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Abstract
Technological advances in DNA sequencing over the last decade now permit the 

production and curation of large genomic datasets in an increasing number of non-model 

species. Additionally, this new data provides the opportunity for combining datasets, 

resulting in larger studies with a broader taxonomic range. Whilst the development of new A
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sequencing platforms has been beneficial, resulting in a higher throughput of data at a 

lower per-base cost, shifts in sequencing technology can also pose challenges for those 

wishing to combine new sequencing data with data sequenced on older platforms. Here, 

we outline the types of studies where the use of curated data might be beneficial, and 

highlight potential biases that might be introduced by combining data from different 

sequencing platforms. As an example of the challenges associated with combining data 

across sequencing platforms, we focus on the impact of the shift in Illumina’s base calling 

technology from a four-channel to a two-channel system. We caution that when data is 

combined from these two systems, erroneous guanine base calls that result from the two-

channel chemistry can make their way through a bioinformatic pipeline, eventually 

leading to inaccurate and potentially misleading conclusions. We also suggest solutions 

for dealing with such potential artifacts, which make samples sequenced on different 

sequencing platforms appear more differentiated from one another than they really are. 

Finally, we stress the importance of archiving tissue samples and the associated 

sequences for the continued reproducibility and reusability of sequencing data in the face 

of ever-changing sequencing platform technology.

Keywords
NGS, reproducibility, reusability, poly-G, NovaSeq, HiSeq
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Opportunities: Combining and extending datasets across time and space

DNA sequencing data reflecting the diversity of life is accumulating, as technological 

developments continue to increase the basepair yield of sequencing runs, whilst lowering 

the per-basepair prices. This data continues to facilitate comparative studies of genome 

structure for more and more organisms, spanning the tree of life (Baker et al., 2020; 

Cheng et al., 2018; Leebens-Mack et al., 2019; Morris et al., 2018; Peter et al., 2018; 

Shen et al., 2018; Shi et al., 2018; Zhang et al., 2014). Further, the field of molecular 

ecology is flourishing, with more and more studies investigating the genetic variation 

within and among closely related groups of organisms (Brawand et al., 2014; 

Lamichhaney et al., 2015; Tollis et al., 2018). However, for molecular ecologists working 

on non-model species, budgets still limit the amount of sequence data that can be 

produced. As a result, exhaustive experimental designs, which include the sampling of 

many individuals from many different populations, are rare (but are emerging; (Feulner et 

al., 2015; Greenway et al., 2020; Martin et al., 2016; Soria-Carrasco et al., 2014; 

Stankowski et al., 2019; Vijay et al., 2016)). The effort to publicly archive sequence data 

that has already contributed to publications helps to maintain the reproducibility of 

sequencing studies, whilst prolonging the value of such sequence data in perpetuity. 

Additionally, this practice of sequence data storage provides the opportunity to expand 

datasets beyond those that one laboratory is capable of producing (in terms of time, 

labour, and finances) to increase the impact of studies despite a potentially limited 

budget. Repositories like the Short Read Archive (SRA) -- part of the International 

Nucleotide Sequence Database Collaboration (INSDC) that includes the NCBI Sequence 

Read Archive (SRA), the European Bioinformatics Institute (EBI), and the DNA Database 

of Japan (DDBJ) -- are essential for both the reproducibility of genetic and genomic 

studies, and the reusability of sequencing data. Although combining datasets is 

challenging for many sequencing approaches, particularly those that sequenced 

anonymous reduced representations of the genome (i.e. microsatellites, amplified 

fragment length polymorphisms, and maybe even restriction site associated DNA 

sequencing and genotyping by sequencing; but see Leigh, Lischer, Grossen, & Keller 

(2018) for an example), the increasingly common approach of re-sequencing whole-A
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genomes (even for a broader range of non-model organisms) makes the possibility of 

combining datasets more inviting.

