
ways is crucially important for differentiation of MSCs into
ATII-like cells [18, 19]. Liu and associates used a modified
coculture systemwithmurine lung epithelial-12 (MLE-12) cells
and SAGM to demonstrate that Wnt3a-induced activation of
the canonical Wnt/β-catenin pathway resulted in differentia-
tion of murine MSCs in functional ATII-like cells which
expressed specific markers: SPC, SPB, and SPD [18]. Members
of the same research group documented that Wnt5a-induced
activation of noncanonical Wnt/c-Jun N-terminal kinase
(JNK) or Wnt/protein kinase C (PKC) pathways could also
result in the successful differentiation of MSCs into ATII-like
cells in vitro [19]. Furthermore, addition of dickkopf Wnt sig-
naling pathway inhibitor 1 (Dkk1) as well as JNK or PKC
inhibitors to the SAGM suppressed the activation of canonical
and noncanonicalWnt pathways and completely abrogated the
capacity of MSCs to generate ATII-like cells [18, 19]. In line
with these results are findings reported by Shi and coworkers
who demonstrated that Wnt/β-catenin signaling may be an
essential mechanism underlying the regulation of epithelial dif-
ferentiation of lung residential MSCs [20]. Nevertheless, it has
to be highlighted that differentiation of MSCs in ATII-like cells
was mainly documented in vitro, while MSC-dependent bene-
ficial effects in attenuation of inflammatory lung diseases were
mainly based on the paracrine effects of transplanted MSCs.
Accordingly, future experimental studies must provide stron-
ger evidence about the capacity of MSCs to differentiate into
ATII-like cells in vivo.

Having in mind that MSCs have the capacity to generate
ATII cells and that injury of ATII cells and alveolar-epithelial
barrier represents the main pathological characteristic
observed in patients suffering from ARDS, several experi-
mental studies investigated the therapeutic potential of MSCs
in the treatment of ARDS.

4. MSC-Mediated Attenuation of ARDS
and Pneumonia

ARDS is a severe clinical syndrome triggered by the disrup-
tion of the alveolar-epithelial barrier, accompanied with
interstitial edema and infiltration of inflammatory cells
that resulted in progressive acute respiratory failure [21–
24]. This “exudative phase” is followed by a fibrotic phase
characterized by proliferation of type II pneumocytes, fibro-
blasts, myofibroblasts, and matrix deposition [25]. Although
numerous pharmacologic agents, including inhaled synthetic
surfactants, ketoconazole, simvastatin, and ibuprofen, have
been tested in the therapy of ARDS, none of them managed
to significantly reduce a notably high mortality rate of ARDS
which remains at 34-44 percent [26].

Several, recently conducted, preclinical studies demon-
strated that MSCs and their secretomes could be considered
as new and effective therapeutic agents for the treatment of
ARDS (Figure 1). ARDS often develops as a complication
of severe sepsis, particularly after infection with Gram-
negative bacteria [27]. MSC treatment prevented the devel-
opment of ARDS in an animal model of sepsis induced by
Escherichia coli-derived lipopolysaccharide (LPS) [28, 29].
Systemic application of MSCs in a mouse model of LPS–
induced ARDS significantly ameliorated alveolar injury and
inflammation [30]. MSCs, in a paracrine, IL-10-dependent
manner, attenuated the influx of neutrophils in the lungs
and decreased the production of inflammatory TNF-α in
lung-infiltrated immune cells [30, 31]. Additionally, through
the production of the keratinocyte growth factor (KGF), vas-
cular endothelial growth factor (VEGF), and hepatocyte
growth factor (HGF), MSCs promoted the regeneration of
ATII cells, prevented the apoptosis of endothelial cells, and
contributed to the enhanced repair of the alveolar-epithelial
barrier in the ARDS-injured lungs [32–34]. A diminished
inflammatory injury in MSC-treated animals correlated with
reduced edema, improved oxygenation, and prolonged sur-
vival [28, 29]. Additionally, MSCs protect from sepsis-
associated ARDS by increasing the capacity of macrophages
to produce anti-inflammatory IL-10 in a PGE2-dependent
manner [35].

In addition to their regenerative and immunosuppressive
effects responsible for the attenuation of ARDS, MSCs are
also able to promote resolution of ongoing inflammation by
producing proresolving mediator lipoxin A4 (LXA4) which
reduces pulmonary edema and promotes survival of mice
suffering from LPS-induced ARDS [36].

