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List of commonly used abbreviations 

AICD  activation-induced cell death 

Bcl-2  B cell lymphoma 2 

c-FLIP  cellular FLICE (FADD-like IL-1b-converting enzyme)-inhibitory protein 

CTL  cytotoxic T lymphocyte 

DC  dendritic cells 

DcR1  decoy receptor 1 

DcR2  decoy receptor 2 

DISC  death-inducing signaling complex 

DR4  death receptor 4 

DR5  death receptor 5 

EAE  experimental autoimmune encephalomyelitis 

EMT  epithelial to mesenchymal transition 

ERK  extracellular signal-regulated kinase 

FADD  Fas-associated death domain 

GZMB  granzyme B 

IKK  IkB kinase 

JNK  c-Jun N-terminal kinase 

KRAS  Kirsten rat sarcoma viral oncogene homolog 

MAPK  mitogen-activated protein kinase 

MCMV murine cytomegalovirus  

MDSC  myeloid-derived suppressor cells 

MOG  myelin oligodendrocyte glycoprotein 

NF-κB  factor nuclear kappa B 

NK  natural killer  

NSCLC non-small cell lung cancer 

PDAC  pancreatic adenocarcinoma cells 
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PI3K  phosphoinositide 3-kinase 

PKC  protein kinase C 

RIPK1  receptor-interacting serine/threonine-protein kinase 1 

SCLC  small cell lung cancer 

TCR  T-cell receptor 

TNF  Tumor necrosis factor 

TRAF2 TNF receptor-associated factor 2 

TRAIL  TNF-related apoptosis-inducing ligand 

TRAIL-R TNF-related apoptosis-inducing ligand receptor 

TRAs  TRAIL or TRAIL-R agonists 

uPA  urokinase-type plasminogen activator 

VSMCs vascular smooth muscle cells 
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Abstract 1 

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of 2 

the TNF superfamily that can lead to the induction of apoptosis in tumor or infected cells. 3 

However, activation of TRAIL signaling may also trigger non-apoptotic pathways in 4 

cancer and in non-transformed cells, i.e. immune cells. Here, we review the current 5 

knowledge on non-canonical TRAIL signaling. The biological outcomes of TRAIL 6 

signaling in immune and malignant cells is presented and explained, with a focus on the 7 

role of TRAIL for natural killer (NK) cell function. Furthermore, we highlight the technical 8 

difficulties in dissecting the precise molecular mechanisms involved in the switch between 9 

apoptotic and non-apoptotic TRAIL signaling. Finally, we discuss the consequences 10 

thereof for a therapeutic manipulation of TRAIL in cancer and possible approaches to 11 

bypass these difficulties. 12 

  13 
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Introduction 14 

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL/Apo-2L) is a 15 

member of TNF family proteins first described for its ability to induce apoptosis by binding 16 

to its cognate receptors on target cells. TRAIL is a type II transmembrane protein that was 17 

identified and cloned based on the sequence homology of its C-terminal extracellular 18 

domain with CD95L (FasL) and TNF [1, 2]. The extracellular domain of TRAIL can be 19 

proteolytically cleaved from the cell surface. The aspartic proteinase cathepsin E was found 20 

to induce the release of a soluble form of TRAIL, whose function was associated in this 21 

study with impaired tumor growth and metastasis [3]. However, the capacity to induce 22 

apoptosis of the soluble form of TRAIL is significantly lower than the membrane-bound 23 

form [4, 5]. 24 

The human TRAIL interacts with two agonistic TRAIL receptors, TRAIL-R1 (DR4, 25 

encoded by TNFRSF10A) and TRAIL-R2 (DR5, encoded by TNFRSF10B), which contain 26 

a conserved death domain motif that allows recruitment of apoptosis signaling molecules 27 

to induce cell death [6-12]. In contrast to humans, mice express only one functional TRAIL 28 

agonistic receptor (mTRAIL-R) [13]. TRAIL also binds to two other membrane receptors 29 

that do not transduce apoptotic signals, which are therefore considered to act as decoy 30 

receptors i.e., TRAIL-R3 (DcR1, encoded by TNFRSF10C) and TRAIL-R4 (DcR2, 31 

encoded by TNFRSF10D) [14, 15]. In addition, TRAIL binds with lower affinity to a 32 

soluble receptor called osteoprotegerin (OPG), but the physiological role of this interaction 33 

is still unknown [16].  34 

TRAIL is expressed in a wide range of tissues and cell types, but it is found to be mainly 35 

expressed on the cell surface of immune cells, where it plays a critical role in inducing 36 

apoptosis of target cells [17, 18]. For instance, natural killer (NK) cells and cytotoxic T 37 

cells (CTLs) elicit apoptosis of target cells utilizing either soluble factors, through 38 

exocytosis of cytolytic granules containing perforin and granzymes, or by the engagement 39 

of death receptor ligands, like FasL and TRAIL [19-21]. TRAIL on NK and T cells was 40 

described to play a crucial role for the control of virus infections and tumor immune 41 

surveillance [22-28]. Besides its function for the clearance of pathogen, apoptosis is also 42 

involved in the T cell repertoire selection, therefore participating in the maintenance of 43 
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peripheral tolerance through a process called activation induced cell-death (AICD). 44 

Although FasL/Fas pathway is the main contributor to AICD/apoptosis in peripheral T 45 

cells, TRAIL may be also involved in AICD of CD8+ T cells and subsets of T-helper cells 46 

[29-35]. Conflicting data were reported regarding the role of TRAIL in thymocyte negative 47 

selection, with one study suggesting that TRAIL is critical for negative selection of 48 

autoreactive thymocytes, while other reports indicating that TRAIL is not required for this 49 

process [36-39].  50 

In contrast to TNF and FasL, TRAIL was described as a promising agent for cancer 51 

therapy, due to its ability to mediate apoptosis in transformed cells, with no or minimal 52 

effect on normal cells [40], and to the fact that TRAIL-R1 and TRAIL-R2 are often 53 

upregulated on cancer cells [41-43]. Despite encouraging early safety outcomes, several 54 

studies with TRAIL or TRAIL-R agonists (TRAs) proved to be disappointing, showing 55 

little antitumor efficacy [40, 44-46]. Failure to translate preclinical results to the clinic can 56 

be attributed, at least in part, to the resistance or reduced sensitivity to TRAIL-induced 57 

apoptosis of certain malignant cells [47, 48], as well as the poor efficacy of first and second 58 

generation of TRAs. Third generation of TRAs, engineered for higher valency and 59 

displaying stronger pro-apoptotic potential are being assessed in the clinic to overcome 60 

these limitations (reviewed in [49]).  61 

Less studied but notwithstanding important are the noncanonical signaling capabilities 62 

of TRAIL exerted on normal or malignant cells. As a matter of fact, TRAIL is also able to 63 

induce non-apoptotic pathways, some of which may even drive pro-tumorigenic effects in 64 

resistant tumor cells by promoting receptor-induced kinase activation, thereby triggering 65 

survival, proliferation and/or metastasis [50-52], which will be discussed later in more 66 

detail.  67 

  68 
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Molecular basis of TRAIL/TRAIL-R signaling  69 

TRAIL triggers apoptosis following binding to one of its cognate transmembrane death 70 

receptors, TRAIL-R1 or TRAIL-R2. Like other TNF death receptors, TRAIL-R1 and 71 

TRAIL-R2 contain an intracellular death domain that has the propensity to associate with 72 

other such domains upon the ligation of homotrimeric cognate ligand [53]. This association 73 

enables the recruitment of the adaptor protein FADD (Fas-associated death domain) and 74 

the formation of the death-inducing signaling complex (DISC) [9, 54]. Thereafter, initiator 75 

procaspase-8 and/or procaspase-10 are recruited to the DISC and are activated through 76 

proteolysis, before being released to further activate effector caspases, including caspase -77 