Between the continued growth of sequencing data repositories and the continued ability 

to sequence more DNA quicker and cheaper the following types of studies are 

increasingly carried out:

(1) Broad macroevolutionary studies. Typically, such macroevolutionary studies benefit 

from a wide taxon sampling and few individuals suffice, making the combination of 

samples from different published datasets particularly useful. Often these analyses are 

restricted to more conserved regions of the genome. For example, Zhang et al. (2020) 

compiled a comprehensive dataset of 365 species of asterids representing all 17 orders 

containing published and newly sequenced whole genomes and transcriptomes to 

resolve the deep asterid phylogeny. In another example, Greenway et al. (2020) focus on 

the Poeciliidae family of fish, to demonstrate that adaptation to extreme, here sulfide-rich, 

environments has evolved convergently in ten independent lineages, by combining 

already published and newly sequenced transcriptome sequences.

(2) Microevolutionary studies investigating spatial variation across populations or closely 

related taxa. Such studies typically focus on one study system but rely on a larger 

sampling to reflect the variation within species or populations. These studies may benefit 

from combining newly sequenced material with archived sequence data from previous 

projects to produce larger within-system datasets. By taking advantage of existing 

sequence data, these combined datasets facilitate analyses of genomic differentiation 

across a much broader geographic sampling or among more individuals than would be 

otherwise possible. Here, the curated data is used to evaluate patterns in comparable 

populations to widen the perspective, i.e. to show whether a pattern is general or specific 

to the population under investigation. For example, Ravinet, Kume, Ishikawa, & Kitano 

(2020) evaluated if patterns of divergence and introgression between Japan Sea and 

Pacific Ocean stickleback resemble patterns at other locations where these species co-

occur. In a comprehensive study conducted by Samuk et al. (2017), the authors compiled 

multiple genotyping by sequencing and whole genome sequencing datasets to a global 

evaluation of 1300 stickleback individuals across 51 populations, to show that putative A
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adaptive alleles tend to occur more often in regions of low recombination. Bergland, 

Behrman, O’Brien, Schmidt, & Petrov (2014) used curated data to check haplotypes 

under seasonal selection in Drosophila melanogaster for between-species divergence 

with a sister species (D. simulans). Most recently, Jones, Mills, Jensen, & Good (2020) 

combined new and published whole-genome and exome sequences with targeted 

genotyping of Agouti, a pigmentation gene introgressed from black-tailed jackrabbits, to 

investigate the evolutionary history of local seasonal camouflage adaptation in Snowshoe 

hares from the Pacific Northwest.

(3) Studies investigating temporal variation within and between population and species. 

Such studies involve combining datasets across time scales and often contain 

sequencing data that originated from a variety of sample types including museum 

collections, long-term preserved fossils or hard tissues, and contemporary fresh samples. 

For example, the use of museum specimens facilitated the investigation of independent 

temporal genomic contrasts spanning a century of climate change for two co-distributed 

chipmunk species (Bi et al., 2019) and a paleogenomics approach investigated the 

temporal component of adaptation to freshwater in sticklebacks by sequencing the 

genomes of 11-13,000-year-old bones and comparing them with 30 modern stickleback 

genomes (Kirch, Romundset, Gilbert, Jones, & Foote, 2020). Experimental approaches 

combining previous sequencing efforts with new samples are also commonly used to 

increase our understanding of temporal variation. Tenaillon et al. (2016) compiled 

sequence data from several other publications in addition to new sequences to 

strengthen their conclusions on the tempo and mode of E. coli genome evolution. Bottery, 

Wood, & Brockhurst (2019), after having shown that tetracycline resistance requires 

multiple mutations, used curated data to investigate if the mutation establishment order 

was repeatable. This by no means exhaustive selection of examples highlights that the 

growing amount of sequence data provides the opportunity for endless combinations of 

datasets to be analysed to address a multitude of questions.

Challenges: Biases change with technological developments 

One technological advance which sped up the Illumina workflow and made it more cost-

effective was a change from four-channel chemistry, where each of the four DNA bases A
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is detected by a different fluorescent dye, to a two-channel chemistry, that uses only two 

different fluorescent dyes (Illumina). In these two-channel workflows, as implemented in 

the NextSeq and NovaSeq platforms, a guanine base (G) is called in the absence of 

fluorescence (Figure 1). Hence, it is difficult to differentiate between no signal and a G, 

resulting in an overrepresentation of poly-G strings in sequence data from both NextSeq 

and NovaSeq (Chen, Zhou, Chen, & Gu, 2018).