Several immunomodulatory factors, released during
ARDS, may reduce differentiation of MSCs into ATII-like
cells and consequently attenuate therapeutic potential of
MSCs in the treatment of ARDS. Overexpressed microRNA-
615-3p or microRNA-155-5p inhibits differentiation of
MSCs into ATII cells leading to the progression of ARDS
[37, 38]. Pathological changes in the microenvironment of
ARDS-injured lungs, in turn, negatively affect the capacity
of MSCs to proliferate and differentiate into ATII cells [39].
In this way, a negative loop is created that attenuates thera-
peutic potential of MSCs and contributes to the further pro-
gression of acute lung injury.
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The therapeutic potential of MSCs in the treatment of
ARDS has been evaluated in several, already completed,
clinical trials [40, 41]. Wilson and coworkers demonstrated
that single intravenous infusion of allogeneic BM-MSCs
(1, 5, or 10 million cells/kg of body weight (bw)) was well
tolerated in nine patients with moderate to severe ARDS
(NCT01775774). Side events, clinical instability, or dose-
limiting toxicity was not observed in any of the nine patients
that received allogeneic BM-MSCs [40]. Results obtained in
this study were used as an optimistic starting point for a
larger randomized, multicenter, phase 2 clinical trial that
was conducted from 2014 to 2018 in the United States
(NCT02097641). The trial enrolled 60 adult ARDS patients
who intravenously received either a single dose of allogeneic
BM-MSCs (10 million cells/kg bw) or placebo (Plasma-Lyte
A). Although this trial has been completed in February
2018, the obtained results are not published yet.

In another clinical study, Zheng and colleagues reported
that intravenous administration of allogeneic MSCs is a safe
but not efficient therapeutic approach in the treatment of
ARDS patients (NCT01902082). Twelve adult patients with
ARDS safely received one intravenous dose of allogeneic
AT-MSCs (1 million cells/kg bw), but AT-MSC-based ther-
apy did not significantly attenuate serum levels of inflamma-
tory cytokines (IL-6 and IL-8) and did not manage to
improve lung function in ARDS patients [41].

ARDS and pneumonia are interrelated in critically ill
patients. Pneumonia is considered as the main cause of
ARDS while ARDS is usually complicated by nosocomial
pneumonia [42]. Heat shock proteins or other DAMPs,
released from injured lung parenchymal cells, as well as
PAMPs of inhaled pathogens, induce Toll-like receptor-

(TLR-) dependent activation of the nuclear factor kappa B
(NF-κB) pathway in alveolar macrophages leading to the
enhanced secretion of CXCL8 and CXCL11. An increased
concentration of these inflammatory chemokines in inflamed
lungs attract interferon gamma- (IFN-γ-) producing neutro-
phils and CD4+Th1 cells which, in turn, enhance the secre-
tion of inflammatory cytokines and proteolytic enzymes in
alveolar macrophages, creating a “positive inflammatory
loop” in the injured lungs [43]. Alveolar macrophages play
a crucially important role in the bacterial clearance and
attenuation of bacterial pneumonia, the most common infec-
tious cause of death worldwide [44]. It was recently revealed
that MSCs produce microvesicles which may promote
phagocytic activity of alveolar macrophages resulting in the
alleviation of bacterial pneumonia induced by Gram-
negative Escherichia coli [45]. Additionally, MSCs produce
antibacterial proteins and are able to directly suppress bacte-
rial growth in the inflamed lungs [46]. Intratracheal adminis-
tration of MSCs significantly attenuated lung injury and
inflammation and improved the survival of experimental
animals with bacterial pneumonia by promoting bacterial
clearance in a lipocalin-2-dependent manner [46]. LPS-
induced activation of TLR-4 in MSCs enhances secretion of
lipocalin-2 that binds bacterial ferric siderophores, reduces
the uptake of iron, and suppresses bacterial growth [47]. In
line with these findings are results recently reported by Gupta
and coworkers who found that mutation of TLR-4 in MSCs
significantly impaired their therapeutic efficacy in an experi-
mental model of bacterial pneumonia [48]. Accordingly,
intratracheal administration of TLR-4-primed MSCs should
be explored in future experimental studies as a potentially
new cell-based therapeutic approach for the elimination of

Figure 1: Molecular mechanisms responsible for MSC-based attenuation of ARDS. Intravenously injected MSCs engrafted in the ARDS-
injured lungs and, in a paracrine manner (through the production of KGF, VEGF, HGF), promoted proliferation of epithelial cells,
induced protection of vascular permeability, and prevented apoptosis of endothelial cells. Additionally, MSC-based therapy reduced the
presence of neutrophils in bronchoalveolar lavage fluid (BLF) and in a PGE2-dependent manner suppressed the production of
inflammatory cytokines (TNF-α and IL-6) and stimulated the secretion of immunosuppressive IL-10 in alveolar macrophages.
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antibiotic resistant Gram-negative bacterial strains in the
inflamed lungs.

5. MSC-Based Therapy of Asthma

Epidemiological data show that bronchial asthma affects
approximately 300 million people worldwide [49]. In sus-
ceptible individuals, chronic airway inflammation causes
recurrent episodes of airflow obstruction and bronchial
hyperresponsiveness, which may lead to permanent struc-
tural changes. Thus, understanding the pathophysiology
of this chronic inflammatory lung disease is essential to
determining the potential applications of MSCs as an anti-
asthmatic therapy.

