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Introduction
Fanconi anemia (FA; MIM no. 227650) 
is an autosomal or X‑linked recessive 
genetic disorder that causes bone marrow 
failure.[1] The mutations in several 
FANCC (A, B, C, D1, D2, E, F, G, I, J, L, 
M, N, O, P and Q) genes are associated 
with this disorder. It is estimated that one 
of every 300 people carry the mutation 
in FANCC genes [Figure 1].[2] The 
FANC proteins FANCA, B, C, E, F, G, 
and L constructed the complex known 
as the FA central complex. The FA 
complex triggers FANCD2 and FANCI 
proteins (ID complex).[3] Subsequently, 
these two proteins bring DNA repair 
proteins to the place of interstrand 
cross‑linkers (ICLs), so the cross‑link 
will be detached and replication of DNA 
can come to an end.[4,5] The majority 
of (about 85%) FA patients have 
mutations in the FANCA, FANCC, and 
FANCG genes but are altered in various 
populations.[6] FANCA gene is located 
on chromosem16q24.3 that is about 
80 kb length with 43 exons and shows 
a much higher mutational frequency 
than other FA genes, which accounts for 
60‑65%.[7,8] FA complementation group A 
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is an autosomal recessive disease with 
various clinical symptoms, such as 
small stature and low birth weight, renal 
abnormalities, skeletal malformations, 
hyperpigmentation of skin (Cafe‑au‑lait 
spots), hypogonadism and infertility, 
mental retardation, and hematological 
problems. These patients have an 
increased risk of certain cancers.[9,10] 
The FA complementation group C is 
prompted by mutations in the FANCC 
gene located on chromosome 9q22.32. 
FA complementation group C associated 
with anemia, leukopenia, thrombopenia, 
cardiac, renal and limb malformations, 
dermal pigmentary changes, and 
susceptibility to the development 
of malignancies.[11,12] Glanzmann’s 
syndrome is a hereditary genetic disorder 
with severe platelet failure, which has 
a long bleeding time and a normal 
platelet count. Mutations in ITGA2B 
(αIIb) or ITGB3 (β3) genes that are 
located on chromosome 17 (q21‑22) may 
lead to Glanzmann’s syndrome type I 
or type II with an autosomal recessive 
inheritance.[13,14] In this disorder, the 
platelet contains defective or small 
amounts of integrin αIIbβ3 at the 
platelet surface, which is a glycoprotein 
receptor for fibrinogen.[15] The platelets 
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of patients with this condition due to the lack of 
fibrinogen‑binding sites do not have the ability to bind 
to fibrinogen. As a result, the bleeding time will be 
significantly longer.[16,17]

In this study, we used the whole exome sequencing (WES) 
method in five patients with a history of clinically 
different anemia to identify the disease‑causing mutations. 
Thus, we consider WES as a well‑organized method to 

compete with a traditional molecular diagnosis of blood 
and other genetic disorders.

Methods
Samples and study design

Among families who were referred to Narges Genetic 
and PND Laboratory in 2015‑2017, four families from 
Khuzestan with a history of blood diseases were analyzed 
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Figure 1: Human FANC genes[18]
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[Figure 1‑4]. This study was confirmed by the Medical 
Ethics Committee of Ahvaz University of Medical Sciences. 

The informed consent form was completed and signed by 
all members of the family who entered the study [Table 1].

Figure 2: Pedigree and chromatograms of the affected dead child and his parents (FANCA/c.2840C>G)

Figure 3: Pedigree and chromatograms of the affected child and her parents (FANCC/c.1429_1430 insA)

Table 1: Characteristics of patients in the current study
Patient ID Consanguinity Age Sex Clinical synopsis
33417 yes 32‑years Female Pregnant woman with a history of a dead girl due to Fanconi anemia
35307 yes 8‑years Female Growth retardation, MR, strabismus, microcephaly, low platelets
34916 yes 9‑months 

(dead fetus)
Female Gastrointestinal malformations, cardiovascular problem, lack of 

ears, lack of fingers
43979 yes 1‑year Male Referred for Glanzmann’s syndrome 

Muscle weakness, prolonged bleeding and clotting time, normal size 
and number of platelets
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DNA sample isolation

To obtain genomic DNA, 10 mL of peripheral blood 
(PB) was collected in ethylenediamine tetraacetic 
acid (EDTA)‑containing tubes from the patients. 
Deoxyribonucleic acid (DNA) was extracted from 
PB‑derived leukocytes of the family members 
using the standard salting out protocol. The quality 
of the DNA was evaluated using the NanoDrop 
spectrophotometer (ASP‑2680, ACTGene Inc., NJ, 
USA).