3, -6 and -7 [54-57]. Activated effector caspases cleave in turn vital cellular proteins, which 78 

develops in a series of molecular processes resulting in the morphological and biochemical 79 

hallmarks of apoptosis [58]. This type of TRAIL-induced apoptosis pathway that starts at 80 

the cell membrane and directly leads to apoptosis is referred to as the “extrinsic apoptosis 81 

pathway”. In type I cells, the extrinsic pathway is sufficient to induce apoptosis. However, 82 

apoptosis of type II cells requires an amplification of the signal via the mitochondrial 83 

apoptotic pathway (i.e. via the “intrinsic apoptosis pathway”) [59, 60]. Triggering of the 84 

extrinsic apoptosis pathway in type II cells only results in limited activation of caspase 8 85 

in the DISC (death-inducing signaling complex), which is unable to further activate the 86 

caspase amplification cascade. Instead, caspase 8 must first cleave the pro-apoptotic Bcl-2 87 

(B-cell lymphoma 2) homolog BID. The carboxyl-terminal fragment of BID (tBID) then 88 

translocates to the mitochondria, where it mediates the release of cytochrome c and other 89 

pro-apoptotic molecules [61]. Subsequently, the mitochondria membrane potential is 90 

affected by the translocation of tBID, Bax and Bak to the mitochondria outer membrane, 91 

resulting in the release of cytochrome c and Smac/DIABLO into the cytosol. [62]. The 92 

apoptotic signal culminates in the activation of effector caspases-3, -6 and -7, which is 93 

mediated by the apoptosome [59, 62-65].  94 

TRAIL-induced apoptosis pathway is tightly regulated at multiple levels to avoid 95 

uncontrolled cell death in normal cells. Tumor cells use these control mechanisms to escape 96 

from TRAIL-induced apoptosis, thereby developing TRAIL resistance. At the cell 97 

membrane level, selective regulation of TRAIL-induced apoptosis is mediated by TRAIL-98 
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R3 and TRAIL-R4, two antagonistics receptors that either sequester the ligand from its 99 

functional death agonistic receptors or restrain caspase-8 recruitment and activation within 100 

the TRAIL DISC [66-68]. In a somewhat less selective manner, the cellular FLICE-like 101 

inhibitory protein (c-FLIP), known as a non-functional procaspase-8 homolog, inhibits the 102 

activation of caspase-8 by competing for binding to FADD [69, 70]. Further downstream, 103 

intracellular apoptosis inhibitors, such as X-linked inhibitor of apoptosis (XIAP) and anti-104 

apoptotic Bcl-2 proteins, respectively, are able to control caspase activity and 105 

mitochondrial activation to prevent death induced by TRAIL [71-73]. 106 

Besides inducing apoptosis, TRAIL may also trigger non-apoptotic (i.e. non-canonical) 107 

signaling through the activation of pro-inflammatory pathways, including NF-κB (factor 108 

nuclear kappa B), PI3K/Akt (phosphoinositide 3-kinases /protein kinase B) and MAPK 109 

(mitogen-activated protein kinase) such as JNK (c-Jun N-terminal kinase), ERK 110 

(extracellular signal-regulated kinase) and p38 [9, 74-81], (reviewed in [51]). Results from 111 

in vivo studies in preclinical models evidenced that apoptosis-resistant cancer cells evade 112 

from TRAIL-induced apoptosis by activation of these non-canonical pathways. For 113 

instance, TRAIL monotherapy induced unwanted effects, namely survival, proliferation 114 

and migration of different tumor types [50, 52]. Activation of TRAIL-induced non-115 

apoptotic pathway is thought to involve the formation of a secondary signaling complex 116 

that consists of FADD, caspase-8, RIPK1 (receptor-interacting serine/threonine-protein 117 

kinase 1), TRAF2 (TNF receptor-associated factor 2) and NEMO/IKK (NF-κB essential 118 

modulator) [82-84]. In this complex, caspase-8 has recently been described as a scaffold 119 

protein, enabling the assembly of the pro-inflammatory signaling during non-canonical 120 

TRAIL pathway, regardless of its enzymatic activity [85]. Yet, the caspase-8 enzymatic 121 

activity impairs NF-κB activation in response to TRAIL treatment [86]. Likewise, while in 122 

TRAIL-sensitive lymphoma cells, caspase-8 mediated RIP1 cleavage, results in impaired 123 

IκB kinase (IKK) recruitment and NF-κB activation, due to the loss of RIP kinase domain 124 

[86], in apoptosis-resistant lymphoma cells, expressing high levels of cFLIP, restricted 125 

caspase-8 activity was associated with higher NF-κB activation after TRAIL stimulation 126 

[86]. TRAIL-induced NF-κB activation can not only be mediated by TRAIL-R1 and 127 

TRAIL-R2 [9, 80], but also by TRAIL-R4 [74]. Since TRAIL-R4 is devoid of functional 128 

death domain, it will be needed to define whether the non-apoptotic signaling machinery 129 
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triggering NF-κB requires caspase-8 or not, regardless of TRAIL-R4’s ability to interact 130 

with TRAIL-R1 or TRAIL-R2 after TRAIL stimulation [67, 87]. Despite the growing 131 

number of studies reporting the pleiotropic functions of TRAIL, the molecular mechanisms 132 

governing signal transduction of TRAIL non-apoptotic signaling remain elusive. 133 

Accordingly, it has only been demonstrated recently that TRAIL-R1 and TRAIL-R2 exert 134 

differential signaling capabilities. Likewise, TRAIL-R1 displays stronger TRAIL-135 

mediated pro-apoptotic signal transduction capabilities than TRAIL-R2, but is unable, 136 

contrary to TRAIL-R2, to induce a pro-motile signaling pathway, associated with early 137 

calcium cytosolic flux changes [88]. 138 

Apoptosis-inducing agents, including TRAIL, trigger a heterogenous response in 139 

sensitive cancer cells, leading to the death of part of the clonal population, while a fraction 140 

survives and develops resistance, a process named “fractional survival”. This variability in 141 

TRAIL-induced apoptosis has been linked to cell-intrinsic mechanisms, such as the 142 

naturally occurring differences in the levels or the activity status of pro and anti-apoptotic 143 

proteins apoptosis [89, 90]. Furthermore, the lack of sufficient TRAIL signal may also lead 144 

to the development of resistant clones. Yet, more recent findings suggest that TRAIL 145 

binding to TRAIL-R2 may lead to the formation of a dynamic composite signaling platform 146 

that can simultaneously activate pro-apoptotic and pro-survival pathways [91]. In this 147 

study, the authors proposed two different mechanisms possibly implicated in the decision 148 

between cell death or survival after TRAIL ligation. Firstly, and also in line with previous 149 

findings [92], the location of this platform within the plasma membrane may determine the 150 

signaling outcome. Platform formation inside lipid rafts, also called membrane rafts, leads 151 

to efficient caspase activation and apoptosis, whereas assembly of the TRAIL-R2 complex 152 

outside lipid rafts promotes non-apoptotic signaling. Second, the pro-survival platform 153 

becomes stabilized and activated when there is an excess of apoptosis inhibitors, i.e. cFlip, 154 

TRAF2, TRAIL-R4 [92, 93]. It should be stressed, here that the requirement of DISC 155 

formation in lipid rafts to induce apoptosis is controversial. Likewise, it has been 156 

demonstrated in a panel of cell lines, including hematopoietic cells, that the TRAIL-157 