Patients suffering from atopic asthma have a genetic pre-
disposition for the development of an antigen-specific,
immunoglobulin (Ig) E-mediated response to common aero-
allergens (pollen, house dust mite, and fungal spores) which
is mediated by innate (DCs, mast cells, basophils, and eosin-
ophils) and adaptive immunity cells (CD4+Th2 cells and B
lymphocytes) [50]. Lung DCs capture aeroallergens, bring
them to regional lymph nodes, present them to allergen-
specific naive CD4+T cells, and induce generation of IL-4-,
IL-5-, and IL-13-producing effector Th2 cells [51]. CD4
+Th2 cells in a IL-4-dependent manner induce generation
and secretion of allergen-specific IgE in plasma cells which
binds to its high-affinity receptor (FcεRI), expressed on baso-
phils and mast cells [52]. Re-exposure to the allergen causes
crosslinking of FcεRI resulting in the massive release of hista-
mine, prostaglandins, and leukotrienes from activated mast
cells and basophils, which induce contraction of airway
smooth muscle cells and airflow obstruction. Additionally,
activated mast cells and basophils release inflammatory cyto-
kines (TNF-α, IL-1β, IL-4, and IL-6) and chemokines
enabling massive accumulation of circulating eosinophils,
neutrophils, and CD4+Th2 cells in the inflamed lungs [53].
CD4+Th2 cells in an IL-5-dependent manner promote acti-
vation of eosinophils while in an IL-13-dependent manner
induce goblet cell metaplasia and airway hyperresponsive-
ness [54]. Cytokines and matrix-degrading enzymes released
from activated eosinophils and neutrophils lay the founda-
tion for airway hyperresponsiveness and airway remodeling
by causing damage to epithelial layers, promoting broncho-
constriction and deposition of extracellular matrices [50].

MSCs are able to suppress proliferation and effector func-
tion of CD4+Th2 cells, IgE production in plasma cells, and
IgE-dependent activation of mast cells in vitro [5]. In line
with these findings, several research groups demonstrated
that MSCs managed to attenuate airway inflammation and
remodeling and improve lung function of asthmatic animals
[55–58]. Anti-inflammatory effects elicited by MSCs were
mostly mediated by MSC-derived soluble factors. Cruz and
coworkers suggested that MSCs altered the phenotype of
antigen-specific CD4 T cells in a model of airway allergic
inflammation via MSC-derived exosomes: nanosized extra-
cellular vesicles that deliver proteins, lipids, DNA fragments,
and microRNA to the target cells—immune cells, endothelial
cells, pericytes, and other tissue-resident cells [55]. Similar
conclusions were made by Du and colleagues who confirmed

that MSC-derived exosomes alleviated airway inflamma-
tion and asthma, enhanced proliferation and immunosup-
pressive properties of Tregs, and enhanced production of
anti-inflammatory cytokines (IL-10 and TGF-β) in periph-
eral blood mononuclear cells obtained from asthmatic
patients [59].

In an allergic, Th2-dominant microenvironment, IL-4
and/or IL-13 activate the STAT6 pathway in the transplanted
MSCs resulting in an increase in the production of TGF-β,
which, together with Tregs (expanded by the MSCs-derived
heme oxygenase-1), suppress ongoing Th2 cell-driven
inflammation in the lungs [56, 60]. Intravenously injected
MSCs reduced eosinophil infiltration and mucus production
in the lungs and downregulated the levels of Th2 cytokines
(IL-4, IL-5, and IL-13) in bronchial lavage and serum levels
of IgG1 and immunoglobulin (Ig)E [56] (Figure 2).

Zeng and colleagues demonstrated that beneficial effects
of MSCs in a murine model of bronchial asthma were a con-
sequence of MSC-mediated suppression of lung myeloid DCs
[61]. DCs obtained from MSC-treated asthmatic mice were
immature with attenuated capacity for antigen presentation
and activation of naïve T cells. Additionally, DCs from mice
that received MSCs were not able to optimally migrate to the
regional lymph nodes and were not able to produce an
appropriate amount of chemokine ligand (CCL) 17 and
CCL22 that are crucially involved in migration of effector
Th2 cell in the inflamed lungs. Consequently, reduced num-
ber of IL-4-, IL-5-, and IL-13-producing Th2 cells, accompa-
nied with downregulated serum levels of IgE, lower number
of lung-infiltrated eosinophils, and reduced production of
mucus were observed in MSC-treated asthmatic mice. These
MSC-mediated effects resulted in significant attenuation of
pulmonary inflammation, reduction of bronchial hyperre-
sponsiveness, and notably improved lung function of MSC-
treated asthmatic mice [61].