Whole exome sequencing and data analysis

The WES was performed by the Illumina‑HiSeq 2000 
genome analyzer platform by × 100 depth of sequencing 
and 5Gb output (CNAG; Macrogen Company). Among 
the variants detected, all previously reported mutations 
and probable pathogenic variants including novel 
non‑synonymous ones were confirmed by Sanger 
sequencing. The variants were queried against the public 
version of the Human Gene Mutation Database (HGMD, 
http://www.hgmd.cf.ac.uk/). The prediction of variant 
pathogenicity has been done using Mutation taster and 
Human Splicing Finder (HSF). We used PredictSNP and 
PolyPhen‑2 for the prediction of protein functions in mutated 
forms. The allele frequency of each variation was detected 
using the Genome Aggregation Database (gnomAD), the 
Exome Aggregation Consortium (ExAC) and 1000 Genome 
project (http://www. 1000genomes.org/), and the exome 
database located at our laboratory (including the results of 
800 Iranian WES).

Sanger sequencing

After confirming the PCR results using electrophoresis on 
1% agarose gel, polymerase chain reaction (PCR) products 
were sent for Sanger sequencing. Primers were designed by 
Oligo software (Oligo, USA) according to the sequences of 

each gene obtained from gene bank. Primer sequences were 
available upon request. All the identified mutations were 
confirmed via Sanger sequencing with an ABI Prism 3700 
instrument (Applied Biosystems, CA, USA). The outcomes 
were evaluated using the Chromas Lite 2.1.1 software and 
then compared with the reported gene sequence using the 
BLASTN program.

Results
Using the WES method, coding regions, splice site, 
frameshift variants, indels, and a part of the intronic region 
were analyzed. We removed all the common variants (minor 
allele frequency, MAF >1%) and reported homozygote 
individuals for c.2840C>G and c.1392A>G variants in 
ITGA2B were zero (n = 0). We did not find g.2043A>G 
variants in FANCA gene, c. 1429_1430 ins A frameshift 
variant in FANCC gene in gnomAD, ExAC, and 1000G 
databases. Finally, after the filtering steps, the genes were 
compared with those that were identified by examining 
the texts as candidate genes in blood diseases [Table 2]. 
Sanger sequencing confirmed the existence of the detected 
mutations in patients and family members. Other family 
members were also screened for the mutation [Figure 2‑5]. 
We used HSF software to predict the potential splice sites 
c. 1392A > G variant in ITGA2B gene [Figure 6].

Discussion
WES is a suitable method for identifying single‑gene 
disease and genetic heterogeneity complaints. This 
technology has created genetic studies that allow the 
sequencing of human pathogenic variants in a relatively 
short time and low cost. In the present study, we identified 
a previously reported frameshift homozygous single 
nucleotide variation c.2840C>G (HGMD ID: CM970493) 
in the dead child of a couple who was subjected for the 
prenatal diagnosis (PND) test. In addition, a novel nonsense 

Figure 4: Pedigree and chromatograms of the affected child and his parents (FANCA/g.2043A>G)
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homozygous single nucleotide variation g.2043A>G was 
also identified in the splice acceptor of the FANCA gene 
and novel disease‑causing and pathogenic homozygous 

c.1429_1430 ins a frameshift mutation in the FANCC 
gene. The result of in silico analysis using mutation 
taster, polyPhen‑2, and PredictSNP2 show that these are 

Table 2: Location, predicted pathogenicity of the variation in the patients and HGMD report for each change
Patient Gene (GenBank 

accession number)/
Genotype/Inheritance

Type DNA 
Change/
Location

Protein 
Change

Mutation 
taster 
score

PredictSNP2/
PolyPhen2 
prediction

Reported 
in HGMD 
Database

33417 FANCA (NM_000135.2)/
Hetrozygous/Autosomal 
recessive

Single base 
exchange/
frameshift

c. 2840C>G/
Exon 29

p.S947fs Disease 
causing , 
prob: 1

Not provided score 
0.027/AA change 
leads to a stop codon

Reported 
(HGMD ID: 
CM970493)