TRAIL-R2/TRAIL-R1-DISC complexes were mainly found in the soluble cellular fraction 158 

rather than in lipid rafts [67, 94]. TRAIL complexes composition and location, apart from 159 

the well-known pro-apoptotic complex, remain, to date largely unknown. 160 
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Nonetheless and interestingly, TRAIL-R1 and TRAIL-R2 are constantly expressed at 161 

high levels in many cancers, and throughout disease progression, which suggests that cell-162 

intrinsic expression of these receptors may provide an advantage for tumorigenesis [50, 66, 163 

95-97]. Therefore, there is a high need to investigate the function of the endogenous 164 

TRAIL/TRAIL-R system in cancer and normal cells, in order to understand the 165 

implications of this pathway for tumor biology, and immunity.  166 

Effect of TRAIL/TRAIL-R signaling on tumor cells 167 

TRAIL/TRAIL-R signaling may have different functions in tumor cells. The first in 168 

vivo evidence of the antitumor activity of recombinant TRAIL came from experiments 169 

done in mice bearing xenograft tumors. Two groups independently showed that treatment 170 

with different forms of recombinant soluble TRAIL resulted in tumor regression in 171 

immunodeficient mice challenged with human colon carcinoma cells or human mammary 172 

adenocarcinoma cells [40, 98]. Shortly, after these studies, came the first evidence that 173 

endogenous TRAIL, also plays a physiological role in the organism to control tumor 174 

growth [26, 99, 100]. Likewise, Trail-deficient mice were found to develop spontaneously 175 

tumors [26, 101] and to be more susceptible to A20 B cell lymphoma, with uncontrolled 176 

tumor progression and increased lymphoma nodules in the liver [100]. In vivo experiments 177 

using a renal cancer cell line and Trail-deficient mice indicated that TRAIL signaling is 178 

important to control tumor metastasis [102]. Similarly, mice lacking TRAIL-R showed an 179 

increase in lymph node metastasis, without any effect on primary tumor growth [103].  180 

However, further studies revealed that TRAIL/TRAIL-R signaling in transformed cells 181 

is much more complex and may have outcomes different from apoptosis. Indeed, cancers 182 

cells may not only resist and survive TRAIL treatment, they can also benefit from TRAIL 183 

signaling by undergoing proliferation, migration, invasion or attract immune cells in the 184 

tumor microenvironment through secretion of cytokines or chemokines. These aspects are 185 

presented in further details below and in Figure 1.  186 
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Survival/Apoptosis resistance 187 

With the exception of glioblastoma cells [104], activation of non-canonical TRAIL 188 

signaling, including NF-κB, has been reported to inhibit apoptosis induced by TRAIL, 189 

leading to resistance and thus survival in various cancerous cells. Stimulation of TRAIL-190 

resistant human pancreatic adenocarcinoma (PDAC) cells with recombinant TRAIL 191 

induced the activation of protein kinase C (PKC) and NF-κB, while inhibition of PKC or 192 

NF-κB sensitized these cells to TRAIL-induced apoptosis [105]. Similarly, selective 193 

inhibition of the NF-κB pathway enhanced TRAIL-mediated apoptosis in neuroblastoma 194 

cells and mantle cell lymphoma (MCL) B cells [106, 107]. In lung cancer cells, TRAIL-195 

induced apoptosis resistance occurs via NF-κB-dependent up-regulation of microRNAs, 196 

which in turn target caspase-8 (CASP8) and -3 (CASP3), TRAF7 and FOXO3 [108]. In the 197 

mouse system, the resistance of B16F10 murine melanoma cells to TRAIL-induced 198 

apoptosis [22, 109], was linked to activation of the NF-κB pathway after mTRAIL-R 199 

engagement [110]. In the same vein, constitutive or CD40-mediated activation of NF-κB 200 

in B-cell lymphoma, induce the up-regulation of c-FLIP in these cells and protect them 201 

from apoptosis induced by TRAIL, whereas selective inhibition of NF-κB restores their 202 

sensitivity [107, 111]. 203 

Besides NF-κB, the PI3K/AKT/mTOR pathway also plays a role in resistance to 204 

TRAIL-induced apoptosis in various types of malignant cells. In a panel of breast and 205 

ovarian cancer cells, AKT/mTOR pathway is activated in TRAIL-resistant cells, while 206 

AKT inhibition led to sensitization of these cells [112]. TRAIL signaling induces this 207 

pathway to promote resistance to apoptosis by decreasing BID protein levels [113]. 208 

Interestingly, the decoy receptor TRAIL-R4 can promote the survival of cervical 209 

carcinoma HeLa cells via triggering of the PI3K/AKT/mTOR axis [114]. 210 

TRAIL signaling may also support apoptosis resistance by activating the MAPK 211 

proteins ERK, JNK and/or p38 in pancreatic tumor cells, HeLa cells, and small cell lung 212 

cancer (SCLC) cells [77, 115, 116]. Accordingly, inhibition of JNK or p38 sensitized 213 

hepatocellular cells, respectively breast carcinoma cells to TRAIL-induced apoptosis [117, 214 

118].  215 
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Proliferation 216 

TRAIL-induced NF-κB activation was initially thought to solely induce resistance to 217 

apoptosis. However, several in vitro studies demonstrated that TRAIL may also trigger 218 

NF-κB to promote the proliferation of resistant Jurkat cells [52] or B16F10 murine 219 

melanoma cells [110].  220 

TRAIL-induced ERK activation may exert a similar pro-proliferative effect on tumors. 221 

In caspase-8-deficient SCLC cells, TRAIL induces cell proliferation through the activation 222 

of ERK1/2, in a TRAIL-R2-dependent manner [116]. In addition, TRAIL-induced ERK1/2 223 

activation and proliferation of human glioma cells was found to be dependent on the 224 

expression of c-FLIP [119].  225 

It should be noted, however, that cell proliferation in these studies is measured mainly 226 

through indirect assays, for instance by measuring metabolic activity. Therefore, the 227 

reported effects of TRAIL in inducing cell proliferation have to be carefully evaluated.  228 

Migration/Invasion and tumor microenvironment 229 

NF-κB pathway 230 

Asides from its role for survival and proliferation, the NF-κB pathway was also found 231 

to participate in the promotion of cancer cell migration and metastasis upon TRAIL 232 

signaling activation. Specifically, TRAIL-induced NF-κB has been reported to trigger the 233 

migration and invasion of B16F10 murine melanoma cells and to increase lung metastasis 234 

of cholangiocarcinoma cells [110, 120]  235 

Other intracellular signaling pathways 236 

In addition to NF-κB, several other signaling pathways have been also involved in the 237 

TRAIL-dependent migration of cancer cells. A comparison of kinase activation between 238 

apoptosis-resistant versus -sensitive non-small lung cancer (NSCLC) cells demonstrated 239 

that TRAIL may trigger migration in a RIPK1-, SRC- and STAT3-dependent manner 240 

[121]. Another study showed that TRAIL increases the invasive properties of colorectal 241 

cancer (CRC) cells – and their survival – via K-RAS [122]. Along these lines, activation 242 

of TRAIL signaling increased ERK phosphorylation only in lung adenocarcinoma cells 243 
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lines with mutant KRAS, and this activation was associated with enhanced cell migration 244 

[123]. Moreover, genetic depletion of mTRAIL-R in KRAS-driven models of PDAC and 245 

NSCLC reduced tumor growth and impaired metastasis [50]. The same effect was observed 246 

in human PDAC cells, where TRAIL-R2 ablation reduced cell proliferation, migration and 247 

invasiveness. Of note, the membrane-proximal domain (MPD) of TRAIL-R2 was 248 

sufficient to induce the migration of NSCLC cell lines through the activation of 249 