Braza and coworkers described an additional mechanism
involved in MSC-mediated attenuation of bronchial asthma
that was relied on the interaction between MSCs and alveolar
macrophages in the injured lungs [62]. In particular, they
suggested that alveolar macrophages become alternatively
activated and developed an anti-inflammatory and immuno-
suppressive M2 phenotype after phagocytosis of transplanted
MSCs [62]. Consequently, M2 macrophage produces immu-
nosuppressive factors that suppress ongoing inflammation
and promote repair and regeneration in the asthmatic lungs.
In line with these findings, it was recently highlighted by
Kitoko and colleagues that a cross-talk between murine
BM-MSCs or AT-MSCs with alveolar macrophages is cru-
cially important for reduced lung inflammation, airway
hyporesponsiveness, and mucus hyposecretion in MSC-
treated asthmatic mice and that BM-MSC or AT-MSC-
mediated expansion of Tregs is not an obligatory effect of
transplanted MSCs in asthmatic animals [63]. Kitoko and
coworkers also concluded that pretreatment of asthmatic
mice with murine BM-MSCs or AT-MSCs can increase the
presence of Tregs in the lungs, while BM-MSCs and AT-
MSCs were not able to induce the expansion of Tregs when
lymphocytes were already allergenically primed indicating
that the MSC :Treg interaction was not crucially involved
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in therapeutic effects of MSCs in asthma [63]. On the con-
trary, Li and associates noticed that human PL-derived MSCs
(PL-MSCs) improved airway hyperresponsiveness and
inflammation in asthmatic rats primarily by increasing the
total number of IL-10-producing Tregs in the lungs which
was followed by a reduced presence of lung infiltrated Th17
cells, macrophages, neutrophils, and eosinophils [64]. These,
on first sight, opposite findings regarding the importance of
the MSC :Treg interplay in MSC-dependent attenuation of
asthma could be explained by the fact that MSCs from differ-
ent sources have differential effects on immune cells [65] and
that murine and humanMSCs use different molecular mech-
anisms for generation and expansion of Tregs [5].

In addition to anti-inflammatory effects, MSC treatment
prevents airway remodeling in asthmatic animals [57, 58].
Significantly reduced deposition of collagen in lung paren-
chyma and decreased resistive and viscoelastic pressure,
accompanied with a downregulated bronchoconstriction
index, were noticed in MSC-treated asthmatic mice com-
pared to asthmatic animals that did not receive MSCs [57,
58]. Additionally, MSCs managed to reduce generation of
reactive oxygen and nitrogen species responsible for oxida-
tive stress in asthma. Transplantation of human BM-MSCs
had a beneficial effect on oxidative stress, reduced the levels
of nitrotyrosine and maintained the oxidative balance in
asthmatic lungs of experimental animals [66].

Phosphoinositide 3-kinase (PI3K) and Notch signaling
were proposed as the main molecular targets of MSCs in
asthmatic lungs [67, 68]. Transplantation of MSCs affected
PI3K signaling by preventing the expression of Akt phos-
phorylation resulting in suppressed lung inflammation and

airway remodeling in asthmatic rats [67]. Reduced Notch-1,
Notch-2, and jagged-1 and increased Notch-3, Notch-4,
and delta-like ligand (delta)-4 expression were observed in
lungs of asthmatic rats that received human PL-MSCs [68].
Alterations in the expression of the Notch signaling pathway
were accompanied by polarization of immune response
towards Th1 immunity as manifested by increased serum
levels of IFN-γ and decreased serum levels of IL-4 and IgE.
Furthermore, decreased goblet cell hyperplasia and mucus
production were noticed in lung tissues of PL-MSC-treated
asthmatic rats, indicating that MSCs suppressed asthma
symptoms by modulating Notch signaling [68].

Currently, two ongoing clinical studies are planning to
test the safety and efficacy of MSC-based therapy for the
treatment of asthmatic patients. A phase 1 investigation will
be performed at the University of Miami Miller School of
Medicine with the aim of testing the safety of allogeneic
BM-MSCs in the therapy of mild asthma. BM-MSCs will be
delivered via peripheral intravenous infusion to 6 asthmatic
patients who will be randomized in two experimental groups
and will receive either 20 million or 100 million of BM-
MSCs. Pulmonary function tests, lung volumes, and dyspnea
questionnaires will be assessed every 4 weeks while unwanted
side effects will be monitored continuously until study com-
pletion (NCT03137199).

Having in mind that MSC-based beneficial effects in
asthma are mainly a consequence of MSC-derived factors,
researchers from the Punta Pacifica Hospital of Panama City
decided to elucidate safety and efficacy of allogeneic UC-
MSC-derived trophic factors (MTF) in adult asthmatic
patients. Although the study is still recruiting patients, it is
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Figure 2: Therapeutic effects of intravenously injected MSCs in an animal model of asthma. Reduced deposition of collagen and lower
bronchoconstrictive index accompanied with reduced resistive and viscoelastic pressures were noticed in MSC-treated asthmatic animals.
Transplanted MSCs altered the phenotype of antigen-specific CD4 T cells in asthmatic animals via MSC-derived extracellular vesicles
(EVs). Additionally, MSCs reduced eosinophil infiltration and mucus production in the lungs and downregulated levels of Th2 cytokines
(IL-4, IL-5, and IL-13) in bronchial lavage, as well as serum levels of IgG1 and IgE. Alveolar macrophages become alternatively activated
and developed an anti-inflammatory and immunosuppressive M2 phenotype after phagocytosis of transplanted MSCs.
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planned that each of the 20 patients will intranasally receive
MTF once per week for a period of 4 weeks. Side effects as
well as alterations of lung function will be monitored during
the one-month follow-up (NCT02192736).