To most accurately capture biological variation in a given sample or population, it is 

important to differentiate between potentially erroneous and correct base calls, which is 

often done using base quality scores. However, erroneous poly-G base calls produced on 

the NextSeq and NovaSeq platforms can be difficult to detect, because, as a result of the 

two-colour chemistry, they are not always associated with reduced base qualities. 

Unfortunately, read trimming software packages that were written for the older four-colour 

systems do not flag or trim poly-G tails. Although one might think that mapping should 

remove the effect of these overrepresented Gs without the need for read trimming, it has 

been shown that some may still trickle through a bioinformatics pipeline and influence 

variant calling steps. A comprehensive empirical study making use of cancer cell lines to 

benchmark systematic differences between technologies revealed that NovaSeq 

instruments produced more stretches of Gs than HiSeqX in both paired-end reads (Arora 

et al., 2019). Arora et al. (2019) further confirmed that the bias remained detectable in the 

mapped reads and resulted in a relatively large number of T > G mutations among the 

variants unique to the NovaSeq instrument. To reduce the potential down-stream impact 

of these poly-G strings, newer trimming software packages such as fastp (Chen et al., 

2018) check the source of the data and implement poly-G trimming by default for the two-

colour systems. This not only improves the computational efficiency of sequence 

alignment, but should also reduce the impact of erroneous variant calling on these bases.

The impact of these changes in base calling and the subsequent erroneous G calls on 

the biological interpretation may vary with the chosen experimental design and other 

sources of variation such as for example DNA quality. Although the biases resulting from 

not trimming off or filtering out poly-G strings might be mild or irrelevant when analysing 

data produced from high quality input DNA from a single system, this may not be true 

when data from different technologies are combined across various biological units (e.g. A
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across populations, species, treatments, or time points). On top of variation in the quality 

of input DNA, a range of variation in sequencing approaches exists, along with 

differences in library preparation, including variation in read length or whether reads are 

single-end or paired-end. Where different individuals within a single dataset have been 

sequenced with variation in these methodological factors biases may also be 

exacerbated, potentially producing misleading results. Variation in length of sequences 

reads across a dataset for example has been shown to lead to pronounced allele 

frequency differences between populations and subsequently suggested false biological 

trends (Leight et al. 2018). Metagenomic work suggested that both library preparation 

and sequencing platform had systematic effects on the microbial community description 

(Poulsen, Pamp, Ekstrøm, & Aarestrup, 2019; Sato et al., 2019). In summary, attention 

should be paid to DNA quality, library preparation protocols, and the sequencing platform 

used when analysing and interpreting publicly available genomic data.

Although the prospect of combining datasets to improve our power to detect patterns is 

alluring, it is important to consider the ways in which these data may result in misleading 

conclusions. Combining datasets often means combining data from different sequencing 

platforms, as DNA sequencing technology continues to develop through time. 

Unfortunately, some of the developments (e.g. the change from four-channel to two-

channel chemistry in Illumina sequencing machines) have changed the way in which 

uncertainties in base calling are presented in the sequencer’s output files. If managed 

incorrectly, these changes hamper our ability to combine datasets obtained with different 

sequencing technologies, and the subsequent genotyping and analysis of these 

combined datasets may be biased (in the worst cases leading to erroneous conclusions). 

The most straightforward way to prevent this is a well-thought out experimental design, a 

step which can often be overlooked in a time where sequencing data is being produced 

so rapidly (see Mason (2017) for sound advice on experimental design). As has been 

shown for sequencing reduced-representation libraries, it is crucial for any type of 

sequencing experiment to carefully consider types of errors that may be introduced 

during laboratory work and data processing, and how to minimize, detect and remove 

these errors (O'Leary, Puritz, Willis, Hollenbeck, & Portnoy 2018). However, it may be 

difficult to achieve the ideal or optimal study design when an investigation integrates new A
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information with already existing data (e.g. with individuals and treatments randomised 

across sequencing batches). Despite this limitation there are a number of approaches 

that can help to rectify some of these imbalances and allow the combination of multiple 

genomic datasets whilst minimising the impact of cross-platform biases.