RAC1/PI3K signaling [50]. 250 

Epithelial-to-mesenchymal transition 251 

Initiation of metastasis requires migration and invasion of primary cancer cells, which 252 

is enabled by epithelial-to-mesenchymal transition (EMT) [124]. Analysis of EMT markers 253 

demonstrated that acquired TRAIL resistance induced EMT in resistant NSCLC cells 254 

[108]. Moreover, in breast cancer cells, TRAIL induced EMT by suppressing PTEN 255 

expression via miR-221 [125].  256 

Inflammatory mediators with direct effect on cancer cells 257 

Endogenous TRAIL/TRAIL-R signaling may also promote the secretion of pro-258 

inflammatory molecules, including chemokines, that participate in (cancer) cell migration 259 

and modulate tumorigenesis. For instance, TRAIL strongly activated NF-κB and MAPK 260 

in human PDAC cells, resulting in the induction of pro-inflammatory IL-8 and CCL-2 and 261 

in the enhancement of invasive properties via upregulation of MMP-7 and -9 and uPA 262 

(urokinase-type plasminogen activator). Consequently, TRAIL administration in an 263 

orthotopic xenotransplantation model of human PDAC increased primary tumor growth 264 

and the formation of distant metastases [126, 127]. Interestingly, activation by FasL had 265 

similar effects on the invasiveness of PDAC cells [128]. In MDA-MB-231 breast cancer 266 

cells, deletion of TRAIL-R2 downregulated the chemokine receptor CXCR4, thereby 267 

impairing the ability of these cells to disseminate to the bones [96]. In contrast, TRAIL 268 

was found to induce miR-146a in MDA-MB-231 cells thereby inhibiting their CXCR4-269 

dependent migration [129]. 270 

Indirect effect on cancer via regulation of immune cells in the tumor microenvironment 271 
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TRAIL-induced inflammatory molecules may also have an indirect effect on cancer 272 

cells. While PDAC cells activated by TRAIL produce CCL20 in an NF-κB-dependent 273 

manner, this chemokine had no effect on PDAC cell death or migration. Rather, CCL20-274 

were found to exert a paracrine action by recruiting immune cells, which in turn promoted 275 

TRAIL resistance in the malignant cells [130]. Among the cytokines released following 276 

TRAIL binding, the C-C motif chemokine ligand 2 (CCL2) was identified as the most 277 

important one for the recruitment of myeloid-derived suppressor cells (MDSCs) and M-2 278 

like macrophage promoting tumor growth. Interestingly, unlike TNF-mediated cytokine 279 

secretion, TRAIL and FasL signaling required FADD and caspase-8 for cytokine induction 280 

in this study [131].  281 

Lastly, TRAIL may also have an indirect effect on tumor growth, via modulation of the 282 

tumor-microenvironment. This may for instance occur by inducing apoptosis in MDSCs 283 

[132], by promoting angiogenesis in the tumor tissue [133], or by repolarizing tumor-284 

associated macrophages (TAM) to an M1-like phenotype that support cytotoxic effects in 285 

the malignant cells [134]. 286 

Taken together, these findings from in vitro experiments and in vivo studies in mice 287 

demonstrate the dichotomous effect of TRAIL-TRAIL-R signaling for cancer biology. 288 

They also imply that further research is required to elucidate the molecular mechanisms 289 

regulating non-canonical TRAIL signaling.  290 

TRAIL/TRAIL-R signaling in non-malignant and in immune cells  291 

Function of TRAIL/TRAIL-R in normal, non-transformed cells 292 

Like most of the mice with defects in molecules of the TNFR superfamily, Trail-293 

deficient mice develop normally until adulthood and are fertile, indicating functional 294 

complementarity between these molecules in mammals [26, 100, 135-139]. Yet, Trail-295 

deficient mice have increased susceptibility to autoimmune diseases and to tumor initiation 296 

and metastasis [26, 38, 99-102]. As mentioned above, TRAIL was initially described to 297 

mediate apoptosis of transformed cells, with no or minimal effect on normal cells [40]. 298 

However, TRAIL may also participate in thymocyte negative selection [36, 38] – although 299 
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this is a controversial issue [37, 140] – and play an active role in inducing apoptosis in 300 

normal non-immune cells, i.e. primary esophageal, salivary and prostate epithelial cells 301 

[141-143], possibly because some of these cells express less (anti-apoptotic) TRAIL decoy 302 

receptors. 303 

Interestingly, there are few reports indicating that TRAIL can also induce apoptosis-304 

independent effects in normal cells, such as proliferation, migration, differentiation and 305 

inflammation. For instance, TRAIL has been shown to induce the proliferation of 306 

fibroblasts isolated from synovial tissue, vascular smooth muscle cells (VSMCs), primary 307 

human endothelial cells and proximal tubular epithelial cells, through the activation of NF-308 

κB, ERK1/2, p38 and PI3K-AKT pathways [78, 144-148]. TRAIL also promotes the 309 

migration of VSMCs through induction of the ERK1/2 pathway [144], and triggers NF-κB 310 

and inflammatory gene expression in human endothelial cells [149]. 311 

Moreover, TRAIL stimulates the differentiation of human keratinocytes in a caspase-312 

dependent manner [150], while it supports osteoclast differentiation from mononuclear 313 

phagocyte precursors via NF-κB, ERK, p38 and TRAF6 signaling [151, 152]. However, 314 

conflicting studies also indicated an inhibitory role of TRAIL in osteoclast differentiation 315 

[153, 154]. The reasons for these discrepancies may be related to difference in the 316 

concentration of recombinant TRAIL used in the assays and the presence of other TNF 317 

family members, such as RANKL (receptor activator of nuclear factor kappa-B ligand). 318 

In summary, these studies demonstrate that TRAIL also exert a pleiotropic role in 319 

normal cells, suggesting that the molecular circuitry is conserved from normal to neoplastic 320 

cells.  321 

 322 

Function of pro-apoptotic TRAIL/TRAIL-R in immunity 323 

The finding that TRAIL gets preferentially upregulated on immune cells during 324 

inflammation suggested its central involvement in immunity and immunoregulation. In 325 

fact, TRAIL expression is dependent on immune cell activation. For instance type I IFN 326 

(IFNα and IFNβ) stimulation leads to TRAIL upregulation on neutrophils, monocytes, 327 

macrophages, dendritic cells (DCs), plasmacytoid dendritic cells (pDCs), NK cells, T and 328 
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B cells [155-169]. Inducers of type I IFN, such as viruses and Toll-like receptors (TLRs) 329 

ligands also trigger TRAIL expression on DCs, pDCs, NK cells and B cells [163, 170-173], 330 

while IFNγ promotes it on neutrophils and NK cells [27, 174-177]. Importantly, as opposed 331 

to resting cells, activated immune cells, such as NK or CD8+ T cells, often co-express in 332 

addition to TRAIL, the antagonistic receptors TRAIL-R3 or TRAIL-R4, as well as the 333 

caspase-8 inhibitor c-FLIP to protect themselves from TRAIL-induced apoptosis [178]. 334 

On the contrary, TRAIL agonistic receptors are often upregulated in infected cells (or 335 

certain types of infection-activated cells), thereby rendering these cells susceptible to 336 

apoptosis mediated by TRAIL-expressing cytotoxic cells [23, 179-183]. As a matter of 337 

fact, apoptosis induced by immune cells via TRAIL is an important mechanism to eliminate 338 

pathogen-infected cells. For instance, TRAIL expression on neutrophils has been 339 

implicated in the apoptosis of alveolar macrophages that phagocytosed Streptococcus 340 

pneumoniae, and clearance of this bacterial pathogen is therefore compromised in Trail-341 

deficient mice [184]. CD8+ T cells utilize TRAIL to eliminate virus-infected alveolar 342 

epithelia cells during influenza infection, and to clear West Nile virus (WNV) infection 343 

from neurons in the central nervous system [23, 185], while TRAIL-mediated killing by 344 