6. Usage of MSCs in Cell-Based
Therapy of COPD

COPD is characterized by persistent respiratory symptoms
and airflow limitation consequent to destruction of terminal
bronchioles (obstructive bronchiolitis) and lung parenchyma
(emphysema), usually caused by significant exposure to nox-
ious particles or gases [69]. The main risk factors for the
development of this serious public health issue are cigarette
smoking, airway hyperresponsiveness, a family history of
asthma, and respiratory infections in childhood [70]. An
altered function of lung-infiltrated immune cells, oxidative
stress, and imbalance in activity of proteases and their inhib-
itors are responsible for the development of main pathologi-
cal changes observed in COPD patients: progressive and
persistent airflow limitation associated with an enhanced
chronic inflammatory response in the airways and the lungs
[71]. Due to their capacity to suppress detrimental immune
response, maintain oxidative balance, and regulate activity
of matrix-degrading enzymes, MSCs are considered as prom-
ising tools for cell-based therapy of COPD. Several experi-
mental and clinical studies demonstrated beneficial effects
of MSCs in the treatment of COPD [72, 73].

Intravenous, intratracheal, and intrabronchial adminis-
tration of BM-MSCs and AT-MSCs (in a minimum number
of 5 × 104 cells/animal) was a safe therapeutic approach that
showed beneficial effects in both structural and functional
outcomes in the COPD animal models, which were prepared
either by elastase instillation or by cigarette smoke exposure
[72]. The best effects were noticed after intratracheal injec-
tion of BM-MSCs which were even superior than lung
tissue-derived MSCs (LT-MSCs). Interestingly, intravenous
injection of LT-MSCs resulted in immediate death of the
recipient mice, a phenomenon that was not observed after
intravenous administration of BM-MSC or AT-MSCs [73].

Intravenous and intratracheal injected MSCs migrated
and successfully engrafted into the COPD-injured lungs of
experimental animals within 24 hours after administra-
tion [74–77]. MSC transplantation significantly attenuated
emphysematous changes in experimental animals as demon-
strated by reduced alveolar damage and reduced alveoli
number loss [78, 79]. A statistically improved pulmonary
function (determined by the analysis of vital capacity (VC),
forced expiratory volumen at 100 milliseconds (FEV100),
dynamic compliance (Cdyn), and mean forced expiratory
flow) was noticed in MSC-treated COPD animal models
[72]. Improvement in histological outcomes and pulmonary
function were accompanied by reduced presence of inflam-
matory cells in the alveolar septa and peribronchiolar and
perivascular interstitium [79, 80].

Among lung-infiltrated immune cells, the main cellular
targets of transplanted MSCs in COPD animals were macro-
phages [75, 81] (Figure 3). MSCs, in a paracrine manner,
through the production of IL-10, TGF-β, and HGF,

suppressed cyclooxygenase-2 (COX2) expression and PGE2
production in alveolar macrophages [75]. MSC-mediated
downregulation of the COX2/PGE2 pathway in inflamma-
tory M1 macrophages occurs via the p38 mitogen-activated
protein kinases (MAPKs) and extracellular signal-regulated
kinase (ERK) and resulted in macrophage polarization
toward an anti-inflammatory M2 phenotype [75, 82].
Accordingly, a lower expression of M1 macrophage-derived
inflammatory mediators (TNF-α, IL-1β, IL-6, and monocyte
chemoattractant protein 1 (MCP-1)) and a higher expression
of M2 macrophage-derived anti-inflammatory IL-10 and
TGF-β cytokines were observed in COPD animals that
received MSCs [72, 75, 82]. Furthermore, transplantation of
MSCs significantly improved lung architecture of COPD ani-
mals by decreasing the production of macrophage-derived
MMP-2, MMP-9, and MMP-12 that mediated the degrada-
tion of elastin connective fibers in lung parenchyma and
caused tissue remodeling [79].

The beneficial effect of MSCs in COPD has been also
attributed to the inhibition of alveolar cell apoptosis. An inhi-
bition of ATII cell apoptosis in MSC-treated COPDmice was
a consequence of a significantly reduced expression of proa-
poptotic Bax and enhanced expression of the antiapoptotic
Bcl-2 gene [83]. A decrease in the number of apoptotic cells
was also associated with MSC-induced suppression of cas-
pase 3, a crucial mediator of programmed cell death in ATII
cells [84].