Ways forward: Suggestions on how to minimise technological bias when 

integrating datasets

Despite the ease with which new datasets can be produced it is critical that researchers 

do not forgo project planning and experimental design steps and aim to understand and 

reduce the potential impact of intrinsic data biases. These planning steps should be 

similar to those carried out for the sequencing of new samples and could include an 

assessment of the dataset (1) and the pipeline for analysis (2):

(1) When compiling a combined dataset, it is important to consider the key question that 

is being addressed and to evaluate how many samples of each population, species, 

treatment, or time unit are needed to have the power to draw meaningful conclusions. It 

is also worth evaluating the trade-offs between sequencing new samples or using 

existing data (e.g. if only a handful of samples are missing could it be worthwhile to 

sequence more samples so that all individuals are sequenced the same way, reducing 

the likelihood that biases or batch effects will cause problems downstream in the 

analysis). If datasets will be combined to address a specific question then it is important 

to asses which specific sequenced samples are available and how many different 

datasets these samples come from. It is important to be conscious of, and carefully 

document, the different technologies used for library preparation and sequencing across 

samples and datasets, and if possible, to glean an understanding of the origin and quality 

of the input DNA. Ideally, the dataset would be compiled in a way that minimizes the 

number of differences between samples from different sources. Further, it is critical to 

strive to randomise samples from different biological units across different sequencing 

batches (Meirmans 2015). It can be particularly beneficial to repeat sequencing of one or 

a few representatives from a curated dataset to evaluate and correct potential biases. If 

feasible, repeated sequencing of the same individual allows to identify problematic loci 

that are not genotyped identically or consistently across technologies despite originating A
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from the same individual. We therefore urge researchers wherever possible to archive 

tissue and/or DNA. These collections can be of tremendous value, as they facilitate the 

repeated sequencing of past samples into newly compiled datasets to determine whether 

any variants or alleles may have been erroneously missed because of technological 

biases. Using archived tissue or DNA in this way is one of the only possibilities to verify 

new sequence variants found using future technologies.

(2) Once it is decided that integrating dataset from various sources provides the best 

power to answer a particular question, it is important to determine which checks should 

be implemented in the analysis pipeline to avoid misleading biological interpretation of 

the data. The ways in which biological and technological differences are distributed 

across the compiled dataset should be reported and critical steps that would identify 

potentially problematic sequence artifacts and biases should be implemented in the 

bioinformatic pipeline. It is also crucial to determine how potential artifacts and biases 

amongst datasets will be handled. Figure 2 provides a suggestion for a pipeline 

evaluating known differences between sequencing data produced with four-channel 

chemistry (e.g. HiSeqX) and two-channel chemistry (e.g. NovaSeq). We suggest 

comparing the FastQC report (Andrews, 2010) between samples sequenced with the two 

technologies to each other. Any systematic difference across FastQC reports might be 

relevant, however, when samples sequenced with different sequence chemistry that 

affects the base calling are combined reports on per base sequence and k-mers content 

are particularly worth paying attention to (see Figure 1 for an example, illustrating 

differences in k-mer counts). To see whether mapping reduces sequencing artefacts, 

FastQC can be re-run on only the reads that mapped well and will be used for 

genotyping. If biases persist, read trimming should be considered. Here fastp (Chen et 

al., 2018) could be used to trim poly-G tails efficiently. Once reads have been mapped, 

variants have been called, and genotypes have been determined, genotypes should be 

evaluated for potential batch effects. Here, we recommend identifying individuals 

sampled using different datasets and/or technologies with specific symbols or colours 

allowing the possible differences between these artificial groups to be highlighted (see 

section above). For example, in a Principal Component Analysis (PCA) which represents 

the various technological and sample differences by different symbols and biological A
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differences (i.e. populations or species) by colour, any PC axis separating symbols 

instead of colours suggests there might be some technological bias causing batch effects 

(Figure 1). However, biases might not always show up as batch effects and are 

especially problematic when one population or other biological unit is the only one 

sequenced with a different technology. In this scenario, artifacts and biological 

differences would be confounded and as a result artifacts and biases would be hard to 

detect (not visible as a batch effect in a PCA) and correct for. For this reason, we suggest 

that researchers aim to sequence biological units (species, populations, treatments, or 

time points) across each batch to avoid confounding biological differences with library or 

other technical effects. Alternatively, a bias might (although not necessarily) show up as a 

mutational bias relative to the reference, which can be evaluated and compared to 

published biases resulting from sequencing platform shifts (see Arora et al. (2019)). To 