NK cells is crucial to limit in vivo replication of encephalomyocarditis virus and to control 345 

hepatitis C virus-replicating (HCV) hepatoma cells [164-166]. Interestingly, pathogens like 346 

cytomegaloviruses (CMV) were found to inhibit TRAIL receptor expression on infected 347 

cells as a mechanism to evade NK cells killing [186, 187], thus further highlighting the 348 

relevance of TRAIL-induced cytotoxicity for pathogen elimination. 349 

Yet, TRAIL expression on immune cells not only contributes to contain infections, but 350 

it also plays a crucial role in the control of tumor growth (Figure 2A). Monocytes 351 

expressing TRAIL after IFNγ activation exhibited tumoricidal activity in vitro [158]. In 352 

FasL-resistant tumor cells, TRAIL mediated the apoptosis of melanoma cells through 353 

CD4+ T cells [24]. NK cells are involved in the recognition and subsequent elimination of 354 

transformed cells [188], and membrane-bound TRAIL on NK cells is a central effector 355 

mechanism used by NK cells to suppress tumor growth and to protect mice against tumor 356 

metastases [22, 176, 189]. Of note, apoptosis triggered by TRAIL expressed on NK cells 357 

has been associated with transplant rejection [190]. Indeed, immunosuppressive therapy 358 

with cyclosporin A administration after renal transplantation may inhibit solid graft 359 
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rejection partially by downregulating the expression of TRAIL and FasL on NK cells [191]. 360 

However, TRAIL on hepatic NK cells might also have a protective role during liver 361 

transplantation, through the elimination of activated T cells [192] (Figure 2A). 362 

Taken together, apoptosis elicited by TRAIL expressed on immune cells is an important 363 

mechanism for the control of pathogens and tumors (or non-self cells). 364 

 365 

Pro- and non-apoptotic immunoregulatory function of TRAIL/TRAIL-R 366 

Apart from its role in supporting effector function for the elimination of malignant or 367 

infected cells, apoptosis triggered by TRAIL has also been implicated in the control of the 368 

immune response. Such immunoregulatory function is particular important for the 369 

resolution phase of an immune response, as effector cell removal is essential to limit tissue 370 

damage and the possible autoimmune reactions. Activated or senescent neutrophils become 371 

sensitive to TRAIL-induced apoptosis, and their removal promotes the resolution of 372 

inflammation [193-196]. After in vitro activation, CD4+ T cells eliminate antigen-373 

presenting macrophages via TRAIL, which self-regulates their expansion by limiting the 374 

pro-stimulatory signal they can receive via their TCR [197]. NK cells engage TRAIL 375 

signaling to eliminate hepatitis B virus (HBV)-specific CD8+ T cells or murine 376 

cytomegalovirus (MCMV)-induced CD4+ T cells [179, 180]. TRAIL expressing pDCs 377 

isolated from HIV-infected patients triggered the apoptosis of activated autologous CD4+ 378 

T cells [198]. Helpless CD8+ T cells that are primed in the absence of CD4+ T cells undergo 379 

apoptosis by AICD upon secondary stimulation, and this killing is mediated by TRAIL 380 

[199]. Last, deletion of TRAIL exacerbates mouse lymphoproliferative disease associated 381 

with the loss of FasL [35], suggesting that TRAIL might contribute to FasL-mediated 382 

AICD of CD3+CD4-CD8-B220+ T cells, CD4+ and CD8+ T cells, as well as follicular B 383 

cells. All these studies illustrate the role of apoptotic TRAIL as a negatively regulator of 384 

immune responses.  385 

TRAIL/TRAIL-R signaling is not only involved in infection-related inflammation but 386 

also appears to be important in preventing inflammatory disease, including autoimmune 387 

disorders. Although TRAIL ligand- and receptor- deficient mice do not develop 388 

spontaneous autoimmunity, they show disease exacerbation in different experimental 389 
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models. Genetic deletion or sTRAIL-R2-mediated blockade of TRAIL worsen type I 390 

diabetes development. TRAIL inhibited the proliferation of autoreactive T cells by 391 

blocking cell cycle progression, through the upregulation of cyclin-dependent kinase 392 

inhibitor p27kip1, leading to defective IL-2 transcription in nonobese diabetic (NOD) mice 393 

[200, 201]. Non-apoptotic TRAIL/TRAIL-R signaling inhibits the activation of colitogenic 394 

T cells and the development of gut inflammation in an adoptive transfer-induced colitis 395 

model [202]. In different mouse models of rheumatoid arthritis (RA), blockade of TRAIL 396 

aggravated the disease. TRAIL had no effect on apoptosis of inflammatory cells in these 397 

RA models, but it instead prevented cell cycle progression of lymphocytes, inhibited T cell 398 

proliferation and suppressed cytokine production [203, 204]. Inhibition of TRAIL 399 

signaling also exacerbated experimental autoimmune encephalomyelitis (EAE) in mice. In 400 

these studies, blockade of TRAIL pathway led to enhanced autoreactive T cell response 401 

[205-207].  402 

Taken together, these studies unveil an intriguing immunoregulatory role of TRAIL, 403 

which may involve or be independent of TRAIL pro-apoptotic activity.  404 

Role of non-canonical TRAIL/TRAIL-R signaling in immune cells 405 

NK cells  406 

NK cells are important effector immune cells involved in the defense against viral 407 

infections and in the control of malignant cells through their ability to induce cell death. 408 

NK cells can also exert an immunoregulatory function [208-210]. As mentioned above, 409 

NK cells may elicit apoptosis through the engagement of TRAIL into its cognate receptor 410 

on the target cell [20, 21]. Yet, our group recently described a novel, non-apoptotic role of 411 

TRAIL as an immune modulator of NK cell activity during virus infection [211]. In Trail-412 

deficient mice infected with lymphocytic choriomeningitis virus (LCMV), we found that 413 

NK cells showed reduced granzyme B (GZMB) expression. This was associated with 414 

impaired NK cell-mediated killing of activated CD8+ T cells, which in turn resulted in 415 

better LCMV clearance. Further dissection of the underlying mechanisms revealed that 416 

TRAIL promotes GZMB production in NK cells by supporting an IL-15 receptor-PI3K-417 

AKT-mTOR-GZMB signaling axis. In line with these data, TRAIL blockade reduced the 418 



20 

signaling downstream of IL-2/IL-15 receptor in human NK cells [211] (Figure 2B). In 419 

contrast, hepatic Trail-/- NK cells isolated after ischemia-reperfusion injury expressed high 420 

levels of the degranulation marker LAMP-1/CD107a, which translated into increased 421 

cytotoxicity towards TRAIL-resistant YAC-1 cells in vitro [212]. Yet, it is not clear 422 

whether this was due to a direct effect of TRAIL signaling on NK cells.  423 

Trail-/- NK cells also showed increased IFNγ secretion upon stimulation with an NK1.1 424 

cross-linking antibody. Therefore, engagement of the TRAIL pathway in NK cells may 425 

promote or inhibit their (TRAIL-independent) cytotoxicity capacity, while reducing their 426 

cytokine-secreting function [211, 212] (Figure 2B). Lastly, gene expression analysis 427 

revealed that pathways related to leukocyte migration were differently affected in Trail-/- 428 

compared to wild-type NK cells isolated from LCMV-infected mice [211], which may 429 

affect their spatiotemporal distribution and thereby further impact on their in vivo function.  430 