Beneficial effects of MSCs in COPD are mainly due to
paracrine effects involved in the suppression of inflammation
and apoptosis in the lung tissue but also may be a conse-
quence of their differentiation into the structural cells of the
alveolar unit (Figure 3) [83, 85, 86]. Liu and colleagues dem-
onstrated that transplanted MSCs successfully engrafted into
emphysematous lung tissue and were able to differentiate
in vitro into functional, SPC-expressing ATII-like cells
through the activation of the canonical Wnt/β-catenin path-
way [85]. In line with these results, Zheng and coworkers
demonstrated that transplanted MSCs successfully engrafted
in the lungs, differentiate in ATII-like cells, and protected
against pulmonary emphysema [83]. Additionally, MSC-
based therapy of COPDmice resulted in proliferation of lung
resident stem cells that represent a valuable cellular source
for the replacement of injured ATII cells. The total number
of endogenous stem cells (CD45-/CD31-/Sca-1+ cells) and
significantly improved lung function were noticed in MSC-
treated COPD mice [87]. Although these results are encour-
aging, it has to be emphasized that MSC-based attenuation of
COPD was mainly based on the effects of MSC-derived solu-
ble factors and that signaling pathways responsible for differ-
entiation ofMSCs in functional ATII-like cells in vivo need to
be defined in future studies.

The only completed clinical trial which investigated the
therapeutic effects of MSCs in COPD was performed in the
United States (NCT00683722). Sixty-two patients with mod-
erate to severe COPD were randomized to intravenously
receive either infusion of ex vivo cultured allogeneic human
MSCs (Prochymal, Osiris Therapeutics Inc.) or vehicle con-
trol. Patients received four monthly infusions (100 million
MSCs/infusion) and were subsequently followed for 2 years
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after the first infusion [88]. Serious adverse events, increased
frequency of COPD exacerbations, or worsening of disease
were not observed in COPD patients treated with MSCs sug-
gesting that systemic application of allogeneic MSCs was a
safe procedure. Although downregulated serum levels of C-
reactive protein in the MSC-treated group of COPD patients
indicated that MSC-based therapy managed to, at least par-
tially, suppress ongoing inflammation, pulmonary function
testing as well as quality of life indicators were not signifi-
cantly different between MSC-treated and nontreated COPD
patients [88]. Despite the fact that obtained results were dis-
couraging, the most important conclusion of this study was
that allogeneic MSCs could be safely intravenously adminis-
trated in patients with moderate to severe COPD [88].

7. MSC-Based Therapy of IPF

An initiating trigger of IPF is still unclear. Recurrent
lung injury, an increased apoptosis of ATII cells, aberrant
epithelial-mesenchymal interactions, altered coagulation
and detrimental immune response associated with enhanced
fibroblast proliferation, and excessive deposition of the extra-
cellular matrix are the main pathological changes observed in
patients suffering from IPF [89–95]. Destruction of normal
lung architecture leads to the development of progressive
fibrosis which results in reduced pulmonary function, mani-
fested by dry cough, dyspnea, and fatigue [96].

Since MSCs may differentiate into ATII cells in vitro,
suppress production of degrading enzymes, and inhibit
secretion of profibrotic factors in lung-infiltrated immune

cells, several experimental and clinical studies investigated
therapeutic effects of MSCs in the treatment of IPF [97–103].

Administration of MSCs prevented irradiation-induced
lung fibrosis [97]. A diminished inflammatory injury in
MSC-treated animals correlated with the attenuated produc-
tion of inflammatory cytokines, impaired proliferation of
fibroblasts, and reduced accumulation of collagen [97].

In a similar manner, transplantation of MSCs (with a
dosage ranging between 0 1 × 106 and 4 × 106 cells) protects
against bleomycin-induced lung injury and fibrosis as
manifested by substantial improvement in histopathology,
attenuated lung inflammation, reduced pulmonary edema,
diminished collagen deposition, impaired MMP-2, MMP-9,
and MMP-13 activation, and notably decreased mortality of
MSC-treated animals [98]. MSCs managed to successfully
engraft in bleomycin-injured lungs within 4 hours after injec-
tion. Transplanted MSCs suppressed production of nitric
oxide, inflammatory cytokines (TNF-α, IL-1β, and IL-6),
and profibrotic TGF-β in lung infiltrated immune cells and
resident macrophages [99, 100]. Ortiz and coworkers man-
aged to characterize a specific subpopulation of MSCs that
express interleukin 1 receptor antagonist (IL-1Ra). These
MSCs were able to, in an IL-1Ra-dependent manner,
completely attenuate inflammation and pulmonary fibrosis
in bleomycin-injured mice [101]. When MSC-derived IL-
1Ra was bound to the IL-1 receptor (IL-1R), various proin-
flammatory events, initiated by IL-1 : IL-1R binding, become
inhibited (including the synthesis and releases of inflamma-
tory cytokines and chemokines accompanied with enhanced
influx of neutrophils, macrophages, and lymphocytes in