35307 FANCA (NM_000135.2)/
Homozygous/Autosomal 
recessive

Single base 
exchange

g. 2043A>G/
Intron 2‑3

no AA 
changes

Disease 
causing , 
prob: 1

Neural , score 0.16/
no AA changes

Unreported

34916 FANCC (NM_000136)/
Homozygous/Autosomal 
recessive

Frameshift 
insertion

c. 
1429_1430 
insA/Exon 4

p.T477Nfs Disease 
causing , 
prob: 1

‑/Benign score 0.05 Unreported

43979 ITGA2B (NM_000419.3)/
Homozygous/Autosomal 
recessive

Single base 
exchange/
splice region

c. 1392A>G/
Exon13

no AA 
changes

Disease 
causing , 
prob: 1

Deleterious score 
0.03/no AA changes

Unreported

Figure 5: Pedigree and chromatograms of the affected child and his parents (ITGA2B/c. 1392A > G)

Figure 6: Human Splicing Finder (HSF) prediction result for 1392A>G variant identified in ITGA2B gene
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disease‑causing and pathogenic variants. In addition, these 
variants are not present in our exome database or in the 
Population frequency databases including 1000G, ExAC, 
and GenomAD.

FANCA protein plays an important role in binding to the 
chromatin in the DNA repair process.[19] Various studies 
have reported that there is a FANCA mutation in about 60% 
of patients with Fanconi disease.[1,19,20] Several types of 
indels and point mutations have been reported in patients 
with Fanconi disease.[2,7,21,22] Knies et al. used WES to 
screen four FA patients to evaluate the efficiency of exome 
sequencing for FA genotyping and described WES as an 
appreciated and adequately safe method for the molecular 
analysis of FA gene’s variants in competition with the 
traditional genetic testing/screening strategies.[20] Ameziane 
et al. showed that the WES method was able to recognize 
different mutations of BRCA2, FANCD2, FANCI, and 
FANCL genes in novel unclassified FA patients indicating 
that WES could be the first test to diagnose FA.[4]

After FANCA, the mutation in FANCC is the most 
commonly diagnosed mutation in patients with FA.[23,24] 
Fadaee et al. used NGS and multiplex ligation‑dependent 
probe amplification for 48 Iranian families with FA 
patients and reported that NGS is the precise method for 
identification of a pathogenic mutation in FA patients.[25]

FANCC gene mutations are abundant in Ashkenazi Jews and 
the Japanese people.[26,27] Considering the severe sensitivity 
of FANCC‑deficient cells, various studies suggested that 
FANCC protein has an important role in chromosome 
stability during the DNA repair process.[28] There are 
also several reports showing the function of FANCC 
as an intracellular antioxidant to reduce the activity of 
reductase.[29,30]

We could also identify a novel c.1392A>G mutation in the 
splice region of the ITGA2B gene from a patient presenting 
blood disorders, using the WES method. Frequencies of 
reported homozygote variants in the gnomAD browser and 
in our Exome database are counted as zero (n = 0). This 
variant was predicted as pathogenic using mutation taster 
and PredictSNP2 (93% disease). Since the c.1392A>G 
mutation makes no change in the amino acid sequence, the 
disease phenotype seems to be the result of a change and 
loss of mRNA splicing pattern. Analysis of c.1392A>G 
mutation in the splice region of ITGA2B gene showed 
that this mutation breaks the splice site and therefore is 
regarded as pathogenic [Figure 6]. Functional studies are 
necessary to assess the mechanism of disease development 
due to this splice region mutation more accurately. 
Glanzmann’s disease has a high frequency in cultures with 
more rates of consanguineous marriage such as Indians, 
Iranians, and Iraqi Jews.[31,32] As clinical manifestations of 
blood disorders vary from person to person, many studies 
using NGS technology have been conducted to identify 
different causative mutations involved in inherited platelet 

disorders (IPDs).[33‑35] Buitrago et al. identified 114 novel 
missense variants in ITGA2B and 68 novel missense 
variants in ITGB3 genes by WES and reported that 
WES had 69‑98% sensitivity in identifying Glanzmann 
mutations.[36]

Conclusions
The WES method has a significant benefit such as high 
coverage and requires a low amount of genomic samples, 
which improves the sensitivity of mutation detection 
compared with traditional methods. Given that, most of 
our patients were reported in families with a history of 
consanguinity, WES could serve as a precise method for 
identifying the heterozygous carriers among the screened 
families for further investigations. This highlights the major 
impact of the WES method for screening and identification 
of platelet and blood‑related genomic variants.
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