Notably, extensive analysis of naïve NK cells indicated no major impact of Trail 431 

deficiency on NK cell development. Specifically, Trail-/- NK cells and wild-type 432 

counterparts showed similar i) constitutive granzyme B expression; ii) expression of T-bet 433 

(Tbx21) and eomesodermin (Eomes), two transcriptional regulators of NK cells 434 

development; iii) proportion of NK cell maturation subsets (defined by CD11b and CD27 435 

expression); and iv) expression of several activating and inhibiting NK cell markers – 436 

except Ly49H that was slightly downregulated on Trail-/- NK cells [211]. Taken together, 437 

this suggests that non-apoptotic TRAIL receptor signaling only affects NK cell function 438 

during LCMV infection.  439 

Of note, another study reported a non-apoptotic role of TRAIL in modulating CD8+ T 440 

cell response. Specifically, TRAIL expressed on NK cells induced arginase-1 mRNA 441 

expression in DCs, resulting in reduced generation of MHC-class I-antigen peptide 442 

complexes and eventually impaired cross-priming [213] (Figure 2C).  443 

Eosinophils 444 

TRAIL plays mostly a pro-inflammatory role in allergic airways disease. TRAIL 445 

expression is increased in bronchoalveolar lavage (BAL) of asthmatic patients, which is 446 

correlated with eosinophil accumulation. TRAIL did not trigger apoptosis of BAL 447 

eosinophils but rather induced their survival [214]. In a mouse model of eosinophilic 448 



21 

esophagitis (EoE) and during rhinovirus infection, E3 ubiquitin-ligase midline 1 (MID1) 449 

expression is upregulated mainly in bronchial epithelial cells in a TLR4- and TRAIL-450 

dependent manner. MID1 decreases the activation of protein phosphatase 2Ac (PP2A) 451 

through association with its catalytic subunit, leading to NF-κB activation, pro-452 

inflammatory chemokines and cytokines secretion and to a marked increase in the 453 

accumulation of eosinophils [215, 216] (Figure 3, panel A). However, conflicting studies 454 

indicated a protective role of TRAIL when administered intranasally as a pretreatment of 455 

airway inflammation [217], and also during the resolution phase of allergic asthma [218].  456 

Monocytes and Macrophages 457 

In myeloid cells, TRAIL signaling has been shown to trigger different processes, 458 

including differentiation, migration, cytokine production and lipid uptake and transport. In 459 

primary myeloid cells derived from CD34+ hematopoietic stem cells TRAIL/TRAIL-R1 460 

interaction was found to promote monocytic maturation in a caspase-dependent manner 461 

[219]. Moreover, TRAIL induces through the activation of TRAIL-R1 the chemotactic 462 

migration of the THP-1 monocytic cell line and of LPS-primed primary monocytes. 463 

Mechanistically, TRAIL signaling promoted migration of these cells by engaging PI3K, 464 

Rho GTPase and its downstream effectors MLC and PAK1 [220]. Similarly, TRAIL 465 

promotes pro-inflammatory cytokine secretion and macrophage migration via NF-κB 466 

activation after ischemia/reperfusion injury [221].  467 

There are contradiction data on the role of TRAIL for cytokine production in 468 

macrophages. Peritoneal macrophage isolated from TRAIL-R2-/- mice stimulated with 469 

Bacillus Calmette-Guérin (BCG) or TLR agonists display increased TNF-α and IL-12 470 

production [222]. In contrast, another study reports that murine peritoneal macrophages 471 

treated with TRAIL upregulated pro-inflammatory cytokines such as IL-1β, IL-6 and TNF-472 

α. Accordingly, tumor-associated macrophages (TAM) isolated from mice treated with 473 

soluble TRAIL displayed an increased expression of pro-inflammatory cytokine and 474 

displayed anti-tumorigenic phenotype [134]. A possible reason for this discrepancy might 475 

be the type of stimuli, with one study working with naïve macrophages stimulated solely 476 

with recombinant TRAIL [134], while the other used TRAIL-R2-/- macrophages stimulated 477 

with LPS or BCG [222].  478 
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To further complicate this picture, early administration of recombinant TRAIL was 479 

shown to inhibit macrophage recruitment in vivo, which was associated with reduced 480 

mucosal inflammation and disease mitigation in the setting of chemically-induced colitis 481 

or colitis-associated carcinogenesis. In vitro mechanistic studies using a macrophage cell 482 

line suggested that TRAIL induced these phenotypes by curbing cytokine secretion while 483 

it promoted expression of the scavenger receptor CD36 and efferocytosis [223]. 484 

There also conflicting data on the role of TRAIL signaling for macrophages during 485 

atherosclerosis, a condition in which these cells play a key contribution by accumulating 486 

lipids in atherosclerotic plaques [224]. In a macrophage cell line, TRAIL was suggested to 487 

promote the upregulation of the scavenger receptor SR-AI/MSR1 through p38 pathway 488 

activation, in an apoptosis-independent fashion, resulting in an increase in lipid uptake and 489 

foam cell formation [225]. Yet, a recent study reported no difference in scavenger receptor 490 

expression and phagocytosis capacity of Trail-/- Apoe-/- (apolipoprotein E) primary murine 491 

macrophages [226]. Instead, a lack of TRAIL signaling in Apoe-/- macrophages was 492 

associated in this study with impaired cholesterol export capacity resulting in intracellular 493 

cholesterol accumulation, a hallmark feature of atherosclerosis [226]. Taken together, the 494 

current literature generally supports the notion of a protective role of TRAIL for 495 

atherosclerosis in mice [226-229] (Figure 3, panel B).  496 

Dendritic cells 497 

Studies reporting a role for TRAIL, regardless of its pro-apoptotic activity, in 498 

modulating DCs are scarce. Yet, it has been found that Trail receptor-deficient DCs isolated 499 

from mice infected with MCMV or activated in vitro with lipopolysaccharide (LPS) 500 

showed increased IL-12 production [222]. Moreover, binding of TRAIL-R2 on DCs by 501 

TRAIL-expressing murine NK cells induce arginase-1 mRNA expression. This leads to 502 

reduced generation of MHC-class I-antigen peptide complexes and thus impaired CD8+ T 503 

cell cross-priming by DCs [213]. While these studies suggest that TRAIL inhibits DC 504 

function in mice, another study reported that TRAIL stimulation promotes the functional 505 

maturation of human monocyte-derived DCs, including up-regulation of co-stimulatory 506 

molecules and, when combined with LPS, cytokine production [230]. Taken together, 507 
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TRAIL non-apoptotic signal transduction in DCs likely requires further investigation to 508 

understand its effect on these cells (Figure 3, panel C). 509 

T cells 510 

Several studies described apoptosis-independent effects of TRAIL on T cells activation 511 

and proliferation. Human T cell lines and primary cells stimulated with TRAIL were found 512 

to display reduced proliferation and cytokine production. Several studies highlighted a 513 

possible role for TRAIL in mediating suppression of T cell proliferation through inhibition 514 

of calcium influx and cell cycle arrest [231-233]. Similarly, other reports mentioned that 515 

TRAIL blockade enhances the proliferation and cytokine secretion of encephalitogenic T 516 

cells and the degree of EAE symptoms [205, 206]. This is in contrast to other findings 517 

suggesting that disruption of the TRAIL/TRAIL-R interaction on T cells isolated from 518 

mice with either type I diabetes or autoimmune arthritis also suppressed T cell proliferation 519 

by inhibiting cell cycle progression [201, 203]. The reason for such discrepancies in these 520 

different studies are unclear.  521 

Nevertheless, the effect of TRAIL on T cell response seems to be dependent on the T 522 

cell subtype. For instance, while TRAIL signaling on CD8+ T cells rather inhibits cell 523 

proliferation, it promotes CD4+ T cell function and expansion [234]. In a model of induced 524 

murine lupus, TRAIL expression on effector CD4+ T cells sustained their proliferation, 525 

thus supporting the production of autoantibodies by autoreactive B cells. At the same time, 526 