Figure 3: Molecular and cellular mechanisms responsible for beneficial effects of MSCs in the therapy of COPD. Reduced emphysematous
changes and alveolar damage, accompanied with increased FEVs, were noticed in MSC-treated COPD animals. MSC-dependent
downregulation of the COX2/PGE2 pathway in inflammatory M1 macrophages occurs via the p38 MAPKs and ERK pathways and
resulted in macrophage polarization toward an anti-inflammatory M2 phenotype. Transplantation of MSCs significantly improved the
lung architecture of COPD animals by decreasing the production of macrophage-derived MMP-2, MMP-9, and MMP-12. Additionally,
transplanted MSCs either directly (through the differentiation into ATII-like cells) or indirectly (by inducing proliferation and
differentiation of lung resident (CD45-/CD31-/Sca-1+) stem cells) regenerated injured lungs.
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injured lungs), which consequently resulted with the attenu-
ation of inflammation and fibrosis [101]. In line with these
results are our findings related to the therapeutic potential
of “Exosomes d-MAPPS,” whose activity was based on
PL-MSC-derived exosomes containing IL-1Ra and several
other imunomodulatory cytokines and chemokines (IL-27,
CXCL14, and CXCL16) which are involved in immunomo-
dulation of the immune response in the injured lungs [102].
Results, obtained in a pilot trial with a small number of
patients, revealed notably attenuated lung inflammation and
significantly improved pulmonary function parameters in exo-
some d-MAPPS-treated patients with chronic lung inflamma-
tion [102]. Similar results, related to the efficacy of MSC-
derived exosomes in the therapy of lung injury and fibrosis,
were obtained by Tan and coworkers who found that AF-
MSC-derived exosomes attenuated fibrosis, recovered pulmo-
nary function, and enhanced endogenous lung repair [103].

Importantly, despite the fact that MSCs can be used for
the attenuation of chronic lung inflammation and fibrosis,
plenty of evidence suggests that aberrant activation of
Wnt/β-catenin and TGF-β signaling pathways in lung-
resident MSCs might induce their differentiation towards
myofibroblasts and could, consequently, contribute to the
development of IPF [104]. In line with these findings, a phar-
macological inhibitor of Wnt/β-catenin signaling (ICG-001)
managed to prevent MSC-myofibroblst transition and pro-
tected from bleomycin-induced fibrosis [105]. In a similar
manner, under hypoxic conditions, microRNA-145- (miR-
145-) dependent inhibition of TGF-β receptor II (TGF-βRII)
managed to prevent unwanted TGF-β-driven differentiation
of MSCs into fibroblast-like cells [106].

Safety and efficacy of MSC-based therapy of IPF patients
have been evaluated in several, already completed, clinical
trials [107–110]. A phase 1b single-centre, nonrandomized
study, which was conducted in Australia, investigated thera-
peutic potential of PL-MSCs that were intravenously injected
in IPF patients (NCT01385644). From a total number of 8
PL-MSC-treated patients, half of them received 1 million PL-
MSCs/kg bw while 4 others received 2 million PL-MSCs/kg
bw. Although both doses of PL-MSCs were well tolerated,
with only minor and transient alterations in peri-infusion
hemodynamics and gas exchange, PL-MSC-based therapy did
not result in attenuation of IPF. MSC-treated patients were
followed for sixmonths, and none of themonitored parameters
(forced vital capacity (FVC), diffusing lung capacity for carbon
monoxide (DLCO), six-minute walk test (6MWT), or com-
puted tomography (CT) fibrosis score) were significantly chan-
ged by intravenous infusion of PL-MSCs [107].

Safety issues related to the MSC-based therapy of IPF
were also analyzed in another phase 1 clinical trial in which
9 patients with mild to moderate IPF intravenously received
20, 100, or 200 million allogeneic MSCs (NCT02013700).
None of treatment-emergent serious side effects (nonfatal
pulmonary embolism, stroke, hospitalization for worsening
dyspnea, and clinically significant laboratory test abnormali-
ties) were reported. Nevertheless, during the 60 weeks of fol-
low-up, two MSC-treated patients died because of IPF
progression (disease worsening and/or acute exacerbation)
and a total number of 21 adverse effects were reported (the

most frequently recorded were bronchitis (in 3 patients)
and common cold (in 2 patients)) [108].

More optimistic results were obtained in another phase
1b clinical study that noticed a notable improvement in
quality-of-life parameters after endobronchial administra-
tion of AT-MSCs in 14 IPF patients [109]. Importantly, the
recently published longitudinal outcomes of this study dem-
onstrated that endobronchial transplantation of AT-MSCs
was a safe therapeutic approach since no serious side effects
(including exacerbation of IPF) were noticed in MSC-
treated patients, two years after the first administration of
MSCs [110]. Nevertheless, a significant functional decline
occurred at 24 months after the first administration of AT-
MSCs, indicating that new therapeutic strategies are urgently
needed in order to prolong the therapeutic effects of trans-
planted MSCs.