reduce biases and undesired batch effects, the filtering parameters for variant calls and 

genotypes will need to be adjusted. One way to find the optimal filtering settings could be 

to determine which filtering thresholds allow you to minimize the differences between the 

detected batches. Specifically, it may be useful to compare distributions of quality scores 

between reference and alternate allele, which should look very similar in the absence of 

batch effects. However, we do not recommend solely relying on this to remove biases in 

the reads (such as poly-Gs in NovaSeq data) but mention this as one option that might 

help to reduce other sources of undesired batch effects. If none of these approaches 

suffice to identify and remove biases, one potential solution could be to define variable 

sites in a subset of the data, which only represents one technology, and then call 

genotypes on the whole dataset for only those regions. This comes with a potential 

ascertainment bias depending on how broadly biological units are represented in such a 

subset, but should reduce spurious variation caused by technological differences. Such 

an approach is similar to defining a SNP panel and then using SNPchips or other 

technologies to genotype a larger sampling (Kim et al., 2018). As all datasets are 

different, different approaches might be needed to reduce any effects of technological 

differences in compiled datasets. Critically, in each of these scenarios the identification 

and removal of biases associated with technological shifts serves to reduce the possibility 

of incorrectly or erroneously inferring biological patterns or processes. A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Finally, we want to emphasise the huge value of community efforts to archive sequencing 

data that makes science reproducible and reusable. We hope that we have demonstrated 

not only how technological shifts may pose challenges for the meaningful reusability of 

data, but also that the removal of biases associated with such shifts allows us to address 

new and exciting biological questions. We highlight the importance and value of accurate 

documentation, archiving of tissue and DNA samples, and sequence data, and urge 

researchers to assess the experimental design of their research projects to ensure 

scientifically sound and robust results.
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Figure 1: Example of a technological difference between sequencing chemistries, which 

introduces a bias (overrepresentation of G k-mers) in the sequenced reads and result in a 

batch effect visible when genotypes are evaluated in a principal component analysis 

(PCA).

Top: Schematic redrawn from Illumina representing the differences between 4-channel 

chemistry evaluating each of the four bases by a distinct fluorescence label, and 2-

channel chemistry representing the four bases with two dyes only.

Middle: Redrawn examples of the one aspect of a typical FastQC (Andrews, 2010) report, 

which evaluates the count of each short nucleotide of length k (default = 7) starting at 

each position along the read. Any given k-mer should be evenly represented across the 

length of the read. The y axis reports the relative enrichment (log2 observed over 

expected counts) of the 7-mers over the read length (x axis). The graph presents those k-

mers which appear at specific positions with greater than expected frequency. In the left 

panel reads sequenced with 4-channel chemistry are represented which show a slight 

overrepresentation of two random 7-mers represented by different colours (typically the 

report would plot the first six hits). The overrepresentation is small and most pronounced 

at the beginning of the read (to the left of the x axis), a pattern often found in high quality 

sequencing libraries due to slight, sequence dependent efficiency of DNA shearing or a 

result of random priming. In the right panel, an overrepresentation of poly-G-mers toward 

the end of the reads is exemplified as typical for raw reads sequenced with 2-channel 

chemistry. Note the difference in the logarithmic scale between left and right panel.

Bottom: Conceptual representation of a batch effect resulting from technological 

differences. Each sample's genotype, compiled of a large number of loci distributed A
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across the whole genome, is represented as a coloured symbol in multivariate space, 

where PC axis one and two reflect two primary axes of variation in the dataset. The left 

panel would reflect a dataset with a batch effect. The fact that samples are separated by 

sequencing technology on PC axis 2 indicates the presence of a technological bias. In 

the right panel, batch effects have been reduced, e.g. by trimming off poly-G tails. 

Symbols in the PCA differentiate samples sequenced with either 2-channel (diamond) or 

4-channel (cross) chemistry, colours differentiate different populations or species 

(biological differences). The left panel is imagined to be based on a data set of 

untrimmed reads, PC axis 2 separates samples due to technological differences. That 

effect is gone in the right panel, after read trimming was applied.

Figure 2: Flow diagram of an exemplified pipeline evaluating and accounting for biases 

caused by different sequencing technologies in a compiled data set. For more details see 

text.
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