TRAIL to a lesser degree negatively affected CD8+ T cells cytotoxicity. Yet, the 527 

mechanisms involved in this dichotomy were not elucidated [235]. Furthermore, EAE mice 528 

treated with DCs expressing simultaneously MOG (myelin oligodendrocyte glycoprotein) 529 

peptide and TRAIL showed reduced disease severity and MOG-specific T cells response 530 

[236]. Moreover, T cells in vitro activated with DC-MOG-TRAIL showed decreased 531 

proliferative response. In another study, the same authors reported that EAE inhibition in 532 

DC-MOG-TRAIL-treated animals was mediated via an increase in the number of CD4+ 533 

CD25+ regulatory T cells [237]. In line with these findings, TRAIL treatment inhibited 534 

autoimmune thyroiditis by inducing CD4+ CD25+ regulatory T cell proliferation in mice 535 

[238]. 536 
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Apart from the canonical TRAIL signaling pathways triggered through cognate TRAIL 537 

receptors, a reverse signaling mediated by the cross-linking of plate-bound TRAIL-R and 538 

T cell-expressing TRAIL has been described. In these experimental conditions, 539 

costimulation of T cells with plate-bound TRAIL-R1 and anti-CD3 resulted in enhanced T 540 

cell proliferation and activation. In addition, TRAIL activated p38 MAPK to increase IL-541 

2, IL-4 and IFNγ secretion by T cells [239, 240]. Additional studies revealed that TRAIL 542 

costimulation induces phosphorylation of the tyrosine kinases LCK and ZAP70, which are 543 

involved in transduction of the T-cell receptor (TCR) signaling pathway, resulting in NF-544 

κB activation and T cell proliferation [241]. However, engagement of TRAIL-R during T 545 

cell activation prevents the recruitment of TCR-associated signaling molecules to lipid 546 

rafts, resulting in inhibition of T cell activation and proliferation [202, 204, 207, 242]. 547 

Therefore, TRAIL might either enhance or inhibit TCR-induced T cell proliferation 548 

depending on whether the signaling to the T cells is mediated through TRAIL itself or 549 

TRAIL-R, respectively. Although, other members of the TNF family ligands had been 550 

described to elicit reverse signaling, the existence of TRAIL reverse signaling is 551 

controversial due to the very short cytoplasmic moiety of TRAIL [243] (Figure 3, panel 552 

D).  553 

B cells  554 

Few studies showed that antibody production might be affected by TRAIL signaling on 555 

B cells, which was only reported for the IgG class. Administration of soluble TRAIL in 556 

autoimmune thyroiditis or TRAIL blockade using soluble TRAIL-R2 in autoimmune 557 

arthritis either inhibited or promoted IgG2a production, respectively [203, 244]. 558 

Accordingly, antibody-mediated neutralization of TRAIL increased serum auto-antibody 559 

levels, particularly IgG1 antibody, in autoimmune-prone FasL deficient (gld/gld) mice. 560 

Yet, these different works did not test whether these responses were due to a direct effect 561 

of TRAIL signaling on B cells. [245] (Figure 3, panel E).  562 

  563 
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Conclusion and Discussion 564 

The initial observation that TRAIL preferentially triggers apoptosis of cancer cells led 565 

to a great number of studies, which sought to dissect the mechanisms involved in the 566 

sensitivity and resistance to apoptosis of cancer cells and healthy cells, respectively. In 567 

spite of substantial advance in the field, TRAIL signaling revealed to be much more 568 

complex than first thought, and a fair number of questions are still unsolved. The lack of 569 

knowledge on the precise molecular events triggered by TRAIL signaling in different cells 570 

and conditions is a major drawback to fully understand the physiological roles of the 571 

TRAIL pathway. This is due to the biological difficulties in dissect the cell-specific 572 

variations, the impossibility to avoid the crosstalk between pathways and the influence of 573 

the external stimuli to the cells. Another important unknown aspect is how the different 574 

pathways triggered upon TRAIL-R activation are regulated intracellularly. For instance, it 575 

is unclear whether there are, downstream of TRAIL-R, specific proteins or a precise 576 

mechanism responsible for the switch between apoptotic and non-apoptotic pathway in 577 

cancer cells or between pro-inflammatory and anti-inflammatory signaling in immune 578 

cells. Much similar to TRAIL, FasL/Fas signaling also exhibits pleiotropic signaling 579 

properties on healthy and cancer cells. Recently, an evolution-guided analysis suggested 580 

that the outcome of Fas signaling could be dependent on the phosphorylation status of the 581 

receptor death domain and the position of the phosphorylation. According to this study, the 582 

degree and site of the phosphorylation may mediate the switch between apoptotic and pro-583 

survival signal in cancer cells [246]. Additional post-translational regulations, such as 584 

glycosylation, or selective engagement of any of the four TRAIL receptor or the ligand 585 

itself may also be at work to dictate which signaling pathway will be activated [247]. The 586 

TRAIL system gathers the most complex set of receptors amongst TNF members, yet most 587 

studies fail to explore, in an exhaustive manner, the role of each of these receptors, often 588 

focusing on either TRAIL-R1 or TRAIL-R2. Clearly, a better understanding of the 589 

molecular events involved in regulating apoptotic and non-apoptotic TRAIL signaling is 590 

needed, not only to understand TRAIL biology but also to envision the development of 591 

successful therapies relying on TRAIL or its derivatives.  592 

  593 
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TRAIL-based therapy – an outlook 594 

Several aspects have to be considered before the use of recombinant TRAIL or TRAIL 595 

receptor agonists for clinical applications. Indeed, the development in cancer cells of 596 

TRAIL resistance is a major limitation of TRAIL therapy. To overcome this, the 597 

combination of TRAIL along with novel TRAIL-sensitizing agents may represent a clinical 598 

option to enhance TRAIL-mediated apoptotic effect [248-251]. However, several of these 599 

combined therapies may potentially also cause in vivo toxicity effects. Moreover, the 600 

identification of biomarkers that can predict the type of cancer that will respond to TRAIL-601 

induced apoptosis is another important aspect to consider. As a matter of fact, certain 602 

factors have been described to correlate with resistance or sensitivity to TRAIL-induced 603 

apoptosis in cancer cells. For instance, high expression of the mRNA that encodes for uPA 604 

was shown to be associated with resistance to TRAIL-induced cell death [252]. As a 605 

consequence, its depletion in different cancer cell lines decreased basal ERK1/2 pro-606 

survival signaling and reduced recruitment of TRAIL-R4 to the DISC upon TRAIL 607 

stimulation [252]. Elevated expression of GALNT14 enzyme – which is involved in the O-608 

glycosylation of TRAIL receptor in cancer cells - was correlated with sensitivity to TRAIL. 609 

Such post-translation modification of the TRAIL-R promotes receptor clustering upon 610 

TRAIL binding, resulting in effective DISC formation and caspase-8 activation [253]. In 611 

addition, elevated expression of the homeobox protein SIX1 leads to TRAIL-apoptosis 612 

resistance in ovarian carcinoma cell [254]. Silencing of SIX1 increased levels of apoptosis- 613 

related proteins, such as truncated BID, caspase-8 and -3, and bypassed TRAIL-resistance 614 

in ovarian cancer cells [255]. Recently, the expression patterns of the regulators involved 615 

in TRAIL pathway were used to develop a list of 11 markers that can predict, with 80-616 