8. Strategies to Enhance the Survival of
Transplanted MSCs in the Injured Lungs

The beneficial effects of MSCs are relied on their capacity to
home, engraft, and survive in the injured lung tissue [111].
Accordingly, optimization of MSC culture conditions has
been used as an important strategy for the enhanced engraft-
ment and prolonged survival of MSCs within the inflamma-
tory microenvironment of the lungs. Several research groups
highlighted that induction of autophagy as well as overex-
pression of growth factors and their receptors in MSCs may
increase survival and therapeutic potential of MSCs [112–
117]. It was well documented that hypoxia could induce
autophagy in MSCs allowing them better survival in the
inflammatory microenvironment [112]. Overexpression of
hypoxia-inducible factor-1 alpha (HIF-1α) in MSCs signifi-
cantly enhanced survival of engrafted MSCs and remarkably
increased their therapeutic effects in the Escherichia coli
model of bacterial pneumonia [113]. Since hypoxia increases
production of anti-inflammatory and antifibrotic factors in
MSCs, hypoxia-preconditioned MSCs managed to efficiently
attenuate bleomycin-induced pulmonary fibrosis [114].
Additionally, Chen and coworkers found that ischemic post-
conditioning pretreatment significantly increased VEGF pro-
duction in MSCs enhancing their beneficial effects in
ischemia/reperfusion- (I/R-) induced lung injury [115].

It is well known that the interaction between growth
factors and their receptors promotes activation of antia-
poptotic pathways enabling cell survival and proliferation.
Preconditioning of MSCs with TGF-β1 or oncostatin M
(OSM) significantly increased the expression of prosurvival
and antiapoptotic genes in MSCs [116, 117]. Accordingly,
compared to OSM-nonprimed MSCs, OSM-preconditioned
MSCs better survived and more efficiently improved the
respiratory function in bleomycin-induced lung fibrotic
mice [117].

9. Challenges towards Clinical Use of MSCs in
the Therapy of Inflammatory Lung Diseases

The safety and efficacy of transplanted MSCs in the attenua-
tion of inflammatory lung diseases seem to be reasonably
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proven in experimental models. However, results obtained in
already conducted clinical trials pointed at several challenges
which have to be addressed before MSCs will be routinely
used in clinical settings.

First, some of the patients who received MSCs within
a short time frame developed infection and reported
respiratory symptoms indicating that MSC-based treat-
ment resulted in excessive suppression of immune response
in the injured lungs [108]. Accordingly, an optimal num-
ber of transplanted MSCs should be clearly defined with
the aim of finding the right balance between their benefi-
cial and undesired effects which could happen due to
immunosuppression.

Second, therapeutic effects of autologous MSCs trans-
planted in the IPF patients should be carefully monitored
since BM-MSCs obtained from IPF patients are senescent
with significant differences in mitochondrial function,
increased accumulation of DNA damage, and reduced
capacity for migration and immunomodulation when com-
pared with BM-MSCs derived from age-matched healthy
subjects [118].

Third, the local microenvironment in which MSCs
engraft contains factors that could induce unwanted differen-
tiation of transplanted MSCs [119]. Therefore, new research
studies should be focused in definition of factors and signal-
ing pathways that are responsible for the fate of MSCs after
their in vivo administration.

Finally, MSCs, in a paracrine and endocrine manner, may
promote tumor growth and metastasis by suppressing antitu-
mor immunity and by inducing neovascularization through
the production of proangiogenic factors (VEGF, HGF,
platelet-derived growth factor, angiopoietin-1, and placental
growth factor). Accordingly, studies which utilize MSCs
should be focused in continuous monitoring and long-term
follow-up of MSC-treated patients in order to determine pos-
sible protumorigenic effects of MSC-based therapy [119].

10. Conclusions

Results obtained in a large number of preclinical studies
showed that MSCs may suppress detrimental immune
response in the lungs and are able to differentiate into func-
tional ATII-like cells resulting in the attenuation of ARDS,
acute lung injury, asthma, COPD, and IPF. Several already
conducted clinical trials suggest that administration of MSCs
were well tolerated and that MSC-based therapy is a safe
therapeutic approach since only a limited number of side
effects (mainly related to the MSC-based excessive suppres-
sion of immune response in the injured lungs) were reported.
Accordingly, it can be concluded that, due to their potent
immunomodulatory and regenerative properties, MSCs rep-
resent new therapeutic agents in the cell-based therapy of
inflammatory lung diseases.

Nevertheless, considering the fact that transplanted
MSCs may differentiate in undesired cell types and may pro-
mote tumor growth and metastasis in an endocrine manner,
future studies must be focused on resolving these safety issues
before MSCs could be offered as a new human remedy for the
treatment of inflammatory lung diseases.
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