100% accuracy, the sensitivity of a melanoma cancer cell towards a combined therapy with 617 

TRAIL-R agonist and IAP antagonist. [256]. Thus, a successful future therapy comprises 618 

a combination of TRAIL signaling activator with strategies to prevent induction of 619 

resistance.  620 

Therapies should also consider the quality of the intracellular signal induced by TRAIL. 621 

Even though TRAIL-R1 and TRAIL-R2 activate the same downstream pathways, cell 622 

death may be induced preferentially through one of these receptors depending on the cancer 623 

cell. For instance, in pancreatic and chronic lymphocytic leukemia cells, apoptosis is 624 
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mainly triggered through TRAIL-R1 [257, 258], while TRAIL-R2 is more active in 625 

glioblastoma and breast cancer cells [259, 260]. Thus, a targeted therapy using TRAIL 626 

receptor-specific agonist might be a better choice than the use of recombinant TRAIL.  627 

Systemic delivery of TRAIL therapy should be careful evaluated for cancer treatment. 628 

As mentioned above, TRAIL may also direct impact the function of immune cells in many 629 

ways. It is well-established that the immune system is essential for treatment response and 630 

tumor development [261]. The ratio of cytotoxic CD8+T cells to CD4+ regulatory T cells 631 

present in the tumor microenvironment is important for the outcome of the immune 632 

response against cancer cells [262]. Interestingly, in the context of autoimmune diseases, 633 

TRAIL signaling was shown to inhibit CD8+ T cells proliferation, while enhancing the 634 

activity and expansion of CD4+ CD25+ regulatory T cells [234]. Thus, it is important to 635 

investigate how the different T cells populations in the tumor microenvironment may be 636 

affected by TRAIL treatment in order to facilitate the development of an anti-tumor 637 

immune response.  638 

Discrepancies and unresolved issues 639 

As outlined in this review, many published studies generated conflicting findings. 640 

These discrepancies may be explained through differences in the type of cells that were 641 

investigated, the activation status of these cells, distinct disease contexts, and whether the 642 

TRAIL (or TRAIL-R) was analyzed for its function at the physiologic, endogenous level 643 

versus overexpressed or added as recombinant protein. Although in vitro tumor studies 644 

have made substantial contribution to our understanding of TRAIL signaling, it remains 645 

difficult to translate these findings to the complex dynamics found in in vivo tumor models, 646 

not to mention that mice only harbor one agonistic receptor, while humans express two 647 

TRAIL-Rs, namely TRAIL-R1 and TRAIL-R2. Therefore, not all aspects of the TRAIL 648 

signaling can be studied in mouse models [13]. Thus, it might be advantageous to develop 649 

more complex systems to study the activity of TRAIL in vitro – for instance by using 3D 650 

cell co-culture and organoids – in order to facilitate the translation into in vivo applications. 651 

Alternatively, the development of a humanized mouse expressing human TRAIL/TRAIL-652 

R system could be a possible approach to dissect the role of each of these receptors in 653 

cancer cells and immune cells. 654 



28 

In conclusion, despite great advance in the knowledge of the function of TRAIL or 655 

TRAIL-R, many relevant aspects of TRAIL signaling in cancer and immune cells remain 656 

to be further elucidated. 657 
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Figure legends 1 

Figure 1 2 

Contribution of non-canonical TRAIL to tumorigenesis. TRAIL/TRAIL-R signaling in 3 

transformed cells may lead to different outcomes. In apoptosis-resistant cancer cells, 4 

TRAIL signaling activates various pathways, i.e. NF-κB, PI3K-AKT-mTOR, MAPKs and 5 

PKC, resulting in apoptosis resistance, cell survival and proliferation. Furthermore, TRAIL 6 

may also trigger migration and invasion of cancer cells through activation of NF-κB, 7 

MAPKs, PI3K and SRC-STAT3 pathways. Furthermore, TRAIL-induced cytokines 8 

produced by the tumor can promote the recruitment and polarization of myeloid-derived 9 

suppressor cells (MDSCs), which in turn support cancer cells proliferation and migration. 10 

Figure adapted from stock images provided by Servier 11 

(https://smart.servier.com/smart_image/).  12 

 13 

https://smart.servier.com/smart_image/
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Figure 2  1 

TRAIL/TRAIL-R signaling and NK cells. (A) TRAIL on NK cells engages its cognate 2 

receptor to elicit apoptosis of target cells (i.e. pathogen-infected cells, activated CD4+ and 3 

CD8+ T cells and tumor cells) following recognition of stress molecules by activating 4 

receptors or a reduction of MHC class I expression by inhibitory receptors on NK cells. 5 

TRAIL/TRAIL-R engagement on DCs induce arginase-1 mRNA expression, resulting in 6 

reduced MHC-class I-antigen peptide complexes and reduced activation of CD8+ T cells. 7 

(B) In NK cells, TRAIL signaling promotes GZMB production by supporting the PI3K-8 

AKT-mTOR pathway, thereby promoting NK cell cytotoxicity toward antigen-specific T 9 

cells. In addition, TRAIL inhibits IFNγ secretion by NK cells stimulated through the NK1.1 10 

receptor. (C) NK cells engage TRAIL signaling in DCs to promote arginase-1 expression, 11 

thereby reducing the generation of MHC-class I-antigen peptide complexes and impairing 12 

CD8+ T cell cross-priming. Figure adapted from stock images provided by Servier 13 

(https://smart.servier.com/smart_image/) and from Cardoso Alves et al. [211]. 14 
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Figure 3 1 

Non canonical TRAIL-mediated regulation of immune cell function. (A) During 2 

allergic inflammation, TRAIL and TLR4 promote the upregulation of MID1 in the airway 3 

wall, which in turn deactivates PP2AC, thereby resulting in NF-κB activation, pro-4 

inflammatory cytokines and chemokines production and to an increase in the eosinophils 5 

accumulation. (B) In macrophages, TRAIL supports cell migration and cytokine secretion 6 

through activation of the NF-κB and PI3K pathways. However, in certain contexts, TRAIL 7 

may also inhibit the cytokine secretion in macrophages. In addition, TRAIL promotes cell 8 

maturation and the expression of scavenger receptor through activation of the p38 pathway, 9 

which leads to an increase in efferocytosis and lipid uptake. (C) In dendritic cells (DCs), 10 

TRAIL inhibits cytokine secretion and the generation of MHC-class I-antigen peptide 11 

complexes, which in turn impairs CD8+ T cell cross-priming. Furthermore, TRAIL 12 

promotes DC maturation by an unknown mechanism. (D) In NK cells, TRAIL promotes 13 

GZMB production by supporting the PI3K-AKT-mTOR pathway, thereby leading to 14 

higher NK cell cytotoxicity and subsequently a reduced CD8+ T cells response. In contrast, 15 

in certain conditions, TRAIL may impact NK cell cytotoxicity by curbing NK cell 16 

degranulation. TRAIL inhibits IFNγ secretion by NK cells that have been stimulated with 17 

an NK1.1 cross-linking antibody. (E) The effect of TRAIL on T cell response is T cell 18 

subtype dependent. TRAIL signaling inhibits CD8+ T cells proliferation while it promotes 19 

CD4+ T cell function and expansion. Although increased numbers of TRAIL-stimulated 20 

conventional CD4+ T cells promote autoantibody production by autoreactive B cells, 21 

higher proliferation of TRAIL-stimulated CD4+ regulatory T cells inhibits autoimmune 22 

disease (F). Through an unknown mechanism, TRAIL suppresses autoantibody production 23 

by autoreactive B cells. 24 
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